Coronavirus herd immunity optimizer (CHIO)
In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration of CHIO is originated from the herd immunity concept as a way to tackle coronavirus pandemic (COVID-19). The speed of spreading coronavirus...
Uložené v:
| Vydané v: | Neural computing & applications Ročník 33; číslo 10; s. 5011 - 5042 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
01.05.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration of CHIO is originated from the herd immunity concept as a way to tackle coronavirus pandemic (COVID-19). The speed of spreading coronavirus infection depends on how the infected individuals directly contact with other society members. In order to protect other members of society from the disease, social distancing is suggested by health experts. Herd immunity is a state the population reaches when most of the population is immune which results in the prevention of disease transmission. These concepts are modeled in terms of optimization concepts. CHIO mimics the herd immunity strategy as well as the social distancing concepts. Three types of individual cases are utilized for herd immunity: susceptible, infected, and immuned. This is to determine how the newly generated solution updates its genes with social distancing strategies. CHIO is evaluated using 23 well-known benchmark functions. Initially, the sensitivity of CHIO to its parameters is studied. Thereafter, the comparative evaluation against seven state-of-the-art methods is conducted. The comparative analysis verifies that CHIO is able to yield very competitive results compared to those obtained by other well-established methods. For more validations, three real-world engineering optimization problems extracted from IEEE-CEC 2011 are used. Again, CHIO is proved to be efficient. In conclusion, CHIO is a very powerful optimization algorithm that can be used to tackle many optimization problems across a wide variety of optimization domains. |
|---|---|
| AbstractList | In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration of CHIO is originated from the herd immunity concept as a way to tackle coronavirus pandemic (COVID-19). The speed of spreading coronavirus infection depends on how the infected individuals directly contact with other society members. In order to protect other members of society from the disease, social distancing is suggested by health experts. Herd immunity is a state the population reaches when most of the population is immune which results in the prevention of disease transmission. These concepts are modeled in terms of optimization concepts. CHIO mimics the herd immunity strategy as well as the social distancing concepts. Three types of individual cases are utilized for herd immunity: susceptible, infected, and immuned. This is to determine how the newly generated solution updates its genes with social distancing strategies. CHIO is evaluated using 23 well-known benchmark functions. Initially, the sensitivity of CHIO to its parameters is studied. Thereafter, the comparative evaluation against seven state-of-the-art methods is conducted. The comparative analysis verifies that CHIO is able to yield very competitive results compared to those obtained by other well-established methods. For more validations, three real-world engineering optimization problems extracted from IEEE-CEC 2011 are used. Again, CHIO is proved to be efficient. In conclusion, CHIO is a very powerful optimization algorithm that can be used to tackle many optimization problems across a wide variety of optimization domains. In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration of CHIO is originated from the herd immunity concept as a way to tackle coronavirus pandemic (COVID-19). The speed of spreading coronavirus infection depends on how the infected individuals directly contact with other society members. In order to protect other members of society from the disease, social distancing is suggested by health experts. Herd immunity is a state the population reaches when most of the population is immune which results in the prevention of disease transmission. These concepts are modeled in terms of optimization concepts. CHIO mimics the herd immunity strategy as well as the social distancing concepts. Three types of individual cases are utilized for herd immunity: susceptible, infected, and immuned. This is to determine how the newly generated solution updates its genes with social distancing strategies. CHIO is evaluated using 23 well-known benchmark functions. Initially, the sensitivity of CHIO to its parameters is studied. Thereafter, the comparative evaluation against seven state-of-the-art methods is conducted. The comparative analysis verifies that CHIO is able to yield very competitive results compared to those obtained by other well-established methods. For more validations, three real-world engineering optimization problems extracted from IEEE-CEC 2011 are used. Again, CHIO is proved to be efficient. In conclusion, CHIO is a very powerful optimization algorithm that can be used to tackle many optimization problems across a wide variety of optimization domains.In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration of CHIO is originated from the herd immunity concept as a way to tackle coronavirus pandemic (COVID-19). The speed of spreading coronavirus infection depends on how the infected individuals directly contact with other society members. In order to protect other members of society from the disease, social distancing is suggested by health experts. Herd immunity is a state the population reaches when most of the population is immune which results in the prevention of disease transmission. These concepts are modeled in terms of optimization concepts. CHIO mimics the herd immunity strategy as well as the social distancing concepts. Three types of individual cases are utilized for herd immunity: susceptible, infected, and immuned. This is to determine how the newly generated solution updates its genes with social distancing strategies. CHIO is evaluated using 23 well-known benchmark functions. Initially, the sensitivity of CHIO to its parameters is studied. Thereafter, the comparative evaluation against seven state-of-the-art methods is conducted. The comparative analysis verifies that CHIO is able to yield very competitive results compared to those obtained by other well-established methods. For more validations, three real-world engineering optimization problems extracted from IEEE-CEC 2011 are used. Again, CHIO is proved to be efficient. In conclusion, CHIO is a very powerful optimization algorithm that can be used to tackle many optimization problems across a wide variety of optimization domains. |
| Author | Al-Betar, Mohammed Azmi Awadallah, Mohammed A. Abu Doush, Iyad Alyasseri, Zaid Abdi Alkareem |
| Author_xml | – sequence: 1 givenname: Mohammed Azmi orcidid: 0000-0003-1980-1791 surname: Al-Betar fullname: Al-Betar, Mohammed Azmi email: mohbetar@bau.edu.jo organization: Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Department of Information Technology - MSAI, College of Engineering and Information Technology Ajman University – sequence: 2 givenname: Zaid Abdi Alkareem orcidid: 0000-0003-4228-9298 surname: Alyasseri fullname: Alyasseri, Zaid Abdi Alkareem organization: Center for Artificial Intelligence, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, ECE Department, Faculty of Engineering, University of Kufa – sequence: 3 givenname: Mohammed A. orcidid: 0000-0002-7815-8946 surname: Awadallah fullname: Awadallah, Mohammed A. organization: Department of Computer Science, Al-Aqsa University – sequence: 4 givenname: Iyad surname: Abu Doush fullname: Abu Doush, Iyad organization: Computer Science Department, American University of Kuwait, Computer Science Department, Yarmouk University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32874019$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtLAzEUhYMoWh9_wIUU3KgwevOayWwEKb5AcKPrkCapRmaSmswU9NebWuujC1f3wv3O4SRnG6374C1C-xhOMUB1lgA4wQUQKPJSl0W5hgaYUVpQ4GIdDaBm-VwyuoW2U3oBAFYKvom2KBEVA1wP0MkoxODVzMU-DZ9tNEPXtr133dswTDvXuncbh0ejm9v74120MVFNsntfcwc9Xl0-jG6Ku_vr29HFXaE5IV3B8cTURmvghtKKmtriCgzmtcJU0cpgoURVas7rsdaCABtzbcdG2YkVWllDd9D5wnfaj1trtPVdVI2cRteq-CaDcvLvxbtn-RRmsmIcCyDZ4OjLIIbX3qZOti5p2zTK29AnSRitS1IRARk9XEFfQh99fp4k2UxwVrI5dfA70XeU5TdmQCwAHUNK0U6kdp3qXJgHdI3EIOeNyUVjMjcmPxuTZZaSFenS_V8RXYhShv2TjT-x_1F9AFgap40 |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2022_108457 crossref_primary_10_32604_cmc_2024_053189 crossref_primary_10_1016_j_ifacol_2022_04_025 crossref_primary_10_32604_cmc_2023_034025 crossref_primary_10_3390_pr11051502 crossref_primary_10_1007_s11831_022_09800_0 crossref_primary_10_1007_s11831_023_09912_1 crossref_primary_10_1108_K_01_2024_0199 crossref_primary_10_1109_ACCESS_2023_3312022 crossref_primary_10_3390_biomimetics8080619 crossref_primary_10_1016_j_conengprac_2023_105709 crossref_primary_10_1016_j_microc_2024_112203 crossref_primary_10_1016_j_cma_2022_115676 crossref_primary_10_1093_jcde_qwad047 crossref_primary_10_32604_cmc_2024_057431 crossref_primary_10_1109_ACCESS_2023_3304889 crossref_primary_10_1016_j_cma_2025_118208 crossref_primary_10_1080_13682199_2023_2242088 crossref_primary_10_1155_2022_1502988 crossref_primary_10_1016_j_bspc_2024_106222 crossref_primary_10_1016_j_jpowsour_2024_235615 crossref_primary_10_1016_j_bspc_2021_103326 crossref_primary_10_1038_s41598_023_37537_8 crossref_primary_10_1016_j_heliyon_2024_e31629 crossref_primary_10_1038_s41746_022_00704_8 crossref_primary_10_1007_s13198_024_02663_7 crossref_primary_10_32604_cmc_2022_026228 crossref_primary_10_1007_s41939_024_00555_8 crossref_primary_10_1016_j_cosrev_2025_100740 crossref_primary_10_1177_18758967251360039 crossref_primary_10_3390_biomimetics9020065 crossref_primary_10_1007_s11227_024_06899_9 crossref_primary_10_1007_s12530_024_09634_0 crossref_primary_10_1016_j_heliyon_2024_e31832 crossref_primary_10_1016_j_aei_2023_102210 crossref_primary_10_1007_s13042_022_01670_z crossref_primary_10_1007_s11042_023_16719_6 crossref_primary_10_1016_j_knosys_2022_110206 crossref_primary_10_1016_j_asoc_2023_110908 crossref_primary_10_1007_s11831_025_10304_w crossref_primary_10_1049_rpg2_13004 crossref_primary_10_1088_1402_4896_ad86f7 crossref_primary_10_1007_s00521_023_08649_z crossref_primary_10_1109_ACCESS_2022_3147821 crossref_primary_10_1007_s00521_022_07639_x crossref_primary_10_1007_s11831_022_09766_z crossref_primary_10_1016_j_compeleceng_2024_109569 crossref_primary_10_1007_s00500_022_06917_z crossref_primary_10_1109_ACCESS_2024_3367753 crossref_primary_10_1016_j_comcom_2022_12_006 crossref_primary_10_1007_s00603_024_03801_0 crossref_primary_10_1016_j_jestch_2024_101764 crossref_primary_10_1155_2022_5974634 crossref_primary_10_1007_s12065_023_00876_6 crossref_primary_10_1007_s00521_022_07565_y crossref_primary_10_1007_s10462_024_10829_9 crossref_primary_10_3390_app122211787 crossref_primary_10_1007_s41939_023_00256_8 crossref_primary_10_1016_j_apenergy_2024_123437 crossref_primary_10_1016_j_engappai_2024_109202 crossref_primary_10_1016_j_epsr_2023_109267 crossref_primary_10_1109_ACCESS_2023_3283422 crossref_primary_10_1109_ACCESS_2024_3453488 crossref_primary_10_1109_ACCESS_2022_3166866 crossref_primary_10_3390_biomimetics9010008 crossref_primary_10_1109_ACCESS_2025_3567303 crossref_primary_10_1016_j_eswa_2025_126539 crossref_primary_10_1007_s10586_025_05328_7 crossref_primary_10_1007_s11831_025_10281_0 crossref_primary_10_1007_s13369_024_09807_8 crossref_primary_10_1016_j_cma_2025_117791 crossref_primary_10_1016_j_cosrev_2025_100733 crossref_primary_10_1080_21642583_2024_2385310 crossref_primary_10_1007_s00521_022_07662_y crossref_primary_10_1109_TCBB_2023_3345317 crossref_primary_10_1007_s11831_021_09585_8 crossref_primary_10_1007_s10462_022_10277_3 crossref_primary_10_1016_j_advengsoft_2022_103338 crossref_primary_10_3390_biomimetics8060470 crossref_primary_10_1007_s10586_023_03979_y crossref_primary_10_3390_agriculture14091653 crossref_primary_10_1007_s10462_024_10747_w crossref_primary_10_1016_j_phycom_2025_102708 crossref_primary_10_3390_math11143210 crossref_primary_10_1016_j_egyr_2023_04_007 crossref_primary_10_3390_biomimetics7040204 crossref_primary_10_1109_ACCESS_2023_3287484 crossref_primary_10_3390_biomimetics9030186 crossref_primary_10_1007_s10489_020_01947_2 crossref_primary_10_3390_biomimetics8010121 crossref_primary_10_1007_s41939_023_00228_y crossref_primary_10_3389_fmech_2022_1126450 crossref_primary_10_1007_s10489_021_02862_w crossref_primary_10_32604_cmes_2024_055171 crossref_primary_10_1080_15325008_2024_2343397 crossref_primary_10_1007_s11831_023_10058_3 crossref_primary_10_1155_2024_5570228 crossref_primary_10_1007_s00521_024_10905_9 crossref_primary_10_1007_s10586_024_04360_3 crossref_primary_10_3233_MGS_220328 crossref_primary_10_1016_j_ijepes_2022_108940 crossref_primary_10_1007_s12530_023_09552_7 crossref_primary_10_1038_s41598_022_22933_3 crossref_primary_10_1007_s10586_024_04674_2 crossref_primary_10_1109_ACCESS_2024_3418968 crossref_primary_10_1016_j_aei_2023_102004 crossref_primary_10_1007_s10586_025_05540_5 crossref_primary_10_1016_j_swevo_2024_101808 crossref_primary_10_1016_j_istruc_2022_09_057 crossref_primary_10_1007_s10586_024_04931_4 crossref_primary_10_1007_s12596_024_02030_6 crossref_primary_10_1016_j_eswa_2023_122830 crossref_primary_10_1038_s41598_024_70497_1 crossref_primary_10_1038_s41598_025_93370_1 crossref_primary_10_1007_s00500_023_09151_3 crossref_primary_10_1016_j_cma_2024_117588 crossref_primary_10_3390_pr11061826 crossref_primary_10_1007_s10462_025_11351_2 crossref_primary_10_3390_biomimetics8020149 crossref_primary_10_1016_j_bspc_2023_104951 crossref_primary_10_1007_s00521_023_08229_1 crossref_primary_10_1016_j_sysarc_2023_102871 crossref_primary_10_3390_math10071201 crossref_primary_10_1007_s10586_025_05367_0 crossref_primary_10_1007_s11831_025_10287_8 crossref_primary_10_1007_s11831_025_10249_0 crossref_primary_10_3390_su152015039 crossref_primary_10_1002_cpe_7730 crossref_primary_10_1007_s11227_022_04644_8 crossref_primary_10_1016_j_eswa_2023_120905 crossref_primary_10_1007_s00354_022_00190_2 crossref_primary_10_1186_s12859_023_05621_5 crossref_primary_10_1016_j_compbiomed_2023_107212 crossref_primary_10_1007_s00521_024_09533_0 crossref_primary_10_1007_s10115_025_02498_z crossref_primary_10_1016_j_eswa_2023_122413 crossref_primary_10_1007_s10462_024_11104_7 crossref_primary_10_1007_s11831_022_09843_3 crossref_primary_10_3390_math12071059 crossref_primary_10_1007_s41939_024_00540_1 crossref_primary_10_1016_j_knosys_2022_109484 crossref_primary_10_3390_biomimetics8060508 crossref_primary_10_3390_biomimetics8060507 crossref_primary_10_1007_s11042_023_16764_1 crossref_primary_10_1016_j_jtice_2024_105796 crossref_primary_10_1016_j_asoc_2024_112159 crossref_primary_10_1016_j_asoc_2025_113527 crossref_primary_10_1007_s10462_023_10470_y crossref_primary_10_32604_cmes_2025_061028 crossref_primary_10_1007_s13042_025_02620_1 crossref_primary_10_1038_s41598_022_22458_9 crossref_primary_10_1007_s00521_023_09299_x crossref_primary_10_1177_18724981251333610 crossref_primary_10_1007_s10462_021_10052_w crossref_primary_10_1007_s00521_025_11421_0 crossref_primary_10_1111_exsy_12759 crossref_primary_10_1007_s12596_025_02464_6 crossref_primary_10_1016_j_eswa_2023_122070 crossref_primary_10_1007_s00500_021_06230_1 crossref_primary_10_4018_IJSKD_330150 crossref_primary_10_1007_s00521_022_07705_4 crossref_primary_10_1016_j_eswa_2021_116431 crossref_primary_10_1007_s00202_025_03091_x crossref_primary_10_1016_j_aei_2024_102464 crossref_primary_10_3390_electronics10172057 crossref_primary_10_1007_s00500_023_08274_x crossref_primary_10_1016_j_swevo_2025_101984 crossref_primary_10_3390_biomimetics9030137 crossref_primary_10_1007_s12652_022_03731_1 crossref_primary_10_1016_j_asoc_2022_109805 crossref_primary_10_3390_app121910057 crossref_primary_10_1016_j_aei_2023_101908 crossref_primary_10_1016_j_measurement_2024_115596 crossref_primary_10_1016_j_neucom_2023_03_065 crossref_primary_10_1007_s11831_023_09923_y crossref_primary_10_1038_s41598_024_70405_7 crossref_primary_10_1016_j_knosys_2021_107682 crossref_primary_10_1109_TCE_2025_3572009 crossref_primary_10_3390_su132212653 crossref_primary_10_1016_j_asoc_2023_110514 crossref_primary_10_1155_2022_5191758 crossref_primary_10_1007_s11831_021_09701_8 crossref_primary_10_1080_10255842_2023_2206933 crossref_primary_10_1007_s11831_023_09897_x crossref_primary_10_1109_JSEN_2022_3225956 crossref_primary_10_57120_yalvac_1257808 crossref_primary_10_1016_j_jestch_2024_101935 crossref_primary_10_1007_s11269_025_04210_w crossref_primary_10_1109_ACCESS_2020_3037197 crossref_primary_10_1007_s13369_023_08113_z crossref_primary_10_1038_s41598_024_81742_y crossref_primary_10_1007_s10462_024_11008_6 crossref_primary_10_1109_ACCESS_2023_3287859 crossref_primary_10_1109_ACCESS_2021_3135805 crossref_primary_10_1002_oca_2823 crossref_primary_10_1007_s42835_024_02026_z crossref_primary_10_3390_su15064982 crossref_primary_10_1016_j_epsr_2023_109411 crossref_primary_10_1109_ACCESS_2022_3229964 crossref_primary_10_1038_s41598_024_59655_7 crossref_primary_10_1007_s11831_023_09887_z crossref_primary_10_1007_s00521_024_09879_5 crossref_primary_10_1016_j_adhoc_2024_103474 crossref_primary_10_1038_s41598_025_92983_w crossref_primary_10_1016_j_eswa_2023_121218 crossref_primary_10_1016_j_compbiomed_2023_107389 crossref_primary_10_1016_j_eij_2025_100633 crossref_primary_10_1007_s12351_024_00862_5 crossref_primary_10_1080_10589759_2023_2274015 crossref_primary_10_1038_s41598_024_60821_0 crossref_primary_10_1016_j_cma_2022_115652 crossref_primary_10_1007_s11831_025_10363_z crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1007_s42235_023_00359_5 crossref_primary_10_1007_s00500_023_07928_0 crossref_primary_10_1007_s42044_025_00317_w crossref_primary_10_1080_00207543_2024_2328131 crossref_primary_10_1016_j_fuel_2025_136065 crossref_primary_10_1016_j_swevo_2024_101766 crossref_primary_10_1109_ACCESS_2021_3113812 crossref_primary_10_1007_s00500_023_08468_3 |
| Cites_doi | 10.3233/CH-209006 10.2139/ssrn.3566211 10.1504/IJBIC.2011.043624 10.1007/978-1-4612-4380-9_16 10.1016/j.jinf.2020.03.027 10.1016/j.immuni.2020.04.012 10.1109/CEC.2011.5949731 10.1023/A:1022452626305 10.1109/ICCIAS.2006.294126 10.1016/j.antiviral.2009.10.008 10.1016/0140-6736(90)90420-A 10.1109/CEC.2011.5949800 10.1016/S0140-6736(20)30627-9 10.1073/pnas.1014394108 10.1016/j.future.2019.02.028 10.1109/CEC.2011.5949770 10.1108/02644401211235834 10.1007/978-1-4613-0303-9_33 10.1016/j.future.2019.07.015 10.1007/s00521-015-1920-1 10.1016/j.asoc.2012.11.026 10.1016/j.advengsoft.2016.01.008 10.1109/CEC.2011.5949734 10.1016/j.knosys.2011.07.001 10.1016/j.swevo.2018.02.015 10.1016/j.asoc.2012.05.018 10.1016/j.advengsoft.2015.01.010 10.1007/s00521-015-1923-y 10.1145/937503.937505 10.1016/j.coviro.2020.02.004 10.1109/ICNN.1995.488968 10.1016/j.advengsoft.2017.07.002 10.3201/eid1211.060255 10.1007/s00521-015-1870-7 10.17157/mat.7.2.791 10.1016/j.isatra.2014.03.018 10.1016/j.cnsns.2013.08.027 10.1016/j.knosys.2015.12.022 10.1093/oxfordjournals.epirev.a036121 10.1007/s00500-018-3102-4 10.1007/BF02125421 10.1007/s12293-017-0241-6 10.1136/bmj.39393.510347.BE 10.1007/978-3-642-13495-1_44 10.1177/003754970107600201 10.1007/s00521-016-2328-2 10.1109/CEC.2011.5949730 10.1007/3-540-50871-6 10.1007/978-3-642-32894-7_27 10.1109/IWSSIP.2018.8439207 10.1016/j.ins.2009.03.004 10.1016/j.advengsoft.2013.12.007 10.1016/j.compstruc.2016.03.001 10.1016/j.advengsoft.2005.04.005 10.1007/s10489-017-1015-z 10.1109/CEC.2011.5949769 10.1126/science.220.4598.671 10.1016/j.ijantimicag.2020.105924 10.1016/j.cnsns.2012.05.010 10.1016/j.knosys.2015.07.006 10.1109/4235.585893 10.1109/NABIC.2009.5393690 10.1109/TEVC.2008.919004 10.1007/s00707-009-0270-4 10.1016/j.compstruc.2012.07.010 10.1126/science.367.6484.1287 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
| DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1007/s00521-020-05296-6 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 5042 |
| ExternalDocumentID | PMC7451802 32874019 10_1007_s00521_020_05296_6 |
| Genre | Journal Article |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB NPM DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c522t-51fd9dcc05d3373d9e170d159a13a37d18a876c559bcc8204b5cebdaefe8caed3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 276 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565019200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Tue Nov 04 02:00:56 EST 2025 Thu Oct 02 11:35:36 EDT 2025 Wed Nov 05 04:00:08 EST 2025 Mon Jul 21 05:46:36 EDT 2025 Sat Nov 29 02:59:17 EST 2025 Tue Nov 18 22:38:18 EST 2025 Fri Feb 21 02:49:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | COVID-19 Herd immunity Metaheuristic Coronavirus Optimization Nature inspired |
| Language | English |
| License | Springer-Verlag London Ltd., part of Springer Nature 2020. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c522t-51fd9dcc05d3373d9e170d159a13a37d18a876c559bcc8204b5cebdaefe8caed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7815-8946 0000-0003-4228-9298 0000-0003-1980-1791 |
| OpenAccessLink | http://dx.doi.org/10.1007/s00521-020-05296-6 |
| PMID | 32874019 |
| PQID | 2518854640 |
| PQPubID | 2043988 |
| PageCount | 32 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7451802 proquest_miscellaneous_2439627280 proquest_journals_2518854640 pubmed_primary_32874019 crossref_citationtrail_10_1007_s00521_020_05296_6 crossref_primary_10_1007_s00521_020_05296_6 springer_journals_10_1007_s00521_020_05296_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationTitleAlternate | Neural Comput Appl |
| PublicationYear | 2021 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | WangHYiJ-HAn improved optimization method based on krill herd and artificial bee colony with information exchangeMemetic Comput2018102177198 Korošec P, Šilc J (2011) The continuous differential ant-stigmergy algorithm applied to real-world optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1327–1334. IEEE World Health Organization (2020) Q&a: influenza and covid-19-similarities and differences MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl2016272495513 Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, Ling Y, Zhang Y, Xun J, Lu L, et al. (2020) Neutralizing antibody responses to sars-cov-2 in a covid-19 recovered patient cohort and their implications Jung F, Krieger V, Hufert FT, Küpper J-H (2020) Herd immunity or suppression strategy to combat covid-19. Clin Hemorheol Microcircul (Preprint):1–5 RamezaniFLotfiSSocial-based algorithm (sba)Appl Soft Comput201313528372856 LavineJSKingAABjørnstadONNatural immune boosting in pertussis dynamics and the potential for long-term vaccine failureProc Natl Acad Sci20111081772597264 Goldberg DavidEHenryHJGenetic algorithms and machine learning1988BerlinSpringer MirjaliliSThe ant lion optimizerAdv Eng Softw2015838098 Back T, Hoffmeister F, Schwefel H-P (1991) A survey of evolution strategies. In: Proceedings of the fourth international conference on genetic algorithms, vol 2. Morgan Kaufmann Publishers San Mateo, CA KozaJRKozaJRGenetic programming: on the programming of computers by means of natural selection1992CambridgeMIT Press0850.68161 HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst201997849872 HospiMedica International staff writers (2020) Sweden’s coronavirus strategy targeting herd immunity could be adopted globally, say analysts Gothania B, Mathur G, Yadav RP Accelerated artificial bee colony algorithm for parameter estimation of frequency-modulated sound waves YampolskiyRVEl-BarkoukyAWisdom of artificial crowds algorithm for solving np-hard problemsInt J Bio-inspir Comput201136358369 World Health Organization (2020) Covid-19 sweden data Fathollahi-FardAMHajiaghaei-KeshteliMTavakkoli-MoghaddamRRed deer algorithm (rda): a new nature-inspired meta-heuristicSoft Comput20202020129 AskarzadehABird mating optimizer: an optimization algorithm inspired by bird mating strategiesCommun Nonlinear Sci Numer Simul201419412131228311929407172483 OsmanIHLaporteGMetaheuristics: a bibliographyAnnals Oper Res19966355116230849.90097 KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102133–42672891397.65094 EskandarHSadollahABahreininejadAHamdiMWater cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problemsComput Struct2012110151166 RothlaufFOptimization methods2011BerlinSpringer45102 Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC) Cohen J, Kupferschmidt K (2020) Countries test tactics in ‘war’against covid-19 SyalKCovid-19: herd immunity and convalescent plasma transfer therapyJ Med Virol20201313 MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191 KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322045986716807024851225.90162 MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl Based Syst201696120133 Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: International conference in swarm intelligence, pp. 355–364. Springer MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw2014694661 AroraSSinghSButterfly optimization algorithm: a novel approach for global optimizationSoft Comput2019233715734 ErolOKEksinIA new optimization method: big bang-big crunchAdv Eng Softw2006372106111 WeaverSCReisenWKPresent and future arboviral threatsAntiviral Res2010852328345 Reynoso-Meza G, Sanchis J, Blasco X, Herrero JM (2011) Hybrid de algorithm with adaptive crossover operator for solving real-world numerical optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1551–1556. IEEE James K, Russell E (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4, pp. 1942–1948. IEEE MirjaliliSDragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Comput Appl2016274105310734138447 GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul201217124831484529602791266.65092 SimonDBiogeography-based optimizationIEEE Trans Evol Comput2008126702713 GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSimulation20017626068 FinePEMHerd immunity: history, theory, practiceEpidemiol Rev1993152265302 Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer Singh HK, Ray T (2011) Performance of a hybrid ea-de-memetic algorithm on cec 2011 real world optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1322–1326. IEEE Elsayed SM, Sarker RA, Essam DL (2011) Ga with a new multi-parent crossover for solving ieee-cec2011 competition problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1034–1040. IEEE RaoRJaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInt J Ind Eng Comput2016711934 OmranMGHClercMAps 9: an improved adaptive population-based simplex method for real-world engineering optimization problemsAppl Intell201848615961608 BirbilŞİFangS-CAn electromagnetism-like mechanism for global optimizationJ Global Optim200325326328219615281047.90045 MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167 Dai Chaohua, Zhu Y, Chen W (2006) Seeker optimization algorithm. In: International conference on computational and information science, pp 167–176. Springer GlassRJGlassLMBeyelerWEMinHJTargeted social distancing designs for pandemic influenzaEmerg Inf Dis200612111671 World Health Organization (2020) Covid-19 uk data Long NJ (2020) From social distancing to social containment: reimagining sociality for the coronavirus pandemic. Med Anthropol Theory Glover F, Laguna M (1998) Tabu search. In: Handbook of combinatorial optimization, pp 2093–2229. Springer TörnAŽilinskasAGlobal optimization1989BerlinSpringer0752.90075 Asafuddoula M, Ray T, Sarker R (2011) An adaptive differential evolution algorithm and its performance on real world optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1057–1062. IEEE OmranMGHAlsharhanSClercMA modified intellects-masses optimizer for solving real-world optimization problemsSwarm Evol Comput201841159166 GandomiAHInterior search algorithm (isa): a novel approach for global optimizationISA Trans201453411681183 Pardalos PanosMThelmaMJueXThe graph coloring problem: a bibliographic survey1998BerlinSpringer107711410944.05050 Zamuda A, Brest J (2018) On tenfold execution time in real world optimization problems with differential evolution in perspective of algorithm design. In: 2018 25th international conference on systems, signals and image Processing (IWSSIP), pp 1–5. IEEE WangG-GDebSCuiZMonarch butterfly optimizationNeural Comput Appl201931719952014 YangX-SFirefly algorithmNat Inspir Metaheur Algorithms2008207990 SadollahABahreininejadAEskandarHHamdiMMine blast algorithm: a new population based algorithm for solving constrained engineering optimization problemsAppl Soft Comput201313525922612 KwokKOLaiFWeiWIWongSYSTangJWTHerd immunity-estimating the level required to halt the covid-19 epidemics in affected countriesJ Inf2020806e32e33 Chih-ChengLTzu-PingSWen-ChienKHung-JenTPo-RenHSevere acute respiratory syndrome coronavirus 2 (sars-cov-2) and corona virus disease-2019 (covid-19): the epidemic and the challengesInt J Antimicrob Agents202055105924 MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl Based Syst201589228249 AndersonRMMayRMImmunisation and herd immunityLancet19903358690641645 LaTorre A, Muelas S, Peña J-M (2011) Benchmarking a hybrid de-rhc algorithm on real world problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1027–1033. IEEE JeffersonTFoxleeRDel MarCDooleyLFerroniEHewakBPrabhalaANairSRivettiAPhysical interventions to interrupt or reduce the spread of respiratory viruses: systematic reviewBmj200833676357780 He S, Wu QH, Saunders JR (2006) A novel group search optimizer inspired by animal behavioural ecology. In: 2006 IEEE international conference on evolutionary computation, pp 1272–1278. IEEE PanW-TA new fruit fly optimization algorithm: taking the financial distress model as an exampleKnowl Based Syst2012266974 HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: a novel physics-based algorithmFuture Gener Comput Syst2019101646667 WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput1997116782 Das S, Suganthan PN (2010) Problem definitions and evaluation criteria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, Kolkata, pp 341–359 RemuzziARemuzziGCovid-19 and italy: what next?Lancet2020395497 Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 2, pp. 1470–1477. IEEE YangX-SGandomiAHBat algorithm: a novel approach for global engineering optimizationEng Comput2012295464483 RandolphHEBarreiroLBHerd immunity: Understanding covid-19Immunity2020525737741 Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthrou G-G Wang (5296_CR29) 2019; 31 S Arora (5296_CR22) 2019; 23 A Kaveh (5296_CR40) 2010; 213 RJ Glass (5296_CR66) 2006; 12 S Mirjalili (5296_CR36) 2016; 96 R Rao (5296_CR72) 2016; 7 M Pardalos Panos (5296_CR6) 1998 5296_CR16 5296_CR15 X-S Yang (5296_CR31) 2008; 20 5296_CR19 HE Randolph (5296_CR57) 2020; 52 FA Hashim (5296_CR42) 2019; 101 S Mirjalili (5296_CR4) 2014; 69 5296_CR10 A Törn (5296_CR1) 1989 5296_CR53 5296_CR12 5296_CR11 5296_CR58 F Rothlauf (5296_CR3) 2011 MA Al-Betar (5296_CR44) 2017; 28 5296_CR81 5296_CR80 D Simon (5296_CR18) 2008; 12 5296_CR82 H Eskandar (5296_CR37) 2012; 110 5296_CR48 T Jefferson (5296_CR65) 2008; 336 A Sadollah (5296_CR50) 2013; 13 DH Wolpert (5296_CR51) 1997; 1 5296_CR84 C Blum (5296_CR5) 2003; 35 5296_CR45 F Fernando (5296_CR8) 2019; 2019 KO Kwok (5296_CR54) 2020; 80 5296_CR46 A Askarzadeh (5296_CR27) 2014; 19 S Mirjalili (5296_CR30) 2015; 89 S Mirjalili (5296_CR32) 2017; 114 5296_CR70 S Mirjalili (5296_CR7) 2016; 95 IH Osman (5296_CR2) 1996; 63 A Remuzzi (5296_CR61) 2020; 395 5296_CR71 SC Weaver (5296_CR60) 2010; 85 H Wang (5296_CR85) 2018; 10 MGH Omran (5296_CR83) 2018; 41 S Mirjalili (5296_CR35) 2016; 27 OK Erol (5296_CR41) 2006; 37 X-S Yang (5296_CR20) 2012; 29 5296_CR74 W-T Pan (5296_CR24) 2012; 26 5296_CR73 PEM Fine (5296_CR55) 1993; 15 GS Ribeiro (5296_CR56) 2020; 40 5296_CR76 AA Heidari (5296_CR33) 2019; 97 A Askarzadeh (5296_CR34) 2016; 169 5296_CR78 5296_CR77 5296_CR79 RM Anderson (5296_CR62) 1990; 335 AH Gandomi (5296_CR25) 2012; 17 E Goldberg David (5296_CR9) 1988 S Kirkpatrick (5296_CR13) 1983; 220 E Rashedi (5296_CR39) 2009; 179 S Mirjalili (5296_CR21) 2015; 83 Şİ Birbil (5296_CR38) 2003; 25 ZW Geem (5296_CR14) 2001; 76 S Mirjalili (5296_CR23) 2016; 27 F Ramezani (5296_CR49) 2013; 13 RV Yampolskiy (5296_CR43) 2011; 3 K Syal (5296_CR59) 2020; 13 5296_CR28 MGH Omran (5296_CR75) 2018; 48 JS Lavine (5296_CR63) 2011; 108 JR Koza (5296_CR17) 1992 AM Fathollahi-Fard (5296_CR26) 2020; 2020 5296_CR64 5296_CR67 AH Gandomi (5296_CR47) 2014; 53 L Chih-Cheng (5296_CR52) 2020; 55 5296_CR69 5296_CR68 |
| References_xml | – reference: Cohen J, Kupferschmidt K (2020) Countries test tactics in ‘war’against covid-19 – reference: OmranMGHClercMAps 9: an improved adaptive population-based simplex method for real-world engineering optimization problemsAppl Intell201848615961608 – reference: Gothania B, Mathur G, Yadav RP Accelerated artificial bee colony algorithm for parameter estimation of frequency-modulated sound waves – reference: RaoRJaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInt J Ind Eng Comput2016711934 – reference: SadollahABahreininejadAEskandarHHamdiMMine blast algorithm: a new population based algorithm for solving constrained engineering optimization problemsAppl Soft Comput201313525922612 – reference: Asafuddoula M, Ray T, Sarker R (2011) An adaptive differential evolution algorithm and its performance on real world optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1057–1062. IEEE – reference: AroraSSinghSButterfly optimization algorithm: a novel approach for global optimizationSoft Comput2019233715734 – reference: MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191 – reference: EskandarHSadollahABahreininejadAHamdiMWater cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problemsComput Struct2012110151166 – reference: KozaJRKozaJRGenetic programming: on the programming of computers by means of natural selection1992CambridgeMIT Press0850.68161 – reference: FernandoFAdolfoR-OErikCAndrade ÁngelGMarcoP-CFrom ants to whales: metaheuristics for all tastesArtif Intel Rev20192019158 – reference: World Health Organization (2020) Covid-19 uk data – reference: FinePEMHerd immunity: history, theory, practiceEpidemiol Rev1993152265302 – reference: MirjaliliSDragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Comput Appl2016274105310734138447 – reference: SimonDBiogeography-based optimizationIEEE Trans Evol Comput2008126702713 – reference: LaTorre A, Muelas S, Peña J-M (2011) Benchmarking a hybrid de-rhc algorithm on real world problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1027–1033. IEEE – reference: Singh HK, Ray T (2011) Performance of a hybrid ea-de-memetic algorithm on cec 2011 real world optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1322–1326. IEEE – reference: HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: a novel physics-based algorithmFuture Gener Comput Syst2019101646667 – reference: RibeiroGSHamerGLDialloMKitronUKoAIWeaverSCInfluence of herd immunity in the cyclical nature of arbovirusesCurr Opin Virol202040110 – reference: MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl Based Syst201696120133 – reference: BlumCRoliAMetaheuristics in combinatorial optimization: overview and conceptual comparisonACM Comput Surv2003353268308 – reference: AndersonRMMayRMImmunisation and herd immunityLancet19903358690641645 – reference: RemuzziARemuzziGCovid-19 and italy: what next?Lancet2020395497 – reference: MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl2016272495513 – reference: RashediENezamabadi-PourHSaryazdiSGsa: a gravitational search algorithmInf Sci200917913223222481177.90378 – reference: Glover F, Laguna M (1998) Tabu search. In: Handbook of combinatorial optimization, pp 2093–2229. Springer – reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167 – reference: YangX-SGandomiAHBat algorithm: a novel approach for global engineering optimizationEng Comput2012295464483 – reference: WeaverSCReisenWKPresent and future arboviral threatsAntiviral Res2010852328345 – reference: Goldberg DavidEHenryHJGenetic algorithms and machine learning1988BerlinSpringer – reference: Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: International conference in swarm intelligence, pp. 355–364. Springer – reference: Das S, Suganthan PN (2010) Problem definitions and evaluation criteria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, Kolkata, pp 341–359 – reference: OmranMGHAlsharhanSClercMA modified intellects-masses optimizer for solving real-world optimization problemsSwarm Evol Comput201841159166 – reference: Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer – reference: Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics, pp 196–202. Springer – reference: Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC) – reference: LavineJSKingAABjørnstadONNatural immune boosting in pertussis dynamics and the potential for long-term vaccine failureProc Natl Acad Sci20111081772597264 – reference: Pardalos PanosMThelmaMJueXThe graph coloring problem: a bibliographic survey1998BerlinSpringer107711410944.05050 – reference: Reynoso-Meza G, Sanchis J, Blasco X, Herrero JM (2011) Hybrid de algorithm with adaptive crossover operator for solving real-world numerical optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1551–1556. IEEE – reference: World Health Organization (2020) Q&a: influenza and covid-19-similarities and differences – reference: OsmanIHLaporteGMetaheuristics: a bibliographyAnnals Oper Res19966355116230849.90097 – reference: HospiMedica International staff writers (2020) Sweden’s coronavirus strategy targeting herd immunity could be adopted globally, say analysts – reference: Korošec P, Šilc J (2011) The continuous differential ant-stigmergy algorithm applied to real-world optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1327–1334. IEEE – reference: YangX-SFirefly algorithmNat Inspir Metaheur Algorithms2008207990 – reference: Back T, Hoffmeister F, Schwefel H-P (1991) A survey of evolution strategies. In: Proceedings of the fourth international conference on genetic algorithms, vol 2. Morgan Kaufmann Publishers San Mateo, CA – reference: Long NJ (2020) From social distancing to social containment: reimagining sociality for the coronavirus pandemic. Med Anthropol Theory – reference: Fathollahi-FardAMHajiaghaei-KeshteliMTavakkoli-MoghaddamRRed deer algorithm (rda): a new nature-inspired meta-heuristicSoft Comput20202020129 – reference: Dai Chaohua, Zhu Y, Chen W (2006) Seeker optimization algorithm. In: International conference on computational and information science, pp 167–176. Springer – reference: SyalKCovid-19: herd immunity and convalescent plasma transfer therapyJ Med Virol20201313 – reference: AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithmComput Struct2016169112 – reference: TörnAŽilinskasAGlobal optimization1989BerlinSpringer0752.90075 – reference: KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322045986716807024851225.90162 – reference: ErolOKEksinIA new optimization method: big bang-big crunchAdv Eng Softw2006372106111 – reference: WangHYiJ-HAn improved optimization method based on krill herd and artificial bee colony with information exchangeMemetic Comput2018102177198 – reference: AskarzadehABird mating optimizer: an optimization algorithm inspired by bird mating strategiesCommun Nonlinear Sci Numer Simul201419412131228311929407172483 – reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput1997116782 – reference: Zamuda A, Brest J (2018) On tenfold execution time in real world optimization problems with differential evolution in perspective of algorithm design. In: 2018 25th international conference on systems, signals and image Processing (IWSSIP), pp 1–5. IEEE – reference: Al-BetarMAβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-hill climbing: an exploratory local searchNeural Comput Appl2017281153168 – reference: RamezaniFLotfiSSocial-based algorithm (sba)Appl Soft Comput201313528372856 – reference: Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, Ling Y, Zhang Y, Xun J, Lu L, et al. (2020) Neutralizing antibody responses to sars-cov-2 in a covid-19 recovered patient cohort and their implications – reference: Chih-ChengLTzu-PingSWen-ChienKHung-JenTPo-RenHSevere acute respiratory syndrome coronavirus 2 (sars-cov-2) and corona virus disease-2019 (covid-19): the epidemic and the challengesInt J Antimicrob Agents202055105924 – reference: KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102133–42672891397.65094 – reference: Jung F, Krieger V, Hufert FT, Küpper J-H (2020) Herd immunity or suppression strategy to combat covid-19. Clin Hemorheol Microcircul (Preprint):1–5 – reference: PanW-TA new fruit fly optimization algorithm: taking the financial distress model as an exampleKnowl Based Syst2012266974 – reference: Yang X (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation, pp 240–249. Springer – reference: GandomiAHInterior search algorithm (isa): a novel approach for global optimizationISA Trans201453411681183 – reference: GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSimulation20017626068 – reference: GlassRJGlassLMBeyelerWEMinHJTargeted social distancing designs for pandemic influenzaEmerg Inf Dis200612111671 – reference: WangG-GDebSCuiZMonarch butterfly optimizationNeural Comput Appl201931719952014 – reference: KwokKOLaiFWeiWIWongSYSTangJWTHerd immunity-estimating the level required to halt the covid-19 epidemics in affected countriesJ Inf2020806e32e33 – reference: James K, Russell E (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4, pp. 1942–1948. IEEE – reference: RandolphHEBarreiroLBHerd immunity: Understanding covid-19Immunity2020525737741 – reference: MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl Based Syst201589228249 – reference: He S, Wu QH, Saunders JR (2006) A novel group search optimizer inspired by animal behavioural ecology. In: 2006 IEEE international conference on evolutionary computation, pp 1272–1278. IEEE – reference: World Health Organization (2020) Covid-19 sweden data – reference: MirjaliliSThe ant lion optimizerAdv Eng Softw2015838098 – reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw2014694661 – reference: JeffersonTFoxleeRDel MarCDooleyLFerroniEHewakBPrabhalaANairSRivettiAPhysical interventions to interrupt or reduce the spread of respiratory viruses: systematic reviewBmj200833676357780 – reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst201997849872 – reference: YampolskiyRVEl-BarkoukyAWisdom of artificial crowds algorithm for solving np-hard problemsInt J Bio-inspir Comput201136358369 – reference: BirbilŞİFangS-CAn electromagnetism-like mechanism for global optimizationJ Global Optim200325326328219615281047.90045 – reference: Elsayed SM, Sarker RA, Essam DL (2011) Ga with a new multi-parent crossover for solving ieee-cec2011 competition problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1034–1040. IEEE – reference: Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 2, pp. 1470–1477. IEEE – reference: GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul201217124831484529602791266.65092 – reference: RothlaufFOptimization methods2011BerlinSpringer45102 – ident: 5296_CR68 doi: 10.3233/CH-209006 – ident: 5296_CR58 doi: 10.2139/ssrn.3566211 – volume: 3 start-page: 358 issue: 6 year: 2011 ident: 5296_CR43 publication-title: Int J Bio-inspir Comput doi: 10.1504/IJBIC.2011.043624 – ident: 5296_CR73 doi: 10.1007/978-1-4612-4380-9_16 – volume: 80 start-page: e32 issue: 6 year: 2020 ident: 5296_CR54 publication-title: J Inf doi: 10.1016/j.jinf.2020.03.027 – volume: 52 start-page: 737 issue: 5 year: 2020 ident: 5296_CR57 publication-title: Immunity doi: 10.1016/j.immuni.2020.04.012 – ident: 5296_CR84 – ident: 5296_CR80 doi: 10.1109/CEC.2011.5949731 – volume: 25 start-page: 263 issue: 3 year: 2003 ident: 5296_CR38 publication-title: J Global Optim doi: 10.1023/A:1022452626305 – ident: 5296_CR48 doi: 10.1109/ICCIAS.2006.294126 – volume: 85 start-page: 328 issue: 2 year: 2010 ident: 5296_CR60 publication-title: Antiviral Res doi: 10.1016/j.antiviral.2009.10.008 – volume: 2020 start-page: 1 year: 2020 ident: 5296_CR26 publication-title: Soft Comput – volume: 335 start-page: 641 issue: 8690 year: 1990 ident: 5296_CR62 publication-title: Lancet doi: 10.1016/0140-6736(90)90420-A – ident: 5296_CR81 doi: 10.1109/CEC.2011.5949800 – ident: 5296_CR16 – ident: 5296_CR71 – volume: 13 start-page: 13 year: 2020 ident: 5296_CR59 publication-title: J Med Virol – volume: 395 start-page: 497 year: 2020 ident: 5296_CR61 publication-title: Lancet doi: 10.1016/S0140-6736(20)30627-9 – volume: 108 start-page: 7259 issue: 17 year: 2011 ident: 5296_CR63 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1014394108 – volume-title: Genetic programming: on the programming of computers by means of natural selection year: 1992 ident: 5296_CR17 – volume: 97 start-page: 849 year: 2019 ident: 5296_CR33 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – ident: 5296_CR77 doi: 10.1109/CEC.2011.5949770 – volume: 29 start-page: 464 issue: 5 year: 2012 ident: 5296_CR20 publication-title: Eng Comput doi: 10.1108/02644401211235834 – ident: 5296_CR45 doi: 10.1007/978-1-4613-0303-9_33 – ident: 5296_CR12 – volume: 101 start-page: 646 year: 2019 ident: 5296_CR42 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.07.015 – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 5296_CR23 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1920-1 – ident: 5296_CR46 – volume: 13 start-page: 2592 issue: 5 year: 2013 ident: 5296_CR50 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.11.026 – volume: 95 start-page: 51 year: 2016 ident: 5296_CR7 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – ident: 5296_CR76 doi: 10.1109/CEC.2011.5949734 – volume: 26 start-page: 69 year: 2012 ident: 5296_CR24 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2011.07.001 – start-page: 45 volume-title: Optimization methods year: 2011 ident: 5296_CR3 – volume: 41 start-page: 159 year: 2018 ident: 5296_CR83 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.02.015 – volume: 13 start-page: 2837 issue: 5 year: 2013 ident: 5296_CR49 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.05.018 – volume: 83 start-page: 80 year: 2015 ident: 5296_CR21 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.01.010 – volume: 31 start-page: 1995 issue: 7 year: 2019 ident: 5296_CR29 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1923-y – ident: 5296_CR74 – volume: 35 start-page: 268 issue: 3 year: 2003 ident: 5296_CR5 publication-title: ACM Comput Surv doi: 10.1145/937503.937505 – volume: 40 start-page: 1 year: 2020 ident: 5296_CR56 publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2020.02.004 – ident: 5296_CR10 doi: 10.1109/ICNN.1995.488968 – volume: 114 start-page: 163 year: 2017 ident: 5296_CR32 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 12 start-page: 1671 issue: 11 year: 2006 ident: 5296_CR66 publication-title: Emerg Inf Dis doi: 10.3201/eid1211.060255 – ident: 5296_CR53 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 5296_CR35 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1870-7 – ident: 5296_CR64 doi: 10.17157/mat.7.2.791 – volume: 53 start-page: 1168 issue: 4 year: 2014 ident: 5296_CR47 publication-title: ISA Trans doi: 10.1016/j.isatra.2014.03.018 – volume: 19 start-page: 1213 issue: 4 year: 2014 ident: 5296_CR27 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2013.08.027 – volume: 96 start-page: 120 year: 2016 ident: 5296_CR36 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 15 start-page: 265 issue: 2 year: 1993 ident: 5296_CR55 publication-title: Epidemiol Rev doi: 10.1093/oxfordjournals.epirev.a036121 – ident: 5296_CR11 – volume: 23 start-page: 715 issue: 3 year: 2019 ident: 5296_CR22 publication-title: Soft Comput doi: 10.1007/s00500-018-3102-4 – volume: 63 start-page: 511 issue: 5 year: 1996 ident: 5296_CR2 publication-title: Annals Oper Res doi: 10.1007/BF02125421 – ident: 5296_CR67 – volume: 10 start-page: 177 issue: 2 year: 2018 ident: 5296_CR85 publication-title: Memetic Comput doi: 10.1007/s12293-017-0241-6 – volume: 336 start-page: 77 issue: 7635 year: 2008 ident: 5296_CR65 publication-title: Bmj doi: 10.1136/bmj.39393.510347.BE – volume: 20 start-page: 79 year: 2008 ident: 5296_CR31 publication-title: Nat Inspir Metaheur Algorithms – ident: 5296_CR15 doi: 10.1007/978-3-642-13495-1_44 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 5296_CR14 publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 2019 start-page: 1 year: 2019 ident: 5296_CR8 publication-title: Artif Intel Rev – volume: 28 start-page: 153 issue: 1 year: 2017 ident: 5296_CR44 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2328-2 – ident: 5296_CR79 doi: 10.1109/CEC.2011.5949730 – volume-title: Global optimization year: 1989 ident: 5296_CR1 doi: 10.1007/3-540-50871-6 – ident: 5296_CR28 doi: 10.1007/978-3-642-32894-7_27 – ident: 5296_CR78 doi: 10.1109/IWSSIP.2018.8439207 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 5296_CR39 publication-title: Inf Sci doi: 10.1016/j.ins.2009.03.004 – volume: 69 start-page: 46 year: 2014 ident: 5296_CR4 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – start-page: 1077 volume-title: The graph coloring problem: a bibliographic survey year: 1998 ident: 5296_CR6 – volume: 169 start-page: 1 year: 2016 ident: 5296_CR34 publication-title: Comput Struct doi: 10.1016/j.compstruc.2016.03.001 – volume: 37 start-page: 106 issue: 2 year: 2006 ident: 5296_CR41 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2005.04.005 – volume: 48 start-page: 1596 issue: 6 year: 2018 ident: 5296_CR75 publication-title: Appl Intell doi: 10.1007/s10489-017-1015-z – ident: 5296_CR69 – ident: 5296_CR82 doi: 10.1109/CEC.2011.5949769 – volume-title: Genetic algorithms and machine learning year: 1988 ident: 5296_CR9 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 5296_CR13 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 55 start-page: 105924 year: 2020 ident: 5296_CR52 publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2020.105924 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 5296_CR25 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2012.05.010 – volume: 89 start-page: 228 year: 2015 ident: 5296_CR30 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 5296_CR51 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 7 start-page: 19 issue: 1 year: 2016 ident: 5296_CR72 publication-title: Int J Ind Eng Comput – ident: 5296_CR19 doi: 10.1109/NABIC.2009.5393690 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 5296_CR18 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.919004 – volume: 213 start-page: 267 issue: 3–4 year: 2010 ident: 5296_CR40 publication-title: Acta Mech doi: 10.1007/s00707-009-0270-4 – volume: 110 start-page: 151 year: 2012 ident: 5296_CR37 publication-title: Comput Struct doi: 10.1016/j.compstruc.2012.07.010 – ident: 5296_CR70 doi: 10.1126/science.367.6484.1287 |
| SSID | ssj0004685 |
| Score | 2.6597698 |
| Snippet | In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5011 |
| SubjectTerms | Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Coronaviruses COVID-19 Data Mining and Knowledge Discovery Disease control Disease transmission Herd immunity Image Processing and Computer Vision Immunity Optimization Optimization algorithms Original Original Article Parameter sensitivity Probability and Statistics in Computer Science Social distancing |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R6IELtKVAKK2CxKEtRCRx7DinqlqBlst2D1RCvUSO7YhIkCz7kuDXd-x1smwRXHqNJw977MnYM_N9AMeaCU6IygLJBcUNCtVBlkkZqDLOyqJQQnJlySbSwYBfX2dDd-A2cWmVrU20hlo10pyRn8UGOYwmLAl_jO4DwxploquOQuMNbBiUBEPdMKR_ntRFWkpO3MGY7J6EuKIZWzpnzkPxamxCwXHGArb6Y3rmbT5Pmvwncmp_SBfb_9uVd7DlXFH_52LuvIc1XX-A7ZbmwXerfge-9wzKgZhX49nERxUrv7JFJdMHv0GDc1c9ovTXXv_y17eP8Pvi_KrXDxzFQiDR8ZoGNCpVpqQMqSIkRZ3pKA0VujgiIoKkKuICzaXEbUchJToLSUGlRg3qUnMptCK7sF43td4HXyQJemOCMFYUCS0ZV1yEcRmWvCwEPtSDqB3fXDr8cUODcZt3yMlWJznqJLc6yZkHJ909owX6xqvSh-14524lTvLlYHtw1DXjGjKBEVHrZoYy6JWx2BB1ebC30HL3OhJb0sLMg3RF_52AwedebamrG4vTnSbU4Ot5cNrOlOVnvdyLg9d78Qk2Y5NWY3MuD2F9Op7pz_BWzqfVZPzFzv-_dTkLXA priority: 102 providerName: ProQuest |
| Title | Coronavirus herd immunity optimizer (CHIO) |
| URI | https://link.springer.com/article/10.1007/s00521-020-05296-6 https://www.ncbi.nlm.nih.gov/pubmed/32874019 https://www.proquest.com/docview/2518854640 https://www.proquest.com/docview/2439627280 https://pubmed.ncbi.nlm.nih.gov/PMC7451802 |
| Volume | 33 |
| WOSCitedRecordID | wos000565019200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_Rloe9UD62EShVkHiAbZGSOHacR1a1Ki-lKh-q9hI5tqNF2lLULwn-es5uElYKk-Ax8sWJ73L2Xe7udwBvNBOcEJV4kguKDgrVXpJI6ak8TPIsU0JyZZtNxJMJn8-TaVUUtqqz3euQpN2pm2I38wcTXd_QBG_DhHmsBR087rhp2DD79PVONaRtxIl-i8npiUhVKvPnOfaPowMb8zBV8rd4qT2GRt3_W8BjeFSZne773XfyBB7o8il065YObqXhz-BsYBANxLZYblYuilO5hS0gWX93F7i53BY_kPrtYPzh47tj-DIafh6MvaqdgifRyFp7NMhVoqT0qSIkRvnoIPYVmjMiIILEKuACt0aJLkYmJRoGUUalRmnpXHMptCIn0C4XpX4OrogitLwEYSzLIpozrrjww9zPeZ4JnNSBoOZqKiuscdPy4iZtUJItM1JkRmqZkTIHzpt7vu2QNu6l7tXCSiutW6WhQZejEYt8B143w6gvJggiSr3YIA1aYCw0TbkcON3JtnkcCW2DwsSBeE_qDYHB4t4fKYtri8kdR9Rg6TlwUcv-12v9fRUv_o38JRyFJqXG5lv2oL1ebvQreCi362K17EMrnvM-dC6Hk-kMr6b0qm814yd_5gSw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQkutGUNbWmQQGKLSLzFOSCEhlYzahl6KFLFJTi2IyJBpszSqvwofiPPniRlqOith15jx7Hjz8_PfssH8NQKJSk1WaSl4nhA4TbKMq0jU5KsLAqjtDSebCIdDuXhYba_BL_bWBjnVtnKRC-ozUi7O_I3xGUO40yw-N3Rz8ixRjnrakuhMYfFrj09wSPb5O3gA87vM0J2tg96_ahhFYg06hrTiCelyYzWMTeUpthNm6SxwV1dJVTR1CRSoYTQqGkXWuP-yAquLXballZqZQ3Fdq_BdcZI7FbRPv_yVxympwDFE5PzJmK0CdLxoXru_hWfEmd6JpmIxOJGeE67Pe-k-Y-l1m-AOytX7detwu1G1Q7fz9fGGizZ-g6stDQWYSPV7sLLnsvioI6r8WwSIoRNWPmgmelpOEKB-qP6hbWf9_qDTy_uwedL6fF9WK5HtX0IoWIMtU1FhSgKxkshjVQxKeNSloXCRgNI2vnMdZNf3dF8fM-7zNAeAzliIPcYyEUAr7p3jubZRS6svdHOb95Imkl-NrkBPOmKUUY4w4-q7WiGdVDrFMQRkQXwYI6q7nOUeFLGLIB0AW9dBZd_fLGkrr75POQp4y5_YACvW2Sedev_o3h08Si24Gb_4ONevjcY7q7DLeJciLx_6QYsT8czuwk39PG0mowf-7UXwtfLRuwf76xrUA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDSFe2MZnxhhB4mEDoiWx4ziPqFvVaqhMYkx9ixx_iEhbOrXpJPjrd3aTsNINCfHsixPf-ey73N3vAN5rJjghKgskFwk6KIkOskzKQJk4M0WhhOTKNZtIRyM-Hment6r4XbZ7G5Jc1DRYlKaqPrxS5rArfLN_M9ENjm0gN85YwB7ABrWJ9NZf_3Z-qzLSNeVEH8bm91DSlM3cPcfy1bRib66mTf4RO3VXUn_z_xezBU8ac9T_vNg_27Cmq6ew2bZ68BvNfwYfehbpQFyX0_nMRzErv3SFJfVPf4KHzmX5C6n3e4Ph14Pn8L1_fNYbBE2bhUCi8VUHSWRUpqQME0VIinLTURoqNHNERARJVcQFHpkSXY9CSjQYaJFIjVLURnMptCIvYL2aVPoV-IJStMgEYawoaGIYV1yEsQkNN4XAST2IWg7nssEgt60wLvIOPdkxI0dm5I4ZOfPgY_fM1QKB46_Uu63g8kYbZ3lsUecSymjowbtuGPXIBkdEpSdzpEHLjMW2WZcHLxdy7l5HYte4MPMgXdoBHYHF6F4eqcofDqs7pYnF2PPgU7sPfn_W_avY-Tfyt_Do9KiffxmOTl7D49hm3biUzF1Yr6dz_QYeyuu6nE33nHLcAIWiDPY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coronavirus+herd+immunity+optimizer+%28CHIO%29&rft.jtitle=Neural+computing+%26+applications&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Alyasseri%2C+Zaid+Abdi+Alkareem&rft.au=Awadallah%2C+Mohammed+A.&rft.au=Abu+Doush%2C+Iyad&rft.date=2021-05-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=10&rft.spage=5011&rft.epage=5042&rft_id=info:doi/10.1007%2Fs00521-020-05296-6&rft.externalDocID=10_1007_s00521_020_05296_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |