Coronavirus herd immunity optimizer (CHIO)

In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration of CHIO is originated from the herd immunity concept as a way to tackle coronavirus pandemic (COVID-19). The speed of spreading coronavirus...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computing & applications Ročník 33; číslo 10; s. 5011 - 5042
Hlavní autori: Al-Betar, Mohammed Azmi, Alyasseri, Zaid Abdi Alkareem, Awadallah, Mohammed A., Abu Doush, Iyad
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.05.2021
Springer Nature B.V
Predmet:
ISSN:0941-0643, 1433-3058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration of CHIO is originated from the herd immunity concept as a way to tackle coronavirus pandemic (COVID-19). The speed of spreading coronavirus infection depends on how the infected individuals directly contact with other society members. In order to protect other members of society from the disease, social distancing is suggested by health experts. Herd immunity is a state the population reaches when most of the population is immune which results in the prevention of disease transmission. These concepts are modeled in terms of optimization concepts. CHIO mimics the herd immunity strategy as well as the social distancing concepts. Three types of individual cases are utilized for herd immunity: susceptible, infected, and immuned. This is to determine how the newly generated solution updates its genes with social distancing strategies. CHIO is evaluated using 23 well-known benchmark functions. Initially, the sensitivity of CHIO to its parameters is studied. Thereafter, the comparative evaluation against seven state-of-the-art methods is conducted. The comparative analysis verifies that CHIO is able to yield very competitive results compared to those obtained by other well-established methods. For more validations, three real-world engineering optimization problems extracted from IEEE-CEC 2011 are used. Again, CHIO is proved to be efficient. In conclusion, CHIO is a very powerful optimization algorithm that can be used to tackle many optimization problems across a wide variety of optimization domains.
AbstractList In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration of CHIO is originated from the herd immunity concept as a way to tackle coronavirus pandemic (COVID-19). The speed of spreading coronavirus infection depends on how the infected individuals directly contact with other society members. In order to protect other members of society from the disease, social distancing is suggested by health experts. Herd immunity is a state the population reaches when most of the population is immune which results in the prevention of disease transmission. These concepts are modeled in terms of optimization concepts. CHIO mimics the herd immunity strategy as well as the social distancing concepts. Three types of individual cases are utilized for herd immunity: susceptible, infected, and immuned. This is to determine how the newly generated solution updates its genes with social distancing strategies. CHIO is evaluated using 23 well-known benchmark functions. Initially, the sensitivity of CHIO to its parameters is studied. Thereafter, the comparative evaluation against seven state-of-the-art methods is conducted. The comparative analysis verifies that CHIO is able to yield very competitive results compared to those obtained by other well-established methods. For more validations, three real-world engineering optimization problems extracted from IEEE-CEC 2011 are used. Again, CHIO is proved to be efficient. In conclusion, CHIO is a very powerful optimization algorithm that can be used to tackle many optimization problems across a wide variety of optimization domains.
In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration of CHIO is originated from the herd immunity concept as a way to tackle coronavirus pandemic (COVID-19). The speed of spreading coronavirus infection depends on how the infected individuals directly contact with other society members. In order to protect other members of society from the disease, social distancing is suggested by health experts. Herd immunity is a state the population reaches when most of the population is immune which results in the prevention of disease transmission. These concepts are modeled in terms of optimization concepts. CHIO mimics the herd immunity strategy as well as the social distancing concepts. Three types of individual cases are utilized for herd immunity: susceptible, infected, and immuned. This is to determine how the newly generated solution updates its genes with social distancing strategies. CHIO is evaluated using 23 well-known benchmark functions. Initially, the sensitivity of CHIO to its parameters is studied. Thereafter, the comparative evaluation against seven state-of-the-art methods is conducted. The comparative analysis verifies that CHIO is able to yield very competitive results compared to those obtained by other well-established methods. For more validations, three real-world engineering optimization problems extracted from IEEE-CEC 2011 are used. Again, CHIO is proved to be efficient. In conclusion, CHIO is a very powerful optimization algorithm that can be used to tackle many optimization problems across a wide variety of optimization domains.In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration of CHIO is originated from the herd immunity concept as a way to tackle coronavirus pandemic (COVID-19). The speed of spreading coronavirus infection depends on how the infected individuals directly contact with other society members. In order to protect other members of society from the disease, social distancing is suggested by health experts. Herd immunity is a state the population reaches when most of the population is immune which results in the prevention of disease transmission. These concepts are modeled in terms of optimization concepts. CHIO mimics the herd immunity strategy as well as the social distancing concepts. Three types of individual cases are utilized for herd immunity: susceptible, infected, and immuned. This is to determine how the newly generated solution updates its genes with social distancing strategies. CHIO is evaluated using 23 well-known benchmark functions. Initially, the sensitivity of CHIO to its parameters is studied. Thereafter, the comparative evaluation against seven state-of-the-art methods is conducted. The comparative analysis verifies that CHIO is able to yield very competitive results compared to those obtained by other well-established methods. For more validations, three real-world engineering optimization problems extracted from IEEE-CEC 2011 are used. Again, CHIO is proved to be efficient. In conclusion, CHIO is a very powerful optimization algorithm that can be used to tackle many optimization problems across a wide variety of optimization domains.
Author Al-Betar, Mohammed Azmi
Awadallah, Mohammed A.
Abu Doush, Iyad
Alyasseri, Zaid Abdi Alkareem
Author_xml – sequence: 1
  givenname: Mohammed Azmi
  orcidid: 0000-0003-1980-1791
  surname: Al-Betar
  fullname: Al-Betar, Mohammed Azmi
  email: mohbetar@bau.edu.jo
  organization: Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Department of Information Technology - MSAI, College of Engineering and Information Technology Ajman University
– sequence: 2
  givenname: Zaid Abdi Alkareem
  orcidid: 0000-0003-4228-9298
  surname: Alyasseri
  fullname: Alyasseri, Zaid Abdi Alkareem
  organization: Center for Artificial Intelligence, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, ECE Department, Faculty of Engineering, University of Kufa
– sequence: 3
  givenname: Mohammed A.
  orcidid: 0000-0002-7815-8946
  surname: Awadallah
  fullname: Awadallah, Mohammed A.
  organization: Department of Computer Science, Al-Aqsa University
– sequence: 4
  givenname: Iyad
  surname: Abu Doush
  fullname: Abu Doush, Iyad
  organization: Computer Science Department, American University of Kuwait, Computer Science Department, Yarmouk University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32874019$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYMoWh9_wIUU3KgwevOayWwEKb5AcKPrkCapRmaSmswU9NebWuujC1f3wv3O4SRnG6374C1C-xhOMUB1lgA4wQUQKPJSl0W5hgaYUVpQ4GIdDaBm-VwyuoW2U3oBAFYKvom2KBEVA1wP0MkoxODVzMU-DZ9tNEPXtr133dswTDvXuncbh0ejm9v74120MVFNsntfcwc9Xl0-jG6Ku_vr29HFXaE5IV3B8cTURmvghtKKmtriCgzmtcJU0cpgoURVas7rsdaCABtzbcdG2YkVWllDd9D5wnfaj1trtPVdVI2cRteq-CaDcvLvxbtn-RRmsmIcCyDZ4OjLIIbX3qZOti5p2zTK29AnSRitS1IRARk9XEFfQh99fp4k2UxwVrI5dfA70XeU5TdmQCwAHUNK0U6kdp3qXJgHdI3EIOeNyUVjMjcmPxuTZZaSFenS_V8RXYhShv2TjT-x_1F9AFgap40
CitedBy_id crossref_primary_10_1016_j_knosys_2022_108457
crossref_primary_10_32604_cmc_2024_053189
crossref_primary_10_1016_j_ifacol_2022_04_025
crossref_primary_10_32604_cmc_2023_034025
crossref_primary_10_3390_pr11051502
crossref_primary_10_1007_s11831_022_09800_0
crossref_primary_10_1007_s11831_023_09912_1
crossref_primary_10_1108_K_01_2024_0199
crossref_primary_10_1109_ACCESS_2023_3312022
crossref_primary_10_3390_biomimetics8080619
crossref_primary_10_1016_j_conengprac_2023_105709
crossref_primary_10_1016_j_microc_2024_112203
crossref_primary_10_1016_j_cma_2022_115676
crossref_primary_10_1093_jcde_qwad047
crossref_primary_10_32604_cmc_2024_057431
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_1016_j_cma_2025_118208
crossref_primary_10_1080_13682199_2023_2242088
crossref_primary_10_1155_2022_1502988
crossref_primary_10_1016_j_bspc_2024_106222
crossref_primary_10_1016_j_jpowsour_2024_235615
crossref_primary_10_1016_j_bspc_2021_103326
crossref_primary_10_1038_s41598_023_37537_8
crossref_primary_10_1016_j_heliyon_2024_e31629
crossref_primary_10_1038_s41746_022_00704_8
crossref_primary_10_1007_s13198_024_02663_7
crossref_primary_10_32604_cmc_2022_026228
crossref_primary_10_1007_s41939_024_00555_8
crossref_primary_10_1016_j_cosrev_2025_100740
crossref_primary_10_1177_18758967251360039
crossref_primary_10_3390_biomimetics9020065
crossref_primary_10_1007_s11227_024_06899_9
crossref_primary_10_1007_s12530_024_09634_0
crossref_primary_10_1016_j_heliyon_2024_e31832
crossref_primary_10_1016_j_aei_2023_102210
crossref_primary_10_1007_s13042_022_01670_z
crossref_primary_10_1007_s11042_023_16719_6
crossref_primary_10_1016_j_knosys_2022_110206
crossref_primary_10_1016_j_asoc_2023_110908
crossref_primary_10_1007_s11831_025_10304_w
crossref_primary_10_1049_rpg2_13004
crossref_primary_10_1088_1402_4896_ad86f7
crossref_primary_10_1007_s00521_023_08649_z
crossref_primary_10_1109_ACCESS_2022_3147821
crossref_primary_10_1007_s00521_022_07639_x
crossref_primary_10_1007_s11831_022_09766_z
crossref_primary_10_1016_j_compeleceng_2024_109569
crossref_primary_10_1007_s00500_022_06917_z
crossref_primary_10_1109_ACCESS_2024_3367753
crossref_primary_10_1016_j_comcom_2022_12_006
crossref_primary_10_1007_s00603_024_03801_0
crossref_primary_10_1016_j_jestch_2024_101764
crossref_primary_10_1155_2022_5974634
crossref_primary_10_1007_s12065_023_00876_6
crossref_primary_10_1007_s00521_022_07565_y
crossref_primary_10_1007_s10462_024_10829_9
crossref_primary_10_3390_app122211787
crossref_primary_10_1007_s41939_023_00256_8
crossref_primary_10_1016_j_apenergy_2024_123437
crossref_primary_10_1016_j_engappai_2024_109202
crossref_primary_10_1016_j_epsr_2023_109267
crossref_primary_10_1109_ACCESS_2023_3283422
crossref_primary_10_1109_ACCESS_2024_3453488
crossref_primary_10_1109_ACCESS_2022_3166866
crossref_primary_10_3390_biomimetics9010008
crossref_primary_10_1109_ACCESS_2025_3567303
crossref_primary_10_1016_j_eswa_2025_126539
crossref_primary_10_1007_s10586_025_05328_7
crossref_primary_10_1007_s11831_025_10281_0
crossref_primary_10_1007_s13369_024_09807_8
crossref_primary_10_1016_j_cma_2025_117791
crossref_primary_10_1016_j_cosrev_2025_100733
crossref_primary_10_1080_21642583_2024_2385310
crossref_primary_10_1007_s00521_022_07662_y
crossref_primary_10_1109_TCBB_2023_3345317
crossref_primary_10_1007_s11831_021_09585_8
crossref_primary_10_1007_s10462_022_10277_3
crossref_primary_10_1016_j_advengsoft_2022_103338
crossref_primary_10_3390_biomimetics8060470
crossref_primary_10_1007_s10586_023_03979_y
crossref_primary_10_3390_agriculture14091653
crossref_primary_10_1007_s10462_024_10747_w
crossref_primary_10_1016_j_phycom_2025_102708
crossref_primary_10_3390_math11143210
crossref_primary_10_1016_j_egyr_2023_04_007
crossref_primary_10_3390_biomimetics7040204
crossref_primary_10_1109_ACCESS_2023_3287484
crossref_primary_10_3390_biomimetics9030186
crossref_primary_10_1007_s10489_020_01947_2
crossref_primary_10_3390_biomimetics8010121
crossref_primary_10_1007_s41939_023_00228_y
crossref_primary_10_3389_fmech_2022_1126450
crossref_primary_10_1007_s10489_021_02862_w
crossref_primary_10_32604_cmes_2024_055171
crossref_primary_10_1080_15325008_2024_2343397
crossref_primary_10_1007_s11831_023_10058_3
crossref_primary_10_1155_2024_5570228
crossref_primary_10_1007_s00521_024_10905_9
crossref_primary_10_1007_s10586_024_04360_3
crossref_primary_10_3233_MGS_220328
crossref_primary_10_1016_j_ijepes_2022_108940
crossref_primary_10_1007_s12530_023_09552_7
crossref_primary_10_1038_s41598_022_22933_3
crossref_primary_10_1007_s10586_024_04674_2
crossref_primary_10_1109_ACCESS_2024_3418968
crossref_primary_10_1016_j_aei_2023_102004
crossref_primary_10_1007_s10586_025_05540_5
crossref_primary_10_1016_j_swevo_2024_101808
crossref_primary_10_1016_j_istruc_2022_09_057
crossref_primary_10_1007_s10586_024_04931_4
crossref_primary_10_1007_s12596_024_02030_6
crossref_primary_10_1016_j_eswa_2023_122830
crossref_primary_10_1038_s41598_024_70497_1
crossref_primary_10_1038_s41598_025_93370_1
crossref_primary_10_1007_s00500_023_09151_3
crossref_primary_10_1016_j_cma_2024_117588
crossref_primary_10_3390_pr11061826
crossref_primary_10_1007_s10462_025_11351_2
crossref_primary_10_3390_biomimetics8020149
crossref_primary_10_1016_j_bspc_2023_104951
crossref_primary_10_1007_s00521_023_08229_1
crossref_primary_10_1016_j_sysarc_2023_102871
crossref_primary_10_3390_math10071201
crossref_primary_10_1007_s10586_025_05367_0
crossref_primary_10_1007_s11831_025_10287_8
crossref_primary_10_1007_s11831_025_10249_0
crossref_primary_10_3390_su152015039
crossref_primary_10_1002_cpe_7730
crossref_primary_10_1007_s11227_022_04644_8
crossref_primary_10_1016_j_eswa_2023_120905
crossref_primary_10_1007_s00354_022_00190_2
crossref_primary_10_1186_s12859_023_05621_5
crossref_primary_10_1016_j_compbiomed_2023_107212
crossref_primary_10_1007_s00521_024_09533_0
crossref_primary_10_1007_s10115_025_02498_z
crossref_primary_10_1016_j_eswa_2023_122413
crossref_primary_10_1007_s10462_024_11104_7
crossref_primary_10_1007_s11831_022_09843_3
crossref_primary_10_3390_math12071059
crossref_primary_10_1007_s41939_024_00540_1
crossref_primary_10_1016_j_knosys_2022_109484
crossref_primary_10_3390_biomimetics8060508
crossref_primary_10_3390_biomimetics8060507
crossref_primary_10_1007_s11042_023_16764_1
crossref_primary_10_1016_j_jtice_2024_105796
crossref_primary_10_1016_j_asoc_2024_112159
crossref_primary_10_1016_j_asoc_2025_113527
crossref_primary_10_1007_s10462_023_10470_y
crossref_primary_10_32604_cmes_2025_061028
crossref_primary_10_1007_s13042_025_02620_1
crossref_primary_10_1038_s41598_022_22458_9
crossref_primary_10_1007_s00521_023_09299_x
crossref_primary_10_1177_18724981251333610
crossref_primary_10_1007_s10462_021_10052_w
crossref_primary_10_1007_s00521_025_11421_0
crossref_primary_10_1111_exsy_12759
crossref_primary_10_1007_s12596_025_02464_6
crossref_primary_10_1016_j_eswa_2023_122070
crossref_primary_10_1007_s00500_021_06230_1
crossref_primary_10_4018_IJSKD_330150
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_1016_j_eswa_2021_116431
crossref_primary_10_1007_s00202_025_03091_x
crossref_primary_10_1016_j_aei_2024_102464
crossref_primary_10_3390_electronics10172057
crossref_primary_10_1007_s00500_023_08274_x
crossref_primary_10_1016_j_swevo_2025_101984
crossref_primary_10_3390_biomimetics9030137
crossref_primary_10_1007_s12652_022_03731_1
crossref_primary_10_1016_j_asoc_2022_109805
crossref_primary_10_3390_app121910057
crossref_primary_10_1016_j_aei_2023_101908
crossref_primary_10_1016_j_measurement_2024_115596
crossref_primary_10_1016_j_neucom_2023_03_065
crossref_primary_10_1007_s11831_023_09923_y
crossref_primary_10_1038_s41598_024_70405_7
crossref_primary_10_1016_j_knosys_2021_107682
crossref_primary_10_1109_TCE_2025_3572009
crossref_primary_10_3390_su132212653
crossref_primary_10_1016_j_asoc_2023_110514
crossref_primary_10_1155_2022_5191758
crossref_primary_10_1007_s11831_021_09701_8
crossref_primary_10_1080_10255842_2023_2206933
crossref_primary_10_1007_s11831_023_09897_x
crossref_primary_10_1109_JSEN_2022_3225956
crossref_primary_10_57120_yalvac_1257808
crossref_primary_10_1016_j_jestch_2024_101935
crossref_primary_10_1007_s11269_025_04210_w
crossref_primary_10_1109_ACCESS_2020_3037197
crossref_primary_10_1007_s13369_023_08113_z
crossref_primary_10_1038_s41598_024_81742_y
crossref_primary_10_1007_s10462_024_11008_6
crossref_primary_10_1109_ACCESS_2023_3287859
crossref_primary_10_1109_ACCESS_2021_3135805
crossref_primary_10_1002_oca_2823
crossref_primary_10_1007_s42835_024_02026_z
crossref_primary_10_3390_su15064982
crossref_primary_10_1016_j_epsr_2023_109411
crossref_primary_10_1109_ACCESS_2022_3229964
crossref_primary_10_1038_s41598_024_59655_7
crossref_primary_10_1007_s11831_023_09887_z
crossref_primary_10_1007_s00521_024_09879_5
crossref_primary_10_1016_j_adhoc_2024_103474
crossref_primary_10_1038_s41598_025_92983_w
crossref_primary_10_1016_j_eswa_2023_121218
crossref_primary_10_1016_j_compbiomed_2023_107389
crossref_primary_10_1016_j_eij_2025_100633
crossref_primary_10_1007_s12351_024_00862_5
crossref_primary_10_1080_10589759_2023_2274015
crossref_primary_10_1038_s41598_024_60821_0
crossref_primary_10_1016_j_cma_2022_115652
crossref_primary_10_1007_s11831_025_10363_z
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1007_s42235_023_00359_5
crossref_primary_10_1007_s00500_023_07928_0
crossref_primary_10_1007_s42044_025_00317_w
crossref_primary_10_1080_00207543_2024_2328131
crossref_primary_10_1016_j_fuel_2025_136065
crossref_primary_10_1016_j_swevo_2024_101766
crossref_primary_10_1109_ACCESS_2021_3113812
crossref_primary_10_1007_s00500_023_08468_3
Cites_doi 10.3233/CH-209006
10.2139/ssrn.3566211
10.1504/IJBIC.2011.043624
10.1007/978-1-4612-4380-9_16
10.1016/j.jinf.2020.03.027
10.1016/j.immuni.2020.04.012
10.1109/CEC.2011.5949731
10.1023/A:1022452626305
10.1109/ICCIAS.2006.294126
10.1016/j.antiviral.2009.10.008
10.1016/0140-6736(90)90420-A
10.1109/CEC.2011.5949800
10.1016/S0140-6736(20)30627-9
10.1073/pnas.1014394108
10.1016/j.future.2019.02.028
10.1109/CEC.2011.5949770
10.1108/02644401211235834
10.1007/978-1-4613-0303-9_33
10.1016/j.future.2019.07.015
10.1007/s00521-015-1920-1
10.1016/j.asoc.2012.11.026
10.1016/j.advengsoft.2016.01.008
10.1109/CEC.2011.5949734
10.1016/j.knosys.2011.07.001
10.1016/j.swevo.2018.02.015
10.1016/j.asoc.2012.05.018
10.1016/j.advengsoft.2015.01.010
10.1007/s00521-015-1923-y
10.1145/937503.937505
10.1016/j.coviro.2020.02.004
10.1109/ICNN.1995.488968
10.1016/j.advengsoft.2017.07.002
10.3201/eid1211.060255
10.1007/s00521-015-1870-7
10.17157/mat.7.2.791
10.1016/j.isatra.2014.03.018
10.1016/j.cnsns.2013.08.027
10.1016/j.knosys.2015.12.022
10.1093/oxfordjournals.epirev.a036121
10.1007/s00500-018-3102-4
10.1007/BF02125421
10.1007/s12293-017-0241-6
10.1136/bmj.39393.510347.BE
10.1007/978-3-642-13495-1_44
10.1177/003754970107600201
10.1007/s00521-016-2328-2
10.1109/CEC.2011.5949730
10.1007/3-540-50871-6
10.1007/978-3-642-32894-7_27
10.1109/IWSSIP.2018.8439207
10.1016/j.ins.2009.03.004
10.1016/j.advengsoft.2013.12.007
10.1016/j.compstruc.2016.03.001
10.1016/j.advengsoft.2005.04.005
10.1007/s10489-017-1015-z
10.1109/CEC.2011.5949769
10.1126/science.220.4598.671
10.1016/j.ijantimicag.2020.105924
10.1016/j.cnsns.2012.05.010
10.1016/j.knosys.2015.07.006
10.1109/4235.585893
10.1109/NABIC.2009.5393690
10.1109/TEVC.2008.919004
10.1007/s00707-009-0270-4
10.1016/j.compstruc.2012.07.010
10.1126/science.367.6484.1287
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00521-020-05296-6
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 5042
ExternalDocumentID PMC7451802
32874019
10_1007_s00521_020_05296_6
Genre Journal Article
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
NPM
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c522t-51fd9dcc05d3373d9e170d159a13a37d18a876c559bcc8204b5cebdaefe8caed3
IEDL.DBID RSV
ISICitedReferencesCount 276
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565019200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 02:00:56 EST 2025
Thu Oct 02 11:35:36 EDT 2025
Wed Nov 05 04:00:08 EST 2025
Mon Jul 21 05:46:36 EDT 2025
Sat Nov 29 02:59:17 EST 2025
Tue Nov 18 22:38:18 EST 2025
Fri Feb 21 02:49:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords COVID-19
Herd immunity
Metaheuristic
Coronavirus
Optimization
Nature inspired
Language English
License Springer-Verlag London Ltd., part of Springer Nature 2020.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-51fd9dcc05d3373d9e170d159a13a37d18a876c559bcc8204b5cebdaefe8caed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7815-8946
0000-0003-4228-9298
0000-0003-1980-1791
OpenAccessLink http://dx.doi.org/10.1007/s00521-020-05296-6
PMID 32874019
PQID 2518854640
PQPubID 2043988
PageCount 32
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7451802
proquest_miscellaneous_2439627280
proquest_journals_2518854640
pubmed_primary_32874019
crossref_citationtrail_10_1007_s00521_020_05296_6
crossref_primary_10_1007_s00521_020_05296_6
springer_journals_10_1007_s00521_020_05296_6
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationTitleAlternate Neural Comput Appl
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References WangHYiJ-HAn improved optimization method based on krill herd and artificial bee colony with information exchangeMemetic Comput2018102177198
Korošec P, Šilc J (2011) The continuous differential ant-stigmergy algorithm applied to real-world optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1327–1334. IEEE
World Health Organization (2020) Q&a: influenza and covid-19-similarities and differences
MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl2016272495513
Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, Ling Y, Zhang Y, Xun J, Lu L, et al. (2020) Neutralizing antibody responses to sars-cov-2 in a covid-19 recovered patient cohort and their implications
Jung F, Krieger V, Hufert FT, Küpper J-H (2020) Herd immunity or suppression strategy to combat covid-19. Clin Hemorheol Microcircul (Preprint):1–5
RamezaniFLotfiSSocial-based algorithm (sba)Appl Soft Comput201313528372856
LavineJSKingAABjørnstadONNatural immune boosting in pertussis dynamics and the potential for long-term vaccine failureProc Natl Acad Sci20111081772597264
Goldberg DavidEHenryHJGenetic algorithms and machine learning1988BerlinSpringer
MirjaliliSThe ant lion optimizerAdv Eng Softw2015838098
Back T, Hoffmeister F, Schwefel H-P (1991) A survey of evolution strategies. In: Proceedings of the fourth international conference on genetic algorithms, vol 2. Morgan Kaufmann Publishers San Mateo, CA
KozaJRKozaJRGenetic programming: on the programming of computers by means of natural selection1992CambridgeMIT Press0850.68161
HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst201997849872
HospiMedica International staff writers (2020) Sweden’s coronavirus strategy targeting herd immunity could be adopted globally, say analysts
Gothania B, Mathur G, Yadav RP Accelerated artificial bee colony algorithm for parameter estimation of frequency-modulated sound waves
YampolskiyRVEl-BarkoukyAWisdom of artificial crowds algorithm for solving np-hard problemsInt J Bio-inspir Comput201136358369
World Health Organization (2020) Covid-19 sweden data
Fathollahi-FardAMHajiaghaei-KeshteliMTavakkoli-MoghaddamRRed deer algorithm (rda): a new nature-inspired meta-heuristicSoft Comput20202020129
AskarzadehABird mating optimizer: an optimization algorithm inspired by bird mating strategiesCommun Nonlinear Sci Numer Simul201419412131228311929407172483
OsmanIHLaporteGMetaheuristics: a bibliographyAnnals Oper Res19966355116230849.90097
KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102133–42672891397.65094
EskandarHSadollahABahreininejadAHamdiMWater cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problemsComput Struct2012110151166
RothlaufFOptimization methods2011BerlinSpringer45102
Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC)
Cohen J, Kupferschmidt K (2020) Countries test tactics in ‘war’against covid-19
SyalKCovid-19: herd immunity and convalescent plasma transfer therapyJ Med Virol20201313
MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191
KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322045986716807024851225.90162
MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl Based Syst201696120133
Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: International conference in swarm intelligence, pp. 355–364. Springer
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw2014694661
AroraSSinghSButterfly optimization algorithm: a novel approach for global optimizationSoft Comput2019233715734
ErolOKEksinIA new optimization method: big bang-big crunchAdv Eng Softw2006372106111
WeaverSCReisenWKPresent and future arboviral threatsAntiviral Res2010852328345
Reynoso-Meza G, Sanchis J, Blasco X, Herrero JM (2011) Hybrid de algorithm with adaptive crossover operator for solving real-world numerical optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1551–1556. IEEE
James K, Russell E (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4, pp. 1942–1948. IEEE
MirjaliliSDragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Comput Appl2016274105310734138447
GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul201217124831484529602791266.65092
SimonDBiogeography-based optimizationIEEE Trans Evol Comput2008126702713
GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSimulation20017626068
FinePEMHerd immunity: history, theory, practiceEpidemiol Rev1993152265302
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer
Singh HK, Ray T (2011) Performance of a hybrid ea-de-memetic algorithm on cec 2011 real world optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1322–1326. IEEE
Elsayed SM, Sarker RA, Essam DL (2011) Ga with a new multi-parent crossover for solving ieee-cec2011 competition problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1034–1040. IEEE
RaoRJaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInt J Ind Eng Comput2016711934
OmranMGHClercMAps 9: an improved adaptive population-based simplex method for real-world engineering optimization problemsAppl Intell201848615961608
BirbilŞİFangS-CAn electromagnetism-like mechanism for global optimizationJ Global Optim200325326328219615281047.90045
MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167
Dai Chaohua, Zhu Y, Chen W (2006) Seeker optimization algorithm. In: International conference on computational and information science, pp 167–176. Springer
GlassRJGlassLMBeyelerWEMinHJTargeted social distancing designs for pandemic influenzaEmerg Inf Dis200612111671
World Health Organization (2020) Covid-19 uk data
Long NJ (2020) From social distancing to social containment: reimagining sociality for the coronavirus pandemic. Med Anthropol Theory
Glover F, Laguna M (1998) Tabu search. In: Handbook of combinatorial optimization, pp 2093–2229. Springer
TörnAŽilinskasAGlobal optimization1989BerlinSpringer0752.90075
Asafuddoula M, Ray T, Sarker R (2011) An adaptive differential evolution algorithm and its performance on real world optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1057–1062. IEEE
OmranMGHAlsharhanSClercMA modified intellects-masses optimizer for solving real-world optimization problemsSwarm Evol Comput201841159166
GandomiAHInterior search algorithm (isa): a novel approach for global optimizationISA Trans201453411681183
Pardalos PanosMThelmaMJueXThe graph coloring problem: a bibliographic survey1998BerlinSpringer107711410944.05050
Zamuda A, Brest J (2018) On tenfold execution time in real world optimization problems with differential evolution in perspective of algorithm design. In: 2018 25th international conference on systems, signals and image Processing (IWSSIP), pp 1–5. IEEE
WangG-GDebSCuiZMonarch butterfly optimizationNeural Comput Appl201931719952014
YangX-SFirefly algorithmNat Inspir Metaheur Algorithms2008207990
SadollahABahreininejadAEskandarHHamdiMMine blast algorithm: a new population based algorithm for solving constrained engineering optimization problemsAppl Soft Comput201313525922612
KwokKOLaiFWeiWIWongSYSTangJWTHerd immunity-estimating the level required to halt the covid-19 epidemics in affected countriesJ Inf2020806e32e33
Chih-ChengLTzu-PingSWen-ChienKHung-JenTPo-RenHSevere acute respiratory syndrome coronavirus 2 (sars-cov-2) and corona virus disease-2019 (covid-19): the epidemic and the challengesInt J Antimicrob Agents202055105924
MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl Based Syst201589228249
AndersonRMMayRMImmunisation and herd immunityLancet19903358690641645
LaTorre A, Muelas S, Peña J-M (2011) Benchmarking a hybrid de-rhc algorithm on real world problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1027–1033. IEEE
JeffersonTFoxleeRDel MarCDooleyLFerroniEHewakBPrabhalaANairSRivettiAPhysical interventions to interrupt or reduce the spread of respiratory viruses: systematic reviewBmj200833676357780
He S, Wu QH, Saunders JR (2006) A novel group search optimizer inspired by animal behavioural ecology. In: 2006 IEEE international conference on evolutionary computation, pp 1272–1278. IEEE
PanW-TA new fruit fly optimization algorithm: taking the financial distress model as an exampleKnowl Based Syst2012266974
HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: a novel physics-based algorithmFuture Gener Comput Syst2019101646667
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput1997116782
Das S, Suganthan PN (2010) Problem definitions and evaluation criteria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, Kolkata, pp 341–359
RemuzziARemuzziGCovid-19 and italy: what next?Lancet2020395497
Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 2, pp. 1470–1477. IEEE
YangX-SGandomiAHBat algorithm: a novel approach for global engineering optimizationEng Comput2012295464483
RandolphHEBarreiroLBHerd immunity: Understanding covid-19Immunity2020525737741
Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthrou
G-G Wang (5296_CR29) 2019; 31
S Arora (5296_CR22) 2019; 23
A Kaveh (5296_CR40) 2010; 213
RJ Glass (5296_CR66) 2006; 12
S Mirjalili (5296_CR36) 2016; 96
R Rao (5296_CR72) 2016; 7
M Pardalos Panos (5296_CR6) 1998
5296_CR16
5296_CR15
X-S Yang (5296_CR31) 2008; 20
5296_CR19
HE Randolph (5296_CR57) 2020; 52
FA Hashim (5296_CR42) 2019; 101
S Mirjalili (5296_CR4) 2014; 69
5296_CR10
A Törn (5296_CR1) 1989
5296_CR53
5296_CR12
5296_CR11
5296_CR58
F Rothlauf (5296_CR3) 2011
MA Al-Betar (5296_CR44) 2017; 28
5296_CR81
5296_CR80
D Simon (5296_CR18) 2008; 12
5296_CR82
H Eskandar (5296_CR37) 2012; 110
5296_CR48
T Jefferson (5296_CR65) 2008; 336
A Sadollah (5296_CR50) 2013; 13
DH Wolpert (5296_CR51) 1997; 1
5296_CR84
C Blum (5296_CR5) 2003; 35
5296_CR45
F Fernando (5296_CR8) 2019; 2019
KO Kwok (5296_CR54) 2020; 80
5296_CR46
A Askarzadeh (5296_CR27) 2014; 19
S Mirjalili (5296_CR30) 2015; 89
S Mirjalili (5296_CR32) 2017; 114
5296_CR70
S Mirjalili (5296_CR7) 2016; 95
IH Osman (5296_CR2) 1996; 63
A Remuzzi (5296_CR61) 2020; 395
5296_CR71
SC Weaver (5296_CR60) 2010; 85
H Wang (5296_CR85) 2018; 10
MGH Omran (5296_CR83) 2018; 41
S Mirjalili (5296_CR35) 2016; 27
OK Erol (5296_CR41) 2006; 37
X-S Yang (5296_CR20) 2012; 29
5296_CR74
W-T Pan (5296_CR24) 2012; 26
5296_CR73
PEM Fine (5296_CR55) 1993; 15
GS Ribeiro (5296_CR56) 2020; 40
5296_CR76
AA Heidari (5296_CR33) 2019; 97
A Askarzadeh (5296_CR34) 2016; 169
5296_CR78
5296_CR77
5296_CR79
RM Anderson (5296_CR62) 1990; 335
AH Gandomi (5296_CR25) 2012; 17
E Goldberg David (5296_CR9) 1988
S Kirkpatrick (5296_CR13) 1983; 220
E Rashedi (5296_CR39) 2009; 179
S Mirjalili (5296_CR21) 2015; 83
Şİ Birbil (5296_CR38) 2003; 25
ZW Geem (5296_CR14) 2001; 76
S Mirjalili (5296_CR23) 2016; 27
F Ramezani (5296_CR49) 2013; 13
RV Yampolskiy (5296_CR43) 2011; 3
K Syal (5296_CR59) 2020; 13
5296_CR28
MGH Omran (5296_CR75) 2018; 48
JS Lavine (5296_CR63) 2011; 108
JR Koza (5296_CR17) 1992
AM Fathollahi-Fard (5296_CR26) 2020; 2020
5296_CR64
5296_CR67
AH Gandomi (5296_CR47) 2014; 53
L Chih-Cheng (5296_CR52) 2020; 55
5296_CR69
5296_CR68
References_xml – reference: Cohen J, Kupferschmidt K (2020) Countries test tactics in ‘war’against covid-19
– reference: OmranMGHClercMAps 9: an improved adaptive population-based simplex method for real-world engineering optimization problemsAppl Intell201848615961608
– reference: Gothania B, Mathur G, Yadav RP Accelerated artificial bee colony algorithm for parameter estimation of frequency-modulated sound waves
– reference: RaoRJaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInt J Ind Eng Comput2016711934
– reference: SadollahABahreininejadAEskandarHHamdiMMine blast algorithm: a new population based algorithm for solving constrained engineering optimization problemsAppl Soft Comput201313525922612
– reference: Asafuddoula M, Ray T, Sarker R (2011) An adaptive differential evolution algorithm and its performance on real world optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1057–1062. IEEE
– reference: AroraSSinghSButterfly optimization algorithm: a novel approach for global optimizationSoft Comput2019233715734
– reference: MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191
– reference: EskandarHSadollahABahreininejadAHamdiMWater cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problemsComput Struct2012110151166
– reference: KozaJRKozaJRGenetic programming: on the programming of computers by means of natural selection1992CambridgeMIT Press0850.68161
– reference: FernandoFAdolfoR-OErikCAndrade ÁngelGMarcoP-CFrom ants to whales: metaheuristics for all tastesArtif Intel Rev20192019158
– reference: World Health Organization (2020) Covid-19 uk data
– reference: FinePEMHerd immunity: history, theory, practiceEpidemiol Rev1993152265302
– reference: MirjaliliSDragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Comput Appl2016274105310734138447
– reference: SimonDBiogeography-based optimizationIEEE Trans Evol Comput2008126702713
– reference: LaTorre A, Muelas S, Peña J-M (2011) Benchmarking a hybrid de-rhc algorithm on real world problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1027–1033. IEEE
– reference: Singh HK, Ray T (2011) Performance of a hybrid ea-de-memetic algorithm on cec 2011 real world optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1322–1326. IEEE
– reference: HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: a novel physics-based algorithmFuture Gener Comput Syst2019101646667
– reference: RibeiroGSHamerGLDialloMKitronUKoAIWeaverSCInfluence of herd immunity in the cyclical nature of arbovirusesCurr Opin Virol202040110
– reference: MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl Based Syst201696120133
– reference: BlumCRoliAMetaheuristics in combinatorial optimization: overview and conceptual comparisonACM Comput Surv2003353268308
– reference: AndersonRMMayRMImmunisation and herd immunityLancet19903358690641645
– reference: RemuzziARemuzziGCovid-19 and italy: what next?Lancet2020395497
– reference: MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput Appl2016272495513
– reference: RashediENezamabadi-PourHSaryazdiSGsa: a gravitational search algorithmInf Sci200917913223222481177.90378
– reference: Glover F, Laguna M (1998) Tabu search. In: Handbook of combinatorial optimization, pp 2093–2229. Springer
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167
– reference: YangX-SGandomiAHBat algorithm: a novel approach for global engineering optimizationEng Comput2012295464483
– reference: WeaverSCReisenWKPresent and future arboviral threatsAntiviral Res2010852328345
– reference: Goldberg DavidEHenryHJGenetic algorithms and machine learning1988BerlinSpringer
– reference: Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: International conference in swarm intelligence, pp. 355–364. Springer
– reference: Das S, Suganthan PN (2010) Problem definitions and evaluation criteria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, Kolkata, pp 341–359
– reference: OmranMGHAlsharhanSClercMA modified intellects-masses optimizer for solving real-world optimization problemsSwarm Evol Comput201841159166
– reference: Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer
– reference: Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics, pp 196–202. Springer
– reference: Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC)
– reference: LavineJSKingAABjørnstadONNatural immune boosting in pertussis dynamics and the potential for long-term vaccine failureProc Natl Acad Sci20111081772597264
– reference: Pardalos PanosMThelmaMJueXThe graph coloring problem: a bibliographic survey1998BerlinSpringer107711410944.05050
– reference: Reynoso-Meza G, Sanchis J, Blasco X, Herrero JM (2011) Hybrid de algorithm with adaptive crossover operator for solving real-world numerical optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1551–1556. IEEE
– reference: World Health Organization (2020) Q&a: influenza and covid-19-similarities and differences
– reference: OsmanIHLaporteGMetaheuristics: a bibliographyAnnals Oper Res19966355116230849.90097
– reference: HospiMedica International staff writers (2020) Sweden’s coronavirus strategy targeting herd immunity could be adopted globally, say analysts
– reference: Korošec P, Šilc J (2011) The continuous differential ant-stigmergy algorithm applied to real-world optimization problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1327–1334. IEEE
– reference: YangX-SFirefly algorithmNat Inspir Metaheur Algorithms2008207990
– reference: Back T, Hoffmeister F, Schwefel H-P (1991) A survey of evolution strategies. In: Proceedings of the fourth international conference on genetic algorithms, vol 2. Morgan Kaufmann Publishers San Mateo, CA
– reference: Long NJ (2020) From social distancing to social containment: reimagining sociality for the coronavirus pandemic. Med Anthropol Theory
– reference: Fathollahi-FardAMHajiaghaei-KeshteliMTavakkoli-MoghaddamRRed deer algorithm (rda): a new nature-inspired meta-heuristicSoft Comput20202020129
– reference: Dai Chaohua, Zhu Y, Chen W (2006) Seeker optimization algorithm. In: International conference on computational and information science, pp 167–176. Springer
– reference: SyalKCovid-19: herd immunity and convalescent plasma transfer therapyJ Med Virol20201313
– reference: AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithmComput Struct2016169112
– reference: TörnAŽilinskasAGlobal optimization1989BerlinSpringer0752.90075
– reference: KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322045986716807024851225.90162
– reference: ErolOKEksinIA new optimization method: big bang-big crunchAdv Eng Softw2006372106111
– reference: WangHYiJ-HAn improved optimization method based on krill herd and artificial bee colony with information exchangeMemetic Comput2018102177198
– reference: AskarzadehABird mating optimizer: an optimization algorithm inspired by bird mating strategiesCommun Nonlinear Sci Numer Simul201419412131228311929407172483
– reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput1997116782
– reference: Zamuda A, Brest J (2018) On tenfold execution time in real world optimization problems with differential evolution in perspective of algorithm design. In: 2018 25th international conference on systems, signals and image Processing (IWSSIP), pp 1–5. IEEE
– reference: Al-BetarMAβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-hill climbing: an exploratory local searchNeural Comput Appl2017281153168
– reference: RamezaniFLotfiSSocial-based algorithm (sba)Appl Soft Comput201313528372856
– reference: Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, Ling Y, Zhang Y, Xun J, Lu L, et al. (2020) Neutralizing antibody responses to sars-cov-2 in a covid-19 recovered patient cohort and their implications
– reference: Chih-ChengLTzu-PingSWen-ChienKHung-JenTPo-RenHSevere acute respiratory syndrome coronavirus 2 (sars-cov-2) and corona virus disease-2019 (covid-19): the epidemic and the challengesInt J Antimicrob Agents202055105924
– reference: KavehATalatahariSA novel heuristic optimization method: charged system searchActa Mech20102133–42672891397.65094
– reference: Jung F, Krieger V, Hufert FT, Küpper J-H (2020) Herd immunity or suppression strategy to combat covid-19. Clin Hemorheol Microcircul (Preprint):1–5
– reference: PanW-TA new fruit fly optimization algorithm: taking the financial distress model as an exampleKnowl Based Syst2012266974
– reference: Yang X (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation, pp 240–249. Springer
– reference: GandomiAHInterior search algorithm (isa): a novel approach for global optimizationISA Trans201453411681183
– reference: GeemZWKimJHLoganathanGVA new heuristic optimization algorithm: harmony searchSimulation20017626068
– reference: GlassRJGlassLMBeyelerWEMinHJTargeted social distancing designs for pandemic influenzaEmerg Inf Dis200612111671
– reference: WangG-GDebSCuiZMonarch butterfly optimizationNeural Comput Appl201931719952014
– reference: KwokKOLaiFWeiWIWongSYSTangJWTHerd immunity-estimating the level required to halt the covid-19 epidemics in affected countriesJ Inf2020806e32e33
– reference: James K, Russell E (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4, pp. 1942–1948. IEEE
– reference: RandolphHEBarreiroLBHerd immunity: Understanding covid-19Immunity2020525737741
– reference: MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl Based Syst201589228249
– reference: He S, Wu QH, Saunders JR (2006) A novel group search optimizer inspired by animal behavioural ecology. In: 2006 IEEE international conference on evolutionary computation, pp 1272–1278. IEEE
– reference: World Health Organization (2020) Covid-19 sweden data
– reference: MirjaliliSThe ant lion optimizerAdv Eng Softw2015838098
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw2014694661
– reference: JeffersonTFoxleeRDel MarCDooleyLFerroniEHewakBPrabhalaANairSRivettiAPhysical interventions to interrupt or reduce the spread of respiratory viruses: systematic reviewBmj200833676357780
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst201997849872
– reference: YampolskiyRVEl-BarkoukyAWisdom of artificial crowds algorithm for solving np-hard problemsInt J Bio-inspir Comput201136358369
– reference: BirbilŞİFangS-CAn electromagnetism-like mechanism for global optimizationJ Global Optim200325326328219615281047.90045
– reference: Elsayed SM, Sarker RA, Essam DL (2011) Ga with a new multi-parent crossover for solving ieee-cec2011 competition problems. In: 2011 IEEE congress of evolutionary computation (CEC), pp 1034–1040. IEEE
– reference: Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 2, pp. 1470–1477. IEEE
– reference: GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul201217124831484529602791266.65092
– reference: RothlaufFOptimization methods2011BerlinSpringer45102
– ident: 5296_CR68
  doi: 10.3233/CH-209006
– ident: 5296_CR58
  doi: 10.2139/ssrn.3566211
– volume: 3
  start-page: 358
  issue: 6
  year: 2011
  ident: 5296_CR43
  publication-title: Int J Bio-inspir Comput
  doi: 10.1504/IJBIC.2011.043624
– ident: 5296_CR73
  doi: 10.1007/978-1-4612-4380-9_16
– volume: 80
  start-page: e32
  issue: 6
  year: 2020
  ident: 5296_CR54
  publication-title: J Inf
  doi: 10.1016/j.jinf.2020.03.027
– volume: 52
  start-page: 737
  issue: 5
  year: 2020
  ident: 5296_CR57
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.04.012
– ident: 5296_CR84
– ident: 5296_CR80
  doi: 10.1109/CEC.2011.5949731
– volume: 25
  start-page: 263
  issue: 3
  year: 2003
  ident: 5296_CR38
  publication-title: J Global Optim
  doi: 10.1023/A:1022452626305
– ident: 5296_CR48
  doi: 10.1109/ICCIAS.2006.294126
– volume: 85
  start-page: 328
  issue: 2
  year: 2010
  ident: 5296_CR60
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2009.10.008
– volume: 2020
  start-page: 1
  year: 2020
  ident: 5296_CR26
  publication-title: Soft Comput
– volume: 335
  start-page: 641
  issue: 8690
  year: 1990
  ident: 5296_CR62
  publication-title: Lancet
  doi: 10.1016/0140-6736(90)90420-A
– ident: 5296_CR81
  doi: 10.1109/CEC.2011.5949800
– ident: 5296_CR16
– ident: 5296_CR71
– volume: 13
  start-page: 13
  year: 2020
  ident: 5296_CR59
  publication-title: J Med Virol
– volume: 395
  start-page: 497
  year: 2020
  ident: 5296_CR61
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30627-9
– volume: 108
  start-page: 7259
  issue: 17
  year: 2011
  ident: 5296_CR63
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1014394108
– volume-title: Genetic programming: on the programming of computers by means of natural selection
  year: 1992
  ident: 5296_CR17
– volume: 97
  start-page: 849
  year: 2019
  ident: 5296_CR33
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– ident: 5296_CR77
  doi: 10.1109/CEC.2011.5949770
– volume: 29
  start-page: 464
  issue: 5
  year: 2012
  ident: 5296_CR20
  publication-title: Eng Comput
  doi: 10.1108/02644401211235834
– ident: 5296_CR45
  doi: 10.1007/978-1-4613-0303-9_33
– ident: 5296_CR12
– volume: 101
  start-page: 646
  year: 2019
  ident: 5296_CR42
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.07.015
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 5296_CR23
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1920-1
– ident: 5296_CR46
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 5296_CR50
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.11.026
– volume: 95
  start-page: 51
  year: 2016
  ident: 5296_CR7
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 5296_CR76
  doi: 10.1109/CEC.2011.5949734
– volume: 26
  start-page: 69
  year: 2012
  ident: 5296_CR24
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2011.07.001
– start-page: 45
  volume-title: Optimization methods
  year: 2011
  ident: 5296_CR3
– volume: 41
  start-page: 159
  year: 2018
  ident: 5296_CR83
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.02.015
– volume: 13
  start-page: 2837
  issue: 5
  year: 2013
  ident: 5296_CR49
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.05.018
– volume: 83
  start-page: 80
  year: 2015
  ident: 5296_CR21
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 31
  start-page: 1995
  issue: 7
  year: 2019
  ident: 5296_CR29
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1923-y
– ident: 5296_CR74
– volume: 35
  start-page: 268
  issue: 3
  year: 2003
  ident: 5296_CR5
  publication-title: ACM Comput Surv
  doi: 10.1145/937503.937505
– volume: 40
  start-page: 1
  year: 2020
  ident: 5296_CR56
  publication-title: Curr Opin Virol
  doi: 10.1016/j.coviro.2020.02.004
– ident: 5296_CR10
  doi: 10.1109/ICNN.1995.488968
– volume: 114
  start-page: 163
  year: 2017
  ident: 5296_CR32
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 12
  start-page: 1671
  issue: 11
  year: 2006
  ident: 5296_CR66
  publication-title: Emerg Inf Dis
  doi: 10.3201/eid1211.060255
– ident: 5296_CR53
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 5296_CR35
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1870-7
– ident: 5296_CR64
  doi: 10.17157/mat.7.2.791
– volume: 53
  start-page: 1168
  issue: 4
  year: 2014
  ident: 5296_CR47
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2014.03.018
– volume: 19
  start-page: 1213
  issue: 4
  year: 2014
  ident: 5296_CR27
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2013.08.027
– volume: 96
  start-page: 120
  year: 2016
  ident: 5296_CR36
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 15
  start-page: 265
  issue: 2
  year: 1993
  ident: 5296_CR55
  publication-title: Epidemiol Rev
  doi: 10.1093/oxfordjournals.epirev.a036121
– ident: 5296_CR11
– volume: 23
  start-page: 715
  issue: 3
  year: 2019
  ident: 5296_CR22
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3102-4
– volume: 63
  start-page: 511
  issue: 5
  year: 1996
  ident: 5296_CR2
  publication-title: Annals Oper Res
  doi: 10.1007/BF02125421
– ident: 5296_CR67
– volume: 10
  start-page: 177
  issue: 2
  year: 2018
  ident: 5296_CR85
  publication-title: Memetic Comput
  doi: 10.1007/s12293-017-0241-6
– volume: 336
  start-page: 77
  issue: 7635
  year: 2008
  ident: 5296_CR65
  publication-title: Bmj
  doi: 10.1136/bmj.39393.510347.BE
– volume: 20
  start-page: 79
  year: 2008
  ident: 5296_CR31
  publication-title: Nat Inspir Metaheur Algorithms
– ident: 5296_CR15
  doi: 10.1007/978-3-642-13495-1_44
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 5296_CR14
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 2019
  start-page: 1
  year: 2019
  ident: 5296_CR8
  publication-title: Artif Intel Rev
– volume: 28
  start-page: 153
  issue: 1
  year: 2017
  ident: 5296_CR44
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2328-2
– ident: 5296_CR79
  doi: 10.1109/CEC.2011.5949730
– volume-title: Global optimization
  year: 1989
  ident: 5296_CR1
  doi: 10.1007/3-540-50871-6
– ident: 5296_CR28
  doi: 10.1007/978-3-642-32894-7_27
– ident: 5296_CR78
  doi: 10.1109/IWSSIP.2018.8439207
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 5296_CR39
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– volume: 69
  start-page: 46
  year: 2014
  ident: 5296_CR4
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– start-page: 1077
  volume-title: The graph coloring problem: a bibliographic survey
  year: 1998
  ident: 5296_CR6
– volume: 169
  start-page: 1
  year: 2016
  ident: 5296_CR34
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 37
  start-page: 106
  issue: 2
  year: 2006
  ident: 5296_CR41
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 48
  start-page: 1596
  issue: 6
  year: 2018
  ident: 5296_CR75
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1015-z
– ident: 5296_CR69
– ident: 5296_CR82
  doi: 10.1109/CEC.2011.5949769
– volume-title: Genetic algorithms and machine learning
  year: 1988
  ident: 5296_CR9
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 5296_CR13
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 55
  start-page: 105924
  year: 2020
  ident: 5296_CR52
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2020.105924
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 5296_CR25
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 89
  start-page: 228
  year: 2015
  ident: 5296_CR30
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 5296_CR51
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 7
  start-page: 19
  issue: 1
  year: 2016
  ident: 5296_CR72
  publication-title: Int J Ind Eng Comput
– ident: 5296_CR19
  doi: 10.1109/NABIC.2009.5393690
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 5296_CR18
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.919004
– volume: 213
  start-page: 267
  issue: 3–4
  year: 2010
  ident: 5296_CR40
  publication-title: Acta Mech
  doi: 10.1007/s00707-009-0270-4
– volume: 110
  start-page: 151
  year: 2012
  ident: 5296_CR37
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.07.010
– ident: 5296_CR70
  doi: 10.1126/science.367.6484.1287
SSID ssj0004685
Score 2.6597698
Snippet In this paper, a new nature-inspired human-based optimization algorithm is proposed which is called coronavirus herd immunity optimizer (CHIO). The inspiration...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5011
SubjectTerms Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Coronaviruses
COVID-19
Data Mining and Knowledge Discovery
Disease control
Disease transmission
Herd immunity
Image Processing and Computer Vision
Immunity
Optimization
Optimization algorithms
Original
Original Article
Parameter sensitivity
Probability and Statistics in Computer Science
Social distancing
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R6IELtKVAKK2CxKEtRCRx7DinqlqBlst2D1RCvUSO7YhIkCz7kuDXd-x1smwRXHqNJw977MnYM_N9AMeaCU6IygLJBcUNCtVBlkkZqDLOyqJQQnJlySbSwYBfX2dDd-A2cWmVrU20hlo10pyRn8UGOYwmLAl_jO4DwxploquOQuMNbBiUBEPdMKR_ntRFWkpO3MGY7J6EuKIZWzpnzkPxamxCwXHGArb6Y3rmbT5Pmvwncmp_SBfb_9uVd7DlXFH_52LuvIc1XX-A7ZbmwXerfge-9wzKgZhX49nERxUrv7JFJdMHv0GDc1c9ovTXXv_y17eP8Pvi_KrXDxzFQiDR8ZoGNCpVpqQMqSIkRZ3pKA0VujgiIoKkKuICzaXEbUchJToLSUGlRg3qUnMptCK7sF43td4HXyQJemOCMFYUCS0ZV1yEcRmWvCwEPtSDqB3fXDr8cUODcZt3yMlWJznqJLc6yZkHJ909owX6xqvSh-14524lTvLlYHtw1DXjGjKBEVHrZoYy6JWx2BB1ebC30HL3OhJb0sLMg3RF_52AwedebamrG4vTnSbU4Ot5cNrOlOVnvdyLg9d78Qk2Y5NWY3MuD2F9Op7pz_BWzqfVZPzFzv-_dTkLXA
  priority: 102
  providerName: ProQuest
Title Coronavirus herd immunity optimizer (CHIO)
URI https://link.springer.com/article/10.1007/s00521-020-05296-6
https://www.ncbi.nlm.nih.gov/pubmed/32874019
https://www.proquest.com/docview/2518854640
https://www.proquest.com/docview/2439627280
https://pubmed.ncbi.nlm.nih.gov/PMC7451802
Volume 33
WOSCitedRecordID wos000565019200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_Rloe9UD62EShVkHiAbZGSOHacR1a1Ki-lKh-q9hI5tqNF2lLULwn-es5uElYKk-Ax8sWJ73L2Xe7udwBvNBOcEJV4kguKDgrVXpJI6ak8TPIsU0JyZZtNxJMJn8-TaVUUtqqz3euQpN2pm2I38wcTXd_QBG_DhHmsBR087rhp2DD79PVONaRtxIl-i8npiUhVKvPnOfaPowMb8zBV8rd4qT2GRt3_W8BjeFSZne773XfyBB7o8il065YObqXhz-BsYBANxLZYblYuilO5hS0gWX93F7i53BY_kPrtYPzh47tj-DIafh6MvaqdgifRyFp7NMhVoqT0qSIkRvnoIPYVmjMiIILEKuACt0aJLkYmJRoGUUalRmnpXHMptCIn0C4XpX4OrogitLwEYSzLIpozrrjww9zPeZ4JnNSBoOZqKiuscdPy4iZtUJItM1JkRmqZkTIHzpt7vu2QNu6l7tXCSiutW6WhQZejEYt8B143w6gvJggiSr3YIA1aYCw0TbkcON3JtnkcCW2DwsSBeE_qDYHB4t4fKYtri8kdR9Rg6TlwUcv-12v9fRUv_o38JRyFJqXG5lv2oL1ebvQreCi362K17EMrnvM-dC6Hk-kMr6b0qm814yd_5gSw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQkutGUNbWmQQGKLSLzFOSCEhlYzahl6KFLFJTi2IyJBpszSqvwofiPPniRlqOith15jx7Hjz8_PfssH8NQKJSk1WaSl4nhA4TbKMq0jU5KsLAqjtDSebCIdDuXhYba_BL_bWBjnVtnKRC-ozUi7O_I3xGUO40yw-N3Rz8ixRjnrakuhMYfFrj09wSPb5O3gA87vM0J2tg96_ahhFYg06hrTiCelyYzWMTeUpthNm6SxwV1dJVTR1CRSoYTQqGkXWuP-yAquLXballZqZQ3Fdq_BdcZI7FbRPv_yVxympwDFE5PzJmK0CdLxoXru_hWfEmd6JpmIxOJGeE67Pe-k-Y-l1m-AOytX7detwu1G1Q7fz9fGGizZ-g6stDQWYSPV7sLLnsvioI6r8WwSIoRNWPmgmelpOEKB-qP6hbWf9_qDTy_uwedL6fF9WK5HtX0IoWIMtU1FhSgKxkshjVQxKeNSloXCRgNI2vnMdZNf3dF8fM-7zNAeAzliIPcYyEUAr7p3jubZRS6svdHOb95Imkl-NrkBPOmKUUY4w4-q7WiGdVDrFMQRkQXwYI6q7nOUeFLGLIB0AW9dBZd_fLGkrr75POQp4y5_YACvW2Sedev_o3h08Si24Gb_4ONevjcY7q7DLeJciLx_6QYsT8czuwk39PG0mowf-7UXwtfLRuwf76xrUA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDSFe2MZnxhhB4mEDoiWx4ziPqFvVaqhMYkx9ixx_iEhbOrXpJPjrd3aTsNINCfHsixPf-ey73N3vAN5rJjghKgskFwk6KIkOskzKQJk4M0WhhOTKNZtIRyM-Hment6r4XbZ7G5Jc1DRYlKaqPrxS5rArfLN_M9ENjm0gN85YwB7ABrWJ9NZf_3Z-qzLSNeVEH8bm91DSlM3cPcfy1bRib66mTf4RO3VXUn_z_xezBU8ac9T_vNg_27Cmq6ew2bZ68BvNfwYfehbpQFyX0_nMRzErv3SFJfVPf4KHzmX5C6n3e4Ph14Pn8L1_fNYbBE2bhUCi8VUHSWRUpqQME0VIinLTURoqNHNERARJVcQFHpkSXY9CSjQYaJFIjVLURnMptCIvYL2aVPoV-IJStMgEYawoaGIYV1yEsQkNN4XAST2IWg7nssEgt60wLvIOPdkxI0dm5I4ZOfPgY_fM1QKB46_Uu63g8kYbZ3lsUecSymjowbtuGPXIBkdEpSdzpEHLjMW2WZcHLxdy7l5HYte4MPMgXdoBHYHF6F4eqcofDqs7pYnF2PPgU7sPfn_W_avY-Tfyt_Do9KiffxmOTl7D49hm3biUzF1Yr6dz_QYeyuu6nE33nHLcAIWiDPY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coronavirus+herd+immunity+optimizer+%28CHIO%29&rft.jtitle=Neural+computing+%26+applications&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Alyasseri%2C+Zaid+Abdi+Alkareem&rft.au=Awadallah%2C+Mohammed+A.&rft.au=Abu+Doush%2C+Iyad&rft.date=2021-05-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=10&rft.spage=5011&rft.epage=5042&rft_id=info:doi/10.1007%2Fs00521-020-05296-6&rft.externalDocID=10_1007_s00521_020_05296_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon