Optical absorbers based on strong interference in ultra-thin films

Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, co...

Full description

Saved in:
Bibliographic Details
Published in:Laser & photonics reviews Vol. 10; no. 5; pp. 735 - 749
Main Authors: Kats, Mikhail A., Capasso, Federico
Format: Journal Article
Language:English
Published: Weinheim Blackwell Publishing Ltd 01.09.2016
Wiley Subscription Services, Inc
Subjects:
ISSN:1863-8880, 1863-8899
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry‐Perot‐type cavities, by using emerging concepts in plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large‐scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on “ultra‐thin‐film interference”, including the concepts of loss‐induced phase shifts and critical coupling, and then review several applications, including ultra‐thin color coatings, decorative photovoltaics, high‐efficiency photochemical cells, and infrared scene generators. Ultra‐thin optical absorbers are desired for many applications across the electromagnetic spectrum, including solar energy harvesting, photodetectors, optical filters, stealth technology, and thermal light sources. This review summarizes recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. The basic theory governing ultra‐thin‐film absorbers is discussed, along with application examples, including color coatings, decorative photovoltaics, photochemical cells, and infrared scene generators.
AbstractList Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry-Perot-type cavities, by using emerging concepts in plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large-scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on "ultra-thin-film interference", including the concepts of loss-induced phase shifts and critical coupling, and then review several applications, including ultra-thin color coatings, decorative photovoltaics, high-efficiency photochemical cells, and infrared scene generators. Ultra-thin optical absorbers are desired for many applications across the electromagnetic spectrum, including solar energy harvesting, photodetectors, optical filters, stealth technology, and thermal light sources. We summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. The basic theory governing ultra-thin-film absorbers is discussed, along with application examples, including color coatings, decorative photovoltaics, photochemical cells, and infrared scene generators.
Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry-Perot-type cavities, by using emerging concepts in plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large-scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on "ultra-thin-film interference", including the concepts of loss-induced phase shifts and critical coupling, and then review several applications, including ultra-thin color coatings, decorative photovoltaics, high-efficiency photochemical cells, and infrared scene generators.
Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry‐Perot‐type cavities, by using emerging concepts in plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large‐scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on “ultra‐thin‐film interference”, including the concepts of loss‐induced phase shifts and critical coupling, and then review several applications, including ultra‐thin color coatings, decorative photovoltaics, high‐efficiency photochemical cells, and infrared scene generators. image
Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry‐Perot‐type cavities, by using emerging concepts in plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large‐scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on “ultra‐thin‐film interference”, including the concepts of loss‐induced phase shifts and critical coupling, and then review several applications, including ultra‐thin color coatings, decorative photovoltaics, high‐efficiency photochemical cells, and infrared scene generators. Ultra‐thin optical absorbers are desired for many applications across the electromagnetic spectrum, including solar energy harvesting, photodetectors, optical filters, stealth technology, and thermal light sources. This review summarizes recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. The basic theory governing ultra‐thin‐film absorbers is discussed, along with application examples, including color coatings, decorative photovoltaics, photochemical cells, and infrared scene generators.
Author Capasso, Federico
Kats, Mikhail A.
Author_xml – sequence: 1
  givenname: Mikhail A.
  surname: Kats
  fullname: Kats, Mikhail A.
  email: mkats@wisc.edu, mkats@wisc.edu
  organization: Departments of Electrical and Computer Engineering, Materials Science and Engineering, and Physics, University of Wisconsin - Madison, Wisconsin, 53706, Madison, USA
– sequence: 2
  givenname: Federico
  surname: Capasso
  fullname: Capasso, Federico
  organization: School of Engineering and Applied Sciences, Harvard University, Massachusetts, 02138, Cambridge, USA
BookMark eNqFkE1rGzEQhkVJIF-95rzQSy_rjKRdrXRsQ_MBJk5CQo9C0mpbpbLkSjJt_n0UHEwINJ3LzMDzDMN7gHZCDBahYwwzDEBO_CqmGQHMAEDwD2gfc0ZbzoXY2c4c9tBBzg8AfS22j74uVsUZ5Rulc0zaptxole3YxNDkkmL40bhQbJpsssHYujRrX5Jqy886Ts4v8xHanZTP9uNLP0T3Z9_uTi_a-eL88vTLvDU9IbzljJEBj6Cmrhsno-szZmAdZVpZNWgQfU8HLiY2YjaMBOtBawadZqOho5gMPUSfN3dXKf5e21zk0mVjvVfBxnWWmHc9Jx2lfUU_vUEf4jqF-l2lRA-UCCLepwgBTgmnleo2lEkx52QnaVxRxcVQY3BeYpDP8cvn-OU2_qrN3mir5JYqPf5bEBvhj_P28T-0nF8vbl-77cZ1udi_W1elX5INdOjl96tzCTcX4o7wM3lFnwBAzqhD
CitedBy_id crossref_primary_10_1002_adom_201700368
crossref_primary_10_1016_j_tsf_2022_139232
crossref_primary_10_1002_adom_202100417
crossref_primary_10_3390_mi14091802
crossref_primary_10_1002_adom_202100499
crossref_primary_10_1109_TMTT_2023_3314094
crossref_primary_10_1002_lpor_202400994
crossref_primary_10_1002_smtd_202400384
crossref_primary_10_3390_nano14060530
crossref_primary_10_3390_mi11030256
crossref_primary_10_1002_adom_201801229
crossref_primary_10_1007_s12274_021_3989_4
crossref_primary_10_1016_j_mattod_2025_02_016
crossref_primary_10_1002_smll_202404388
crossref_primary_10_1038_s41598_022_23119_7
crossref_primary_10_1016_j_optcom_2020_126351
crossref_primary_10_3390_nano13233073
crossref_primary_10_1103_PhysRevApplied_9_054018
crossref_primary_10_1002_adom_202300674
crossref_primary_10_1073_pnas_1911244116
crossref_primary_10_1088_1402_4896_ac8b43
crossref_primary_10_1109_JPHOTOV_2017_2762527
crossref_primary_10_1002_adom_202303263
crossref_primary_10_1002_adfm_202314434
crossref_primary_10_1364_PRJ_410554
crossref_primary_10_1002_adom_201900028
crossref_primary_10_1002_adma_202005074
crossref_primary_10_1515_nanoph_2021_0413
crossref_primary_10_1016_j_infrared_2023_105000
crossref_primary_10_1002_adom_202100429
crossref_primary_10_1063_1_5017574
crossref_primary_10_1038_s41467_023_36275_9
crossref_primary_10_1002_adom_202101118
crossref_primary_10_1063_5_0164936
crossref_primary_10_1103_PhysRevApplied_10_021001
crossref_primary_10_1063_5_0027865
crossref_primary_10_1364_AO_57_009040
crossref_primary_10_1103_PhysRevApplied_8_014009
crossref_primary_10_1002_adfm_202410082
crossref_primary_10_1063_5_0123671
crossref_primary_10_1002_adom_202303138
crossref_primary_10_1039_C8NH00368H
crossref_primary_10_1002_adom_202300300
crossref_primary_10_1002_adfm_202002287
crossref_primary_10_1016_j_optmat_2019_109370
crossref_primary_10_1364_AO_57_008915
crossref_primary_10_1515_nanoph_2024_0029
crossref_primary_10_1016_j_ijthermalsci_2023_108699
crossref_primary_10_3390_ma16124278
crossref_primary_10_1002_adfm_202102183
crossref_primary_10_1016_j_ijthermalsci_2023_108452
crossref_primary_10_1021_acsanm_4c06418
crossref_primary_10_1103_PhysRevApplied_16_044064
crossref_primary_10_1088_1361_6463_aac47c
crossref_primary_10_1002_pip_3802
crossref_primary_10_1063_5_0077235
crossref_primary_10_1038_s41598_018_25728_7
crossref_primary_10_1080_09500340_2021_1900438
crossref_primary_10_1002_adpr_202000152
crossref_primary_10_3390_app9183812
crossref_primary_10_1016_j_pmatsci_2023_101088
crossref_primary_10_1515_nanoph_2024_0538
crossref_primary_10_1002_adma_201804680
crossref_primary_10_1016_j_jcis_2022_09_046
crossref_primary_10_1038_s41377_022_00776_x
crossref_primary_10_1016_j_optmat_2024_115776
crossref_primary_10_1016_j_ijleo_2018_09_184
crossref_primary_10_1109_JPHOTOV_2022_3150726
crossref_primary_10_1016_j_optmat_2021_111899
crossref_primary_10_1002_adma_201802781
crossref_primary_10_1002_adom_202302071
crossref_primary_10_1002_adpr_202000147
crossref_primary_10_1038_s41377_021_00529_2
crossref_primary_10_1002_adom_201901932
crossref_primary_10_1016_j_optmat_2021_110847
crossref_primary_10_1002_adom_201700830
crossref_primary_10_1007_s00340_018_6938_5
crossref_primary_10_1016_j_optlastec_2022_108772
crossref_primary_10_1002_smll_202202005
crossref_primary_10_1088_1361_6528_ab8325
crossref_primary_10_1016_j_csite_2025_106121
crossref_primary_10_1039_D0NH00139B
crossref_primary_10_1002_adom_202000317
crossref_primary_10_1088_1361_6528_ab746f
crossref_primary_10_1002_adom_202000321
crossref_primary_10_1007_s11664_025_12235_5
crossref_primary_10_1016_j_nanoen_2020_104449
crossref_primary_10_1088_1361_6501_ab9fd8
crossref_primary_10_1016_j_jnucmat_2018_05_047
crossref_primary_10_1016_j_jqsrt_2018_01_031
crossref_primary_10_1002_pip_3665
crossref_primary_10_1002_lpor_202400399
crossref_primary_10_1088_2399_6528_ac59d0
crossref_primary_10_3390_app8091445
crossref_primary_10_1002_adma_201903787
crossref_primary_10_1002_adom_202101546
crossref_primary_10_1007_s11468_024_02519_7
crossref_primary_10_1002_aenm_202200713
crossref_primary_10_1364_AO_422644
crossref_primary_10_1063_5_0282458
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127326
crossref_primary_10_1016_j_mtener_2025_101867
crossref_primary_10_1515_nanoph_2023_0067
crossref_primary_10_1002_adma_202300179
crossref_primary_10_1088_1402_4896_ad538d
crossref_primary_10_1016_j_scriptamat_2021_114101
crossref_primary_10_1016_j_mtnano_2025_100608
crossref_primary_10_1016_j_rineng_2024_103105
crossref_primary_10_1038_s41565_024_01756_5
crossref_primary_10_1038_s41467_024_47191_x
crossref_primary_10_1117_1_AP_7_2_025001
crossref_primary_10_1016_j_ijleo_2023_170915
crossref_primary_10_1088_2631_7990_ac3bb1
crossref_primary_10_1103_PhysRevApplied_23_L051002
crossref_primary_10_1016_j_csbj_2024_09_009
crossref_primary_10_29026_oea_2025_250031
crossref_primary_10_1002_lpor_202300551
crossref_primary_10_3390_coatings11091081
crossref_primary_10_1515_nanoph_2025_0085
crossref_primary_10_1021_acsami_5c01072
crossref_primary_10_1088_2040_8986_abbc55
crossref_primary_10_1021_acsaom_4c00521
crossref_primary_10_1063_5_0019883
crossref_primary_10_1002_pssr_202500245
crossref_primary_10_1063_1_5085715
crossref_primary_10_1186_s43074_022_00068_y
crossref_primary_10_1002_sdtp_16694
crossref_primary_10_3390_mi14040715
crossref_primary_10_1016_j_icheatmasstransfer_2025_108933
crossref_primary_10_1063_5_0198937
crossref_primary_10_1007_s11664_022_09933_9
crossref_primary_10_1103_PhysRevApplied_22_054002
crossref_primary_10_1016_j_cej_2025_161418
crossref_primary_10_1016_j_porgcoat_2021_106439
crossref_primary_10_1038_s41467_023_44345_1
crossref_primary_10_1088_2053_1591_acaf4c
crossref_primary_10_1002_adom_202402644
crossref_primary_10_3390_metrology5020036
crossref_primary_10_1109_JSTQE_2021_3069495
crossref_primary_10_1038_s42005_021_00782_2
crossref_primary_10_1002_adma_202109546
crossref_primary_10_3390_app12073633
crossref_primary_10_1016_j_optlastec_2024_112182
crossref_primary_10_1038_s41467_024_54623_1
crossref_primary_10_1080_21663831_2022_2055436
crossref_primary_10_1515_nanoph_2023_0116
crossref_primary_10_3390_nano13010134
crossref_primary_10_1364_AO_410211
crossref_primary_10_1002_adom_202001291
crossref_primary_10_1002_adom_202202696
crossref_primary_10_1109_JPHOTOV_2021_3110311
crossref_primary_10_1002_gch2_202000058
crossref_primary_10_1016_j_ijthermalsci_2023_108713
crossref_primary_10_1002_adpr_202100153
crossref_primary_10_1109_JSEN_2023_3326149
crossref_primary_10_3390_ma16124210
crossref_primary_10_1007_s10853_022_07286_6
crossref_primary_10_1088_1361_6463_aadca2
crossref_primary_10_1002_adom_201901626
crossref_primary_10_1016_j_nanoen_2019_103998
crossref_primary_10_1038_natrevmats_2017_64
crossref_primary_10_1103_PhysRevLett_134_013802
crossref_primary_10_1515_nanoph_2017_0062
crossref_primary_10_1109_ACCESS_2025_3583230
crossref_primary_10_3390_nano9091249
Cites_doi 10.1051/epjap/2009087
10.1364/AO.9.002111
10.1007/BF01341647
10.1364/OL.40.003877
10.1364/OPN.25.1.000040
10.1063/1.1729543
10.1002/pip.2573
10.1016/0040-6090(84)90019-1
10.1149/1.2131532
10.1109/3.83412
10.1063/1.3126062
10.1364/OE.16.007181
10.1103/PhysRevB.79.033101
10.1063/1.4879829
10.1007/978-1-4757-6140-5
10.1364/OL.37.000371
10.1109/3.83394
10.1038/nmat3477
10.1126/science.1150124
10.1109/8.884491
10.1021/ed070p176
10.1016/0371-1951(66)80003-6
10.1038/nmat4043
10.1038/nmat3839
10.1109/JQE.2011.2167960
10.1021/nl9041033
10.1201/9781420073034
10.1021/nn4012253
10.1364/OE.21.009113
10.1063/1.4883494
10.1016/0034-4257(92)90092-X
10.1364/OME.1.001090
10.1038/nnano.2013.286
10.1109/TAP.2009.2028601
10.1021/nn2004603
10.1126/science.1137014
10.1002/pip.2300
10.1021/acs.nanolett.5b04122
10.1364/OL.40.001960
10.1002/adma.201402117
10.1063/1.4820147
10.1002/adma.201102646
10.1016/S0927-0248(02)00452-X
10.1515/nanoph-2014-0003
10.1063/1.4833537
10.1103/PhysRevB.84.075102
10.1126/science.1156965
10.1021/ph500410u
10.1063/1.1556969
10.1103/PhysRevB.61.8187
10.1038/nmat3443
10.1063/1.4896527
10.1063/1.4939969
10.1364/OE.21.019363
10.1364/OE.19.015221
10.1103/PhysRevLett.102.234301
10.1021/nl101929j
10.1021/nl202489g
10.1364/OE.20.002246
10.1109/8.8632
10.1103/PhysRevB.92.201405
10.1038/lsa.2014.96
10.1364/OL.38.000368
10.1088/1464-4258/1/6/301
10.1038/srep04192
10.1016/j.optcom.2014.12.029
10.1103/PhysRevLett.107.045901
10.1126/science.1200735
10.1016/S0026-0576(99)80049-X
10.1063/1.360322
10.1038/nmat3431
10.1103/PhysRevLett.108.256402
10.1016/j.optcom.2013.08.062
10.1049/el:19940896
10.1038/416061a
10.1103/PhysRevApplied.3.037001
10.1021/nl103482n
10.1073/pnas.1008296107
10.1364/OE.20.012155
10.1088/0022-3727/49/5/055104
10.1063/1.3291053
10.1364/AO.23.004477
10.1109/TAP.2010.2044329
10.1021/ph500093d
10.1146/annurev-matsci-062910-100347
10.1063/1.1526919
10.1364/AO.44.006849
ContentType Journal Article
Copyright 2016 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA
Copyright_xml – notice: 2016 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA
DBID BSCLL
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1002/lpor.201600098
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
Solid State and Superconductivity Abstracts
Solid State and Superconductivity Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage 749
ExternalDocumentID 4190013551
10_1002_lpor_201600098
LPOR201600098
ark_67375_WNG_0QH9T28F_N
Genre reviewArticle
GrantInformation_xml – fundername: UW Madison
– fundername: Office of Naval Research
  funderid: N00014‐16‐1‐2556
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
XV2
ZZTAW
~S-
A00
AAHHS
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
P4E
WYJ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c5228-866271d0af44dfcb888c76436baea7b09553789f6d167d21b7bb604b6dc3d9fc3
IEDL.DBID DRFUL
ISICitedReferencesCount 271
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384675200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-8880
IngestDate Fri Jul 11 16:17:47 EDT 2025
Fri Jul 25 12:21:45 EDT 2025
Fri Jul 25 12:29:27 EDT 2025
Sat Nov 29 06:44:19 EST 2025
Tue Nov 18 22:38:38 EST 2025
Wed Jan 22 16:48:56 EST 2025
Sun Sep 21 06:15:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5228-866271d0af44dfcb888c76436baea7b09553789f6d167d21b7bb604b6dc3d9fc3
Notes ArticleID:LPOR201600098
UW Madison
istex:388A6F1F640CA0B8942F8DDBC61E51E11B541785
Office of Naval Research - No. N00014-16-1-2556
ark:/67375/WNG-0QH9T28F-N
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://nrs.harvard.edu/urn-3:HUL.InstRepos:41371622
PQID 1822083283
PQPubID 1016358
PageCount 15
ParticipantIDs proquest_miscellaneous_1845824335
proquest_journals_1895032929
proquest_journals_1822083283
crossref_citationtrail_10_1002_lpor_201600098
crossref_primary_10_1002_lpor_201600098
wiley_primary_10_1002_lpor_201600098_LPOR201600098
istex_primary_ark_67375_WNG_0QH9T28F_N
PublicationCentury 2000
PublicationDate 2016-09
September 2016
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationTitleAlternate Laser & Photonics Reviews
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, Appl. Phys. Lett. 81(25), 4685(2002).
B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, Opt. Express 19(16), 15221-15228 (2011).
B. Tatian, Appl. Opt. 23(24), 4477 (1984).
J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, Opt. Lett. 37(3), 371-373 (2012).
S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, Opt. Express. 20(11), 12155-12165 (2012).
M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79(3), 033101 (2009).
B. Chambers, Electron. Lett. 30(16), 1353-1354 (1994).
M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, Appl. Phys. Lett. 101(2012), 0-5 (2012).
P. A. Flournoy and W. J. Schaffers, Spectrochim. Acta 22(1), 5-13 (1966).
M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, Phys. Rev. X 3(4), 041004 (2013).
Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, ACS Nano 5(6), 4641-4647 (2011).
R. L. Fante and M. T. McCormack, IEEE Trans. Antennas Propag. 36(10),1443-1454 (1988).
T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, Appl. Opt. 44(32), 6849 (2005).
M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, Opt. Express 20(3), 2246-2254 (2012).
J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, Nanophotonics. 4(1), (2015).
J. H. Kennedy and K. W. Frese, J. Electrochem. Soc. 125(5), 709 (1978).
I. Abdulhalim, J. Opt. A Pure Appl. Opt. 1(6), 655-661 (1999).
H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall series in solid state physical electronics). (Prentice Hall, 1984).
M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (CUP Archive, 2000).
J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, ACS Photonics. 1(9), 812-821 (2014).
R. M. Audet, E. H. Edwards, P. Wahl, and D. A. B. Miller, IEEE J. Quantum Electron. 48(2), 198-209 (2012).
K.-T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, Adv. Mater. 26(36), 6324-6328 (2014).
Z. Yu, A. Raman, and S. Fan, Proc. Natl. Acad. Sci. U. S. A. 107(41), 17491-17496 (2010).
M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, Adv. Mater. 23(45), 5410-5414 (2011).
J. Y. Lee, K.-T. Lee, S. Seo, and L. J. Guo, Sci. Rep. 4, 4192 (2014).
N. I. Zheludev and Y. S. Kivshar, Nat. Mater. 11(11), 917-924 (2012).
M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, Appl. Phys. Lett. 103(10), 101104(2013).
T. Inoue, M. De Zoysa, T. Asano, and S. Noda, Nat. Mater. 13(10), 928-931 (2014).
C. Hägglund, S. P. Apell, and B. Kasemo, Nano Lett. 10(8), 3135-3141 (2010).
A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, Nano Lett. 11(10), 4366-4369 (2011).
G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, ACS Nano 7(6), 4810-4817 (2013).
G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, J. Phys. D. Appl. Phys. 49(5), 055104 (2016).
K.-T. Lee, C. Ji, and L. J. Guo, Appl. Phys. Lett. 108(3), 031107 (2016).
C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, Phys. Rev. B 84(7), 075102 (2011).
S.-T. Yen and P.-K. Chung, Opt. Lett. 40(16), 3877-3880 (2015).
Z. Li, S. Butun, and K. Aydin, ACS Photonics 2(2), 183-188 (2015).
N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10(7), 2342-2348 (2010).
J. X. Man, D. Y. Luo, L. M. Yu, D. K. Wang, Z. Liu, and Z. H. Lu, Opt. Commun. 342, 184-188 (2015).
O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, IEEE Trans. Antennas Propag. 57(10),3119-3125 (2009).
E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009).
X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107(4), 045901 (2011).
K.-T. Lee, S. Seo, J. Yong Lee, and L. Jay Guo, Appl. Phys. Lett. 104(23), 231112 (2014).
M. Cardona and G. Harbeke, J. Appl. Phys. 34(4), 813 (1963).
J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, Nature 416(6876), 61-64 (2002).
F. F. Schlich and R. Spolenak, Appl. Phys. Lett. 103(21), 213112(Nov. 2013).
D. G. Baranov, J. H. Edgar, T. Hoffman, N. Bassim, and J. D. Caldwell, Phys. Rev. B 92(20), 201405 (2015).
J. W. Cleary, R. Soref, and J. R. Hendrickson, Opt. Express 21(16), 19363-19374 (2013).
M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, Science. 318(5857), 1750-1753 (2007).
M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, Nat. Mater. 12(1), 20-24 (2012).
F. Costa, A. Monorchio, and G. Manara, IEEE Trans. Antennas Propag. 58(5), 1551-1558 (2010).
H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. 82(9), 1353 (2003).
H. Arwin and D. E. Aspnes, Thin Solid Films 113(2), 101-113 (1984).
N. S. Lewis, Science. 315(5813), 798-801 (2007).
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. (WILEY-VCH Verlag GmbH & Co. KGaA, 2007).
K. Shibuya, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 96(2), 022102 (2010).
W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, Science 331(6019), 889-892 (2011).
S. J. Byrnes, Arxiv, 1603.02720, 21(Mar. 2016).
N. Yu and F. Capasso, Nat. Mater. 13(2), 139-150 (2014).
C. A. Grubbs, Met. Finish. 97(1), 476-493 (1999).
K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, Opt. Commun. 314, 48-56 (2014).
K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27(8), 2025-2034 (1991).
R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320(5881), 1308 (2008).
A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, Nat. Nanotechnol. 9(2), 126-130 (2014).
C. Weber, D. D. O'Regan, N. D. M. Hine, M. C. Payne, G. Kotliar, and P. B. Littlewood, Phys. Rev. Lett. 108(25), 256402 (2012).
M. A. Kats, R. Blanchard, S. Ramanathan, and F. Capasso, Opt. Photonics News 25(January), 40-47 (2014).
R.-H. Yan, R. J. Simes, and L. A. Coldren, IEEE J. Quantum Electron. 27(7),1922-1931 (1991).
E. F. C. Driessen and M. J. A. de Dood, Appl. Phys. Lett. 94(17), 171109 (2009).
M. A. Kats and F. Capasso, Appl. Phys. Lett. 105(13), 131108(2014).
J. Park, S. J. Kim, and M. L. Brongersma, Opt. Lett. 40(9), 1960-1963 (2015).
K.-T. Lee, J. Y. Lee, S. Seo, and L. J. Guo, Light Sci. Appl. 3(10), e215 (2014).
G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express. 1(6), 1090 (2011).
A. Y. Vorobyev, V. S. Makin, and C. Guo, Phys. Rev. Lett. 102(23), 234301 (2009).
Y. Ra'di, C. R. Simovski, and S. A. Tretyakov, Phys. Rev. Appl. 3(3),037001 (2015).
T. Matsui, H. Sai, K. Saito, and M. Kondo, Prog. Photovoltaics Res. Appl. 21(6), 1363-1369 (2013).
M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, Opt. Lett. 38(3), 368-370 (2013).
H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, Nat. Mater. 12(2), 158-164 (2013).
M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics Res. Appl. 23(1),1-9 (2015).
N. J. Harrick and A. F. Turner, Appl. Opt. 9(9), 2111-2114 (1970).
J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, Nano Lett. 16(2), 1050-1055 (2016).
M. Schubert, T. E. Tiwald, and C. M. Herzinger, Phys. Rev. B. 61(12), 8187-8201 (2000).
D. Chen, A. Nakahara, D. Wei, D. Nordlund, and T. P. Russell, Nano Lett. 11(2), 561-567 (2011).
H. A. MacLeod and H. A. Macleod, Thin-Film Optical Filters, Fourth Edition. (CRC Press, 2010).
E. Schiff, Sol. Energy Mater. Sol. Cells. 78(1-4), 567-595 (2003).
M. S. Ünlü and S. Strite, J. Appl. Phys. 78(2), 607 (1995).
A. Yariv and P. Yeh, "Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering)," (2006).
E. Gaul, J. Chem. Educ. 70(3), 176 (1993).
J. W. Salisbury and D. M. D'Aria, Remote Sens. Environ. 42(2), 83-106 (1992).
H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16(10), 7181 (2008).
U. S. Inan, A. S. Inan, and R. K. Said, Engineering Electromagnetics and Waves. (Upper Saddle River: Pearson, 2015).
W. Woltersdorff, Zeitschrift für Phys. 91(3-4), 230-252 (1934).
K. N. Rozanov, IEEE Trans. Antennas Propag. 48(8), 1230-1234 (2000).
N. Zhang, K. Liu, H. Song, Z. Liu, D. Ji, X. Zeng, S. Jiang, and Q. Gan, Appl. Phys. Lett. 104(20), 203112 (2014).
J. Caniou, Passive Infrared Detection: Theory and Applications. (Springer US, 1999).
W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, Opt. Express. 21(7), 9113-9122 (2013).
1970; 9
2010; 10
2009; 47
2013; 3
2010; 58
2010; 107
2000; 48
2013; 21
2016; 108
1988; 36
1995; 78
2015; 342
1984; 23
2014; 26
2011; 11
2014; 25
2013; 7
2011; 19
2012; 12
2012; 11
2014; 1
2009; 57
2014; 4
2014; 3
1963; 34
2000
1984; 113
2009; 94
2015; 40
2013; 12
1993; 70
2000; 61
2014; 13
1984
1999; 97
2011; 23
2003; 82
1992; 42
2014; 9
2016; 49
1966; 22
1994; 30
2012; 20
2015; 2
2014; 314
2012; 101
2015; 4
2015; 3
2011; 1
2015; 92
2010
2008; 16
2011; 84
2007
2013; 103
2006
2002; 81
2002; 416
2012; 37
1999; 1
2008; 320
2016; 16
2011; 5
2005; 44
2011; 331
2012; 108
2003; 78
1999
2015; 23
2014; 105
2009; 79
1991; 27
2011; 107
2007; 315
2013; 38
2011; 41
2009; 102
2016
2015
2012; 48
1978; 125
1934; 91
2007; 318
2010; 96
2014; 104
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Born M. (e_1_2_11_24_1) 2000
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_89_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_87_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_94_1
Byrnes S. J. (e_1_2_11_27_1) 2016
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_92_1
e_1_2_11_90_1
Yariv A. (e_1_2_11_23_1) 2006
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
Kats M. A. (e_1_2_11_40_1) 2012; 101
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_96_1
e_1_2_11_7_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Haus H. (e_1_2_11_45_1) 1984
Bohren C. F. (e_1_2_11_25_1) 2007
e_1_2_11_82_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
Inan U. S. (e_1_2_11_28_1) 2015
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_9_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_18_1
e_1_2_11_16_1
Kats M. A. (e_1_2_11_85_1) 2013; 3
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – reference: K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27(8), 2025-2034 (1991).
– reference: O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, IEEE Trans. Antennas Propag. 57(10),3119-3125 (2009).
– reference: H. A. MacLeod and H. A. Macleod, Thin-Film Optical Filters, Fourth Edition. (CRC Press, 2010).
– reference: G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, ACS Nano 7(6), 4810-4817 (2013).
– reference: K. Shibuya, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 96(2), 022102 (2010).
– reference: T. Matsui, H. Sai, K. Saito, and M. Kondo, Prog. Photovoltaics Res. Appl. 21(6), 1363-1369 (2013).
– reference: M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, Appl. Phys. Lett. 81(25), 4685(2002).
– reference: X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107(4), 045901 (2011).
– reference: K.-T. Lee, S. Seo, J. Yong Lee, and L. Jay Guo, Appl. Phys. Lett. 104(23), 231112 (2014).
– reference: M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, Science. 318(5857), 1750-1753 (2007).
– reference: J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, Nano Lett. 16(2), 1050-1055 (2016).
– reference: C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, Phys. Rev. B 84(7), 075102 (2011).
– reference: C. A. Grubbs, Met. Finish. 97(1), 476-493 (1999).
– reference: M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, Opt. Lett. 38(3), 368-370 (2013).
– reference: J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, Opt. Lett. 37(3), 371-373 (2012).
– reference: A. Yariv and P. Yeh, "Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering)," (2006).
– reference: E. Gaul, J. Chem. Educ. 70(3), 176 (1993).
– reference: E. Schiff, Sol. Energy Mater. Sol. Cells. 78(1-4), 567-595 (2003).
– reference: M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, Adv. Mater. 23(45), 5410-5414 (2011).
– reference: S. J. Byrnes, Arxiv, 1603.02720, 21(Mar. 2016).
– reference: F. Costa, A. Monorchio, and G. Manara, IEEE Trans. Antennas Propag. 58(5), 1551-1558 (2010).
– reference: M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79(3), 033101 (2009).
– reference: G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express. 1(6), 1090 (2011).
– reference: J. Y. Lee, K.-T. Lee, S. Seo, and L. J. Guo, Sci. Rep. 4, 4192 (2014).
– reference: R. L. Fante and M. T. McCormack, IEEE Trans. Antennas Propag. 36(10),1443-1454 (1988).
– reference: Y. Ra'di, C. R. Simovski, and S. A. Tretyakov, Phys. Rev. Appl. 3(3),037001 (2015).
– reference: E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009).
– reference: A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, Nat. Nanotechnol. 9(2), 126-130 (2014).
– reference: M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, Appl. Phys. Lett. 101(2012), 0-5 (2012).
– reference: G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, J. Phys. D. Appl. Phys. 49(5), 055104 (2016).
– reference: J. W. Cleary, R. Soref, and J. R. Hendrickson, Opt. Express 21(16), 19363-19374 (2013).
– reference: I. Abdulhalim, J. Opt. A Pure Appl. Opt. 1(6), 655-661 (1999).
– reference: N. I. Zheludev and Y. S. Kivshar, Nat. Mater. 11(11), 917-924 (2012).
– reference: N. Yu and F. Capasso, Nat. Mater. 13(2), 139-150 (2014).
– reference: H. Arwin and D. E. Aspnes, Thin Solid Films 113(2), 101-113 (1984).
– reference: M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, Phys. Rev. X 3(4), 041004 (2013).
– reference: R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320(5881), 1308 (2008).
– reference: M. A. Kats, R. Blanchard, S. Ramanathan, and F. Capasso, Opt. Photonics News 25(January), 40-47 (2014).
– reference: B. Chambers, Electron. Lett. 30(16), 1353-1354 (1994).
– reference: M. A. Kats and F. Capasso, Appl. Phys. Lett. 105(13), 131108(2014).
– reference: D. G. Baranov, J. H. Edgar, T. Hoffman, N. Bassim, and J. D. Caldwell, Phys. Rev. B 92(20), 201405 (2015).
– reference: H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall series in solid state physical electronics). (Prentice Hall, 1984).
– reference: W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, Science 331(6019), 889-892 (2011).
– reference: W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, Opt. Express. 21(7), 9113-9122 (2013).
– reference: K.-T. Lee, C. Ji, and L. J. Guo, Appl. Phys. Lett. 108(3), 031107 (2016).
– reference: Z. Li, S. Butun, and K. Aydin, ACS Photonics 2(2), 183-188 (2015).
– reference: B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, Opt. Express 19(16), 15221-15228 (2011).
– reference: C. Hägglund, S. P. Apell, and B. Kasemo, Nano Lett. 10(8), 3135-3141 (2010).
– reference: J. H. Kennedy and K. W. Frese, J. Electrochem. Soc. 125(5), 709 (1978).
– reference: A. Y. Vorobyev, V. S. Makin, and C. Guo, Phys. Rev. Lett. 102(23), 234301 (2009).
– reference: S.-T. Yen and P.-K. Chung, Opt. Lett. 40(16), 3877-3880 (2015).
– reference: M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, Appl. Phys. Lett. 103(10), 101104(2013).
– reference: P. A. Flournoy and W. J. Schaffers, Spectrochim. Acta 22(1), 5-13 (1966).
– reference: M. Cardona and G. Harbeke, J. Appl. Phys. 34(4), 813 (1963).
– reference: R. M. Audet, E. H. Edwards, P. Wahl, and D. A. B. Miller, IEEE J. Quantum Electron. 48(2), 198-209 (2012).
– reference: M. S. Ünlü and S. Strite, J. Appl. Phys. 78(2), 607 (1995).
– reference: H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. 82(9), 1353 (2003).
– reference: J. Caniou, Passive Infrared Detection: Theory and Applications. (Springer US, 1999).
– reference: N. J. Harrick and A. F. Turner, Appl. Opt. 9(9), 2111-2114 (1970).
– reference: W. Woltersdorff, Zeitschrift für Phys. 91(3-4), 230-252 (1934).
– reference: M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics Res. Appl. 23(1),1-9 (2015).
– reference: S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, Opt. Express. 20(11), 12155-12165 (2012).
– reference: J. X. Man, D. Y. Luo, L. M. Yu, D. K. Wang, Z. Liu, and Z. H. Lu, Opt. Commun. 342, 184-188 (2015).
– reference: K.-T. Lee, J. Y. Lee, S. Seo, and L. J. Guo, Light Sci. Appl. 3(10), e215 (2014).
– reference: J. W. Salisbury and D. M. D'Aria, Remote Sens. Environ. 42(2), 83-106 (1992).
– reference: J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, ACS Photonics. 1(9), 812-821 (2014).
– reference: H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, Nat. Mater. 12(2), 158-164 (2013).
– reference: K. N. Rozanov, IEEE Trans. Antennas Propag. 48(8), 1230-1234 (2000).
– reference: J. Park, S. J. Kim, and M. L. Brongersma, Opt. Lett. 40(9), 1960-1963 (2015).
– reference: M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, Nat. Mater. 12(1), 20-24 (2012).
– reference: D. Chen, A. Nakahara, D. Wei, D. Nordlund, and T. P. Russell, Nano Lett. 11(2), 561-567 (2011).
– reference: H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16(10), 7181 (2008).
– reference: E. F. C. Driessen and M. J. A. de Dood, Appl. Phys. Lett. 94(17), 171109 (2009).
– reference: N. Zhang, K. Liu, H. Song, Z. Liu, D. Ji, X. Zeng, S. Jiang, and Q. Gan, Appl. Phys. Lett. 104(20), 203112 (2014).
– reference: C. Weber, D. D. O'Regan, N. D. M. Hine, M. C. Payne, G. Kotliar, and P. B. Littlewood, Phys. Rev. Lett. 108(25), 256402 (2012).
– reference: M. Schubert, T. E. Tiwald, and C. M. Herzinger, Phys. Rev. B. 61(12), 8187-8201 (2000).
– reference: M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (CUP Archive, 2000).
– reference: K.-T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, Adv. Mater. 26(36), 6324-6328 (2014).
– reference: C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. (WILEY-VCH Verlag GmbH & Co. KGaA, 2007).
– reference: N. S. Lewis, Science. 315(5813), 798-801 (2007).
– reference: Z. Yu, A. Raman, and S. Fan, Proc. Natl. Acad. Sci. U. S. A. 107(41), 17491-17496 (2010).
– reference: J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, Nature 416(6876), 61-64 (2002).
– reference: K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, Opt. Commun. 314, 48-56 (2014).
– reference: U. S. Inan, A. S. Inan, and R. K. Said, Engineering Electromagnetics and Waves. (Upper Saddle River: Pearson, 2015).
– reference: A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, Nano Lett. 11(10), 4366-4369 (2011).
– reference: Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, ACS Nano 5(6), 4641-4647 (2011).
– reference: M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, Opt. Express 20(3), 2246-2254 (2012).
– reference: B. Tatian, Appl. Opt. 23(24), 4477 (1984).
– reference: R.-H. Yan, R. J. Simes, and L. A. Coldren, IEEE J. Quantum Electron. 27(7),1922-1931 (1991).
– reference: T. Inoue, M. De Zoysa, T. Asano, and S. Noda, Nat. Mater. 13(10), 928-931 (2014).
– reference: T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, Appl. Opt. 44(32), 6849 (2005).
– reference: F. F. Schlich and R. Spolenak, Appl. Phys. Lett. 103(21), 213112(Nov. 2013).
– reference: J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, Nanophotonics. 4(1), (2015).
– reference: N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10(7), 2342-2348 (2010).
– volume: 34
  start-page: 813
  issue: 4
  year: 1963
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 4366
  issue: 10
  year: 2011
  end-page: 4369
  publication-title: Nano Lett.
– volume: 20
  start-page: 12155
  issue: 11
  year: 2012
  end-page: 12165
  publication-title: Opt. Express.
– volume: 41
  start-page: 337
  issue: 1
  year: 2011
  end-page: 367
– volume: 5
  start-page: 4641
  issue: 6
  year: 2011
  end-page: 4647
  publication-title: ACS Nano
– volume: 16
  start-page: 7181
  issue: 10
  year: 2008
  publication-title: Opt. Express
– volume: 22
  start-page: 5
  issue: 1
  year: 1966
  end-page: 13
  publication-title: Spectrochim. Acta
– volume: 25
  start-page: 40
  issue: January
  year: 2014
  end-page: 47
  publication-title: Opt. Photonics News
– volume: 3
  start-page: 041004
  issue: 4
  year: 2013
  publication-title: Phys. Rev. X
– volume: 97
  start-page: 476
  issue: 1
  year: 1999
  end-page: 493
  publication-title: Met. Finish.
– volume: 61
  start-page: 8187
  issue: 12
  year: 2000
  end-page: 8201
  publication-title: Phys. Rev. B.
– volume: 49
  start-page: 055104
  issue: 5
  year: 2016
  publication-title: J. Phys. D. Appl. Phys.
– volume: 12
  start-page: 20
  issue: 1
  year: 2012
  end-page: 24
  publication-title: Nat. Mater.
– volume: 2
  start-page: 183
  issue: 2
  year: 2015
  end-page: 188
  publication-title: ACS Photonics
– volume: 19
  start-page: 15221
  issue: 16
  year: 2011
  end-page: 15228
  publication-title: Opt. Express
– volume: 103
  start-page: 213112
  issue: 21
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: 1090
  issue: 6
  year: 2011
  publication-title: Opt. Mater. Express.
– volume: 48
  start-page: 1230
  issue: 8
  year: 2000
  end-page: 1234
  publication-title: IEEE Trans. Antennas Propag.
– volume: 107
  start-page: 17491
  issue: 41
  year: 2010
  end-page: 17496
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 58
  start-page: 1551
  issue: 5
  year: 2010
  end-page: 1558
  publication-title: IEEE Trans. Antennas Propag.
– volume: 342
  start-page: 184
  year: 2015
  end-page: 188
  publication-title: Opt. Commun.
– volume: 21
  start-page: 1363
  issue: 6
  year: 2013
  end-page: 1369
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 11
  start-page: 561
  issue: 2
  year: 2011
  end-page: 567
  publication-title: Nano Lett.
– volume: 125
  start-page: 709
  issue: 5
  year: 1978
  publication-title: J. Electrochem. Soc.
– volume: 23
  start-page: 1
  issue: 1
  year: 2015
  end-page: 9
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 84
  start-page: 075102
  issue: 7
  year: 2011
  publication-title: Phys. Rev. B
– volume: 36
  start-page: 1443
  issue: 10
  year: 1988
  end-page: 1454
  publication-title: IEEE Trans. Antennas Propag.
– volume: 30
  start-page: 1353
  issue: 16
  year: 1994
  end-page: 1354
  publication-title: Electron. Lett.
– volume: 11
  start-page: 917
  issue: 11
  year: 2012
  end-page: 924
  publication-title: Nat. Mater.
– volume: 26
  start-page: 6324
  issue: 36
  year: 2014
  end-page: 6328
  publication-title: Adv. Mater.
– volume: 4
  start-page: 4192
  year: 2014
  publication-title: Sci. Rep.
– volume: 9
  start-page: 126
  issue: 2
  year: 2014
  end-page: 130
  publication-title: Nat. Nanotechnol.
– volume: 70
  start-page: 176
  issue: 3
  year: 1993
  publication-title: J. Chem. Educ.
– volume: 10
  start-page: 2342
  issue: 7
  year: 2010
  end-page: 2348
  publication-title: Nano Lett.
– volume: 92
  start-page: 201405
  issue: 20
  year: 2015
  publication-title: Phys. Rev. B
– volume: 108
  start-page: 256402
  issue: 25
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 4810
  issue: 6
  year: 2013
  end-page: 4817
  publication-title: ACS Nano
– volume: 20
  start-page: 2246
  issue: 3
  year: 2012
  end-page: 2254
  publication-title: Opt. Express
– volume: 57
  start-page: 3119
  issue: 10
  year: 2009
  end-page: 3125
  publication-title: IEEE Trans. Antennas Propag.
– volume: 94
  start-page: 171109
  issue: 17
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 320
  start-page: 1308
  issue: 5881
  year: 2008
  publication-title: Science
– volume: 331
  start-page: 889
  issue: 6019
  year: 2011
  end-page: 892
  publication-title: Science
– volume: 81
  start-page: 4685
  issue: 25
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 37
  start-page: 371
  issue: 3
  year: 2012
  end-page: 373
  publication-title: Opt. Lett.
– volume: 113
  start-page: 101
  issue: 2
  year: 1984
  end-page: 113
  publication-title: Thin Solid Films
– volume: 315
  start-page: 798
  issue: 5813
  year: 2007
  end-page: 801
  publication-title: Science.
– volume: 40
  start-page: 1960
  issue: 9
  year: 2015
  end-page: 1963
  publication-title: Opt. Lett.
– year: 2015
– volume: 79
  start-page: 033101
  issue: 3
  year: 2009
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 655
  issue: 6
  year: 1999
  end-page: 661
  publication-title: J. Opt. A Pure Appl. Opt.
– volume: 103
  start-page: 101104
  issue: 10
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 2025
  issue: 8
  year: 1991
  end-page: 2034
  publication-title: IEEE J. Quantum Electron.
– volume: 38
  start-page: 368
  issue: 3
  year: 2013
  end-page: 370
  publication-title: Opt. Lett.
– volume: 105
  start-page: 131108
  issue: 13
  year: 2014
  publication-title: Appl. Phys. Lett.
– year: 2007
– volume: 27
  start-page: 1922
  issue: 7
  year: 1991
  end-page: 1931
  publication-title: IEEE J. Quantum Electron.
– volume: 21
  start-page: 19363
  issue: 16
  year: 2013
  end-page: 19374
  publication-title: Opt. Express
– volume: 108
  start-page: 031107
  issue: 3
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 82
  start-page: 1353
  issue: 9
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 101
  start-page: 0
  issue: 2012
  year: 2012
  end-page: 5
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 158
  issue: 2
  year: 2013
  end-page: 164
  publication-title: Nat. Mater.
– volume: 4
  issue: 1
  year: 2015
  publication-title: Nanophotonics.
– year: 2000
– volume: 416
  start-page: 61
  issue: 6876
  year: 2002
  end-page: 64
  publication-title: Nature
– volume: 21
  start-page: 9113
  issue: 7
  year: 2013
  end-page: 9122
  publication-title: Opt. Express.
– volume: 9
  start-page: 2111
  issue: 9
  year: 1970
  end-page: 2114
  publication-title: Appl. Opt.
– volume: 91
  start-page: 230
  issue: 3–4
  year: 1934
  end-page: 252
  publication-title: Zeitschrift für Phys.
– volume: 40
  start-page: 3877
  issue: 16
  year: 2015
  end-page: 3880
  publication-title: Opt. Lett.
– start-page: 21
  year: 2016
  publication-title: Arxiv
– volume: 13
  start-page: 139
  issue: 2
  year: 2014
  end-page: 150
  publication-title: Nat. Mater.
– volume: 107
  start-page: 045901
  issue: 4
  year: 2011
  publication-title: Phys. Rev. Lett.
– year: 2010
– volume: 3
  start-page: 037001
  issue: 3
  year: 2015
  publication-title: Phys. Rev. Appl.
– volume: 16
  start-page: 1050
  issue: 2
  year: 2016
  end-page: 1055
  publication-title: Nano Lett.
– volume: 78
  start-page: 607
  issue: 2
  year: 1995
  publication-title: J. Appl. Phys.
– year: 1984
– volume: 3
  start-page: e215
  issue: 10
  year: 2014
  publication-title: Light Sci. Appl.
– volume: 96
  start-page: 022102
  issue: 2
  year: 2010
  publication-title: Appl. Phys. Lett.
– year: 2006
– volume: 104
  start-page: 231112
  issue: 23
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: 812
  issue: 9
  year: 2014
  end-page: 821
  publication-title: ACS Photonics.
– volume: 318
  start-page: 1750
  issue: 5857
  year: 2007
  end-page: 1753
  publication-title: Science.
– volume: 314
  start-page: 48
  year: 2014
  end-page: 56
  publication-title: Opt. Commun.
– volume: 48
  start-page: 198
  issue: 2
  year: 2012
  end-page: 209
  publication-title: IEEE J. Quantum Electron.
– volume: 47
  start-page: 10701
  issue: 1
  year: 2009
  publication-title: Eur. Phys. J. Appl. Phys.
– volume: 44
  start-page: 6849
  issue: 32
  year: 2005
  publication-title: Appl. Opt.
– volume: 42
  start-page: 83
  issue: 2
  year: 1992
  end-page: 106
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 3135
  issue: 8
  year: 2010
  end-page: 3141
  publication-title: Nano Lett.
– volume: 13
  start-page: 928
  issue: 10
  year: 2014
  end-page: 931
  publication-title: Nat. Mater.
– volume: 104
  start-page: 203112
  issue: 20
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 5410
  issue: 45
  year: 2011
  end-page: 5414
  publication-title: Adv. Mater.
– volume: 102
  start-page: 234301
  issue: 23
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 78
  start-page: 567
  issue: 1–4
  year: 2003
  end-page: 595
  publication-title: Sol. Energy Mater. Sol. Cells.
– volume: 23
  start-page: 4477
  issue: 24
  year: 1984
  publication-title: Appl. Opt.
– year: 1999
– ident: e_1_2_11_33_1
  doi: 10.1051/epjap/2009087
– ident: e_1_2_11_92_1
  doi: 10.1364/AO.9.002111
– ident: e_1_2_11_29_1
  doi: 10.1007/BF01341647
– ident: e_1_2_11_86_1
  doi: 10.1364/OL.40.003877
– ident: e_1_2_11_44_1
  doi: 10.1364/OPN.25.1.000040
– ident: e_1_2_11_54_1
  doi: 10.1063/1.1729543
– ident: e_1_2_11_67_1
  doi: 10.1002/pip.2573
– ident: e_1_2_11_57_1
  doi: 10.1016/0040-6090(84)90019-1
– ident: e_1_2_11_66_1
  doi: 10.1149/1.2131532
– ident: e_1_2_11_3_1
  doi: 10.1109/3.83412
– ident: e_1_2_11_34_1
  doi: 10.1063/1.3126062
– ident: e_1_2_11_15_1
  doi: 10.1364/OE.16.007181
– ident: e_1_2_11_14_1
  doi: 10.1103/PhysRevB.79.033101
– ident: e_1_2_11_51_1
  doi: 10.1063/1.4879829
– ident: e_1_2_11_87_1
  doi: 10.1007/978-1-4757-6140-5
– ident: e_1_2_11_16_1
  doi: 10.1364/OL.37.000371
– ident: e_1_2_11_4_1
  doi: 10.1109/3.83394
– volume: 3
  start-page: 041004
  issue: 4
  year: 2013
  ident: e_1_2_11_85_1
  publication-title: Phys. Rev. X
– ident: e_1_2_11_41_1
  doi: 10.1038/nmat3477
– ident: e_1_2_11_83_1
  doi: 10.1126/science.1150124
– ident: e_1_2_11_11_1
  doi: 10.1109/8.884491
– ident: e_1_2_11_58_1
  doi: 10.1021/ed070p176
– volume-title: Absorption and Scattering of Light by Small Particles
  year: 2007
  ident: e_1_2_11_25_1
– ident: e_1_2_11_37_1
  doi: 10.1016/0371-1951(66)80003-6
– ident: e_1_2_11_91_1
  doi: 10.1038/nmat4043
– ident: e_1_2_11_13_1
  doi: 10.1038/nmat3839
– ident: e_1_2_11_5_1
  doi: 10.1109/JQE.2011.2167960
– ident: e_1_2_11_18_1
  doi: 10.1021/nl9041033
– volume-title: “Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering)
  year: 2006
  ident: e_1_2_11_23_1
– ident: e_1_2_11_26_1
  doi: 10.1201/9781420073034
– ident: e_1_2_11_35_1
  doi: 10.1021/nn4012253
– ident: e_1_2_11_53_1
  doi: 10.1364/OE.21.009113
– ident: e_1_2_11_56_1
  doi: 10.1063/1.4883494
– ident: e_1_2_11_75_1
  doi: 10.1016/0034-4257(92)90092-X
– ident: e_1_2_11_79_1
  doi: 10.1364/OME.1.001090
– ident: e_1_2_11_94_1
  doi: 10.1038/nnano.2013.286
– ident: e_1_2_11_9_1
  doi: 10.1109/TAP.2009.2028601
– ident: e_1_2_11_17_1
  doi: 10.1021/nn2004603
– ident: e_1_2_11_65_1
  doi: 10.1126/science.1137014
– ident: e_1_2_11_73_1
  doi: 10.1002/pip.2300
– ident: e_1_2_11_96_1
  doi: 10.1021/acs.nanolett.5b04122
– ident: e_1_2_11_48_1
  doi: 10.1364/OL.40.001960
– ident: e_1_2_11_49_1
  doi: 10.1002/adma.201402117
– ident: e_1_2_11_55_1
  doi: 10.1063/1.4820147
– ident: e_1_2_11_20_1
  doi: 10.1002/adma.201102646
– ident: e_1_2_11_74_1
  doi: 10.1016/S0927-0248(02)00452-X
– ident: e_1_2_11_77_1
  doi: 10.1515/nanoph-2014-0003
– ident: e_1_2_11_50_1
  doi: 10.1063/1.4833537
– volume-title: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
  year: 2000
  ident: e_1_2_11_24_1
– ident: e_1_2_11_46_1
  doi: 10.1103/PhysRevB.84.075102
– ident: e_1_2_11_36_1
  doi: 10.1126/science.1156965
– ident: e_1_2_11_63_1
  doi: 10.1021/ph500410u
– volume-title: Waves and Fields in Optoelectronics (Prentice‐Hall series in solid state physical electronics)
  year: 1984
  ident: e_1_2_11_45_1
– ident: e_1_2_11_30_1
  doi: 10.1063/1.1556969
– ident: e_1_2_11_80_1
  doi: 10.1103/PhysRevB.61.8187
– ident: e_1_2_11_39_1
  doi: 10.1038/nmat3443
– ident: e_1_2_11_60_1
  doi: 10.1063/1.4896527
– ident: e_1_2_11_62_1
  doi: 10.1063/1.4939969
– ident: e_1_2_11_52_1
  doi: 10.1364/OE.21.019363
– ident: e_1_2_11_19_1
  doi: 10.1364/OE.19.015221
– ident: e_1_2_11_88_1
  doi: 10.1103/PhysRevLett.102.234301
– volume: 101
  start-page: 0
  issue: 2012
  year: 2012
  ident: e_1_2_11_40_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_11_31_1
  doi: 10.1021/nl101929j
– ident: e_1_2_11_21_1
  doi: 10.1021/nl202489g
– ident: e_1_2_11_32_1
  doi: 10.1364/OE.20.002246
– ident: e_1_2_11_6_1
  doi: 10.1109/8.8632
– ident: e_1_2_11_22_1
  doi: 10.1103/PhysRevB.92.201405
– ident: e_1_2_11_72_1
  doi: 10.1038/lsa.2014.96
– ident: e_1_2_11_84_1
  doi: 10.1364/OL.38.000368
– ident: e_1_2_11_38_1
  doi: 10.1088/1464-4258/1/6/301
– ident: e_1_2_11_43_1
  doi: 10.1038/srep04192
– ident: e_1_2_11_71_1
  doi: 10.1016/j.optcom.2014.12.029
– ident: e_1_2_11_93_1
  doi: 10.1103/PhysRevLett.107.045901
– ident: e_1_2_11_47_1
  doi: 10.1126/science.1200735
– ident: e_1_2_11_59_1
  doi: 10.1016/S0026-0576(99)80049-X
– ident: e_1_2_11_2_1
  doi: 10.1063/1.360322
– ident: e_1_2_11_12_1
  doi: 10.1038/nmat3431
– ident: e_1_2_11_82_1
  doi: 10.1103/PhysRevLett.108.256402
– ident: e_1_2_11_70_1
  doi: 10.1016/j.optcom.2013.08.062
– ident: e_1_2_11_10_1
  doi: 10.1049/el:19940896
– ident: e_1_2_11_89_1
  doi: 10.1038/416061a
– ident: e_1_2_11_7_1
  doi: 10.1103/PhysRevApplied.3.037001
– ident: e_1_2_11_69_1
  doi: 10.1021/nl103482n
– ident: e_1_2_11_68_1
  doi: 10.1073/pnas.1008296107
– ident: e_1_2_11_78_1
  doi: 10.1364/OE.20.012155
– ident: e_1_2_11_64_1
  doi: 10.1088/0022-3727/49/5/055104
– volume-title: Engineering Electromagnetics and Waves
  year: 2015
  ident: e_1_2_11_28_1
– ident: e_1_2_11_95_1
  doi: 10.1063/1.3291053
– ident: e_1_2_11_76_1
  doi: 10.1364/AO.23.004477
– ident: e_1_2_11_8_1
  doi: 10.1109/TAP.2010.2044329
– ident: e_1_2_11_42_1
  doi: 10.1021/ph500093d
– ident: e_1_2_11_81_1
  doi: 10.1146/annurev-matsci-062910-100347
– ident: e_1_2_11_90_1
  doi: 10.1063/1.1526919
– ident: e_1_2_11_61_1
  doi: 10.1364/AO.44.006849
– start-page: 21
  year: 2016
  ident: e_1_2_11_27_1
  publication-title: Arxiv
SSID ssj0055556
Score 2.5870645
SecondaryResourceType review_article
Snippet Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells,...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 735
SubjectTerms Absorbers
Coatings
color coatings
Decorative
Fabry-Perot interferometers
Footprints
Interference
Light sources
Metamaterials
optical absorbers
optical coatings
Optical filters
Optoelectronic devices
Patterning
perfect absorbers
Photovoltaic cells
photovoltaics
Plasmonics
Scene generators
Solar cells
Stealth technology
structural color
thermal emitters
Thickness
Thin films
Thin-film interference
Wavelengths
Title Optical absorbers based on strong interference in ultra-thin films
URI https://api.istex.fr/ark:/67375/WNG-0QH9T28F-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201600098
https://www.proquest.com/docview/1822083283
https://www.proquest.com/docview/1895032929
https://www.proquest.com/docview/1845824335
Volume 10
WOSCitedRecordID wos000384675200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1863-8899
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055556
  issn: 1863-8880
  databaseCode: DRFUL
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BLgcutPyJlIKMhOAUNbGd2DlWlG0Pq22pWtGbZScOVCzZKtmtOPIIPGOfhJkkG7qHCglyiuVJZI1n7M_2zGeAt5zrQiFUCL2VKpTei1BLLcNY5oifPcI53yYKT9Vspi8uspNbWfwdP8Sw4Uae0Y7X5ODWNXt_SEPniE8pNCslmKDvw5ij8SYjGB-cTs6n69E4wafNMNIptgKNdU3cGPG9zT9sTExj0vGPDdR5G7u2k89k6_-bvQ2PeuDJ9jtLeQz3fPUEtnoQynoXb57CwfFVu73N8IeL2iE6ZDTTFWxRsYb2zb8wopio-zxBLLDVfFnbm5-_ll-xUF7OvzfP4Hzy8ezDUdhftRDmCMB0qIkHPi4iW0pZlLlDTeUKwUrqrLfKEU-dUDor0yJOVcFjp5xLI-nSIhdFVubiOYyqReVfANOR1cJy78rYSiGtE5FXtOy0UlPAWADhWs8m73nI6TqMuekYlLkhFZlBRQG8H-SvOgaOOyXftd02iNn6G8WtqcR8nh2a6NNRdsb1xMwC2F33q-ldtjG40OKIRxFu3VGdJZHgiCYDeDNUoy_SAYut_GJFMnQKKYVIAuCtEfylxWZ6cnw6lHb-5aOX8JDeu7C3XRgt65V_BQ_y6-VlU7_uveE38JMKQA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BFwkulF81UCBICE5RE9sbO0fUsiwipKXait4sO3FoxZKtkl3EkUfgGXmSziTZwB4qJERujp3IGs_Yn8cznwFeMKYKiVAhcEbIQDjHAyWUCCKRI352COdcmyicyixTp6fJUR9NSLkwHT_E4HAjy2jnazJwckjv_WYNnSNApdismHCCug4jgbqESj46OJ6cpOvpeIxPm2KkYuwGauuauTFke5t_2FiZRiTk7xuw80_w2q4-k-3_0O87cLuHnv7rTlfuwjVX3YPtHob6vZE39-Hg8KJ1cPvGNovaIj70aa0r_EXlN-Q5_-wTyUTdZwpiwV_Nl7X59ePn8gwL5fn8a_MATiZvZvvToL9sIcgRgqlAERN8VISmFKIoc4uiyiXCldgaZ6QlpjouVVLGRRTLgkVWWhuHwsZFzoukzPlD2KoWldsBX4VGccOcLSMjuDCWh07SxtMIRSFjHgRrQeu8ZyKnCzHmuuNQZppEpAcRefBqaH_RcXBc2fJlO25DM1N_ocg1Odafsrc6_DhNZkxNdObB7npgdW-0jcatFkNEioDriupkHHKGeNKD50M1WiMdsZjKLVbUhs4hBedjD1irBX_psU6PDo-H0qN_-egZ3JzOPqQ6fZe9fwy36H0XBLcLW8t65Z7Ajfzb8rypn_amcQnlQg4w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB5BixAXlr8VgQWMhOAUbWK7sXNElLCIKltWu2Jvlh07sKKkVdIijjwCz8iT4EnSQA8rJERujifRaOyxP9sznwGeUSqt8FAhdJqLkDvHQsklD2NeePzsPJxzbaLwTOS5PD9P5300IebCdPwQw4YbekY7XqODu5UtD3-zhi48QMXYrARxgrwKY443yYxgPD3Jzmbb4XjinzbFSCZeDd9bt8yNET3c_cPOzDRGI3_bgZ1_gtd29sn2_oPet-BmDz3Jy66v3IYrrroDez0MJb2TN3dherxqN7iJNs2yNh4fEpzrLFlWpMGd848ESSbqPlPQF8hmsa71z-8_1p98obxYfGnuwVn2-vTVUdhfthAWHoLJUCITfGwjXXJuy8J4UxXCw5XEaKeFQaY6JmRaJjZOhKWxEcYkETeJLZhNy4Ltw6haVu4-EBlpyTR1pow1Z1wbFjmBC0_NJYaMBRBuDa2KnokcL8RYqI5DmSo0kRpMFMCLQX7VcXBcKvm8bbdBTNefMXJNTNSH_I2K3h-lp1RmKg_gYNuwqnfaRvmlFvWI1AOuS6rTScSox5MBPB2qvTfiEYuu3HKDMngOyRmbBEDbXvAXjdVsfnwylB78y0dP4Pp8mqnZ2_zdQ7iBr7sYuAMYreuNewTXiq_ri6Z-3HvGL1o-Das
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+absorbers+based+on+strong+interference+in+ultra%E2%80%90thin+films&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Kats%2C+Mikhail+A.&rft.au=Capasso%2C+Federico&rft.date=2016-09-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=10&rft.issue=5&rft.spage=735&rft.epage=749&rft_id=info:doi/10.1002%2Flpor.201600098&rft.externalDBID=10.1002%252Flpor.201600098&rft.externalDocID=LPOR201600098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon