Optical absorbers based on strong interference in ultra-thin films
Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, co...
Saved in:
| Published in: | Laser & photonics reviews Vol. 10; no. 5; pp. 735 - 749 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
Blackwell Publishing Ltd
01.09.2016
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1863-8880, 1863-8899 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry‐Perot‐type cavities, by using emerging concepts in plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large‐scale optical and optoelectronic devices.
In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on “ultra‐thin‐film interference”, including the concepts of loss‐induced phase shifts and critical coupling, and then review several applications, including ultra‐thin color coatings, decorative photovoltaics, high‐efficiency photochemical cells, and infrared scene generators.
Ultra‐thin optical absorbers are desired for many applications across the electromagnetic spectrum, including solar energy harvesting, photodetectors, optical filters, stealth technology, and thermal light sources. This review summarizes recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. The basic theory governing ultra‐thin‐film absorbers is discussed, along with application examples, including color coatings, decorative photovoltaics, photochemical cells, and infrared scene generators. |
|---|---|
| AbstractList | Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry-Perot-type cavities, by using emerging concepts in plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large-scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on "ultra-thin-film interference", including the concepts of loss-induced phase shifts and critical coupling, and then review several applications, including ultra-thin color coatings, decorative photovoltaics, high-efficiency photochemical cells, and infrared scene generators. Ultra-thin optical absorbers are desired for many applications across the electromagnetic spectrum, including solar energy harvesting, photodetectors, optical filters, stealth technology, and thermal light sources. We summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. The basic theory governing ultra-thin-film absorbers is discussed, along with application examples, including color coatings, decorative photovoltaics, photochemical cells, and infrared scene generators. Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry-Perot-type cavities, by using emerging concepts in plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large-scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on "ultra-thin-film interference", including the concepts of loss-induced phase shifts and critical coupling, and then review several applications, including ultra-thin color coatings, decorative photovoltaics, high-efficiency photochemical cells, and infrared scene generators. Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry‐Perot‐type cavities, by using emerging concepts in plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large‐scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on “ultra‐thin‐film interference”, including the concepts of loss‐induced phase shifts and critical coupling, and then review several applications, including ultra‐thin color coatings, decorative photovoltaics, high‐efficiency photochemical cells, and infrared scene generators. image Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry‐Perot‐type cavities, by using emerging concepts in plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large‐scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on “ultra‐thin‐film interference”, including the concepts of loss‐induced phase shifts and critical coupling, and then review several applications, including ultra‐thin color coatings, decorative photovoltaics, high‐efficiency photochemical cells, and infrared scene generators. Ultra‐thin optical absorbers are desired for many applications across the electromagnetic spectrum, including solar energy harvesting, photodetectors, optical filters, stealth technology, and thermal light sources. This review summarizes recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. The basic theory governing ultra‐thin‐film absorbers is discussed, along with application examples, including color coatings, decorative photovoltaics, photochemical cells, and infrared scene generators. |
| Author | Capasso, Federico Kats, Mikhail A. |
| Author_xml | – sequence: 1 givenname: Mikhail A. surname: Kats fullname: Kats, Mikhail A. email: mkats@wisc.edu, mkats@wisc.edu organization: Departments of Electrical and Computer Engineering, Materials Science and Engineering, and Physics, University of Wisconsin - Madison, Wisconsin, 53706, Madison, USA – sequence: 2 givenname: Federico surname: Capasso fullname: Capasso, Federico organization: School of Engineering and Applied Sciences, Harvard University, Massachusetts, 02138, Cambridge, USA |
| BookMark | eNqFkE1rGzEQhkVJIF-95rzQSy_rjKRdrXRsQ_MBJk5CQo9C0mpbpbLkSjJt_n0UHEwINJ3LzMDzDMN7gHZCDBahYwwzDEBO_CqmGQHMAEDwD2gfc0ZbzoXY2c4c9tBBzg8AfS22j74uVsUZ5Rulc0zaptxole3YxNDkkmL40bhQbJpsssHYujRrX5Jqy886Ts4v8xHanZTP9uNLP0T3Z9_uTi_a-eL88vTLvDU9IbzljJEBj6Cmrhsno-szZmAdZVpZNWgQfU8HLiY2YjaMBOtBawadZqOho5gMPUSfN3dXKf5e21zk0mVjvVfBxnWWmHc9Jx2lfUU_vUEf4jqF-l2lRA-UCCLepwgBTgmnleo2lEkx52QnaVxRxcVQY3BeYpDP8cvn-OU2_qrN3mir5JYqPf5bEBvhj_P28T-0nF8vbl-77cZ1udi_W1elX5INdOjl96tzCTcX4o7wM3lFnwBAzqhD |
| CitedBy_id | crossref_primary_10_1002_adom_201700368 crossref_primary_10_1016_j_tsf_2022_139232 crossref_primary_10_1002_adom_202100417 crossref_primary_10_3390_mi14091802 crossref_primary_10_1002_adom_202100499 crossref_primary_10_1109_TMTT_2023_3314094 crossref_primary_10_1002_lpor_202400994 crossref_primary_10_1002_smtd_202400384 crossref_primary_10_3390_nano14060530 crossref_primary_10_3390_mi11030256 crossref_primary_10_1002_adom_201801229 crossref_primary_10_1007_s12274_021_3989_4 crossref_primary_10_1016_j_mattod_2025_02_016 crossref_primary_10_1002_smll_202404388 crossref_primary_10_1038_s41598_022_23119_7 crossref_primary_10_1016_j_optcom_2020_126351 crossref_primary_10_3390_nano13233073 crossref_primary_10_1103_PhysRevApplied_9_054018 crossref_primary_10_1002_adom_202300674 crossref_primary_10_1073_pnas_1911244116 crossref_primary_10_1088_1402_4896_ac8b43 crossref_primary_10_1109_JPHOTOV_2017_2762527 crossref_primary_10_1002_adom_202303263 crossref_primary_10_1002_adfm_202314434 crossref_primary_10_1364_PRJ_410554 crossref_primary_10_1002_adom_201900028 crossref_primary_10_1002_adma_202005074 crossref_primary_10_1515_nanoph_2021_0413 crossref_primary_10_1016_j_infrared_2023_105000 crossref_primary_10_1002_adom_202100429 crossref_primary_10_1063_1_5017574 crossref_primary_10_1038_s41467_023_36275_9 crossref_primary_10_1002_adom_202101118 crossref_primary_10_1063_5_0164936 crossref_primary_10_1103_PhysRevApplied_10_021001 crossref_primary_10_1063_5_0027865 crossref_primary_10_1364_AO_57_009040 crossref_primary_10_1103_PhysRevApplied_8_014009 crossref_primary_10_1002_adfm_202410082 crossref_primary_10_1063_5_0123671 crossref_primary_10_1002_adom_202303138 crossref_primary_10_1039_C8NH00368H crossref_primary_10_1002_adom_202300300 crossref_primary_10_1002_adfm_202002287 crossref_primary_10_1016_j_optmat_2019_109370 crossref_primary_10_1364_AO_57_008915 crossref_primary_10_1515_nanoph_2024_0029 crossref_primary_10_1016_j_ijthermalsci_2023_108699 crossref_primary_10_3390_ma16124278 crossref_primary_10_1002_adfm_202102183 crossref_primary_10_1016_j_ijthermalsci_2023_108452 crossref_primary_10_1021_acsanm_4c06418 crossref_primary_10_1103_PhysRevApplied_16_044064 crossref_primary_10_1088_1361_6463_aac47c crossref_primary_10_1002_pip_3802 crossref_primary_10_1063_5_0077235 crossref_primary_10_1038_s41598_018_25728_7 crossref_primary_10_1080_09500340_2021_1900438 crossref_primary_10_1002_adpr_202000152 crossref_primary_10_3390_app9183812 crossref_primary_10_1016_j_pmatsci_2023_101088 crossref_primary_10_1515_nanoph_2024_0538 crossref_primary_10_1002_adma_201804680 crossref_primary_10_1016_j_jcis_2022_09_046 crossref_primary_10_1038_s41377_022_00776_x crossref_primary_10_1016_j_optmat_2024_115776 crossref_primary_10_1016_j_ijleo_2018_09_184 crossref_primary_10_1109_JPHOTOV_2022_3150726 crossref_primary_10_1016_j_optmat_2021_111899 crossref_primary_10_1002_adma_201802781 crossref_primary_10_1002_adom_202302071 crossref_primary_10_1002_adpr_202000147 crossref_primary_10_1038_s41377_021_00529_2 crossref_primary_10_1002_adom_201901932 crossref_primary_10_1016_j_optmat_2021_110847 crossref_primary_10_1002_adom_201700830 crossref_primary_10_1007_s00340_018_6938_5 crossref_primary_10_1016_j_optlastec_2022_108772 crossref_primary_10_1002_smll_202202005 crossref_primary_10_1088_1361_6528_ab8325 crossref_primary_10_1016_j_csite_2025_106121 crossref_primary_10_1039_D0NH00139B crossref_primary_10_1002_adom_202000317 crossref_primary_10_1088_1361_6528_ab746f crossref_primary_10_1002_adom_202000321 crossref_primary_10_1007_s11664_025_12235_5 crossref_primary_10_1016_j_nanoen_2020_104449 crossref_primary_10_1088_1361_6501_ab9fd8 crossref_primary_10_1016_j_jnucmat_2018_05_047 crossref_primary_10_1016_j_jqsrt_2018_01_031 crossref_primary_10_1002_pip_3665 crossref_primary_10_1002_lpor_202400399 crossref_primary_10_1088_2399_6528_ac59d0 crossref_primary_10_3390_app8091445 crossref_primary_10_1002_adma_201903787 crossref_primary_10_1002_adom_202101546 crossref_primary_10_1007_s11468_024_02519_7 crossref_primary_10_1002_aenm_202200713 crossref_primary_10_1364_AO_422644 crossref_primary_10_1063_5_0282458 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127326 crossref_primary_10_1016_j_mtener_2025_101867 crossref_primary_10_1515_nanoph_2023_0067 crossref_primary_10_1002_adma_202300179 crossref_primary_10_1088_1402_4896_ad538d crossref_primary_10_1016_j_scriptamat_2021_114101 crossref_primary_10_1016_j_mtnano_2025_100608 crossref_primary_10_1016_j_rineng_2024_103105 crossref_primary_10_1038_s41565_024_01756_5 crossref_primary_10_1038_s41467_024_47191_x crossref_primary_10_1117_1_AP_7_2_025001 crossref_primary_10_1016_j_ijleo_2023_170915 crossref_primary_10_1088_2631_7990_ac3bb1 crossref_primary_10_1103_PhysRevApplied_23_L051002 crossref_primary_10_1016_j_csbj_2024_09_009 crossref_primary_10_29026_oea_2025_250031 crossref_primary_10_1002_lpor_202300551 crossref_primary_10_3390_coatings11091081 crossref_primary_10_1515_nanoph_2025_0085 crossref_primary_10_1021_acsami_5c01072 crossref_primary_10_1088_2040_8986_abbc55 crossref_primary_10_1021_acsaom_4c00521 crossref_primary_10_1063_5_0019883 crossref_primary_10_1002_pssr_202500245 crossref_primary_10_1063_1_5085715 crossref_primary_10_1186_s43074_022_00068_y crossref_primary_10_1002_sdtp_16694 crossref_primary_10_3390_mi14040715 crossref_primary_10_1016_j_icheatmasstransfer_2025_108933 crossref_primary_10_1063_5_0198937 crossref_primary_10_1007_s11664_022_09933_9 crossref_primary_10_1103_PhysRevApplied_22_054002 crossref_primary_10_1016_j_cej_2025_161418 crossref_primary_10_1016_j_porgcoat_2021_106439 crossref_primary_10_1038_s41467_023_44345_1 crossref_primary_10_1088_2053_1591_acaf4c crossref_primary_10_1002_adom_202402644 crossref_primary_10_3390_metrology5020036 crossref_primary_10_1109_JSTQE_2021_3069495 crossref_primary_10_1038_s42005_021_00782_2 crossref_primary_10_1002_adma_202109546 crossref_primary_10_3390_app12073633 crossref_primary_10_1016_j_optlastec_2024_112182 crossref_primary_10_1038_s41467_024_54623_1 crossref_primary_10_1080_21663831_2022_2055436 crossref_primary_10_1515_nanoph_2023_0116 crossref_primary_10_3390_nano13010134 crossref_primary_10_1364_AO_410211 crossref_primary_10_1002_adom_202001291 crossref_primary_10_1002_adom_202202696 crossref_primary_10_1109_JPHOTOV_2021_3110311 crossref_primary_10_1002_gch2_202000058 crossref_primary_10_1016_j_ijthermalsci_2023_108713 crossref_primary_10_1002_adpr_202100153 crossref_primary_10_1109_JSEN_2023_3326149 crossref_primary_10_3390_ma16124210 crossref_primary_10_1007_s10853_022_07286_6 crossref_primary_10_1088_1361_6463_aadca2 crossref_primary_10_1002_adom_201901626 crossref_primary_10_1016_j_nanoen_2019_103998 crossref_primary_10_1038_natrevmats_2017_64 crossref_primary_10_1103_PhysRevLett_134_013802 crossref_primary_10_1515_nanoph_2017_0062 crossref_primary_10_1109_ACCESS_2025_3583230 crossref_primary_10_3390_nano9091249 |
| Cites_doi | 10.1051/epjap/2009087 10.1364/AO.9.002111 10.1007/BF01341647 10.1364/OL.40.003877 10.1364/OPN.25.1.000040 10.1063/1.1729543 10.1002/pip.2573 10.1016/0040-6090(84)90019-1 10.1149/1.2131532 10.1109/3.83412 10.1063/1.3126062 10.1364/OE.16.007181 10.1103/PhysRevB.79.033101 10.1063/1.4879829 10.1007/978-1-4757-6140-5 10.1364/OL.37.000371 10.1109/3.83394 10.1038/nmat3477 10.1126/science.1150124 10.1109/8.884491 10.1021/ed070p176 10.1016/0371-1951(66)80003-6 10.1038/nmat4043 10.1038/nmat3839 10.1109/JQE.2011.2167960 10.1021/nl9041033 10.1201/9781420073034 10.1021/nn4012253 10.1364/OE.21.009113 10.1063/1.4883494 10.1016/0034-4257(92)90092-X 10.1364/OME.1.001090 10.1038/nnano.2013.286 10.1109/TAP.2009.2028601 10.1021/nn2004603 10.1126/science.1137014 10.1002/pip.2300 10.1021/acs.nanolett.5b04122 10.1364/OL.40.001960 10.1002/adma.201402117 10.1063/1.4820147 10.1002/adma.201102646 10.1016/S0927-0248(02)00452-X 10.1515/nanoph-2014-0003 10.1063/1.4833537 10.1103/PhysRevB.84.075102 10.1126/science.1156965 10.1021/ph500410u 10.1063/1.1556969 10.1103/PhysRevB.61.8187 10.1038/nmat3443 10.1063/1.4896527 10.1063/1.4939969 10.1364/OE.21.019363 10.1364/OE.19.015221 10.1103/PhysRevLett.102.234301 10.1021/nl101929j 10.1021/nl202489g 10.1364/OE.20.002246 10.1109/8.8632 10.1103/PhysRevB.92.201405 10.1038/lsa.2014.96 10.1364/OL.38.000368 10.1088/1464-4258/1/6/301 10.1038/srep04192 10.1016/j.optcom.2014.12.029 10.1103/PhysRevLett.107.045901 10.1126/science.1200735 10.1016/S0026-0576(99)80049-X 10.1063/1.360322 10.1038/nmat3431 10.1103/PhysRevLett.108.256402 10.1016/j.optcom.2013.08.062 10.1049/el:19940896 10.1038/416061a 10.1103/PhysRevApplied.3.037001 10.1021/nl103482n 10.1073/pnas.1008296107 10.1364/OE.20.012155 10.1088/0022-3727/49/5/055104 10.1063/1.3291053 10.1364/AO.23.004477 10.1109/TAP.2010.2044329 10.1021/ph500093d 10.1146/annurev-matsci-062910-100347 10.1063/1.1526919 10.1364/AO.44.006849 |
| ContentType | Journal Article |
| Copyright | 2016 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA |
| Copyright_xml | – notice: 2016 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA |
| DBID | BSCLL AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1002/lpor.201600098 |
| DatabaseName | Istex CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts Solid State and Superconductivity Abstracts Solid State and Superconductivity Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1863-8899 |
| EndPage | 749 |
| ExternalDocumentID | 4190013551 10_1002_lpor_201600098 LPOR201600098 ark_67375_WNG_0QH9T28F_N |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: UW Madison – fundername: Office of Naval Research funderid: N00014‐16‐1‐2556 |
| GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR XV2 ZZTAW ~S- A00 AAHHS ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE P4E WYJ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c5228-866271d0af44dfcb888c76436baea7b09553789f6d167d21b7bb604b6dc3d9fc3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 271 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384675200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-8880 |
| IngestDate | Fri Jul 11 16:17:47 EDT 2025 Fri Jul 25 12:21:45 EDT 2025 Fri Jul 25 12:29:27 EDT 2025 Sat Nov 29 06:44:19 EST 2025 Tue Nov 18 22:38:38 EST 2025 Wed Jan 22 16:48:56 EST 2025 Sun Sep 21 06:15:20 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5228-866271d0af44dfcb888c76436baea7b09553789f6d167d21b7bb604b6dc3d9fc3 |
| Notes | ArticleID:LPOR201600098 UW Madison istex:388A6F1F640CA0B8942F8DDBC61E51E11B541785 Office of Naval Research - No. N00014-16-1-2556 ark:/67375/WNG-0QH9T28F-N ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://nrs.harvard.edu/urn-3:HUL.InstRepos:41371622 |
| PQID | 1822083283 |
| PQPubID | 1016358 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1845824335 proquest_journals_1895032929 proquest_journals_1822083283 crossref_citationtrail_10_1002_lpor_201600098 crossref_primary_10_1002_lpor_201600098 wiley_primary_10_1002_lpor_201600098_LPOR201600098 istex_primary_ark_67375_WNG_0QH9T28F_N |
| PublicationCentury | 2000 |
| PublicationDate | 2016-09 September 2016 2016-09-00 20160901 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-09 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Laser & photonics reviews |
| PublicationTitleAlternate | Laser & Photonics Reviews |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, Appl. Phys. Lett. 81(25), 4685(2002). B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, Opt. Express 19(16), 15221-15228 (2011). B. Tatian, Appl. Opt. 23(24), 4477 (1984). J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, Opt. Lett. 37(3), 371-373 (2012). S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, Opt. Express. 20(11), 12155-12165 (2012). M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79(3), 033101 (2009). B. Chambers, Electron. Lett. 30(16), 1353-1354 (1994). M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, Appl. Phys. Lett. 101(2012), 0-5 (2012). P. A. Flournoy and W. J. Schaffers, Spectrochim. Acta 22(1), 5-13 (1966). M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, Phys. Rev. X 3(4), 041004 (2013). Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, ACS Nano 5(6), 4641-4647 (2011). R. L. Fante and M. T. McCormack, IEEE Trans. Antennas Propag. 36(10),1443-1454 (1988). T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, Appl. Opt. 44(32), 6849 (2005). M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, Opt. Express 20(3), 2246-2254 (2012). J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, Nanophotonics. 4(1), (2015). J. H. Kennedy and K. W. Frese, J. Electrochem. Soc. 125(5), 709 (1978). I. Abdulhalim, J. Opt. A Pure Appl. Opt. 1(6), 655-661 (1999). H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall series in solid state physical electronics). (Prentice Hall, 1984). M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (CUP Archive, 2000). J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, ACS Photonics. 1(9), 812-821 (2014). R. M. Audet, E. H. Edwards, P. Wahl, and D. A. B. Miller, IEEE J. Quantum Electron. 48(2), 198-209 (2012). K.-T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, Adv. Mater. 26(36), 6324-6328 (2014). Z. Yu, A. Raman, and S. Fan, Proc. Natl. Acad. Sci. U. S. A. 107(41), 17491-17496 (2010). M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, Adv. Mater. 23(45), 5410-5414 (2011). J. Y. Lee, K.-T. Lee, S. Seo, and L. J. Guo, Sci. Rep. 4, 4192 (2014). N. I. Zheludev and Y. S. Kivshar, Nat. Mater. 11(11), 917-924 (2012). M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, Appl. Phys. Lett. 103(10), 101104(2013). T. Inoue, M. De Zoysa, T. Asano, and S. Noda, Nat. Mater. 13(10), 928-931 (2014). C. Hägglund, S. P. Apell, and B. Kasemo, Nano Lett. 10(8), 3135-3141 (2010). A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, Nano Lett. 11(10), 4366-4369 (2011). G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, ACS Nano 7(6), 4810-4817 (2013). G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, J. Phys. D. Appl. Phys. 49(5), 055104 (2016). K.-T. Lee, C. Ji, and L. J. Guo, Appl. Phys. Lett. 108(3), 031107 (2016). C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, Phys. Rev. B 84(7), 075102 (2011). S.-T. Yen and P.-K. Chung, Opt. Lett. 40(16), 3877-3880 (2015). Z. Li, S. Butun, and K. Aydin, ACS Photonics 2(2), 183-188 (2015). N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10(7), 2342-2348 (2010). J. X. Man, D. Y. Luo, L. M. Yu, D. K. Wang, Z. Liu, and Z. H. Lu, Opt. Commun. 342, 184-188 (2015). O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, IEEE Trans. Antennas Propag. 57(10),3119-3125 (2009). E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009). X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107(4), 045901 (2011). K.-T. Lee, S. Seo, J. Yong Lee, and L. Jay Guo, Appl. Phys. Lett. 104(23), 231112 (2014). M. Cardona and G. Harbeke, J. Appl. Phys. 34(4), 813 (1963). J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, Nature 416(6876), 61-64 (2002). F. F. Schlich and R. Spolenak, Appl. Phys. Lett. 103(21), 213112(Nov. 2013). D. G. Baranov, J. H. Edgar, T. Hoffman, N. Bassim, and J. D. Caldwell, Phys. Rev. B 92(20), 201405 (2015). J. W. Cleary, R. Soref, and J. R. Hendrickson, Opt. Express 21(16), 19363-19374 (2013). M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, Science. 318(5857), 1750-1753 (2007). M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, Nat. Mater. 12(1), 20-24 (2012). F. Costa, A. Monorchio, and G. Manara, IEEE Trans. Antennas Propag. 58(5), 1551-1558 (2010). H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. 82(9), 1353 (2003). H. Arwin and D. E. Aspnes, Thin Solid Films 113(2), 101-113 (1984). N. S. Lewis, Science. 315(5813), 798-801 (2007). C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. (WILEY-VCH Verlag GmbH & Co. KGaA, 2007). K. Shibuya, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 96(2), 022102 (2010). W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, Science 331(6019), 889-892 (2011). S. J. Byrnes, Arxiv, 1603.02720, 21(Mar. 2016). N. Yu and F. Capasso, Nat. Mater. 13(2), 139-150 (2014). C. A. Grubbs, Met. Finish. 97(1), 476-493 (1999). K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, Opt. Commun. 314, 48-56 (2014). K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27(8), 2025-2034 (1991). R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320(5881), 1308 (2008). A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, Nat. Nanotechnol. 9(2), 126-130 (2014). C. Weber, D. D. O'Regan, N. D. M. Hine, M. C. Payne, G. Kotliar, and P. B. Littlewood, Phys. Rev. Lett. 108(25), 256402 (2012). M. A. Kats, R. Blanchard, S. Ramanathan, and F. Capasso, Opt. Photonics News 25(January), 40-47 (2014). R.-H. Yan, R. J. Simes, and L. A. Coldren, IEEE J. Quantum Electron. 27(7),1922-1931 (1991). E. F. C. Driessen and M. J. A. de Dood, Appl. Phys. Lett. 94(17), 171109 (2009). M. A. Kats and F. Capasso, Appl. Phys. Lett. 105(13), 131108(2014). J. Park, S. J. Kim, and M. L. Brongersma, Opt. Lett. 40(9), 1960-1963 (2015). K.-T. Lee, J. Y. Lee, S. Seo, and L. J. Guo, Light Sci. Appl. 3(10), e215 (2014). G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express. 1(6), 1090 (2011). A. Y. Vorobyev, V. S. Makin, and C. Guo, Phys. Rev. Lett. 102(23), 234301 (2009). Y. Ra'di, C. R. Simovski, and S. A. Tretyakov, Phys. Rev. Appl. 3(3),037001 (2015). T. Matsui, H. Sai, K. Saito, and M. Kondo, Prog. Photovoltaics Res. Appl. 21(6), 1363-1369 (2013). M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, Opt. Lett. 38(3), 368-370 (2013). H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, Nat. Mater. 12(2), 158-164 (2013). M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics Res. Appl. 23(1),1-9 (2015). N. J. Harrick and A. F. Turner, Appl. Opt. 9(9), 2111-2114 (1970). J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, Nano Lett. 16(2), 1050-1055 (2016). M. Schubert, T. E. Tiwald, and C. M. Herzinger, Phys. Rev. B. 61(12), 8187-8201 (2000). D. Chen, A. Nakahara, D. Wei, D. Nordlund, and T. P. Russell, Nano Lett. 11(2), 561-567 (2011). H. A. MacLeod and H. A. Macleod, Thin-Film Optical Filters, Fourth Edition. (CRC Press, 2010). E. Schiff, Sol. Energy Mater. Sol. Cells. 78(1-4), 567-595 (2003). M. S. Ünlü and S. Strite, J. Appl. Phys. 78(2), 607 (1995). A. Yariv and P. Yeh, "Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering)," (2006). E. Gaul, J. Chem. Educ. 70(3), 176 (1993). J. W. Salisbury and D. M. D'Aria, Remote Sens. Environ. 42(2), 83-106 (1992). H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16(10), 7181 (2008). U. S. Inan, A. S. Inan, and R. K. Said, Engineering Electromagnetics and Waves. (Upper Saddle River: Pearson, 2015). W. Woltersdorff, Zeitschrift für Phys. 91(3-4), 230-252 (1934). K. N. Rozanov, IEEE Trans. Antennas Propag. 48(8), 1230-1234 (2000). N. Zhang, K. Liu, H. Song, Z. Liu, D. Ji, X. Zeng, S. Jiang, and Q. Gan, Appl. Phys. Lett. 104(20), 203112 (2014). J. Caniou, Passive Infrared Detection: Theory and Applications. (Springer US, 1999). W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, Opt. Express. 21(7), 9113-9122 (2013). 1970; 9 2010; 10 2009; 47 2013; 3 2010; 58 2010; 107 2000; 48 2013; 21 2016; 108 1988; 36 1995; 78 2015; 342 1984; 23 2014; 26 2011; 11 2014; 25 2013; 7 2011; 19 2012; 12 2012; 11 2014; 1 2009; 57 2014; 4 2014; 3 1963; 34 2000 1984; 113 2009; 94 2015; 40 2013; 12 1993; 70 2000; 61 2014; 13 1984 1999; 97 2011; 23 2003; 82 1992; 42 2014; 9 2016; 49 1966; 22 1994; 30 2012; 20 2015; 2 2014; 314 2012; 101 2015; 4 2015; 3 2011; 1 2015; 92 2010 2008; 16 2011; 84 2007 2013; 103 2006 2002; 81 2002; 416 2012; 37 1999; 1 2008; 320 2016; 16 2011; 5 2005; 44 2011; 331 2012; 108 2003; 78 1999 2015; 23 2014; 105 2009; 79 1991; 27 2011; 107 2007; 315 2013; 38 2011; 41 2009; 102 2016 2015 2012; 48 1978; 125 1934; 91 2007; 318 2010; 96 2014; 104 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Born M. (e_1_2_11_24_1) 2000 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_89_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_87_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_94_1 Byrnes S. J. (e_1_2_11_27_1) 2016 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_92_1 e_1_2_11_90_1 Yariv A. (e_1_2_11_23_1) 2006 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_35_1 Kats M. A. (e_1_2_11_40_1) 2012; 101 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_96_1 e_1_2_11_7_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Haus H. (e_1_2_11_45_1) 1984 Bohren C. F. (e_1_2_11_25_1) 2007 e_1_2_11_82_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 Inan U. S. (e_1_2_11_28_1) 2015 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_9_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_18_1 e_1_2_11_16_1 Kats M. A. (e_1_2_11_85_1) 2013; 3 e_1_2_11_37_1 e_1_2_11_39_1 |
| References_xml | – reference: K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27(8), 2025-2034 (1991). – reference: O. Luukkonen, F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, IEEE Trans. Antennas Propag. 57(10),3119-3125 (2009). – reference: H. A. MacLeod and H. A. Macleod, Thin-Film Optical Filters, Fourth Edition. (CRC Press, 2010). – reference: G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, ACS Nano 7(6), 4810-4817 (2013). – reference: K. Shibuya, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 96(2), 022102 (2010). – reference: T. Matsui, H. Sai, K. Saito, and M. Kondo, Prog. Photovoltaics Res. Appl. 21(6), 1363-1369 (2013). – reference: M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, Appl. Phys. Lett. 81(25), 4685(2002). – reference: X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107(4), 045901 (2011). – reference: K.-T. Lee, S. Seo, J. Yong Lee, and L. Jay Guo, Appl. Phys. Lett. 104(23), 231112 (2014). – reference: M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, Science. 318(5857), 1750-1753 (2007). – reference: J. Rensberg, S. Zhang, Y. Zhou, A. S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D. N. Basov, F. Capasso, C. Ronning, and M. A. Kats, Nano Lett. 16(2), 1050-1055 (2016). – reference: C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, Phys. Rev. B 84(7), 075102 (2011). – reference: C. A. Grubbs, Met. Finish. 97(1), 476-493 (1999). – reference: M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, Opt. Lett. 38(3), 368-370 (2013). – reference: J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, Opt. Lett. 37(3), 371-373 (2012). – reference: A. Yariv and P. Yeh, "Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering)," (2006). – reference: E. Gaul, J. Chem. Educ. 70(3), 176 (1993). – reference: E. Schiff, Sol. Energy Mater. Sol. Cells. 78(1-4), 567-595 (2003). – reference: M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, Adv. Mater. 23(45), 5410-5414 (2011). – reference: S. J. Byrnes, Arxiv, 1603.02720, 21(Mar. 2016). – reference: F. Costa, A. Monorchio, and G. Manara, IEEE Trans. Antennas Propag. 58(5), 1551-1558 (2010). – reference: M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79(3), 033101 (2009). – reference: G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express. 1(6), 1090 (2011). – reference: J. Y. Lee, K.-T. Lee, S. Seo, and L. J. Guo, Sci. Rep. 4, 4192 (2014). – reference: R. L. Fante and M. T. McCormack, IEEE Trans. Antennas Propag. 36(10),1443-1454 (1988). – reference: Y. Ra'di, C. R. Simovski, and S. A. Tretyakov, Phys. Rev. Appl. 3(3),037001 (2015). – reference: E. F. C. Driessen, F. R. Braakman, E. M. Reiger, S. N. Dorenbos, V. Zwiller, and M. J. A. de Dood, Eur. Phys. J. Appl. Phys. 47(1), 10701 (2009). – reference: A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, Nat. Nanotechnol. 9(2), 126-130 (2014). – reference: M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, Appl. Phys. Lett. 101(2012), 0-5 (2012). – reference: G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, J. Phys. D. Appl. Phys. 49(5), 055104 (2016). – reference: J. W. Cleary, R. Soref, and J. R. Hendrickson, Opt. Express 21(16), 19363-19374 (2013). – reference: I. Abdulhalim, J. Opt. A Pure Appl. Opt. 1(6), 655-661 (1999). – reference: N. I. Zheludev and Y. S. Kivshar, Nat. Mater. 11(11), 917-924 (2012). – reference: N. Yu and F. Capasso, Nat. Mater. 13(2), 139-150 (2014). – reference: H. Arwin and D. E. Aspnes, Thin Solid Films 113(2), 101-113 (1984). – reference: M. A. Kats, R. Blanchard, S. Zhang, P. Genevet, C. Ko, S. Ramanathan, and F. Capasso, Phys. Rev. X 3(4), 041004 (2013). – reference: R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320(5881), 1308 (2008). – reference: M. A. Kats, R. Blanchard, S. Ramanathan, and F. Capasso, Opt. Photonics News 25(January), 40-47 (2014). – reference: B. Chambers, Electron. Lett. 30(16), 1353-1354 (1994). – reference: M. A. Kats and F. Capasso, Appl. Phys. Lett. 105(13), 131108(2014). – reference: D. G. Baranov, J. H. Edgar, T. Hoffman, N. Bassim, and J. D. Caldwell, Phys. Rev. B 92(20), 201405 (2015). – reference: H. Haus, Waves and Fields in Optoelectronics (Prentice-Hall series in solid state physical electronics). (Prentice Hall, 1984). – reference: W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, Science 331(6019), 889-892 (2011). – reference: W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, Opt. Express. 21(7), 9113-9122 (2013). – reference: K.-T. Lee, C. Ji, and L. J. Guo, Appl. Phys. Lett. 108(3), 031107 (2016). – reference: Z. Li, S. Butun, and K. Aydin, ACS Photonics 2(2), 183-188 (2015). – reference: B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, Opt. Express 19(16), 15221-15228 (2011). – reference: C. Hägglund, S. P. Apell, and B. Kasemo, Nano Lett. 10(8), 3135-3141 (2010). – reference: J. H. Kennedy and K. W. Frese, J. Electrochem. Soc. 125(5), 709 (1978). – reference: A. Y. Vorobyev, V. S. Makin, and C. Guo, Phys. Rev. Lett. 102(23), 234301 (2009). – reference: S.-T. Yen and P.-K. Chung, Opt. Lett. 40(16), 3877-3880 (2015). – reference: M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, Appl. Phys. Lett. 103(10), 101104(2013). – reference: P. A. Flournoy and W. J. Schaffers, Spectrochim. Acta 22(1), 5-13 (1966). – reference: M. Cardona and G. Harbeke, J. Appl. Phys. 34(4), 813 (1963). – reference: R. M. Audet, E. H. Edwards, P. Wahl, and D. A. B. Miller, IEEE J. Quantum Electron. 48(2), 198-209 (2012). – reference: M. S. Ünlü and S. Strite, J. Appl. Phys. 78(2), 607 (1995). – reference: H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. 82(9), 1353 (2003). – reference: J. Caniou, Passive Infrared Detection: Theory and Applications. (Springer US, 1999). – reference: N. J. Harrick and A. F. Turner, Appl. Opt. 9(9), 2111-2114 (1970). – reference: W. Woltersdorff, Zeitschrift für Phys. 91(3-4), 230-252 (1934). – reference: M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics Res. Appl. 23(1),1-9 (2015). – reference: S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, Opt. Express. 20(11), 12155-12165 (2012). – reference: J. X. Man, D. Y. Luo, L. M. Yu, D. K. Wang, Z. Liu, and Z. H. Lu, Opt. Commun. 342, 184-188 (2015). – reference: K.-T. Lee, J. Y. Lee, S. Seo, and L. J. Guo, Light Sci. Appl. 3(10), e215 (2014). – reference: J. W. Salisbury and D. M. D'Aria, Remote Sens. Environ. 42(2), 83-106 (1992). – reference: J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, ACS Photonics. 1(9), 812-821 (2014). – reference: H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, Nat. Mater. 12(2), 158-164 (2013). – reference: K. N. Rozanov, IEEE Trans. Antennas Propag. 48(8), 1230-1234 (2000). – reference: J. Park, S. J. Kim, and M. L. Brongersma, Opt. Lett. 40(9), 1960-1963 (2015). – reference: M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, Nat. Mater. 12(1), 20-24 (2012). – reference: D. Chen, A. Nakahara, D. Wei, D. Nordlund, and T. P. Russell, Nano Lett. 11(2), 561-567 (2011). – reference: H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16(10), 7181 (2008). – reference: E. F. C. Driessen and M. J. A. de Dood, Appl. Phys. Lett. 94(17), 171109 (2009). – reference: N. Zhang, K. Liu, H. Song, Z. Liu, D. Ji, X. Zeng, S. Jiang, and Q. Gan, Appl. Phys. Lett. 104(20), 203112 (2014). – reference: C. Weber, D. D. O'Regan, N. D. M. Hine, M. C. Payne, G. Kotliar, and P. B. Littlewood, Phys. Rev. Lett. 108(25), 256402 (2012). – reference: M. Schubert, T. E. Tiwald, and C. M. Herzinger, Phys. Rev. B. 61(12), 8187-8201 (2000). – reference: M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (CUP Archive, 2000). – reference: K.-T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, Adv. Mater. 26(36), 6324-6328 (2014). – reference: C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. (WILEY-VCH Verlag GmbH & Co. KGaA, 2007). – reference: N. S. Lewis, Science. 315(5813), 798-801 (2007). – reference: Z. Yu, A. Raman, and S. Fan, Proc. Natl. Acad. Sci. U. S. A. 107(41), 17491-17496 (2010). – reference: J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, Nature 416(6876), 61-64 (2002). – reference: K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, Opt. Commun. 314, 48-56 (2014). – reference: U. S. Inan, A. S. Inan, and R. K. Said, Engineering Electromagnetics and Waves. (Upper Saddle River: Pearson, 2015). – reference: A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, Nano Lett. 11(10), 4366-4369 (2011). – reference: Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, ACS Nano 5(6), 4641-4647 (2011). – reference: M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, Opt. Express 20(3), 2246-2254 (2012). – reference: B. Tatian, Appl. Opt. 23(24), 4477 (1984). – reference: R.-H. Yan, R. J. Simes, and L. A. Coldren, IEEE J. Quantum Electron. 27(7),1922-1931 (1991). – reference: T. Inoue, M. De Zoysa, T. Asano, and S. Noda, Nat. Mater. 13(10), 928-931 (2014). – reference: T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, Appl. Opt. 44(32), 6849 (2005). – reference: F. F. Schlich and R. Spolenak, Appl. Phys. Lett. 103(21), 213112(Nov. 2013). – reference: J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, Nanophotonics. 4(1), (2015). – reference: N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10(7), 2342-2348 (2010). – volume: 34 start-page: 813 issue: 4 year: 1963 publication-title: J. Appl. Phys. – volume: 11 start-page: 4366 issue: 10 year: 2011 end-page: 4369 publication-title: Nano Lett. – volume: 20 start-page: 12155 issue: 11 year: 2012 end-page: 12165 publication-title: Opt. Express. – volume: 41 start-page: 337 issue: 1 year: 2011 end-page: 367 – volume: 5 start-page: 4641 issue: 6 year: 2011 end-page: 4647 publication-title: ACS Nano – volume: 16 start-page: 7181 issue: 10 year: 2008 publication-title: Opt. Express – volume: 22 start-page: 5 issue: 1 year: 1966 end-page: 13 publication-title: Spectrochim. Acta – volume: 25 start-page: 40 issue: January year: 2014 end-page: 47 publication-title: Opt. Photonics News – volume: 3 start-page: 041004 issue: 4 year: 2013 publication-title: Phys. Rev. X – volume: 97 start-page: 476 issue: 1 year: 1999 end-page: 493 publication-title: Met. Finish. – volume: 61 start-page: 8187 issue: 12 year: 2000 end-page: 8201 publication-title: Phys. Rev. B. – volume: 49 start-page: 055104 issue: 5 year: 2016 publication-title: J. Phys. D. Appl. Phys. – volume: 12 start-page: 20 issue: 1 year: 2012 end-page: 24 publication-title: Nat. Mater. – volume: 2 start-page: 183 issue: 2 year: 2015 end-page: 188 publication-title: ACS Photonics – volume: 19 start-page: 15221 issue: 16 year: 2011 end-page: 15228 publication-title: Opt. Express – volume: 103 start-page: 213112 issue: 21 year: 2013 publication-title: Appl. Phys. Lett. – volume: 1 start-page: 1090 issue: 6 year: 2011 publication-title: Opt. Mater. Express. – volume: 48 start-page: 1230 issue: 8 year: 2000 end-page: 1234 publication-title: IEEE Trans. Antennas Propag. – volume: 107 start-page: 17491 issue: 41 year: 2010 end-page: 17496 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 58 start-page: 1551 issue: 5 year: 2010 end-page: 1558 publication-title: IEEE Trans. Antennas Propag. – volume: 342 start-page: 184 year: 2015 end-page: 188 publication-title: Opt. Commun. – volume: 21 start-page: 1363 issue: 6 year: 2013 end-page: 1369 publication-title: Prog. Photovoltaics Res. Appl. – volume: 11 start-page: 561 issue: 2 year: 2011 end-page: 567 publication-title: Nano Lett. – volume: 125 start-page: 709 issue: 5 year: 1978 publication-title: J. Electrochem. Soc. – volume: 23 start-page: 1 issue: 1 year: 2015 end-page: 9 publication-title: Prog. Photovoltaics Res. Appl. – volume: 84 start-page: 075102 issue: 7 year: 2011 publication-title: Phys. Rev. B – volume: 36 start-page: 1443 issue: 10 year: 1988 end-page: 1454 publication-title: IEEE Trans. Antennas Propag. – volume: 30 start-page: 1353 issue: 16 year: 1994 end-page: 1354 publication-title: Electron. Lett. – volume: 11 start-page: 917 issue: 11 year: 2012 end-page: 924 publication-title: Nat. Mater. – volume: 26 start-page: 6324 issue: 36 year: 2014 end-page: 6328 publication-title: Adv. Mater. – volume: 4 start-page: 4192 year: 2014 publication-title: Sci. Rep. – volume: 9 start-page: 126 issue: 2 year: 2014 end-page: 130 publication-title: Nat. Nanotechnol. – volume: 70 start-page: 176 issue: 3 year: 1993 publication-title: J. Chem. Educ. – volume: 10 start-page: 2342 issue: 7 year: 2010 end-page: 2348 publication-title: Nano Lett. – volume: 92 start-page: 201405 issue: 20 year: 2015 publication-title: Phys. Rev. B – volume: 108 start-page: 256402 issue: 25 year: 2012 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 4810 issue: 6 year: 2013 end-page: 4817 publication-title: ACS Nano – volume: 20 start-page: 2246 issue: 3 year: 2012 end-page: 2254 publication-title: Opt. Express – volume: 57 start-page: 3119 issue: 10 year: 2009 end-page: 3125 publication-title: IEEE Trans. Antennas Propag. – volume: 94 start-page: 171109 issue: 17 year: 2009 publication-title: Appl. Phys. Lett. – volume: 320 start-page: 1308 issue: 5881 year: 2008 publication-title: Science – volume: 331 start-page: 889 issue: 6019 year: 2011 end-page: 892 publication-title: Science – volume: 81 start-page: 4685 issue: 25 year: 2002 publication-title: Appl. Phys. Lett. – volume: 37 start-page: 371 issue: 3 year: 2012 end-page: 373 publication-title: Opt. Lett. – volume: 113 start-page: 101 issue: 2 year: 1984 end-page: 113 publication-title: Thin Solid Films – volume: 315 start-page: 798 issue: 5813 year: 2007 end-page: 801 publication-title: Science. – volume: 40 start-page: 1960 issue: 9 year: 2015 end-page: 1963 publication-title: Opt. Lett. – year: 2015 – volume: 79 start-page: 033101 issue: 3 year: 2009 publication-title: Phys. Rev. B – volume: 1 start-page: 655 issue: 6 year: 1999 end-page: 661 publication-title: J. Opt. A Pure Appl. Opt. – volume: 103 start-page: 101104 issue: 10 year: 2013 publication-title: Appl. Phys. Lett. – volume: 27 start-page: 2025 issue: 8 year: 1991 end-page: 2034 publication-title: IEEE J. Quantum Electron. – volume: 38 start-page: 368 issue: 3 year: 2013 end-page: 370 publication-title: Opt. Lett. – volume: 105 start-page: 131108 issue: 13 year: 2014 publication-title: Appl. Phys. Lett. – year: 2007 – volume: 27 start-page: 1922 issue: 7 year: 1991 end-page: 1931 publication-title: IEEE J. Quantum Electron. – volume: 21 start-page: 19363 issue: 16 year: 2013 end-page: 19374 publication-title: Opt. Express – volume: 108 start-page: 031107 issue: 3 year: 2016 publication-title: Appl. Phys. Lett. – volume: 82 start-page: 1353 issue: 9 year: 2003 publication-title: Appl. Phys. Lett. – volume: 101 start-page: 0 issue: 2012 year: 2012 end-page: 5 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 158 issue: 2 year: 2013 end-page: 164 publication-title: Nat. Mater. – volume: 4 issue: 1 year: 2015 publication-title: Nanophotonics. – year: 2000 – volume: 416 start-page: 61 issue: 6876 year: 2002 end-page: 64 publication-title: Nature – volume: 21 start-page: 9113 issue: 7 year: 2013 end-page: 9122 publication-title: Opt. Express. – volume: 9 start-page: 2111 issue: 9 year: 1970 end-page: 2114 publication-title: Appl. Opt. – volume: 91 start-page: 230 issue: 3–4 year: 1934 end-page: 252 publication-title: Zeitschrift für Phys. – volume: 40 start-page: 3877 issue: 16 year: 2015 end-page: 3880 publication-title: Opt. Lett. – start-page: 21 year: 2016 publication-title: Arxiv – volume: 13 start-page: 139 issue: 2 year: 2014 end-page: 150 publication-title: Nat. Mater. – volume: 107 start-page: 045901 issue: 4 year: 2011 publication-title: Phys. Rev. Lett. – year: 2010 – volume: 3 start-page: 037001 issue: 3 year: 2015 publication-title: Phys. Rev. Appl. – volume: 16 start-page: 1050 issue: 2 year: 2016 end-page: 1055 publication-title: Nano Lett. – volume: 78 start-page: 607 issue: 2 year: 1995 publication-title: J. Appl. Phys. – year: 1984 – volume: 3 start-page: e215 issue: 10 year: 2014 publication-title: Light Sci. Appl. – volume: 96 start-page: 022102 issue: 2 year: 2010 publication-title: Appl. Phys. Lett. – year: 2006 – volume: 104 start-page: 231112 issue: 23 year: 2014 publication-title: Appl. Phys. Lett. – volume: 1 start-page: 812 issue: 9 year: 2014 end-page: 821 publication-title: ACS Photonics. – volume: 318 start-page: 1750 issue: 5857 year: 2007 end-page: 1753 publication-title: Science. – volume: 314 start-page: 48 year: 2014 end-page: 56 publication-title: Opt. Commun. – volume: 48 start-page: 198 issue: 2 year: 2012 end-page: 209 publication-title: IEEE J. Quantum Electron. – volume: 47 start-page: 10701 issue: 1 year: 2009 publication-title: Eur. Phys. J. Appl. Phys. – volume: 44 start-page: 6849 issue: 32 year: 2005 publication-title: Appl. Opt. – volume: 42 start-page: 83 issue: 2 year: 1992 end-page: 106 publication-title: Remote Sens. Environ. – volume: 10 start-page: 3135 issue: 8 year: 2010 end-page: 3141 publication-title: Nano Lett. – volume: 13 start-page: 928 issue: 10 year: 2014 end-page: 931 publication-title: Nat. Mater. – volume: 104 start-page: 203112 issue: 20 year: 2014 publication-title: Appl. Phys. Lett. – volume: 23 start-page: 5410 issue: 45 year: 2011 end-page: 5414 publication-title: Adv. Mater. – volume: 102 start-page: 234301 issue: 23 year: 2009 publication-title: Phys. Rev. Lett. – volume: 78 start-page: 567 issue: 1–4 year: 2003 end-page: 595 publication-title: Sol. Energy Mater. Sol. Cells. – volume: 23 start-page: 4477 issue: 24 year: 1984 publication-title: Appl. Opt. – year: 1999 – ident: e_1_2_11_33_1 doi: 10.1051/epjap/2009087 – ident: e_1_2_11_92_1 doi: 10.1364/AO.9.002111 – ident: e_1_2_11_29_1 doi: 10.1007/BF01341647 – ident: e_1_2_11_86_1 doi: 10.1364/OL.40.003877 – ident: e_1_2_11_44_1 doi: 10.1364/OPN.25.1.000040 – ident: e_1_2_11_54_1 doi: 10.1063/1.1729543 – ident: e_1_2_11_67_1 doi: 10.1002/pip.2573 – ident: e_1_2_11_57_1 doi: 10.1016/0040-6090(84)90019-1 – ident: e_1_2_11_66_1 doi: 10.1149/1.2131532 – ident: e_1_2_11_3_1 doi: 10.1109/3.83412 – ident: e_1_2_11_34_1 doi: 10.1063/1.3126062 – ident: e_1_2_11_15_1 doi: 10.1364/OE.16.007181 – ident: e_1_2_11_14_1 doi: 10.1103/PhysRevB.79.033101 – ident: e_1_2_11_51_1 doi: 10.1063/1.4879829 – ident: e_1_2_11_87_1 doi: 10.1007/978-1-4757-6140-5 – ident: e_1_2_11_16_1 doi: 10.1364/OL.37.000371 – ident: e_1_2_11_4_1 doi: 10.1109/3.83394 – volume: 3 start-page: 041004 issue: 4 year: 2013 ident: e_1_2_11_85_1 publication-title: Phys. Rev. X – ident: e_1_2_11_41_1 doi: 10.1038/nmat3477 – ident: e_1_2_11_83_1 doi: 10.1126/science.1150124 – ident: e_1_2_11_11_1 doi: 10.1109/8.884491 – ident: e_1_2_11_58_1 doi: 10.1021/ed070p176 – volume-title: Absorption and Scattering of Light by Small Particles year: 2007 ident: e_1_2_11_25_1 – ident: e_1_2_11_37_1 doi: 10.1016/0371-1951(66)80003-6 – ident: e_1_2_11_91_1 doi: 10.1038/nmat4043 – ident: e_1_2_11_13_1 doi: 10.1038/nmat3839 – ident: e_1_2_11_5_1 doi: 10.1109/JQE.2011.2167960 – ident: e_1_2_11_18_1 doi: 10.1021/nl9041033 – volume-title: “Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) year: 2006 ident: e_1_2_11_23_1 – ident: e_1_2_11_26_1 doi: 10.1201/9781420073034 – ident: e_1_2_11_35_1 doi: 10.1021/nn4012253 – ident: e_1_2_11_53_1 doi: 10.1364/OE.21.009113 – ident: e_1_2_11_56_1 doi: 10.1063/1.4883494 – ident: e_1_2_11_75_1 doi: 10.1016/0034-4257(92)90092-X – ident: e_1_2_11_79_1 doi: 10.1364/OME.1.001090 – ident: e_1_2_11_94_1 doi: 10.1038/nnano.2013.286 – ident: e_1_2_11_9_1 doi: 10.1109/TAP.2009.2028601 – ident: e_1_2_11_17_1 doi: 10.1021/nn2004603 – ident: e_1_2_11_65_1 doi: 10.1126/science.1137014 – ident: e_1_2_11_73_1 doi: 10.1002/pip.2300 – ident: e_1_2_11_96_1 doi: 10.1021/acs.nanolett.5b04122 – ident: e_1_2_11_48_1 doi: 10.1364/OL.40.001960 – ident: e_1_2_11_49_1 doi: 10.1002/adma.201402117 – ident: e_1_2_11_55_1 doi: 10.1063/1.4820147 – ident: e_1_2_11_20_1 doi: 10.1002/adma.201102646 – ident: e_1_2_11_74_1 doi: 10.1016/S0927-0248(02)00452-X – ident: e_1_2_11_77_1 doi: 10.1515/nanoph-2014-0003 – ident: e_1_2_11_50_1 doi: 10.1063/1.4833537 – volume-title: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light year: 2000 ident: e_1_2_11_24_1 – ident: e_1_2_11_46_1 doi: 10.1103/PhysRevB.84.075102 – ident: e_1_2_11_36_1 doi: 10.1126/science.1156965 – ident: e_1_2_11_63_1 doi: 10.1021/ph500410u – volume-title: Waves and Fields in Optoelectronics (Prentice‐Hall series in solid state physical electronics) year: 1984 ident: e_1_2_11_45_1 – ident: e_1_2_11_30_1 doi: 10.1063/1.1556969 – ident: e_1_2_11_80_1 doi: 10.1103/PhysRevB.61.8187 – ident: e_1_2_11_39_1 doi: 10.1038/nmat3443 – ident: e_1_2_11_60_1 doi: 10.1063/1.4896527 – ident: e_1_2_11_62_1 doi: 10.1063/1.4939969 – ident: e_1_2_11_52_1 doi: 10.1364/OE.21.019363 – ident: e_1_2_11_19_1 doi: 10.1364/OE.19.015221 – ident: e_1_2_11_88_1 doi: 10.1103/PhysRevLett.102.234301 – volume: 101 start-page: 0 issue: 2012 year: 2012 ident: e_1_2_11_40_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_11_31_1 doi: 10.1021/nl101929j – ident: e_1_2_11_21_1 doi: 10.1021/nl202489g – ident: e_1_2_11_32_1 doi: 10.1364/OE.20.002246 – ident: e_1_2_11_6_1 doi: 10.1109/8.8632 – ident: e_1_2_11_22_1 doi: 10.1103/PhysRevB.92.201405 – ident: e_1_2_11_72_1 doi: 10.1038/lsa.2014.96 – ident: e_1_2_11_84_1 doi: 10.1364/OL.38.000368 – ident: e_1_2_11_38_1 doi: 10.1088/1464-4258/1/6/301 – ident: e_1_2_11_43_1 doi: 10.1038/srep04192 – ident: e_1_2_11_71_1 doi: 10.1016/j.optcom.2014.12.029 – ident: e_1_2_11_93_1 doi: 10.1103/PhysRevLett.107.045901 – ident: e_1_2_11_47_1 doi: 10.1126/science.1200735 – ident: e_1_2_11_59_1 doi: 10.1016/S0026-0576(99)80049-X – ident: e_1_2_11_2_1 doi: 10.1063/1.360322 – ident: e_1_2_11_12_1 doi: 10.1038/nmat3431 – ident: e_1_2_11_82_1 doi: 10.1103/PhysRevLett.108.256402 – ident: e_1_2_11_70_1 doi: 10.1016/j.optcom.2013.08.062 – ident: e_1_2_11_10_1 doi: 10.1049/el:19940896 – ident: e_1_2_11_89_1 doi: 10.1038/416061a – ident: e_1_2_11_7_1 doi: 10.1103/PhysRevApplied.3.037001 – ident: e_1_2_11_69_1 doi: 10.1021/nl103482n – ident: e_1_2_11_68_1 doi: 10.1073/pnas.1008296107 – ident: e_1_2_11_78_1 doi: 10.1364/OE.20.012155 – ident: e_1_2_11_64_1 doi: 10.1088/0022-3727/49/5/055104 – volume-title: Engineering Electromagnetics and Waves year: 2015 ident: e_1_2_11_28_1 – ident: e_1_2_11_95_1 doi: 10.1063/1.3291053 – ident: e_1_2_11_76_1 doi: 10.1364/AO.23.004477 – ident: e_1_2_11_8_1 doi: 10.1109/TAP.2010.2044329 – ident: e_1_2_11_42_1 doi: 10.1021/ph500093d – ident: e_1_2_11_81_1 doi: 10.1146/annurev-matsci-062910-100347 – ident: e_1_2_11_90_1 doi: 10.1063/1.1526919 – ident: e_1_2_11_61_1 doi: 10.1364/AO.44.006849 – start-page: 21 year: 2016 ident: e_1_2_11_27_1 publication-title: Arxiv |
| SSID | ssj0055556 |
| Score | 2.5870645 |
| SecondaryResourceType | review_article |
| Snippet | Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells,... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 735 |
| SubjectTerms | Absorbers Coatings color coatings Decorative Fabry-Perot interferometers Footprints Interference Light sources Metamaterials optical absorbers optical coatings Optical filters Optoelectronic devices Patterning perfect absorbers Photovoltaic cells photovoltaics Plasmonics Scene generators Solar cells Stealth technology structural color thermal emitters Thickness Thin films Thin-film interference Wavelengths |
| Title | Optical absorbers based on strong interference in ultra-thin films |
| URI | https://api.istex.fr/ark:/67375/WNG-0QH9T28F-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.201600098 https://www.proquest.com/docview/1822083283 https://www.proquest.com/docview/1895032929 https://www.proquest.com/docview/1845824335 |
| Volume | 10 |
| WOSCitedRecordID | wos000384675200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1863-8899 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055556 issn: 1863-8880 databaseCode: DRFUL dateStart: 20070101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BLgcutPyJlIKMhOAUNbGd2DlWlG0Pq22pWtGbZScOVCzZKtmtOPIIPGOfhJkkG7qHCglyiuVJZI1n7M_2zGeAt5zrQiFUCL2VKpTei1BLLcNY5oifPcI53yYKT9Vspi8uspNbWfwdP8Sw4Uae0Y7X5ODWNXt_SEPniE8pNCslmKDvw5ij8SYjGB-cTs6n69E4wafNMNIptgKNdU3cGPG9zT9sTExj0vGPDdR5G7u2k89k6_-bvQ2PeuDJ9jtLeQz3fPUEtnoQynoXb57CwfFVu73N8IeL2iE6ZDTTFWxRsYb2zb8wopio-zxBLLDVfFnbm5-_ll-xUF7OvzfP4Hzy8ezDUdhftRDmCMB0qIkHPi4iW0pZlLlDTeUKwUrqrLfKEU-dUDor0yJOVcFjp5xLI-nSIhdFVubiOYyqReVfANOR1cJy78rYSiGtE5FXtOy0UlPAWADhWs8m73nI6TqMuekYlLkhFZlBRQG8H-SvOgaOOyXftd02iNn6G8WtqcR8nh2a6NNRdsb1xMwC2F33q-ldtjG40OKIRxFu3VGdJZHgiCYDeDNUoy_SAYut_GJFMnQKKYVIAuCtEfylxWZ6cnw6lHb-5aOX8JDeu7C3XRgt65V_BQ_y6-VlU7_uveE38JMKQA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BFwkulF81UCBICE5RE9sbO0fUsiwipKXait4sO3FoxZKtkl3EkUfgGXmSziTZwB4qJERujp3IGs_Yn8cznwFeMKYKiVAhcEbIQDjHAyWUCCKRI352COdcmyicyixTp6fJUR9NSLkwHT_E4HAjy2jnazJwckjv_WYNnSNApdismHCCug4jgbqESj46OJ6cpOvpeIxPm2KkYuwGauuauTFke5t_2FiZRiTk7xuw80_w2q4-k-3_0O87cLuHnv7rTlfuwjVX3YPtHob6vZE39-Hg8KJ1cPvGNovaIj70aa0r_EXlN-Q5_-wTyUTdZwpiwV_Nl7X59ePn8gwL5fn8a_MATiZvZvvToL9sIcgRgqlAERN8VISmFKIoc4uiyiXCldgaZ6QlpjouVVLGRRTLgkVWWhuHwsZFzoukzPlD2KoWldsBX4VGccOcLSMjuDCWh07SxtMIRSFjHgRrQeu8ZyKnCzHmuuNQZppEpAcRefBqaH_RcXBc2fJlO25DM1N_ocg1Odafsrc6_DhNZkxNdObB7npgdW-0jcatFkNEioDriupkHHKGeNKD50M1WiMdsZjKLVbUhs4hBedjD1irBX_psU6PDo-H0qN_-egZ3JzOPqQ6fZe9fwy36H0XBLcLW8t65Z7Ajfzb8rypn_amcQnlQg4w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB5BixAXlr8VgQWMhOAUbWK7sXNElLCIKltWu2Jvlh07sKKkVdIijjwCz8iT4EnSQA8rJERujifRaOyxP9sznwGeUSqt8FAhdJqLkDvHQsklD2NeePzsPJxzbaLwTOS5PD9P5300IebCdPwQw4YbekY7XqODu5UtD3-zhi48QMXYrARxgrwKY443yYxgPD3Jzmbb4XjinzbFSCZeDd9bt8yNET3c_cPOzDRGI3_bgZ1_gtd29sn2_oPet-BmDz3Jy66v3IYrrroDez0MJb2TN3dherxqN7iJNs2yNh4fEpzrLFlWpMGd848ESSbqPlPQF8hmsa71z-8_1p98obxYfGnuwVn2-vTVUdhfthAWHoLJUCITfGwjXXJuy8J4UxXCw5XEaKeFQaY6JmRaJjZOhKWxEcYkETeJLZhNy4Ltw6haVu4-EBlpyTR1pow1Z1wbFjmBC0_NJYaMBRBuDa2KnokcL8RYqI5DmSo0kRpMFMCLQX7VcXBcKvm8bbdBTNefMXJNTNSH_I2K3h-lp1RmKg_gYNuwqnfaRvmlFvWI1AOuS6rTScSox5MBPB2qvTfiEYuu3HKDMngOyRmbBEDbXvAXjdVsfnwylB78y0dP4Pp8mqnZ2_zdQ7iBr7sYuAMYreuNewTXiq_ri6Z-3HvGL1o-Das |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+absorbers+based+on+strong+interference+in+ultra%E2%80%90thin+films&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Kats%2C+Mikhail+A.&rft.au=Capasso%2C+Federico&rft.date=2016-09-01&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=10&rft.issue=5&rft.spage=735&rft.epage=749&rft_id=info:doi/10.1002%2Flpor.201600098&rft.externalDBID=10.1002%252Flpor.201600098&rft.externalDocID=LPOR201600098 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |