Colocalization of cellular nanostructure using confocal fluorescence and partial wave spectroscopy
A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular‐specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sen...
Gespeichert in:
| Veröffentlicht in: | Journal of biophotonics Jg. 10; H. 3; S. 377 - 384 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Weinheim
WILEY‐VCH Verlag
01.03.2017
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 1864-063X, 1864-0648, 1864-0648 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular‐specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti‐mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity (Σ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular‐specific sites.
Instrumentation has been developed enabling colocalization of confocal fluorescence and nanoscale‐sensitive spectroscopic microscopy modalities. This combination allows sensing of the heterogeneity of nanoscale intracellular structure within specific fluorescently labeled organelles or molecular structures. To demonstrate the capabilities of this multimodal instrument, the effects on the heterogeneity of nanoscale structure were examined in the nuclei and mitochondria of HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. |
|---|---|
| AbstractList | A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular‐specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti‐mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity (Σ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular‐specific sites.
Instrumentation has been developed enabling colocalization of confocal fluorescence and nanoscale‐sensitive spectroscopic microscopy modalities. This combination allows sensing of the heterogeneity of nanoscale intracellular structure within specific fluorescently labeled organelles or molecular structures. To demonstrate the capabilities of this multimodal instrument, the effects on the heterogeneity of nanoscale structure were examined in the nuclei and mitochondria of HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular-specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti-mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity (Σ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular-specific sites. A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular-specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti-mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity ( capital sigma ), while no significant change in capital sigma was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular-specific sites. Instrumentation has been developed enabling colocalization of confocal fluorescence and nanoscale-sensitive spectroscopic microscopy modalities. This combination allows sensing of the heterogeneity of nanoscale intracellular structure within specific fluorescently labeled organelles or molecular structures. To demonstrate the capabilities of this multimodal instrument, the effects on the heterogeneity of nanoscale structure were examined in the nuclei and mitochondria of HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular-specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti-mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity (Σ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular-specific sites.A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular-specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti-mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity (Σ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular-specific sites. A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular‐specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti‐mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity ( Σ ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular‐specific sites. magnified image |
| Author | Chandler, John E. Stypula‐Cyrus, Yolanda Almassalha, Luay Bauer, Greta Szleifer, Igal Bowen, Leah Subramanian, Hariharan Backman, Vadim |
| Author_xml | – sequence: 1 givenname: John E. surname: Chandler fullname: Chandler, John E. organization: Northwestern University – sequence: 2 givenname: Yolanda surname: Stypula‐Cyrus fullname: Stypula‐Cyrus, Yolanda organization: Northwestern University – sequence: 3 givenname: Luay surname: Almassalha fullname: Almassalha, Luay organization: Northwestern University – sequence: 4 givenname: Greta surname: Bauer fullname: Bauer, Greta organization: Northwestern University – sequence: 5 givenname: Leah surname: Bowen fullname: Bowen, Leah organization: Northwestern University – sequence: 6 givenname: Hariharan surname: Subramanian fullname: Subramanian, Hariharan organization: Northwestern University – sequence: 7 givenname: Igal surname: Szleifer fullname: Szleifer, Igal organization: Northwestern University – sequence: 8 givenname: Vadim surname: Backman fullname: Backman, Vadim email: v-backman@northwestern.edu organization: Northwestern University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27111884$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1vFCEYxompsR969WhIvHjZla8B5mJiN1ZrmvSiiTfCMExlw8IIQ5v1r5fp1lWbqD0BeX_Py5vnfY7BQYjBAvAcoyVGiLxedy4uCcJNfbTyETjCkrMF4kwe7O_0yyE4znmNEEe0oU_AIREYYynZEehW0UejvfuuJxcDjAM01vvidYJBh5inVMxUkoUlu3AFTQzDzMPBl5hsNjYYC3Xo4ajT5GrhRl9bmEdrphSzieP2KXg8aJ_ts7vzBHw-e_dp9WFxcfn-fPX2YmEaQuRCaEZbzQdLu561pA7YN4hiajRDg9CI1gJtu67rKaJSYGkZ4y0TveiQZYbTE_Bm13cs3cb2dbIpaa_G5DY6bVXUTv1ZCe6ruorXqsGYYDY3eHXXIMVvxeZJbVye3dDBxpIVli2VUlLWPgTFUiDCmweghHPeIkEr-vIeuo4lhWqaIkJK0tQh0b-oulOChMR07vXidzf2NvxcfQWWO8DUPeVkhz2CkZqzpeZsqX22qoDdExg33aamuun832XtTnbjvN3-5xP18fT88pf2B88848o |
| CitedBy_id | crossref_primary_10_1016_j_mehy_2019_109511 crossref_primary_10_1038_s41467_019_09717_6 crossref_primary_10_3390_biomedicines11010191 crossref_primary_10_1002_cyto_a_23521 crossref_primary_10_1073_pnas_1816459115 crossref_primary_10_1088_1478_3975_ab6abb |
| Cites_doi | 10.1117/1.3523618 10.1186/1471-2407-14-189 10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Q 10.1371/journal.pone.0115999 10.1158/0008-5472.CAN-10-1686 10.1073/pnas.0804723105 10.1364/OL.39.004290 10.1007/s10495-011-0642-9 10.1038/nrm3382 10.1038/nmeth.2089 10.1002/ijc.28122 10.1016/j.bpj.2010.05.023 10.1364/OL.34.000518 10.1038/sj.bmt.1701815 10.1016/j.cell.2012.02.035 10.1038/sj.embor.7400488 10.1103/PhysRevLett.111.033903 10.1016/j.mrrev.2003.06.008 10.1158/0008-5472.CAN-08-3895 10.7150/jca.5838 10.1371/journal.pone.0064600 |
| ContentType | Journal Article |
| Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 5PM |
| DOI | 10.1002/jbio.201500298 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Biotechnology Research Abstracts Technology Research Database Electronics & Communications Abstracts ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database MEDLINE - Academic CrossRef Materials Research Database Solid State and Superconductivity Abstracts MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1864-0648 |
| EndPage | 384 |
| ExternalDocumentID | PMC5112146 4321290003 27111884 10_1002_jbio_201500298 JBIO201500298 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation Graduate Research Fellowship funderid: DGE‐0824162 – fundername: National Institutes of Health funderid: U54CA193419; R01CA155284; R01CA200064; R01EB016983 – fundername: NCI NIH HHS grantid: R01 CA200064 – fundername: NCI NIH HHS grantid: R01 CA155284 – fundername: NIBIB NIH HHS grantid: R01 EB016983 – fundername: NIGMS NIH HHS grantid: T32 GM008152 – fundername: NCI NIH HHS grantid: P30 CA060553 – fundername: NCI NIH HHS grantid: U54 CA193419 |
| GroupedDBID | --- 05W 0R~ 1OC 31~ 33P 3SF 4.4 52U 52V 53G 5DZ 5GY 66C 8-0 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRMAN DRSTM EBD EBS EJD EMOBN F5P FEDTE FUBAC G-S GODZA HGLYW HVGLF HZ~ IX1 KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WIH WIJ WIK WOHZO WXSBR WYJ XV2 ZZTAW AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7QO 7SP 7SR 7U5 8FD FR3 JG9 K9. L7M P64 7X8 5PM |
| ID | FETCH-LOGICAL-c5228-7a439a6fe3bd492111d50313ca40f7a03e3b39bbbd3038718e446947d7b0e4c63 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398216200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-063X 1864-0648 |
| IngestDate | Tue Nov 04 01:52:52 EST 2025 Thu Oct 02 06:31:48 EDT 2025 Tue Oct 07 09:59:42 EDT 2025 Thu Jul 10 17:36:36 EDT 2025 Sat Nov 29 14:37:04 EST 2025 Sat Nov 29 14:51:12 EST 2025 Mon Jul 21 05:35:58 EDT 2025 Tue Nov 18 21:05:08 EST 2025 Sat Nov 29 03:11:23 EST 2025 Wed Jan 22 16:20:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | hyperspectral microscopy chromatin confocal microscopy nanocytology mitochondria |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5228-7a439a6fe3bd492111d50313ca40f7a03e3b39bbbd3038718e446947d7b0e4c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 27111884 |
| PQID | 1882078133 |
| PQPubID | 1006377 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5112146 proquest_miscellaneous_1893888349 proquest_miscellaneous_1891870265 proquest_miscellaneous_1826669073 proquest_journals_2788254630 proquest_journals_1882078133 pubmed_primary_27111884 crossref_primary_10_1002_jbio_201500298 crossref_citationtrail_10_1002_jbio_201500298 wiley_primary_10_1002_jbio_201500298_JBIO201500298 |
| PublicationCentury | 2000 |
| PublicationDate | March 2017 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany – name: Jena |
| PublicationTitle | Journal of biophotonics |
| PublicationTitleAlternate | J Biophotonics |
| PublicationYear | 2017 |
| Publisher | WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
| References | 2009; 34 2010; 99 2009; 69 2010; 15 2013; 4 2015; 10 1999; 24 2013; 111 2013; 133 2014; 14 1953; 6 2005; 6 2008; 105 2014; 39 2010; 70 2003; 544 2013; 8 2012; 148 2012; 13 2011; 16 2012; 9 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_22_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 21877215 - Apoptosis. 2011 Nov;16(11):1101-17 19373360 - Opt Lett. 2009 Feb 15;34(4):518-20 24629088 - BMC Cancer. 2014 Mar 14;14:189 23459690 - J Cancer. 2013;4(3):251-61 25706755 - PLoS One. 2015 Feb 23;10(2):e0115999 21198202 - J Biomed Opt. 2010 Nov-Dec;15(6):066028 23724067 - PLoS One. 2013 May 28;8(5):e64600 14644334 - Mutat Res. 2003 Nov;544(2-3):321-9 20924114 - Cancer Res. 2010 Oct 15;70(20):7748-54 22424226 - Cell. 2012 Mar 16;148(6):1145-59 25078159 - Opt Lett. 2014 Aug 1;39(15):4290-3 19549915 - Cancer Res. 2009 Jul 1;69(13):5357-63 20682278 - Biophys J. 2010 Aug 4;99(3):989-96 10435742 - Bone Marrow Transplant. 1999 Jul;24(1):95-8 22930834 - Nat Methods. 2012 Jul;9(7):671-5 16113651 - EMBO Rep. 2005 Sep;6(9):853-9 23436651 - Int J Cancer. 2013 Sep 1;133(5):1143-52 19073935 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20118-23 22722606 - Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):436-47 23909326 - Phys Rev Lett. 2013 Jul 19;111(3):033903 13094644 - Cancer. 1953 Sep;6(5):963-8 |
| References_xml | – volume: 69 start-page: 5357 year: 2009 end-page: 5363 publication-title: Cancer Research – volume: 10 start-page: e0115999 year: 2015 publication-title: PLoS ONE – volume: 13 start-page: 436 year: 2012 end-page: 447 publication-title: Nature reviews Molecular cell biology – volume: 15 start-page: 066028 year: 2010 publication-title: J Biomed Opt – volume: 6 start-page: 963 year: 1953 end-page: 968 publication-title: Cancer – volume: 111 start-page: 033903 year: 2013 publication-title: Phys Rev Lett – volume: 70 start-page: 7748 year: 2010 end-page: 7754 publication-title: Cancer Research – volume: 14 start-page: 189 year: 2014 publication-title: BMC Cancer – volume: 148 start-page: 1145 year: 2012 end-page: 1159 publication-title: Cell – volume: 8 start-page: e64600 year: 2013 publication-title: PLoS ONE – volume: 16 start-page: 1101 year: 2011 end-page: 1117 publication-title: Apoptosis – volume: 6 start-page: 853 year: 2005 end-page: 859 publication-title: Embo Rep – volume: 39 start-page: 4290 year: 2014 end-page: 4293 publication-title: Opt Lett – volume: 34 start-page: 518 year: 2009 end-page: 520 publication-title: Opt Lett – volume: 105 start-page: 20118 year: 2008 end-page: 20123 publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 133 start-page: 1143 year: 2013 end-page: 1152 publication-title: Int. J. Cancer – volume: 9 start-page: 671 year: 2012 end-page: 675 publication-title: Nat Methods – volume: 4 start-page: 251 year: 2013 end-page: 261 publication-title: J. Cancer – volume: 24 start-page: 95 year: 1999 end-page: 98 publication-title: Bone Marrow Transpl – volume: 99 start-page: 989 year: 2010 end-page: 996 publication-title: Biophys J – volume: 544 start-page: 321 year: 2003 end-page: 329 publication-title: Mutat Res‐Rev Mutat – ident: e_1_2_6_6_1 doi: 10.1117/1.3523618 – ident: e_1_2_6_13_1 doi: 10.1186/1471-2407-14-189 – ident: e_1_2_6_7_1 doi: 10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Q – ident: e_1_2_6_9_1 doi: 10.1371/journal.pone.0115999 – ident: e_1_2_6_20_1 doi: 10.1158/0008-5472.CAN-10-1686 – ident: e_1_2_6_4_1 doi: 10.1073/pnas.0804723105 – ident: e_1_2_6_3_1 doi: 10.1364/OL.39.004290 – ident: e_1_2_6_16_1 doi: 10.1007/s10495-011-0642-9 – ident: e_1_2_6_15_1 doi: 10.1038/nrm3382 – ident: e_1_2_6_17_1 doi: 10.1038/nmeth.2089 – ident: e_1_2_6_8_1 doi: 10.1002/ijc.28122 – ident: e_1_2_6_11_1 doi: 10.1016/j.bpj.2010.05.023 – ident: e_1_2_6_5_1 doi: 10.1364/OL.34.000518 – ident: e_1_2_6_21_1 doi: 10.1038/sj.bmt.1701815 – ident: e_1_2_6_14_1 doi: 10.1016/j.cell.2012.02.035 – ident: e_1_2_6_18_1 doi: 10.1038/sj.embor.7400488 – ident: e_1_2_6_2_1 doi: 10.1103/PhysRevLett.111.033903 – ident: e_1_2_6_22_1 doi: 10.1016/j.mrrev.2003.06.008 – ident: e_1_2_6_19_1 doi: 10.1158/0008-5472.CAN-08-3895 – ident: e_1_2_6_10_1 doi: 10.7150/jca.5838 – ident: e_1_2_6_12_1 doi: 10.1371/journal.pone.0064600 – reference: 24629088 - BMC Cancer. 2014 Mar 14;14:189 – reference: 19073935 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20118-23 – reference: 14644334 - Mutat Res. 2003 Nov;544(2-3):321-9 – reference: 20682278 - Biophys J. 2010 Aug 4;99(3):989-96 – reference: 22722606 - Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):436-47 – reference: 25706755 - PLoS One. 2015 Feb 23;10(2):e0115999 – reference: 13094644 - Cancer. 1953 Sep;6(5):963-8 – reference: 23909326 - Phys Rev Lett. 2013 Jul 19;111(3):033903 – reference: 20924114 - Cancer Res. 2010 Oct 15;70(20):7748-54 – reference: 10435742 - Bone Marrow Transplant. 1999 Jul;24(1):95-8 – reference: 23436651 - Int J Cancer. 2013 Sep 1;133(5):1143-52 – reference: 19373360 - Opt Lett. 2009 Feb 15;34(4):518-20 – reference: 21877215 - Apoptosis. 2011 Nov;16(11):1101-17 – reference: 22424226 - Cell. 2012 Mar 16;148(6):1145-59 – reference: 21198202 - J Biomed Opt. 2010 Nov-Dec;15(6):066028 – reference: 23459690 - J Cancer. 2013;4(3):251-61 – reference: 23724067 - PLoS One. 2013 May 28;8(5):e64600 – reference: 16113651 - EMBO Rep. 2005 Sep;6(9):853-9 – reference: 19549915 - Cancer Res. 2009 Jul 1;69(13):5357-63 – reference: 22930834 - Nat Methods. 2012 Jul;9(7):671-5 – reference: 25078159 - Opt Lett. 2014 Aug 1;39(15):4290-3 |
| SSID | ssj0060353 |
| Score | 2.1684434 |
| Snippet | A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 377 |
| SubjectTerms | Cancer Cancer screening Cell Nucleus - drug effects Cell Nucleus - ultrastructure Cheek chromatin Confocal confocal microscopy Fluorescence HeLa Cells Heterogeneity Humans hyperspectral microscopy Image Processing, Computer-Assisted Intracellular Ionophores - pharmacology Localization Medical imaging Medical screening Microscopy, Confocal - instrumentation Microscopy, Confocal - methods Microscopy, Fluorescence - instrumentation Microscopy, Fluorescence - methods Mitochondria Mitochondria - drug effects Mitochondria - ultrastructure Molecular structure Multimodal Imaging nanocytology Nanostructure Oxidative phosphorylation Phosphorylation Spectroscopy Spectrum Analysis - instrumentation Spectrum Analysis - methods Valinomycin Valinomycin - pharmacology |
| Title | Colocalization of cellular nanostructure using confocal fluorescence and partial wave spectroscopy |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.201500298 https://www.ncbi.nlm.nih.gov/pubmed/27111884 https://www.proquest.com/docview/1882078133 https://www.proquest.com/docview/2788254630 https://www.proquest.com/docview/1826669073 https://www.proquest.com/docview/1891870265 https://www.proquest.com/docview/1893888349 https://pubmed.ncbi.nlm.nih.gov/PMC5112146 |
| Volume | 10 |
| WOSCitedRecordID | wos000398216200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1864-0648 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060353 issn: 1864-063X databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5tHQ_sATZ-ZozJk5B4ipbEbuw8skEFCG0TYlLfItuxR9GUVO06xH_PnZOGVoMhwWNyl0g53_m-c86fAV7lXIuKuqeEczYW3Kcxogwf61wWicmN10kVDpuQp6dqPC7OV3bxt_wQ_YIbRUaYrynAtZkf_SIN_WYmtHkPAQ2xiG_CVobOOxzA1tvPo4tPy9k4x3uhyV7lIsZ0PF4SNybZ0fob1hPTLbR5u2lyFcyGbDR6-P_fsQMPOiTK3rSuswsbrn4E2yv8hI_BnDQh13V7NVnjGS30U-cqq3XdtOSzi5lj1D5_ybC29qTP_NWimQWiKOuYris2JQ9FwXd941jY3Uksms30xxO4GL37cvI-7g5liC1CNRVLjRBG595xU4kCy8e0GhL_o9Ui8VInHAW8MMZUnP6Mp8phwVkIWUmTOGFz_hQGdVO758AwM1bWSmOcNsJ6qt0szs1a461EahlBvByR0naM5XRwxlXZci1nJdmu7G0Xwetef9pydfxRc385wGUXs_MyxWKDqI84_604k6o9PCCJ4LAXYzCS4XXtmgW9AvEOrTfwu3SKFCfJLB_eqcOVUlwUETxr3a7_okyizZUSEcg1h-wViDB8XVJPvgbicALXmBkjyIJD_sVI5cfjD2f91d6_PPQC7mcEg0LP3j4M0CvdS7hnb64n89kBbMqxOugC9icYAkM7 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9QwDLZgQwIe-DmgMCBISDxVS5usSR9hcNrgOBDapHurkjSBQ1N7unFD_PfYaa_sNBgS4rG1W6mOHX9OnS8AzwthZE3dU9J7l0oRshRRRkhNoUpuCxsMr-NhE2oy0dNp-bHvJqS9MB0_xLDgRpER52sKcFqQ3vnFGvrVzmj3HiIaohG_DJsSfQmdfPP1p9HReDUdF1xEKspMFzLFfDxdMTfyfGf9DeuZ6RzcPN81eRbNxnQ0uvkfPuQW3OixKHvZOc9tuOSbO3D9DEPhXbB7bcx2_W5N1gZGS_3Uu8oa07Qd_exy4Rk10H9mWF0H0mfheNkuIlWU88w0NZuTj6Lguzn1LO7vJB7Ndv5jC45Gbw739tP-WIbUIVjTqTIIYkwRvLC1LLGAzOpdYoB0RvKgDBcoEKW1thb0bzzTHkvOUqpaWe6lK8Q92Gjaxj8Ahrmxdk5Z642VLlD15nB2NgZvcWVUAulqSCrXc5bT0RnHVce2nFdku2qwXQIvBv15x9bxR83t1QhXfdSeVBmWG0R-JMRvxbnS3fEBPIFngxjDkQxvGt8u6RWIeGjFQVykU2Y4TebF7oU6QmstZJnA_c7vhi_KFdpca5mAWvPIQYEow9clzexLpA4neI25MYE8euRfjFS9fXXwYbh6-C8PPYWr-4fvx9X4YPLuEVzLCRTFDr5t2EAP9Y_hijv9NjtZPOnj9ie_i0ZD |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5Bh9B44PcgMMBISDxFc2Ivdh5ho2IwlQkxqW-R7dhQNCVVR4f477lz0rBqMCTEY3LXSLnc-b5zz98BvCiEkTV1T0nvXSpFyFJEGSE1hSq5LWwwvI7DJtRkoqfT8qjvJqSzMB0_xLDhRpER12sKcD-vw84v1tCvdkan9xDREI34VdiQNElmBBv7H8fHh6vluOAiUlFmupAp5uPpirmR5zvrT1jPTBfg5sWuyfNoNqaj8a3_8CK34WaPRdmrznnuwBXf3IUb5xgK74Hda2O2609rsjYw2uqn3lXWmKbt6GeXC8-ogf4zw-o6kD4LJ8t2EaminGemqdmcfBQF382ZZ_F8J_FotvMf9-F4_ObT3tu0H8uQOgRrOlUGQYwpghe2liUWkFm9SwyQzkgelOECBaK01taC_hvPtMeSs5SqVpZ76QqxBaOmbfxDYJgba-eUtd5Y6QJVbw5XZ2PwFldGJZCuPknles5yGp1xUnVsy3lFtqsG2yXwctCfd2wdf9TcXn3hqo_a0yrDcoPIj4T4rThXuhsfwBN4PogxHMnwpvHtkh6BiId2HMRlOmWGy2Re7F6qI7TWQpYJPOj8bnijXKHNtZYJqDWPHBSIMnxd0sy-ROpwgteYGxPIo0f-xUjVu9cHH4arR__yo2dw_Wh_XB0eTN4_hs2cMFFs4NuGETqofwLX3Nm32eniaR-2PwHkj0W- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colocalization+of+cellular+nanostructure+using+confocal+fluorescence+and+partial+wave+spectroscopy&rft.jtitle=Journal+of+biophotonics&rft.au=Chandler%2C+John+E&rft.au=Stypula-Cyrus%2C+Yolanda&rft.au=Almassalha%2C+Luay&rft.au=Bauer%2C+Greta&rft.date=2017-03-01&rft.eissn=1864-0648&rft.volume=10&rft.issue=3&rft.spage=377&rft_id=info:doi/10.1002%2Fjbio.201500298&rft_id=info%3Apmid%2F27111884&rft.externalDocID=27111884 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon |