Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence

Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-spe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cell metabolism Ročník 25; číslo 6; s. 1374
Hlavní autoři: Tezze, Caterina, Romanello, Vanina, Desbats, Maria Andrea, Fadini, Gian Paolo, Albiero, Mattia, Favaro, Giulia, Ciciliot, Stefano, Soriano, Maria Eugenia, Morbidoni, Valeria, Cerqua, Cristina, Loefler, Stefan, Kern, Helmut, Franceschi, Claudio, Salvioli, Stefano, Conte, Maria, Blaauw, Bert, Zampieri, Sandra, Salviati, Leonardo, Scorrano, Luca, Sandri, Marco
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 06.06.2017
Témata:
ISSN:1932-7420, 1932-7420
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging.
AbstractList Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging.
Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging.Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging.
Author Morbidoni, Valeria
Franceschi, Claudio
Tezze, Caterina
Desbats, Maria Andrea
Albiero, Mattia
Cerqua, Cristina
Conte, Maria
Soriano, Maria Eugenia
Salviati, Leonardo
Ciciliot, Stefano
Salvioli, Stefano
Blaauw, Bert
Zampieri, Sandra
Sandri, Marco
Scorrano, Luca
Kern, Helmut
Fadini, Gian Paolo
Loefler, Stefan
Romanello, Vanina
Favaro, Giulia
Author_xml – sequence: 1
  givenname: Caterina
  surname: Tezze
  fullname: Tezze, Caterina
  organization: Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy
– sequence: 2
  givenname: Vanina
  surname: Romanello
  fullname: Romanello, Vanina
  organization: Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy
– sequence: 3
  givenname: Maria Andrea
  surname: Desbats
  fullname: Desbats, Maria Andrea
  organization: Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
– sequence: 4
  givenname: Gian Paolo
  surname: Fadini
  fullname: Fadini, Gian Paolo
  organization: Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
– sequence: 5
  givenname: Mattia
  surname: Albiero
  fullname: Albiero, Mattia
  organization: Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
– sequence: 6
  givenname: Giulia
  surname: Favaro
  fullname: Favaro, Giulia
  organization: Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy
– sequence: 7
  givenname: Stefano
  surname: Ciciliot
  fullname: Ciciliot, Stefano
  organization: Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
– sequence: 8
  givenname: Maria Eugenia
  surname: Soriano
  fullname: Soriano, Maria Eugenia
  organization: Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
– sequence: 9
  givenname: Valeria
  surname: Morbidoni
  fullname: Morbidoni, Valeria
  organization: Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
– sequence: 10
  givenname: Cristina
  surname: Cerqua
  fullname: Cerqua, Cristina
  organization: Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
– sequence: 11
  givenname: Stefan
  surname: Loefler
  fullname: Loefler, Stefan
  organization: Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Wilhelminenspital, Montleartstrasse 37, A-1171 Wien, Austria
– sequence: 12
  givenname: Helmut
  surname: Kern
  fullname: Kern, Helmut
  organization: Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Wilhelminenspital, Montleartstrasse 37, A-1171 Wien, Austria
– sequence: 13
  givenname: Claudio
  surname: Franceschi
  fullname: Franceschi, Claudio
  organization: IRCCS, Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy
– sequence: 14
  givenname: Stefano
  surname: Salvioli
  fullname: Salvioli, Stefano
  organization: Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
– sequence: 15
  givenname: Maria
  surname: Conte
  fullname: Conte, Maria
  organization: Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
– sequence: 16
  givenname: Bert
  surname: Blaauw
  fullname: Blaauw, Bert
  organization: Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy
– sequence: 17
  givenname: Sandra
  surname: Zampieri
  fullname: Zampieri, Sandra
  organization: Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy
– sequence: 18
  givenname: Leonardo
  surname: Salviati
  fullname: Salviati, Leonardo
  organization: Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; Istituto di Ricerca Pediatria, IRP, Città della Speranza, Corso Stati Uniti 4, 35129 Padova, Italy
– sequence: 19
  givenname: Luca
  surname: Scorrano
  fullname: Scorrano, Luca
  email: luca.scorrano@unipd.it
  organization: Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy. Electronic address: luca.scorrano@unipd.it
– sequence: 20
  givenname: Marco
  surname: Sandri
  fullname: Sandri, Marco
  email: marco.sandri@unipd.it
  organization: Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy; Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada. Electronic address: marco.sandri@unipd.it
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28552492$$D View this record in MEDLINE/PubMed
BookMark eNpNUEtLAzEYDKKorf4BD5Kjh-6ax75yLFK10FKhei7Z7BeNbJLaL3vw6i93QQVP82AYhpmQ4xADEHLFWc4Zr27fc-Mh5YLxOmdFzgQ_IudcSZHVhWDH__gZmSC-MyYrqeQpORNNWYpCiXPyNX-FbI4YjdMJOrqKiDRaunmac-oCXQ9oeqBLv9cm4Z9ca8QZXUPSbeydoY_RQ8Sk0Y329hMT-NFdBttr73VyMcyoDh1d7F16g97pnm4hABoIBi7IidU9wuUvTsnL_eL57jFbbR6Wd_NVZkrBU2YrXXJlK94q0fDaWOiU6EpprWGsKURd87aEslCFNp2tGNRSFkK1lWIGqpFOyc1P7_4QPwbAtPNuXND3OkAccMcVk4VsSt6M0evf6NB66Hb7g_P68Ln7-018A-w8cj8
CitedBy_id crossref_primary_10_1038_s41392_024_02044_3
crossref_primary_10_1113_JP281752
crossref_primary_10_1002_adbi_202200202
crossref_primary_10_14814_phy2_14266
crossref_primary_10_3390_biomedicines10020505
crossref_primary_10_1016_j_mito_2023_07_003
crossref_primary_10_14814_phy2_15230
crossref_primary_10_15252_embr_201949799
crossref_primary_10_1111_acel_14009
crossref_primary_10_3389_fphys_2022_706003
crossref_primary_10_14814_phy2_15345
crossref_primary_10_1016_j_exger_2021_111246
crossref_primary_10_3390_life11020165
crossref_primary_10_1016_j_exger_2021_111247
crossref_primary_10_1038_s41598_018_27429_7
crossref_primary_10_1631_jzus_B2300128
crossref_primary_10_1002_jcsm_13189
crossref_primary_10_7600_jspfsm_74_221
crossref_primary_10_1002_jcsm_12409
crossref_primary_10_3389_fphys_2021_638983
crossref_primary_10_1016_j_mad_2025_112077
crossref_primary_10_3390_ijms20174311
crossref_primary_10_1146_annurev_nutr_082117_051637
crossref_primary_10_15252_embr_202050094
crossref_primary_10_3390_cells12010183
crossref_primary_10_1007_s00424_019_02258_3
crossref_primary_10_1113_JP281647
crossref_primary_10_1016_j_phrs_2018_02_018
crossref_primary_10_1016_j_mito_2019_06_003
crossref_primary_10_1016_j_mam_2024_101319
crossref_primary_10_3389_fmed_2022_894996
crossref_primary_10_3390_ijms24065217
crossref_primary_10_1038_s41467_020_20123_1
crossref_primary_10_1249_MSS_0000000000003748
crossref_primary_10_3389_fcell_2020_00059
crossref_primary_10_1111_acel_13961
crossref_primary_10_1016_j_arr_2018_05_002
crossref_primary_10_1186_s13578_024_01259_9
crossref_primary_10_1016_j_jmb_2019_05_032
crossref_primary_10_1016_j_bbamcr_2018_12_012
crossref_primary_10_1038_s41467_019_13694_1
crossref_primary_10_1111_acel_13140
crossref_primary_10_1038_s41467_023_42564_0
crossref_primary_10_3390_life10090164
crossref_primary_10_7554_eLife_74335
crossref_primary_10_1016_j_ceca_2021_102357
crossref_primary_10_1016_j_isci_2023_106895
crossref_primary_10_3389_fphys_2019_00287
crossref_primary_10_1113_JP289019
crossref_primary_10_1186_s12891_023_06641_1
crossref_primary_10_3390_geriatrics5040095
crossref_primary_10_3390_ijms21134759
crossref_primary_10_1007_s10522_020_09883_x
crossref_primary_10_1111_aor_13161
crossref_primary_10_3389_fendo_2024_1325286
crossref_primary_10_1093_hmg_ddae008
crossref_primary_10_3389_fimmu_2024_1405621
crossref_primary_10_3389_fphys_2019_00041
crossref_primary_10_1002_mnfr_201801102
crossref_primary_10_1016_j_arr_2021_101463
crossref_primary_10_1016_j_clnu_2021_04_037
crossref_primary_10_1016_j_cmet_2017_11_010
crossref_primary_10_1016_j_jamda_2023_06_004
crossref_primary_10_1186_s13550_020_00666_6
crossref_primary_10_1089_ars_2020_8220
crossref_primary_10_3389_fonc_2022_839899
crossref_primary_10_3389_fimmu_2023_1166214
crossref_primary_10_1002_jcsm_12632
crossref_primary_10_1016_j_tjnut_2023_09_006
crossref_primary_10_1038_s41580_025_00854_z
crossref_primary_10_1016_j_jshs_2023_04_001
crossref_primary_10_1016_j_xcrm_2025_102248
crossref_primary_10_1002_jcsm_13715
crossref_primary_10_1152_japplphysiol_00719_2018
crossref_primary_10_14814_phy2_14155
crossref_primary_10_1186_s11658_025_00771_1
crossref_primary_10_1002_jcp_31204
crossref_primary_10_1007_s10522_020_09879_7
crossref_primary_10_1016_j_clnu_2021_03_009
crossref_primary_10_1016_j_mito_2025_102022
crossref_primary_10_1042_EBC20170025
crossref_primary_10_1186_s12885_025_14630_x
crossref_primary_10_3390_ijms21218314
crossref_primary_10_1111_apha_14107
crossref_primary_10_1152_ajpcell_00091_2025
crossref_primary_10_1242_jcs_218313
crossref_primary_10_1080_07853890_2023_2240707
crossref_primary_10_1042_BST20210460
crossref_primary_10_1002_jcsm_12500
crossref_primary_10_1039_D1FO03970A
crossref_primary_10_1039_D4FO04341C
crossref_primary_10_1186_s13395_023_00320_4
crossref_primary_10_1016_j_freeradbiomed_2021_11_030
crossref_primary_10_1111_acel_14118
crossref_primary_10_1111_joor_12824
crossref_primary_10_3389_fcell_2020_585644
crossref_primary_10_1016_j_jbc_2024_108076
crossref_primary_10_3390_cells11030505
crossref_primary_10_1016_j_jff_2024_106291
crossref_primary_10_1038_s41556_025_01625_w
crossref_primary_10_1089_ars_2019_7872
crossref_primary_10_7554_eLife_45873
crossref_primary_10_1186_s12964_018_0310_6
crossref_primary_10_3390_genes9030165
crossref_primary_10_1016_j_exger_2020_110919
crossref_primary_10_2174_0929867329666211217100020
crossref_primary_10_1146_annurev_biophys_030822_020736
crossref_primary_10_1515_hsz_2017_0331
crossref_primary_10_1177_22143602241304993
crossref_primary_10_1007_s00018_021_03774_1
crossref_primary_10_1111_apha_14119
crossref_primary_10_3389_fimmu_2022_878755
crossref_primary_10_1096_fj_202100066R
crossref_primary_10_1002_jcsm_13146
crossref_primary_10_3390_ijms22052567
crossref_primary_10_1096_fj_201701264R
crossref_primary_10_2174_0109298673255403230919061828
crossref_primary_10_1007_s00441_022_03720_y
crossref_primary_10_1111_acel_14446
crossref_primary_10_1016_j_semcdb_2022_02_011
crossref_primary_10_1371_journal_pbio_3000808
crossref_primary_10_1016_j_jnha_2024_100401
crossref_primary_10_15252_embj_201899576
crossref_primary_10_3390_antiox7100126
crossref_primary_10_1016_j_lfs_2025_123940
crossref_primary_10_1093_pnasnexus_pgac086
crossref_primary_10_1155_2019_7058350
crossref_primary_10_1038_s42003_021_02840_5
crossref_primary_10_1038_s41598_018_29972_9
crossref_primary_10_1016_j_arr_2024_102603
crossref_primary_10_1093_nar_gkae020
crossref_primary_10_3390_ijms21093182
crossref_primary_10_1002_wsbm_1549
crossref_primary_10_1186_s12967_021_02737_1
crossref_primary_10_3389_fcell_2021_744838
crossref_primary_10_3389_fimmu_2023_1164202
crossref_primary_10_3390_ijms22158179
crossref_primary_10_1016_j_tcb_2019_08_003
crossref_primary_10_1186_s40779_023_00485_5
crossref_primary_10_1016_j_ecoenv_2022_114266
crossref_primary_10_1016_j_jacadv_2024_101553
crossref_primary_10_1016_j_molcel_2024_07_020
crossref_primary_10_3390_ijms242316951
crossref_primary_10_1113_JP279411
crossref_primary_10_3389_fphys_2018_01883
crossref_primary_10_1096_fj_201800683RR
crossref_primary_10_1242_dmm_048912
crossref_primary_10_1055_a_1778_4159
crossref_primary_10_3389_fragi_2025_1606110
crossref_primary_10_1089_ars_2021_0266
crossref_primary_10_1042_BCJ20220233
crossref_primary_10_3390_cells8060597
crossref_primary_10_1016_j_arr_2021_101309
crossref_primary_10_3390_nu13082764
crossref_primary_10_1089_ars_2018_7534
crossref_primary_10_1038_s41467_022_28557_5
crossref_primary_10_1007_s00018_021_03807_9
crossref_primary_10_1016_j_arr_2020_101025
crossref_primary_10_1016_j_bbrc_2020_02_110
crossref_primary_10_1002_ijc_32177
crossref_primary_10_1167_iovs_63_12_18
crossref_primary_10_1016_j_trsl_2020_03_001
crossref_primary_10_1038_s41467_024_52820_6
crossref_primary_10_1186_s40779_024_00544_5
crossref_primary_10_3390_biom13081225
crossref_primary_10_1002_jev2_12154
crossref_primary_10_1016_j_exger_2024_112594
crossref_primary_10_3390_antiox12081624
crossref_primary_10_3389_fcell_2021_743892
crossref_primary_10_1113_EP089130
crossref_primary_10_3390_biom15030433
crossref_primary_10_1002_cam4_2538
crossref_primary_10_1016_j_cmet_2018_06_013
crossref_primary_10_1016_j_mam_2021_101041
crossref_primary_10_15252_embr_202153746
crossref_primary_10_1096_fj_202200675R
crossref_primary_10_3390_antiox10040588
crossref_primary_10_1016_j_jbior_2023_101001
crossref_primary_10_3389_fendo_2023_1156583
crossref_primary_10_3389_fmolb_2022_959844
crossref_primary_10_1016_j_cophys_2022_100550
crossref_primary_10_1371_journal_pone_0310394
crossref_primary_10_1038_s41418_021_00747_6
crossref_primary_10_1111_apha_13179
crossref_primary_10_1126_science_adh9351
crossref_primary_10_1038_s43587_024_00797_8
crossref_primary_10_1038_s41598_019_42554_7
crossref_primary_10_3389_fphys_2019_00419
crossref_primary_10_3389_fcell_2021_673618
crossref_primary_10_3390_cells11040675
crossref_primary_10_1016_j_bbagen_2018_03_013
crossref_primary_10_1097_JP9_0000000000000039
crossref_primary_10_3389_fphar_2020_01171
crossref_primary_10_1038_s41598_018_25727_8
crossref_primary_10_1016_j_abb_2020_108511
crossref_primary_10_1161_CIRCRESAHA_124_325614
crossref_primary_10_3389_fendo_2019_00570
crossref_primary_10_1016_j_mito_2025_102074
crossref_primary_10_1016_j_molmet_2019_06_020
crossref_primary_10_3390_ijms241411401
crossref_primary_10_3389_fcell_2021_626117
crossref_primary_10_1016_j_stem_2022_07_010
crossref_primary_10_1111_acel_14091
crossref_primary_10_1113_JP285955
crossref_primary_10_1038_s41467_025_60933_9
crossref_primary_10_1016_j_ceb_2019_05_005
crossref_primary_10_1134_S0022093025030147
crossref_primary_10_1111_acel_14400
crossref_primary_10_1038_s41556_018_0133_0
crossref_primary_10_1002_adbi_202300445
crossref_primary_10_1002_jcsm_12496
crossref_primary_10_1016_j_semcdb_2022_03_023
crossref_primary_10_1097_FJC_0000000000001250
crossref_primary_10_3390_biology13030146
crossref_primary_10_1113_JP281365
crossref_primary_10_1172_JCI146415
crossref_primary_10_1016_j_tem_2021_08_008
crossref_primary_10_3389_fvets_2018_00035
crossref_primary_10_3390_metabo15010059
crossref_primary_10_7554_eLife_66519
crossref_primary_10_3389_fphys_2019_01088
crossref_primary_10_1371_journal_pgen_1008085
crossref_primary_10_1186_s13098_023_01192_w
crossref_primary_10_1038_s41434_023_00422_0
crossref_primary_10_1002_fft2_261
crossref_primary_10_3389_fphys_2021_625287
crossref_primary_10_1016_j_cmet_2019_08_019
crossref_primary_10_1038_s41418_022_01076_y
crossref_primary_10_3390_metabo15070472
crossref_primary_10_1038_s41467_024_54720_1
crossref_primary_10_1002_sctm_20_0005
crossref_primary_10_3389_fcell_2022_928210
crossref_primary_10_1002_jcsm_12488
crossref_primary_10_1155_2019_4617801
crossref_primary_10_3390_biology12070892
crossref_primary_10_1016_j_niox_2021_12_006
crossref_primary_10_1002_jcsm_12363
crossref_primary_10_1016_j_cophys_2018_02_006
crossref_primary_10_4093_dmj_2023_0115
crossref_primary_10_1007_s00018_020_03748_9
crossref_primary_10_1016_j_bbabio_2020_148332
crossref_primary_10_1042_BST20200687
crossref_primary_10_1002_hep_29533
crossref_primary_10_1016_j_lfs_2020_118243
crossref_primary_10_1038_s41419_021_04389_x
crossref_primary_10_1519_JSC_0000000000004793
crossref_primary_10_1038_s41598_021_98771_6
crossref_primary_10_1097_MOL_0000000000000602
crossref_primary_10_3389_fneur_2021_641259
crossref_primary_10_3389_fcell_2025_1639123
crossref_primary_10_1038_s41580_020_0210_7
crossref_primary_10_1007_s13273_022_00260_y
crossref_primary_10_3390_cells9010197
crossref_primary_10_1016_j_devcel_2020_06_030
crossref_primary_10_1111_acel_13770
crossref_primary_10_14336_AD_2024_0722
crossref_primary_10_1038_s41419_019_1767_y
crossref_primary_10_18632_aging_206298
crossref_primary_10_1002_jcsm_13562
crossref_primary_10_1016_j_phrs_2018_12_020
crossref_primary_10_1080_87559129_2023_2274487
crossref_primary_10_1186_s12929_025_01153_7
crossref_primary_10_3390_cells13211773
crossref_primary_10_1016_j_cmet_2023_10_011
crossref_primary_10_1016_j_bbabio_2018_05_016
crossref_primary_10_1016_j_canlet_2020_10_038
crossref_primary_10_1371_journal_pgen_1008184
crossref_primary_10_1038_s42003_025_07770_0
crossref_primary_10_1249_MSS_0000000000002150
crossref_primary_10_1210_endrev_bnad004
crossref_primary_10_3390_ijms23105415
crossref_primary_10_1139_apnm_2022_0336
crossref_primary_10_3389_fcvm_2022_953657
crossref_primary_10_1007_s11357_022_00574_8
crossref_primary_10_15252_embj_201796553
crossref_primary_10_1093_jn_nxab440
crossref_primary_10_1016_j_arres_2025_100133
crossref_primary_10_1016_j_isci_2024_109164
crossref_primary_10_1146_annurev_nutr_071816_064800
crossref_primary_10_1016_j_semcdb_2024_02_001
crossref_primary_10_1016_j_nut_2018_11_004
crossref_primary_10_3389_fphys_2022_1097988
crossref_primary_10_1002_pmic_201800404
crossref_primary_10_1016_j_tem_2024_05_005
crossref_primary_10_1038_s41598_022_25359_z
crossref_primary_10_1002_jcsm_12336
crossref_primary_10_1038_s42255_021_00354_2
crossref_primary_10_1016_j_bbabio_2018_01_005
crossref_primary_10_15252_embj_2021108863
crossref_primary_10_1007_s00018_020_03662_0
crossref_primary_10_1007_s10974_019_09510_4
crossref_primary_10_1016_j_exger_2019_01_022
crossref_primary_10_1186_s11658_024_00572_y
crossref_primary_10_3390_ijms22010091
crossref_primary_10_3389_fragi_2025_1588014
crossref_primary_10_1016_j_tem_2022_07_003
crossref_primary_10_3390_nu14030483
crossref_primary_10_1038_s41531_022_00419_3
crossref_primary_10_1089_ars_2020_8041
crossref_primary_10_1146_annurev_cellbio_120420_015303
crossref_primary_10_1172_JCI135821
crossref_primary_10_3389_fbioe_2020_590869
crossref_primary_10_3390_antiox11071302
crossref_primary_10_1080_15548627_2021_2016255
crossref_primary_10_1016_j_jff_2023_105803
crossref_primary_10_1038_s42255_024_00997_x
crossref_primary_10_1007_s11427_023_2305_0
crossref_primary_10_1111_acel_14181
crossref_primary_10_1016_j_celrep_2023_112336
crossref_primary_10_1038_s41422_018_0078_7
crossref_primary_10_3390_ijms20153815
crossref_primary_10_3390_cells10010079
crossref_primary_10_1073_pnas_2204750120
crossref_primary_10_1152_ajpendo_00091_2024
crossref_primary_10_1186_s13395_022_00296_7
crossref_primary_10_1007_s00109_023_02326_3
crossref_primary_10_3389_fcell_2022_826981
crossref_primary_10_1186_s12877_023_04117_4
crossref_primary_10_1111_febs_16323
crossref_primary_10_3390_cimb46030130
crossref_primary_10_3390_nu15184073
crossref_primary_10_3390_cells12050716
crossref_primary_10_1016_j_arr_2020_101191
crossref_primary_10_3389_fphys_2025_1654369
crossref_primary_10_1007_s00281_020_00813_0
crossref_primary_10_3390_antiox9030221
crossref_primary_10_3390_cells12172183
crossref_primary_10_1113_JP279802
crossref_primary_10_3389_fcell_2024_1509519
crossref_primary_10_1111_acel_70054
crossref_primary_10_1007_s11010_025_05338_4
crossref_primary_10_1016_j_tcb_2017_08_011
crossref_primary_10_1080_14728222_2019_1559827
crossref_primary_10_3390_cells9061385
crossref_primary_10_3389_fendo_2019_00114
crossref_primary_10_1113_JP277071
crossref_primary_10_1111_acel_13977
crossref_primary_10_1016_j_molmed_2021_07_013
crossref_primary_10_1111_febs_15103
crossref_primary_10_1186_s12931_021_01778_w
crossref_primary_10_1016_j_exger_2020_111022
crossref_primary_10_1038_s41536_021_00127_1
crossref_primary_10_1016_j_jff_2024_106318
crossref_primary_10_3390_ijms21207580
crossref_primary_10_1038_s12276_019_0315_2
crossref_primary_10_1038_s41467_018_04033_x
crossref_primary_10_1016_j_exger_2019_110796
crossref_primary_10_3390_cells11132086
crossref_primary_10_1210_endocr_bqae004
crossref_primary_10_1002_jcsm_13519
crossref_primary_10_1016_j_foodres_2025_117086
crossref_primary_10_1055_a_1693_8356
crossref_primary_10_1167_iovs_61_10_10
crossref_primary_10_1016_j_ejphar_2023_176085
crossref_primary_10_1007_s11427_023_2552_7
crossref_primary_10_1210_endocr_bqae120
crossref_primary_10_1016_j_jfma_2022_05_007
crossref_primary_10_3389_fphys_2020_608474
crossref_primary_10_1007_s41999_022_00635_3
crossref_primary_10_1038_s41574_023_00934_0
crossref_primary_10_3390_ijms21103450
crossref_primary_10_3390_ijms23042227
crossref_primary_10_1002_fsn3_2750
crossref_primary_10_1038_s41419_024_07165_9
crossref_primary_10_1038_s41467_019_10226_9
crossref_primary_10_3389_fendo_2025_1592491
crossref_primary_10_3390_cells10051054
crossref_primary_10_1016_j_biopha_2018_10_154
crossref_primary_10_2337_dbi23_0003
crossref_primary_10_3389_fneur_2021_681326
ContentType Journal Article
Copyright Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmet.2017.04.021
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
ExternalDocumentID 28552492
Genre Journal Article
GroupedDBID ---
--K
0R~
0SF
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
NPM
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
7X8
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c521t-f6a519f61b92817cfed92d53ffc00842771b5e5494acdf60e733429b690ce6342
IEDL.DBID 7X8
ISICitedReferencesCount 456
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402961500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-7420
IngestDate Thu Oct 02 04:36:25 EDT 2025
Thu Jan 02 23:12:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords FoxO
Opa1
inflammation
mitochondria
muscle
aging
oxidative stress
FGF21
sarcopenia
Language English
License Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-f6a519f61b92817cfed92d53ffc00842771b5e5494acdf60e733429b690ce6342
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S1550413117302279/pdf
PMID 28552492
PQID 1903438518
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1903438518
pubmed_primary_28552492
PublicationCentury 2000
PublicationDate 2017-06-06
PublicationDateYYYYMMDD 2017-06-06
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2017
References 26793123 - Front Physiol. 2016 Jan 12;6:422
21636302 - Mol Genet Metab. 2011 Aug;103(4):383-7
19661286 - FASEB J. 2009 Nov;23(11):3896-905
19945408 - Cell Metab. 2009 Dec;10 (6):507-15
18158317 - Brain. 2008 Feb;131(Pt 2):338-51
11017080 - Nat Genet. 2000 Oct;26(2):211-5
24550352 - J Gerontol A Biol Sci Med Sci. 2015 Feb;70(2):163-73
26785494 - Science. 2015 Dec 4;350(6265):aad0116
26073496 - Cell Metab. 2015 Jul 7;22(1):4-11
15064763 - Nat Genet. 2004 May;36(5):449-51
18054315 - Cell Metab. 2007 Dec;6(6):458-71
16839884 - Cell. 2006 Jul 14;126(1):163-75
24042504 - J Physiol. 2013 Dec 1;591(23):6017-37
24882005 - Cell Rep. 2014 Jun 12;7(5):1481-94
19305406 - Nat Methods. 2009 Apr;6(4):275-7
16839885 - Cell. 2006 Jul 14;126(1):177-89
23802635 - Aging Cell. 2013 Dec;12(6):943-9
21820356 - Lancet Neurol. 2011 Sep;10(9):806-18
27650781 - Sci Rep. 2016 Sep 21;6:33953
27662438 - J Clin Endocrinol Metab. 2016 Dec;101(12 ):4886-4894
27794108 - Neurology. 2016 Nov 29;87(22):2290-2299
17428816 - Hum Mol Genet. 2007 Jun 1;16(11):1307-18
18054316 - Cell Metab. 2007 Dec;6(6):472-83
25858807 - Nat Commun. 2015 Apr 10;6:6670
22653162 - Nat Protoc. 2012 May 31;7(6):1235-46
24055366 - Cell. 2013 Sep 26;155(1):160-71
12527753 - J Cell Biol. 2003 Jan 20;160(2):189-200
21111239 - Cell. 2010 Nov 24;143(5):813-25
11017079 - Nat Genet. 2000 Oct;26(2):207-10
22681576 - Aging Cell. 2012 Oct;11(5):801-9
23109432 - Mol Cell Biol. 2013 Jan;33(2):194-212
26785479 - Science. 2015 Dec 4;350(6265):1204-7
21148113 - FASEB J. 2011 Mar;25(3):1028-39
21037586 - Nat Med. 2010 Nov;16(11):1313-20
26042208 - J Clin Transl Endocrinol. 2015 Jun 1;2(2):77-82
25651178 - Cell Metab. 2015 Feb 3;21(2):237-48
23517348 - FEBS J. 2013 Sep;280(17):4294-314
25483961 - Autophagy. 2014;10 (11):1883-94
20403324 - Cell. 2010 Apr 16;141(2):280-9
26561570 - J Med Genet. 2016 Feb;53(2):127-31
17406588 - Nat Protoc. 2007;2(2):287-95
References_xml – reference: 20403324 - Cell. 2010 Apr 16;141(2):280-9
– reference: 24042504 - J Physiol. 2013 Dec 1;591(23):6017-37
– reference: 24550352 - J Gerontol A Biol Sci Med Sci. 2015 Feb;70(2):163-73
– reference: 12527753 - J Cell Biol. 2003 Jan 20;160(2):189-200
– reference: 26561570 - J Med Genet. 2016 Feb;53(2):127-31
– reference: 19305406 - Nat Methods. 2009 Apr;6(4):275-7
– reference: 26073496 - Cell Metab. 2015 Jul 7;22(1):4-11
– reference: 16839885 - Cell. 2006 Jul 14;126(1):177-89
– reference: 26785494 - Science. 2015 Dec 4;350(6265):aad0116
– reference: 26042208 - J Clin Transl Endocrinol. 2015 Jun 1;2(2):77-82
– reference: 23802635 - Aging Cell. 2013 Dec;12(6):943-9
– reference: 27662438 - J Clin Endocrinol Metab. 2016 Dec;101(12 ):4886-4894
– reference: 25858807 - Nat Commun. 2015 Apr 10;6:6670
– reference: 11017080 - Nat Genet. 2000 Oct;26(2):211-5
– reference: 27650781 - Sci Rep. 2016 Sep 21;6:33953
– reference: 16839884 - Cell. 2006 Jul 14;126(1):163-75
– reference: 25651178 - Cell Metab. 2015 Feb 3;21(2):237-48
– reference: 24055366 - Cell. 2013 Sep 26;155(1):160-71
– reference: 18054316 - Cell Metab. 2007 Dec;6(6):472-83
– reference: 27794108 - Neurology. 2016 Nov 29;87(22):2290-2299
– reference: 21148113 - FASEB J. 2011 Mar;25(3):1028-39
– reference: 26785479 - Science. 2015 Dec 4;350(6265):1204-7
– reference: 23517348 - FEBS J. 2013 Sep;280(17):4294-314
– reference: 22653162 - Nat Protoc. 2012 May 31;7(6):1235-46
– reference: 26793123 - Front Physiol. 2016 Jan 12;6:422
– reference: 17428816 - Hum Mol Genet. 2007 Jun 1;16(11):1307-18
– reference: 17406588 - Nat Protoc. 2007;2(2):287-95
– reference: 18054315 - Cell Metab. 2007 Dec;6(6):458-71
– reference: 24882005 - Cell Rep. 2014 Jun 12;7(5):1481-94
– reference: 19945408 - Cell Metab. 2009 Dec;10 (6):507-15
– reference: 25483961 - Autophagy. 2014;10 (11):1883-94
– reference: 11017079 - Nat Genet. 2000 Oct;26(2):207-10
– reference: 21111239 - Cell. 2010 Nov 24;143(5):813-25
– reference: 21820356 - Lancet Neurol. 2011 Sep;10(9):806-18
– reference: 23109432 - Mol Cell Biol. 2013 Jan;33(2):194-212
– reference: 19661286 - FASEB J. 2009 Nov;23(11):3896-905
– reference: 21037586 - Nat Med. 2010 Nov;16(11):1313-20
– reference: 21636302 - Mol Genet Metab. 2011 Aug;103(4):383-7
– reference: 15064763 - Nat Genet. 2004 May;36(5):449-51
– reference: 18158317 - Brain. 2008 Feb;131(Pt 2):338-51
– reference: 22681576 - Aging Cell. 2012 Oct;11(5):801-9
SSID ssj0036393
Score 2.663007
Snippet Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1374
SubjectTerms Aging - genetics
Aging - metabolism
Aging - pathology
Animals
Cellular Senescence - genetics
Endoplasmic Reticulum Stress - genetics
Fibroblast Growth Factors - genetics
Fibroblast Growth Factors - metabolism
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
Inflammation - enzymology
Inflammation - genetics
Inflammation - pathology
Mice
Muscle, Skeletal - enzymology
Muscle, Skeletal - pathology
Muscular Atrophy - enzymology
Muscular Atrophy - genetics
Muscular Atrophy - pathology
Organ Size
Unfolded Protein Response - genetics
Title Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence
URI https://www.ncbi.nlm.nih.gov/pubmed/28552492
https://www.proquest.com/docview/1903438518
Volume 25
WOSCitedRecordID wos000402961500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7qKHhxX8aNCB4n2CRt055kEAcH7DigwtxKm0UKYzvaGcGrv9yXLnoSBC-hDQRK3tf3vuRtCF2EiWf9a4bAAAcU11ASaKaIlCnXymEpo6ZqNiFGo2AyCcfNhVvZhFW2OrFS1KqQ9o78EgwXdznwg-Bq9kps1yjrXW1aaCyjDgcqY1EtJt9eBA7Wl9deZWCRLnOapJk6vku-aBtLSUVV6pTR3ylmZWoGm__9yC200ZBM3K9RsY2WdL6D1uq2kx-76LP_rEkrF63wHRhKXBh8P-5TnOU4WpSwDA-rBMqyfY2AZvdwpOcAm2kmsW2wXgC3LDOYrgufw-wwN4CxOh-yh5Nc4ZuZTfuYAs7xg1Ws0uqSPfQ0uHm8viVNLwYibcsDYvwEuJ7xaRqygApptAqZ8rgx0pbkZ0LQ1NNw2HQTqYzvaME5mLoUDt9S-_C4j1byIteHCCfccUyiACAu8EkhQ5FyW-VNitT3Qxl20Xm7uTFg3TowklwXizL-2d4uOqglFM_qohwxCzzPVj88-sPqY7RuBV9FfPknqGPgT9enaFW-z7Py7awCEYyjcfQFr1jQtQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age-Associated+Loss+of+OPA1+in+Muscle+Impacts+Muscle+Mass%2C+Metabolic+Homeostasis%2C+Systemic+Inflammation%2C+and+Epithelial+Senescence&rft.jtitle=Cell+metabolism&rft.au=Tezze%2C+Caterina&rft.au=Romanello%2C+Vanina&rft.au=Desbats%2C+Maria+Andrea&rft.au=Fadini%2C+Gian+Paolo&rft.date=2017-06-06&rft.issn=1932-7420&rft.eissn=1932-7420&rft.volume=25&rft.issue=6&rft.spage=1374&rft_id=info:doi/10.1016%2Fj.cmet.2017.04.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7420&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7420&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7420&client=summon