High accuracy distinction of shockable and non-shockable arrhythmias in abnormal classes through wavelet transform with pseudo differential like operators

Arrhythmia is an abnormal rhythm of the heart which leads to sudden death. Among these arrhythmias, some are shockable, and some are non-shockable arrhythmias with external defibrillation. The automated external defibrillator (AED) is used as the automated arrhythmia diagnosis system and requires an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific Reports Ročník 13; číslo 1; s. 9513 - 23
Hlavní autoři: Rahman, Md. Masudur, Albeverio, Sergio, Kagawa, Toshinao, Kawasaki, Shuji, Okai, Takayuki, Oya, Hidetoshi, Yahagi, Yumi, Yoshida, Minoru W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer Science and Business Media LLC 12.06.2023
Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Arrhythmia is an abnormal rhythm of the heart which leads to sudden death. Among these arrhythmias, some are shockable, and some are non-shockable arrhythmias with external defibrillation. The automated external defibrillator (AED) is used as the automated arrhythmia diagnosis system and requires an accurate and rapid decision to increase the survival rate. Therefore, a precise and quick decision by the AED has become essential in improving the survival rate. This paper presents an arrhythmia diagnosis system for the AED by engineering methods and generalized function theories. In the arrhythmia diagnosis system, the proposed wavelet transform with pseudo-differential like operators-based method effectively generates a distinguishable scalogram for the shockable and non-shockable arrhythmia in the abnormal class signals, which leads to the decision algorithm getting the best distinction. Then, a new quality parameter is introduced to get more details by quantizing the statistical features on the scalogram. Finally, design a simple AED shock and non-shock advice method by following this information to improve the precision and rapid decision. Here, an adequate topology (metric function) is adopted to the space of the scatter plot, where we can give different scales to select the best area of the scatter plot for the test sample. As a consequence, the proposed decision method gives the highest accuracy and rapid decision between shockable and non-shockable arrhythmias. The proposed arrhythmia diagnosis system increases the accuracy to 97.98%, with a gain of 11.75% compared to the conventional approach in the abnormal class signals. Therefore, the proposed method contributes an additional 11.75% possibility for increasing the survival rate. The proposed arrhythmia diagnosis system is general and could be applied to distinguish different arrhythmia-based applications. Also, each contribution could be used independently in various applications.
AbstractList Abstract Arrhythmia is an abnormal rhythm of the heart which leads to sudden death. Among these arrhythmias, some are shockable, and some are non-shockable arrhythmias with external defibrillation. The automated external defibrillator (AED) is used as the automated arrhythmia diagnosis system and requires an accurate and rapid decision to increase the survival rate. Therefore, a precise and quick decision by the AED has become essential in improving the survival rate. This paper presents an arrhythmia diagnosis system for the AED by engineering methods and generalized function theories. In the arrhythmia diagnosis system, the proposed wavelet transform with pseudo-differential like operators-based method effectively generates a distinguishable scalogram for the shockable and non-shockable arrhythmia in the abnormal class signals, which leads to the decision algorithm getting the best distinction. Then, a new quality parameter is introduced to get more details by quantizing the statistical features on the scalogram. Finally, design a simple AED shock and non-shock advice method by following this information to improve the precision and rapid decision. Here, an adequate topology (metric function) is adopted to the space of the scatter plot, where we can give different scales to select the best area of the scatter plot for the test sample. As a consequence, the proposed decision method gives the highest accuracy and rapid decision between shockable and non-shockable arrhythmias. The proposed arrhythmia diagnosis system increases the accuracy to 97.98%, with a gain of 11.75% compared to the conventional approach in the abnormal class signals. Therefore, the proposed method contributes an additional 11.75% possibility for increasing the survival rate. The proposed arrhythmia diagnosis system is general and could be applied to distinguish different arrhythmia-based applications. Also, each contribution could be used independently in various applications.
Arrhythmia is an abnormal rhythm of the heart which leads to sudden death. Among these arrhythmias, some are shockable, and some are non-shockable arrhythmias with external defibrillation. The automated external defibrillator (AED) is used as the automated arrhythmia diagnosis system and requires an accurate and rapid decision to increase the survival rate. Therefore, a precise and quick decision by the AED has become essential in improving the survival rate. This paper presents an arrhythmia diagnosis system for the AED by engineering methods and generalized function theories. In the arrhythmia diagnosis system, the proposed wavelet transform with pseudo-differential like operators-based method effectively generates a distinguishable scalogram for the shockable and non-shockable arrhythmia in the abnormal class signals, which leads to the decision algorithm getting the best distinction. Then, a new quality parameter is introduced to get more details by quantizing the statistical features on the scalogram. Finally, design a simple AED shock and non-shock advice method by following this information to improve the precision and rapid decision. Here, an adequate topology (metric function) is adopted to the space of the scatter plot, where we can give different scales to select the best area of the scatter plot for the test sample. As a consequence, the proposed decision method gives the highest accuracy and rapid decision between shockable and non-shockable arrhythmias. The proposed arrhythmia diagnosis system increases the accuracy to 97.98%, with a gain of 11.75% compared to the conventional approach in the abnormal class signals. Therefore, the proposed method contributes an additional 11.75% possibility for increasing the survival rate. The proposed arrhythmia diagnosis system is general and could be applied to distinguish different arrhythmia-based applications. Also, each contribution could be used independently in various applications.
Arrhythmia is an abnormal rhythm of the heart which leads to sudden death. Among these arrhythmias, some are shockable, and some are non-shockable arrhythmias with external defibrillation. The automated external defibrillator (AED) is used as the automated arrhythmia diagnosis system and requires an accurate and rapid decision to increase the survival rate. Therefore, a precise and quick decision by the AED has become essential in improving the survival rate. This paper presents an arrhythmia diagnosis system for the AED by engineering methods and generalized function theories. In the arrhythmia diagnosis system, the proposed wavelet transform with pseudo-differential like operators-based method effectively generates a distinguishable scalogram for the shockable and non-shockable arrhythmia in the abnormal class signals, which leads to the decision algorithm getting the best distinction. Then, a new quality parameter is introduced to get more details by quantizing the statistical features on the scalogram. Finally, design a simple AED shock and non-shock advice method by following this information to improve the precision and rapid decision. Here, an adequate topology (metric function) is adopted to the space of the scatter plot, where we can give different scales to select the best area of the scatter plot for the test sample. As a consequence, the proposed decision method gives the highest accuracy and rapid decision between shockable and non-shockable arrhythmias. The proposed arrhythmia diagnosis system increases the accuracy to 97.98%, with a gain of 11.75% compared to the conventional approach in the abnormal class signals. Therefore, the proposed method contributes an additional 11.75% possibility for increasing the survival rate. The proposed arrhythmia diagnosis system is general and could be applied to distinguish different arrhythmia-based applications. Also, each contribution could be used independently in various applications.Arrhythmia is an abnormal rhythm of the heart which leads to sudden death. Among these arrhythmias, some are shockable, and some are non-shockable arrhythmias with external defibrillation. The automated external defibrillator (AED) is used as the automated arrhythmia diagnosis system and requires an accurate and rapid decision to increase the survival rate. Therefore, a precise and quick decision by the AED has become essential in improving the survival rate. This paper presents an arrhythmia diagnosis system for the AED by engineering methods and generalized function theories. In the arrhythmia diagnosis system, the proposed wavelet transform with pseudo-differential like operators-based method effectively generates a distinguishable scalogram for the shockable and non-shockable arrhythmia in the abnormal class signals, which leads to the decision algorithm getting the best distinction. Then, a new quality parameter is introduced to get more details by quantizing the statistical features on the scalogram. Finally, design a simple AED shock and non-shock advice method by following this information to improve the precision and rapid decision. Here, an adequate topology (metric function) is adopted to the space of the scatter plot, where we can give different scales to select the best area of the scatter plot for the test sample. As a consequence, the proposed decision method gives the highest accuracy and rapid decision between shockable and non-shockable arrhythmias. The proposed arrhythmia diagnosis system increases the accuracy to 97.98%, with a gain of 11.75% compared to the conventional approach in the abnormal class signals. Therefore, the proposed method contributes an additional 11.75% possibility for increasing the survival rate. The proposed arrhythmia diagnosis system is general and could be applied to distinguish different arrhythmia-based applications. Also, each contribution could be used independently in various applications.
ArticleNumber 9513
Author Toshinao Kagawa
Yumi Yahagi
Hidetoshi Oya
Md. Masudur Rahman
Shuji Kawasaki
Minoru W. Yoshida
Sergio Albeverio
Takayuki Okai
Author_xml – sequence: 1
  givenname: Md. Masudur
  surname: Rahman
  fullname: Rahman, Md. Masudur
  email: masudur_2006@yahoo.com
  organization: Graduate School of Engineering, Kanagawa University
– sequence: 2
  givenname: Sergio
  surname: Albeverio
  fullname: Albeverio, Sergio
  organization: Inst. Angewandte Mathematik, and HCM, University of Bonn
– sequence: 3
  givenname: Toshinao
  surname: Kagawa
  fullname: Kagawa, Toshinao
  organization: School of General Education and Management Studies, Suwa University of Science
– sequence: 4
  givenname: Shuji
  surname: Kawasaki
  fullname: Kawasaki, Shuji
  organization: Faculty of Science and Engineering, Iwate University
– sequence: 5
  givenname: Takayuki
  surname: Okai
  fullname: Okai, Takayuki
  organization: Faculty of Information Engineering, Tokyo City University
– sequence: 6
  givenname: Hidetoshi
  surname: Oya
  fullname: Oya, Hidetoshi
  organization: Faculty of Information Engineering, Tokyo City University
– sequence: 7
  givenname: Yumi
  surname: Yahagi
  fullname: Yahagi, Yumi
  organization: Department of Information Systems, Tokyo City University
– sequence: 8
  givenname: Minoru W.
  surname: Yoshida
  fullname: Yoshida, Minoru W.
  organization: Graduate School of Engineering, Kanagawa University
BackLink https://cir.nii.ac.jp/crid/1870302168277778432$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/37308508$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9uFSEUxiemxtbaF3BhSHThZvQAA8NdmaZR26SJG10Thjlzh3YuXIFp0z6KTyvt1HrrQhb8_X0fh8N5We354LGqXlP4QIGrj6mhYqVqYLzmspG8vn1WHTBoRM04Y3s78_3qKCXXlSWnK1DwotrnLQclQB1Uv07deiTG2jkae0N6l7LzNrvgSRhIGoO9NN2ExPielAjqnZ0Yx5s8bpxJxHliOh_ixkzETiYlTCSPMczF-9pc4YSZ5Gh8GgpDrl0eyTbh3Idy4TBgRJ9dkU7uEknYYjQ5xPSqej6YKeHRw3hY_fjy-fvJaX3-7evZyfF5bQWjucaeKiU7LiXIDhSXaiWwbTkT0DVlxlTfUskEWynRs24QrWqUoCil5EM7UH5YnS2-fTAXehvdxsQbHYzT9xshrrWJ2dkJdQumUyV13aqlDYheQc8aqgbaGCg_YYvXp8VrO3cb7G15WDTTE9OnJ96Neh2uNAUmKQhWHN4_OMTwc8aU9cYli9NkPIY5aaaYEAANQEHf_oNehDn6kquFKrngolBvdkN6jOVPDRSALYCNIaWIwyNCQd_Vml5qTZcX6vta07dFxBdRKrBfY_x7939V7xaVd05bd9dT1QIHRqVibWmq4Yz_BtOL4k0
Cites_doi 10.1109/78.640725
10.1016/j.ins.2021.05.035
10.1007/s00521-019-04061-8
10.1016/j.resuscitation.2010.08.008
10.1109/TBME.2010.2048568
10.1016/j.measurement.2017.04.041
10.1109/TSP.2008.924856
10.1007/s11004-017-9691-0
10.1016/j.aci.2018.08.003
10.1109/TNNLS.2020.3008938
10.1088/1538-3873/abcc4e
10.1161/CIRCULATIONAHA.110.970889
10.1038/s41598-018-33424-9
10.3390/s21248210
10.1590/S0001-37652010000200019
10.1159/000354195
10.17226/21723
10.1007/s00220-021-04186-9
10.3389/fphys.2018.00722
10.1016/B978-1-59749-272-0.X0001-2
10.1016/j.bspc.2020.102031
10.1109/ACCESS.2017.2723258
10.1007/s10916-016-0441-5
10.1109/ICACEA.2015.7164783
10.1109/ITAIC.2019.8785851
10.1109/IEMBS.2001.1019019
10.15748/jasse.9.96
10.1109/EMBC.2019.8856504
10.1109/ICSPCS47537.2019.9008726
10.1109/SPMB.2017.8257022
10.2316/P.2017.848-042
10.1016/j.future.2017.08.039
10.1109/ICoICT.2018.8528737
10.23919/ChiCC.2019.8866462
10.1145/3454127.3457628
10.1109/BIBM.2013.6732594
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-36463-z
DatabaseName CiNii Complete
Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_70ab8308b971405d80d2418f14a0023c
PMC10261052
37308508
10_1038_s41598_023_36463_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Kanagawa University
  funderid: http://dx.doi.org/10.13039/501100005965
– fundername: Ministry of Education, Culture, Sports, Science, and Technology, Japan
– fundername: ;
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
RYH
SNYQT
UKHRP
3V.
88A
ACSMW
AJTQC
ALIPV
M0L
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c521t-ed1886b36606b0836895e773250b45e728d716252985d2bf5784851e6663f7f13
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001007856900048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:31:58 EST 2025
Tue Nov 04 02:06:52 EST 2025
Sun Nov 09 12:23:05 EST 2025
Tue Oct 07 07:47:45 EDT 2025
Thu Jan 02 22:52:40 EST 2025
Sat Nov 29 06:34:13 EST 2025
Fri Feb 21 02:39:49 EST 2025
Mon Nov 10 09:20:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-ed1886b36606b0836895e773250b45e728d716252985d2bf5784851e6663f7f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2825583635?pq-origsite=%requestingapplication%
PMID 37308508
PQID 2825583635
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_70ab8308b971405d80d2418f14a0023c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10261052
proquest_miscellaneous_2825500400
proquest_journals_2825583635
pubmed_primary_37308508
crossref_primary_10_1038_s41598_023_36463_z
springer_journals_10_1038_s41598_023_36463_z
nii_cinii_1870302168277778432
PublicationCentury 2000
PublicationDate 2023-06-12
PublicationDateYYYYMMDD 2023-06-12
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific Reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Springer Science and Business Media LLC
Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Springer Science and Business Media LLC
– name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Carmona, Hwang, Torrésani (CR21) 1997; 45
Tharwat (CR44) 2020
Deakin, Nolan, Sunde, Koster (CR5) 2010; 81
Khare, Bajaj (CR14) 2020; 32
CR17
CR16
Kumar, Kumar (CR28) 2017; 108
Graham, McCoy, Schultz (CR8) 2015
CR37
CR13
CR12
CR34
CR11
CR33
CR31
CR30
Hajeb-Mohammadalipour, Cascella, Valentine, Chon (CR35) 2021; 21
Kumano-Go (CR38) 1982
Albeverio, Kagawa, Yahagi, Yoshida (CR39) 2021; 388
Field (CR7) 2010; 122
CR2
Theodoridis, Koutroumbas (CR41) 2009
CR4
CR3
CR29
CR9
CR27
Tripathy (CR32) 2018; 9
Pereira-Junior (CR1) 2010; 82
Hammad (CR36) 2021; 571
Sharma, Tan, Acharya (CR10) 2020; 32
CR25
Ghaderpour (CR19) 2021; 133
CR24
CR23
CR45
CR22
Nguyen, Van, Kim (CR26) 2018; 8
CR43
CR40
Littmann, Bustin, Haley (CR6) 2014; 23
Lin (CR15) 2010; 57
Ghaderpour, Pagiatakis (CR18) 2017; 49
Sejdic, Djurovic, Stankovic (CR20) 2008; 56
Kelley (CR42) 2017
36463_CR11
36463_CR33
36463_CR12
36463_CR34
36463_CR13
MT Nguyen (36463_CR26) 2018; 8
36463_CR37
36463_CR16
36463_CR17
CD Deakin (36463_CR5) 2010; 81
L Littmann (36463_CR6) 2014; 23
S Hajeb-Mohammadalipour (36463_CR35) 2021; 21
A Kumar (36463_CR28) 2017; 108
36463_CR4
36463_CR2
36463_CR3
S Albeverio (36463_CR39) 2021; 388
A Tharwat (36463_CR44) 2020
E Ghaderpour (36463_CR19) 2021; 133
36463_CR40
36463_CR9
36463_CR43
36463_CR22
H Kumano-Go (36463_CR38) 1982
R Graham (36463_CR8) 2015
36463_CR23
M Hammad (36463_CR36) 2021; 571
36463_CR45
36463_CR24
PP Pereira-Junior (36463_CR1) 2010; 82
36463_CR25
RK Tripathy (36463_CR32) 2018; 9
36463_CR27
S Theodoridis (36463_CR41) 2009
36463_CR29
YP Lin (36463_CR15) 2010; 57
SK Khare (36463_CR14) 2020; 32
E Sejdic (36463_CR20) 2008; 56
JM Field (36463_CR7) 2010; 122
M Sharma (36463_CR10) 2020; 32
RA Carmona (36463_CR21) 1997; 45
E Ghaderpour (36463_CR18) 2017; 49
36463_CR30
36463_CR31
JL Kelley (36463_CR42) 2017
References_xml – ident: CR45
– ident: CR22
– ident: CR43
– ident: CR4
– ident: CR2
– ident: CR16
– ident: CR37
– volume: 45
  start-page: 2586
  year: 1997
  end-page: 2590
  ident: CR21
  article-title: Characterization of signals by the ridges of their wavelet transforms
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.640725
– ident: CR12
– ident: CR30
– volume: 571
  start-page: 580
  year: 2021
  end-page: 604
  ident: CR36
  article-title: Automated detection of shockable ECG signals: A review
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.05.035
– volume: 32
  start-page: 15869
  year: 2020
  end-page: 15884
  ident: CR10
  article-title: Detection of shockable ventricular arrhythmia using optimal orthogonal wavelet filters
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04061-8
– ident: CR33
– volume: 81
  start-page: 1293
  year: 2010
  end-page: 1304
  ident: CR5
  article-title: European Resuscitation Council Guidelines for Resuscitation 2010 Section 3, Electrical therapies: Automated external defibrillators, defibrillation, cardioversion and pacing
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2010.08.008
– ident: CR29
– year: 1982
  ident: CR38
  publication-title: Pseudo-differential Operators
– volume: 57
  start-page: 1798
  issue: 7
  year: 2010
  end-page: 1806
  ident: CR15
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2048568
– volume: 108
  start-page: 119
  year: 2017
  end-page: 133
  ident: CR28
  article-title: Time-frequency analysis and support vector machine in automatic detection of defect from vibration signal of centrifugal pump
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.04.041
– volume: 56
  start-page: 3837
  year: 2008
  end-page: 3845
  ident: CR20
  article-title: Quantitative performance analysis of scalogram as instantaneous frequency estimator
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.924856
– ident: CR40
– ident: CR25
– ident: CR27
– ident: CR23
– volume: 49
  start-page: 819
  issue: 7
  year: 2017
  end-page: 844
  ident: CR18
  article-title: Least-squares wavelet analysis of unequally spaced and non-stationary time series and its applications
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-017-9691-0
– year: 2020
  ident: CR44
  publication-title: Classification Assessment Methods. Applied Computing and Informatics
  doi: 10.1016/j.aci.2018.08.003
– volume: 32
  start-page: 2901
  issue: 7
  year: 2020
  end-page: 2909
  ident: CR14
  article-title: Time-frequency representation and convolutional neural network-based emotion recognition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3008938
– volume: 133
  issue: 1019
  year: 2021
  ident: CR19
  article-title: Least-squares wavelet and cross-wavelet analyses of VLBI baseline length and temperature time series: Fortaleza–Hartebeesthoek–Westford–Wettzell
  publication-title: Publ. Astron. Soc. Pac.
  doi: 10.1088/1538-3873/abcc4e
– volume: 122
  start-page: 640
  year: 2010
  end-page: 656
  ident: CR7
  article-title: Part 1: Executive summary: American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.970889
– ident: CR3
– volume: 8
  start-page: 1
  year: 2018
  end-page: 2
  ident: CR26
  article-title: Deep feature learning for sudden cardiac arrest detection in automated external defibrillators
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33424-9
– volume: 21
  start-page: 8210
  year: 2021
  ident: CR35
  article-title: Automated condition-based suppression of the CPR artifact in ECG data to make a reliable shock decision for AEDs during CPR
  publication-title: Sensors
  doi: 10.3390/s21248210
– ident: CR17
– ident: CR31
– volume: 82
  start-page: 431
  year: 2010
  end-page: 437
  ident: CR1
  article-title: Noninvasive method for electrocardiogram recording in conscious rats: Feasibility for heart rate variability analysis
  publication-title: Anais da Academia Brasileira de Ciências.
  doi: 10.1590/S0001-37652010000200019
– ident: CR13
– ident: CR11
– ident: CR9
– ident: CR34
– volume: 23
  start-page: 1
  year: 2014
  end-page: 6
  ident: CR6
  article-title: A simplified and structured teaching tool for the evaluation and management of pulseless electrical activity
  publication-title: Med. Princ. Pract.
  doi: 10.1159/000354195
– ident: CR24
– year: 2015
  ident: CR8
  publication-title: Strategies to Improve Cardiac Arrest Survival: A Time to Act
  doi: 10.17226/21723
– volume: 388
  start-page: 659
  year: 2021
  end-page: 706
  ident: CR39
  article-title: Markovian symmetric forms on infinite dimensional spaces I. The closability and quasi-regularity
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-021-04186-9
– volume: 9
  start-page: 722
  year: 2018
  ident: CR32
  article-title: Detection of life threatening ventricular arrhythmia using digital Taylor Fourier transform
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00722
– year: 2009
  ident: CR41
  publication-title: Pattern Recognition
  doi: 10.1016/B978-1-59749-272-0.X0001-2
– year: 2017
  ident: CR42
  publication-title: General Topology
– ident: 36463_CR13
  doi: 10.1016/j.bspc.2020.102031
– ident: 36463_CR37
– volume-title: General Topology
  year: 2017
  ident: 36463_CR42
– ident: 36463_CR30
  doi: 10.1109/ACCESS.2017.2723258
– volume: 82
  start-page: 431
  year: 2010
  ident: 36463_CR1
  publication-title: Anais da Academia Brasileira de Ciências.
  doi: 10.1590/S0001-37652010000200019
– volume: 56
  start-page: 3837
  year: 2008
  ident: 36463_CR20
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.924856
– volume: 81
  start-page: 1293
  year: 2010
  ident: 36463_CR5
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2010.08.008
– ident: 36463_CR12
  doi: 10.1007/s10916-016-0441-5
– volume: 8
  start-page: 1
  year: 2018
  ident: 36463_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33424-9
– ident: 36463_CR29
  doi: 10.1109/ICACEA.2015.7164783
– ident: 36463_CR27
  doi: 10.1109/ITAIC.2019.8785851
– ident: 36463_CR22
  doi: 10.1109/IEMBS.2001.1019019
– ident: 36463_CR17
  doi: 10.15748/jasse.9.96
– ident: 36463_CR45
– volume: 108
  start-page: 119
  year: 2017
  ident: 36463_CR28
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.04.041
– ident: 36463_CR34
  doi: 10.1109/EMBC.2019.8856504
– ident: 36463_CR43
– volume: 32
  start-page: 15869
  year: 2020
  ident: 36463_CR10
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04061-8
– ident: 36463_CR11
  doi: 10.1109/ICSPCS47537.2019.9008726
– volume: 21
  start-page: 8210
  year: 2021
  ident: 36463_CR35
  publication-title: Sensors
  doi: 10.3390/s21248210
– ident: 36463_CR4
– volume: 9
  start-page: 722
  year: 2018
  ident: 36463_CR32
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00722
– ident: 36463_CR16
  doi: 10.1109/SPMB.2017.8257022
– volume: 571
  start-page: 580
  year: 2021
  ident: 36463_CR36
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.05.035
– ident: 36463_CR2
– volume-title: Classification Assessment Methods. Applied Computing and Informatics
  year: 2020
  ident: 36463_CR44
  doi: 10.1016/j.aci.2018.08.003
– ident: 36463_CR9
  doi: 10.2316/P.2017.848-042
– volume: 133
  issue: 1019
  year: 2021
  ident: 36463_CR19
  publication-title: Publ. Astron. Soc. Pac.
  doi: 10.1088/1538-3873/abcc4e
– volume: 23
  start-page: 1
  year: 2014
  ident: 36463_CR6
  publication-title: Med. Princ. Pract.
  doi: 10.1159/000354195
– ident: 36463_CR40
– volume: 57
  start-page: 1798
  issue: 7
  year: 2010
  ident: 36463_CR15
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2048568
– ident: 36463_CR31
  doi: 10.1016/j.future.2017.08.039
– ident: 36463_CR24
  doi: 10.1109/ICoICT.2018.8528737
– ident: 36463_CR33
  doi: 10.23919/ChiCC.2019.8866462
– volume: 45
  start-page: 2586
  year: 1997
  ident: 36463_CR21
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.640725
– volume: 49
  start-page: 819
  issue: 7
  year: 2017
  ident: 36463_CR18
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-017-9691-0
– volume: 122
  start-page: 640
  year: 2010
  ident: 36463_CR7
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.970889
– volume-title: Pattern Recognition
  year: 2009
  ident: 36463_CR41
  doi: 10.1016/B978-1-59749-272-0.X0001-2
– volume-title: Strategies to Improve Cardiac Arrest Survival: A Time to Act
  year: 2015
  ident: 36463_CR8
  doi: 10.17226/21723
– volume: 388
  start-page: 659
  year: 2021
  ident: 36463_CR39
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-021-04186-9
– volume-title: Pseudo-differential Operators
  year: 1982
  ident: 36463_CR38
– ident: 36463_CR25
  doi: 10.1145/3454127.3457628
– ident: 36463_CR3
– ident: 36463_CR23
  doi: 10.1109/BIBM.2013.6732594
– volume: 32
  start-page: 2901
  issue: 7
  year: 2020
  ident: 36463_CR14
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3008938
SSID ssib045319080
ssib045319113
ssib045318930
ssib045319110
ssib045318929
ssib045318928
ssj0000529419
ssib045319075
Score 2.3909547
Snippet Arrhythmia is an abnormal rhythm of the heart which leads to sudden death. Among these arrhythmias, some are shockable, and some are non-shockable arrhythmias...
Abstract Arrhythmia is an abnormal rhythm of the heart which leads to sudden death. Among these arrhythmias, some are shockable, and some are non-shockable...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9513
SubjectTerms 639/166/985
639/705
Accuracy
Algorithms
Arrhythmia
Arrhythmias, Cardiac
Automation
Cardiac arrhythmia
Death, Sudden
Diagnosis
Heart
Humanities and Social Sciences
Humans
Medicine
multidisciplinary
Q
R
Science
Science (multidisciplinary)
Survival
Topology
Wavelet Analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQCiQuiDdhd5GRuEG0SezEzhEQK04rDiDtzfIrakRxqyRd1P0p_NqdcZLS8hAXeqiqJAdn3lN7vo-QV0yzkvFSp5BrbcoLDnGw0llqM2Yy2wjI-S6STYiLC3l5WX_ao_rCM2EjPPAouDORaSNZJk2N0HKlk5mDpCObnGvMNxajbybqvWZqRPUuap7X05RMxuRZD5kKp8kKlrKKVyy9PshEEbAf8kto2z_Vmr8fmfxl3zSmo_P75N5UR9K34_ofkFs-PCR3RmbJ7SPyA89vUG3tptN2Sx16cogjDHTV0H4BURBnpqgOjoZVSPeudN1iOyy-tbqnbaDaBKxql9Rime17OhH70O8aKSsGOsyVL8W_dOm69xu3ojPvCsSPJV22Xz1drX3c0e8fky_nHz6__5hONAypRbaD1LtcysqwCnodg2DWsi69EAyKJ8PhVyEdwlCBxGXpCtNADOBQx3lojFgjmpw9IUfwJv4ZoXltoOFkjRcGGkvofKrGVnXlBJfG66pMyOtZJWo9om2ouEvOpBoVqECBKipQXSfkHWpt9yQiZccLYD9qsh_1L_tJyCnoXNkWv3OJAbDIK1kI-EjOioSczNagJvfuFQ78liAJBit-ubsNjom7LTr41WZ6JsbIhDwdjWe3UgZxVUJpnBB5YFYHr3J4J7SLCP6dY9MM5p2QN7MF_lzX32X1_H_I6pjcLdCBInXTCTkauo0_Jbft1dD23YvogTenTTAm
  priority: 102
  providerName: Directory of Open Access Journals
Title High accuracy distinction of shockable and non-shockable arrhythmias in abnormal classes through wavelet transform with pseudo differential like operators
URI https://cir.nii.ac.jp/crid/1870302168277778432
https://link.springer.com/article/10.1038/s41598-023-36463-z
https://www.ncbi.nlm.nih.gov/pubmed/37308508
https://www.proquest.com/docview/2825583635
https://www.proquest.com/docview/2825500400
https://pubmed.ncbi.nlm.nih.gov/PMC10261052
https://doaj.org/article/70ab8308b971405d80d2418f14a0023c
Volume 13
WOSCitedRecordID wos001007856900048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xW5C48H4EdisjcYNokziJnRNi0a7gsFWFQFpOke04NKIkJWlB3Z_Cr2XGTbqU14UerCrJIY5nvvlmxp4BeMoVT3icKB9trfHjKEYcTFXgm4DrwJQCbX7hmk2IyUSen2fTPuDW9dsqB0x0QF00hmLkR3TGMpEc7eOLxRefukZRdrVvobEHI2Q2IW3pOoum2xgLZbHiMOvPygRcHnVor-hMWcR9nsYp9y927JEr249Wpq6qPzHO3zdO_pI9dUbp9Ob_TucW3OjpKHu5kZ_bcMXWd-DapkHl-i58p20gTBmzapVZs4IAoXYnIVhTsm6GYEpHr5iqC1Y3tf_TlbadrZezz5XqWFUzpWsix3NmiK3bjvX9gdg3RZ0vlmw5EGhGkWG26OyqaNjQvgVhaM7m1SfLmoV1GwO6e_D-9OTdq9d-383BN9Q0wbdFKGWqeYouk6aa2DJLrBAcOZiO8V8kC6pmhUsmkyLSJUJJjHTQon_FS1GG_D7s40zsQ2BhptFv5aUVGv1TdKDS0qRZWohYaqvSxINnw5rmi03Rjtwl27nMNxKQowTkTgLyCw-Oadm3T1LBbXehaT_mvf7mIlBa8kDqjCocJoUMCuQ-sgxjRbTHeHCIQpObisZQEo5GYSojgT8Z88iDg0EO8h4luvxSCDx4sr2N-k1JG1XbZtU_46DWgwcb6du-KUd4lsiwPZA7crkzld07dTVzNcRD8r1RPzx4Pojw5Xv9_Vs9-vc0HsP1iHTL9XY6gP1lu7KHcNV8XVZdO4Y9cS7cKMcwOj6ZTN-OXQxk7NSWRoHjaPrmbPrhB-pvRtk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egBSPBCaImcR7OASFeVauWVQ9F6s04jsNGLMmS7FJtfwo_gt_IjJNsWV63HthDtEqiKHa-mW_GngfAY654xMNIuci12g2DEPVgrDxXezzzdJEg5-e22UQyGomjo_RgDb4PuTAUVjnoRKuo81rTGvkW5VhGgiM_vph-calrFO2uDi00OljsmcUxumzt8903-H2fBMH228PXO27fVcDVVLzfNbkvRJzxGE33jGozizQyScLRFshC_BeInKoqRUEqojzICoR0iGaJQTufF0nhc3zuOTgfUmUxChUMDpZrOrRrFvppn5vjcbHVIj9SDlvAXR6HMXdPVvjPtglAVqvK8k8W7u-Bmr_s1loS3L76v03fNbjSm9vsZScf12HNVDfgYteAc3ETvlGYC1NazxulFywnhVfZTA9WF6wdI1lQahlTVc6qunJ_OtM048Vs_LlULSsrprKKjP8J0-SNmJb1_Y_YsaLOHjM2GxwERivfbNqaeV6zoT0NqtkJm5SfDKunxgY-tLfg_ZlMzG1Yx5GYu8D8NEO_nBcmydD_RgcxLnScxnkSisyoOHLg6YAhOe2KkkgbTMCF7BAnEXHSIk6eOPCKYLa8kwqK2xN181H2-kkmnsoE90SWUgXHKBdejradKPxQkVmnHdhEkEpd0tEXxBOBH4sgwZ8IeeDAxoA72WvBVp6CzoFHy8uov2hTSlWmnvf3WCpx4E6H9uWbcqQfgR6EA2JFDlaGsnqlKse2RrpPawsojw48G0Tm9L3-Plf3_j2Mh3Bp5_DdvtzfHe3dh8sBybXtY7UB67Nmbjbhgv46K9vmgVUMDD6ctSj9AAxzl0Y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFBAX3g9DC4sEJ7Bi7_qxPiAElIiqEOUAUjmZ9XpNLIId7IQq_Sn8FH4dM36khNetB3KwItuyvOtv5pvZnQfAA6GELzxf2ci12va4h3owUI6tHZE4OguR89Om2UQ4HsvDw2iyBd_7XBgKq-x1YqOo01LTGvmQcix9KZAfh1kXFjHZGz2df7GpgxTttPbtNFqIHJjVEbpv9ZP9PfzWDzkfvXz74pXddRiwNRXyt03qShkkIkAzPqE6zTLyTRgKtAsSD_9xmVKFJZ9H0k95kiG8PTRRDNr8IgszV-Bzz8A2muQeH8D2ZP_N5P16hYf20Dw36jJ1HCGHNbIlZbRxYYvAC4R9vMGGTdMA5Lgiz_9k7_4etvnL3m1DiaNL__NkXoaLnSHOnrWScwW2THEVzrWtOVfX4BsFwDCl9bJSesVSUoVFkwPCyozVU6QRSjpjqkhZURb2T2eqarpaTD_nqmZ5wVRSkFswY5r8FFOzrjMSO1LU82PBFr3rwGhNnM1rs0xL1jeuQQU8Y7P8k2Hl3DQhEfV1eHcqE3MDBjgScwuYGyXosYvMhAl65ug6BpkOoiANPZkYFfgWPOrxFM_bciVxE2YgZNyiL0b0xQ364mMLnhPk1ndSqfHmRFl9jDvNFYeOSqRwZBJRbUc_lU6KVp_MXE-Rwact2EXAxjqnoyuJQbgbSB7iT3qCW7DTYzDu9GMdnwDQgvvry6jZaLtKFaZcdvc0JGPBzRb56zcVSEwSfQsL5IZMbAxl80qRT5vq6S6tOqBsWvC4F5-T9_r7XN3-9zDuwXmUoPj1_vjgDlzgJOJNg6sdGCyqpdmFs_rrIq-ru52WYPDhtGXpBzavoY8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+accuracy+distinction+of+shockable+and+non-shockable+arrhythmias+in+abnormal+classes+through+wavelet+transform+with+pseudo+differential+like+operators&rft.jtitle=Scientific+reports&rft.au=Rahman%2C+Md.+Masudur&rft.au=Albeverio%2C+Sergio&rft.au=Kagawa%2C+Toshinao&rft.au=Kawasaki%2C+Shuji&rft.date=2023-06-12&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=9513&rft_id=info:doi/10.1038%2Fs41598-023-36463-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon