Prussian Blue Analogs for Rechargeable Batteries

Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:iScience Ročník 3; s. 110 - 133
Hlavní autoři: Wang, Baoqi, Han, Yu, Wang, Xiao, Bahlawane, Naoufal, Pan, Hongge, Yan, Mi, Jiang, Yinzhu
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 25.05.2018
Elsevier
Témata:
ISSN:2589-0042, 2589-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage. [Display omitted] Organometallic Chemistry; Electrochemical Energy Storage; Energy Materials
AbstractList Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage. [Display omitted] Organometallic Chemistry; Electrochemical Energy Storage; Energy Materials
Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage.Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage.
Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage. : Organometallic Chemistry; Electrochemical Energy Storage; Energy Materials Subject Areas: Organometallic Chemistry, Electrochemical Energy Storage, Energy Materials
Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage. Organometallic Chemistry; Electrochemical Energy Storage; Energy Materials
Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage.
Author Pan, Hongge
Yan, Mi
Bahlawane, Naoufal
Jiang, Yinzhu
Wang, Baoqi
Han, Yu
Wang, Xiao
AuthorAffiliation 2 State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Co. Ltd, Beijing 102211, China
3 Material Research and Technology Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxemburg
1 State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
AuthorAffiliation_xml – name: 2 State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Co. Ltd, Beijing 102211, China
– name: 3 Material Research and Technology Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxemburg
– name: 1 State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Author_xml – sequence: 1
  givenname: Baoqi
  surname: Wang
  fullname: Wang, Baoqi
  organization: State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 2
  givenname: Yu
  surname: Han
  fullname: Han, Yu
  organization: State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Co. Ltd, Beijing 102211, China
– sequence: 3
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 4
  givenname: Naoufal
  surname: Bahlawane
  fullname: Bahlawane, Naoufal
  organization: Material Research and Technology Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxemburg
– sequence: 5
  givenname: Hongge
  surname: Pan
  fullname: Pan, Hongge
  organization: State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 6
  givenname: Mi
  surname: Yan
  fullname: Yan, Mi
  organization: State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 7
  givenname: Yinzhu
  orcidid: 0000-0003-0639-2562
  surname: Jiang
  fullname: Jiang, Yinzhu
  email: yzjiang@zju.edu.cn
  organization: State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30428315$$D View this record in MEDLINE/PubMed
BookMark eNp9kVtr3DAQhUVJaC7NH-hD8WNf1h3dbBlKIQlNGwgkhPZZjLWjjRavlUp2oP--2m4akj4EBCNG53wj5hyxvTGOxNh7DjUH3nxa1yG7UAvgpgZVA5g37FBo0y0AlNh7dj9gJzmvAUCUo7rmLTuQpW0k14cMbtKcc8CxOhtmqk5HHOIqVz6m6pbcHaYVYT9QdYbTRClQfsf2PQ6ZTh7rMft58fXH-ffF1fW3y_PTq4XTgk8LakGQ9NJ1phRA0o3WSgP1QuvGeKEkGS8VUAMGEbUQ1FPPtcfW9ArkMbvccZcR1_Y-hQ2m3zZisH8bMa0spim4gawG7hvtO9O5VvGlQ-VlK6WirnUGeFdYX3as-7nf0NLROCUcXkBfvozhzq7ig214AYm2AD4-AlL8NVOe7KZsn4YBR4pztoJLaYTgyhTph-eznob8W3kRiJ3ApZhzIv8k4WC30dq13UZrt9FaULZEW0zmP5MLE04hbv8bhtetn3dWKmk9BEq2KGh0tAyJ3FTWGV6z_wGxJ70e
CitedBy_id crossref_primary_10_1002_smll_202101137
crossref_primary_10_1016_j_est_2024_111900
crossref_primary_10_3390_en13010031
crossref_primary_10_1002_anie_202106240
crossref_primary_10_1016_j_ccr_2020_213764
crossref_primary_10_1016_j_est_2025_115435
crossref_primary_10_1002_aenm_202100867
crossref_primary_10_1002_ange_202212031
crossref_primary_10_1016_j_electacta_2020_137077
crossref_primary_10_1016_j_trechm_2019_04_007
crossref_primary_10_1039_D2NR05285G
crossref_primary_10_1002_ange_202410420
crossref_primary_10_1021_acs_chemmater_5c00213
crossref_primary_10_1155_er_8856604
crossref_primary_10_1016_j_cej_2020_124162
crossref_primary_10_1016_j_mtchem_2023_101540
crossref_primary_10_1016_j_mtsust_2022_100113
crossref_primary_10_1016_j_nxener_2025_100345
crossref_primary_10_1016_j_ccr_2024_216100
crossref_primary_10_1016_j_jpowsour_2024_235066
crossref_primary_10_1039_D0QI01197E
crossref_primary_10_1039_D2RA00617K
crossref_primary_10_1016_j_electacta_2019_06_062
crossref_primary_10_1016_j_electacta_2021_139525
crossref_primary_10_1039_D4SE00783B
crossref_primary_10_1016_j_desal_2021_115218
crossref_primary_10_1002_cssc_201902013
crossref_primary_10_1016_j_jechem_2024_02_013
crossref_primary_10_1002_anie_202107697
crossref_primary_10_1007_s11581_023_05295_2
crossref_primary_10_1002_ange_202414479
crossref_primary_10_1002_cctc_202300357
crossref_primary_10_1002_ange_202500254
crossref_primary_10_1016_j_cattod_2024_114507
crossref_primary_10_1007_s10008_020_04746_4
crossref_primary_10_1016_j_ijhydene_2024_09_155
crossref_primary_10_1016_j_jallcom_2022_164388
crossref_primary_10_1002_celc_201901223
crossref_primary_10_1002_chem_202302136
crossref_primary_10_1016_j_colsurfa_2024_135099
crossref_primary_10_1002_adfm_202006970
crossref_primary_10_1016_j_jelechem_2022_117094
crossref_primary_10_1016_j_mattod_2023_06_013
crossref_primary_10_3390_batteries8100181
crossref_primary_10_1021_acs_inorgchem_4c05245
crossref_primary_10_1002_smll_202306709
crossref_primary_10_1016_j_jechem_2021_01_014
crossref_primary_10_3390_nano8120968
crossref_primary_10_1016_j_nanoen_2019_05_059
crossref_primary_10_1016_j_jallcom_2019_03_317
crossref_primary_10_1039_D3SC06912E
crossref_primary_10_1002_sstr_202000064
crossref_primary_10_1039_D1SE00729G
crossref_primary_10_1039_C9NH00751B
crossref_primary_10_1038_s41467_020_14444_4
crossref_primary_10_3390_solids5020014
crossref_primary_10_1002_anie_202413866
crossref_primary_10_1002_anie_202500254
crossref_primary_10_3390_ma13163453
crossref_primary_10_1016_j_ijhydene_2022_04_216
crossref_primary_10_1016_j_mtener_2022_101095
crossref_primary_10_1002_batt_202100108
crossref_primary_10_1016_j_cej_2024_156410
crossref_primary_10_1016_j_triboint_2025_111062
crossref_primary_10_1002_cssc_202002339
crossref_primary_10_1039_D3RA03187J
crossref_primary_10_1002_aenm_202202532
crossref_primary_10_1002_smll_202403084
crossref_primary_10_1016_j_cej_2021_129003
crossref_primary_10_1002_celc_201901919
crossref_primary_10_1002_ange_202309852
crossref_primary_10_1016_j_cclet_2024_110388
crossref_primary_10_1007_s10008_023_05402_3
crossref_primary_10_1016_j_jpowsour_2020_229307
crossref_primary_10_1002_smtd_201900445
crossref_primary_10_1016_j_est_2024_112999
crossref_primary_10_1016_j_mtener_2025_102030
crossref_primary_10_1002_ange_202301629
crossref_primary_10_1039_D4SE00976B
crossref_primary_10_1002_smll_202406369
crossref_primary_10_1088_1742_6596_1706_1_012006
crossref_primary_10_1016_j_ccr_2022_214497
crossref_primary_10_1021_jacs_1c06727
crossref_primary_10_1016_j_jechem_2023_11_004
crossref_primary_10_3389_fenrg_2020_605129
crossref_primary_10_1016_j_jechem_2025_03_008
crossref_primary_10_1016_j_jpowsour_2021_230375
crossref_primary_10_1016_j_susmat_2022_e00532
crossref_primary_10_1002_ente_202201368
crossref_primary_10_1002_ijch_202100002
crossref_primary_10_1002_ange_202215865
crossref_primary_10_3390_batteries8090105
crossref_primary_10_1002_adma_201804740
crossref_primary_10_1002_batt_201900054
crossref_primary_10_1016_j_compositesb_2022_110434
crossref_primary_10_1016_j_matre_2025_100331
crossref_primary_10_1002_adfm_202210725
crossref_primary_10_1002_chem_201905384
crossref_primary_10_1007_s43939_021_00013_z
crossref_primary_10_1016_j_jpowsour_2021_230021
crossref_primary_10_1016_j_bbrc_2025_152446
crossref_primary_10_1016_j_materresbull_2023_112351
crossref_primary_10_1007_s10008_023_05388_y
crossref_primary_10_1002_ange_202413866
crossref_primary_10_1002_cey2_449
crossref_primary_10_1021_acs_jpcc_5c00877
crossref_primary_10_1002_adfm_202314860
crossref_primary_10_1002_smll_201805427
crossref_primary_10_1007_s40820_021_00700_9
crossref_primary_10_1557_s43578_022_00646_7
crossref_primary_10_1002_aenm_202404032
crossref_primary_10_1002_batt_202400280
crossref_primary_10_1002_smll_201803495
crossref_primary_10_1016_j_jallcom_2025_182014
crossref_primary_10_1002_adma_202004689
crossref_primary_10_1016_j_jpowsour_2021_229924
crossref_primary_10_1002_anie_202410420
crossref_primary_10_1039_D5TA00894H
crossref_primary_10_1149_1945_7111_ad51a8
crossref_primary_10_1088_1755_1315_621_1_012061
crossref_primary_10_1016_j_est_2024_112537
crossref_primary_10_1016_j_electacta_2022_141561
crossref_primary_10_1002_eom2_12218
crossref_primary_10_1016_j_ccr_2022_214478
crossref_primary_10_1002_cnl2_70000
crossref_primary_10_1002_ange_202107697
crossref_primary_10_1002_cssc_202301224
crossref_primary_10_1002_adfm_202517871
crossref_primary_10_1039_D4NJ04067H
crossref_primary_10_1002_celc_202500073
crossref_primary_10_1016_j_jpowsour_2025_237949
crossref_primary_10_4491_eer_2024_099
crossref_primary_10_1002_advs_202104234
crossref_primary_10_1002_aenm_202301329
crossref_primary_10_1002_anie_202414479
crossref_primary_10_1016_j_surfin_2022_102222
crossref_primary_10_1016_j_est_2025_116995
crossref_primary_10_1002_ange_202106240
crossref_primary_10_1016_j_jconrel_2022_10_007
crossref_primary_10_1007_s10948_023_06648_8
crossref_primary_10_1016_j_nxmate_2025_100930
crossref_primary_10_1002_cnl2_64
crossref_primary_10_1002_er_8574
crossref_primary_10_1016_j_ijhydene_2022_06_253
crossref_primary_10_1002_chem_202004091
crossref_primary_10_1016_j_electacta_2020_137021
crossref_primary_10_1002_adma_202105611
crossref_primary_10_1002_cssc_202200706
crossref_primary_10_1039_D3SE01597A
crossref_primary_10_1002_ejic_202300246
crossref_primary_10_1002_adfm_202510376
crossref_primary_10_1016_j_jechem_2022_01_034
crossref_primary_10_1016_j_seppur_2025_132770
crossref_primary_10_1016_j_cej_2023_142834
crossref_primary_10_1021_acsnano_4c10091
crossref_primary_10_1039_D0SE01313G
crossref_primary_10_1016_j_jcis_2022_08_098
crossref_primary_10_1016_j_joule_2018_07_017
crossref_primary_10_1002_cssc_201900582
crossref_primary_10_1007_s12274_021_3830_0
crossref_primary_10_1002_ejic_202100349
crossref_primary_10_3390_app10217573
crossref_primary_10_1016_j_mseb_2025_118308
crossref_primary_10_1016_j_nanoen_2023_109099
crossref_primary_10_1016_j_jpowsour_2025_236299
crossref_primary_10_1002_ange_202415050
crossref_primary_10_1002_sus2_170
crossref_primary_10_1007_s11581_023_04961_9
crossref_primary_10_1002_anie_202301629
crossref_primary_10_1016_j_jallcom_2023_169284
crossref_primary_10_1021_acsmaterialslett_4c01833
crossref_primary_10_1016_j_jallcom_2021_161316
crossref_primary_10_1016_j_jechem_2025_03_035
crossref_primary_10_1016_j_jechem_2020_05_045
crossref_primary_10_1002_batt_202000116
crossref_primary_10_1002_aenm_202002244
crossref_primary_10_1039_D1SE01292D
crossref_primary_10_1002_adfm_201909530
crossref_primary_10_1016_j_isci_2023_108470
crossref_primary_10_1002_ange_202306185
crossref_primary_10_1016_j_elecom_2024_107696
crossref_primary_10_1002_adts_202100196
crossref_primary_10_1002_anie_202414302
crossref_primary_10_1021_acscentsci_3c01022
crossref_primary_10_1002_advs_202406842
crossref_primary_10_1002_aenm_202503627
crossref_primary_10_1016_j_apsusc_2023_157580
crossref_primary_10_1007_s40820_021_00671_x
crossref_primary_10_1016_j_cej_2020_124228
crossref_primary_10_1016_j_jwpe_2023_104379
crossref_primary_10_1039_D2MH01149B
crossref_primary_10_1016_j_matchemphys_2024_128946
crossref_primary_10_1016_j_cej_2022_135001
crossref_primary_10_1016_j_ccr_2022_214431
crossref_primary_10_1016_j_rser_2025_115677
crossref_primary_10_1016_j_jpowsour_2023_233104
crossref_primary_10_1002_smll_202408018
crossref_primary_10_1016_j_electacta_2020_136243
crossref_primary_10_3389_fchem_2020_00152
crossref_primary_10_3390_molecules28020461
crossref_primary_10_1002_celc_202300824
crossref_primary_10_1038_s41467_023_44155_5
crossref_primary_10_1016_j_nanoen_2021_105945
crossref_primary_10_3390_electronicmat4010003
crossref_primary_10_1016_j_matt_2019_05_007
crossref_primary_10_1007_s11581_019_03292_y
crossref_primary_10_1007_s40820_022_00923_4
crossref_primary_10_1039_D5TC01760B
crossref_primary_10_1002_adfm_202108616
crossref_primary_10_1039_D0EE00725K
crossref_primary_10_1002_batt_202300546
crossref_primary_10_1002_aenm_202001128
crossref_primary_10_1007_s13770_025_00751_8
crossref_primary_10_1002_anie_202306185
crossref_primary_10_1016_j_ccr_2025_216702
crossref_primary_10_1016_j_cej_2023_143216
crossref_primary_10_1038_s41578_020_0193_1
crossref_primary_10_1016_j_cej_2022_138883
crossref_primary_10_1016_j_jallcom_2024_173849
crossref_primary_10_1002_aenm_202400543
crossref_primary_10_1002_celc_201900317
crossref_primary_10_1002_smll_202206848
crossref_primary_10_1016_j_jcis_2023_01_017
crossref_primary_10_1007_s10904_020_01625_3
crossref_primary_10_1016_j_electacta_2023_141815
crossref_primary_10_1002_sus2_53
crossref_primary_10_1002_sus2_57
crossref_primary_10_1002_adfm_202111901
crossref_primary_10_1016_j_mattod_2021_03_015
crossref_primary_10_3390_batteries11060213
crossref_primary_10_1002_anie_202215865
crossref_primary_10_1016_j_jpowsour_2022_232407
crossref_primary_10_1021_acsaem_5c00766
crossref_primary_10_1016_j_mtener_2020_100404
crossref_primary_10_1016_j_desal_2024_117695
crossref_primary_10_1039_D2SE00171C
crossref_primary_10_1002_aenm_202000943
crossref_primary_10_1016_j_apsusc_2020_148843
crossref_primary_10_1016_j_jechem_2022_02_032
crossref_primary_10_1002_adma_201905440
crossref_primary_10_1002_ange_202414302
crossref_primary_10_1002_smll_202303896
crossref_primary_10_1002_anie_202003275
crossref_primary_10_1002_anie_202309852
crossref_primary_10_1038_s41467_022_35376_1
crossref_primary_10_1016_j_ccr_2020_213393
crossref_primary_10_1016_j_cej_2020_128159
crossref_primary_10_1002_adma_202108384
crossref_primary_10_1016_j_electacta_2021_137828
crossref_primary_10_1007_s11051_024_05984_7
crossref_primary_10_1039_D0SE00675K
crossref_primary_10_3390_nano12234268
crossref_primary_10_1007_s10854_020_04381_9
crossref_primary_10_1016_j_nanoen_2020_105632
crossref_primary_10_1021_jacs_4c11741
crossref_primary_10_1002_cite_202400017
crossref_primary_10_1007_s10854_023_11606_0
crossref_primary_10_1016_j_solidstatesciences_2021_106603
crossref_primary_10_1016_j_mtener_2022_101115
crossref_primary_10_1016_j_cej_2025_162410
crossref_primary_10_1002_adfm_202409171
crossref_primary_10_1002_advs_202000196
crossref_primary_10_1016_j_jechem_2021_09_002
crossref_primary_10_1016_j_jpowsour_2020_229263
crossref_primary_10_1002_aesr_202500065
crossref_primary_10_1016_j_jechem_2022_01_010
crossref_primary_10_1016_j_cej_2020_126688
crossref_primary_10_1039_D0EE01277G
crossref_primary_10_1002_adfm_202409518
crossref_primary_10_1016_j_electacta_2024_144237
crossref_primary_10_1016_j_electacta_2023_142773
crossref_primary_10_1016_j_ces_2024_120669
crossref_primary_10_1002_smll_202409947
crossref_primary_10_1016_j_electacta_2019_03_094
crossref_primary_10_1002_adfm_202508749
crossref_primary_10_1016_j_apmt_2020_100886
crossref_primary_10_1016_j_desal_2020_114479
crossref_primary_10_1021_acsaem_5c01717
crossref_primary_10_1016_j_electacta_2020_135928
crossref_primary_10_1016_j_scenem_2025_100013
crossref_primary_10_1016_j_carbon_2022_05_041
crossref_primary_10_3390_nano14131092
crossref_primary_10_1016_j_cej_2020_127767
crossref_primary_10_1002_adfm_202106751
crossref_primary_10_3390_ijms21093113
crossref_primary_10_1039_D2SE00475E
crossref_primary_10_1002_smtd_202301372
crossref_primary_10_1007_s11356_019_06865_6
crossref_primary_10_1002_anie_202212031
crossref_primary_10_1002_ange_202003275
crossref_primary_10_1016_j_jpowsour_2021_230521
crossref_primary_10_1002_anie_202415050
crossref_primary_10_1002_batt_202200486
crossref_primary_10_1016_j_desal_2023_116646
crossref_primary_10_1016_j_jpowsour_2019_227421
crossref_primary_10_3390_mi14030521
crossref_primary_10_1016_j_colsurfa_2025_137829
Cites_doi 10.1039/c3cc38839e
10.1039/C7CC02516E
10.1039/C3EE44004D
10.1038/ncomms6280
10.1039/C5TA09867J
10.1002/aenm.201400930
10.1002/aenm.201601052
10.1002/chem.201403061
10.1016/j.electacta.2017.04.054
10.1021/acsami.6b10082
10.1016/j.jpowsour.2003.08.007
10.1016/j.jpowsour.2016.12.074
10.1002/celc.201700776
10.1002/aenm.201700180
10.1002/adfm.201600747
10.1039/c2cc31777j
10.1021/acs.chemmater.5b04027
10.1039/c3ta13205f
10.1016/j.nanoen.2015.02.006
10.1039/C7TA00132K
10.1021/ja310347x
10.1021/jacs.7b10460
10.1021/ac00110a016
10.1002/adma.201703824
10.1016/j.jpowsour.2015.11.065
10.1002/aenm.201401869
10.1002/adma.201606823
10.1016/j.jpowsour.2014.10.196
10.1016/j.electacta.2015.02.002
10.1016/j.electacta.2016.04.159
10.1016/j.jpowsour.2016.06.019
10.1016/j.jpowsour.2015.10.042
10.1039/c3ta13223d
10.1016/j.electacta.2016.10.155
10.1007/s12274-014-0588-7
10.1016/j.electacta.2015.10.031
10.1002/adma.201604007
10.1021/acsami.6b01352
10.1021/acs.nanolett.7b01366
10.1016/j.elecom.2017.02.012
10.1021/ja312160v
10.1039/C5CS00410A
10.1021/am507443p
10.1021/ja510347s
10.1016/j.electacta.2016.12.121
10.1039/C6TA06658E
10.1016/j.electacta.2015.03.084
10.1002/anie.201310679
10.1016/j.ensm.2017.06.002
10.1002/celc.201700410
10.1039/C4FD00147H
10.1002/aenm.201401791
10.5796/electrochemistry.85.179
10.1039/C7TA01821E
10.1016/j.electacta.2016.05.205
10.1021/ja512383b
10.1039/C5CC06053B
10.1016/j.jallcom.2016.05.335
10.1016/j.jpowsour.2017.07.094
10.1021/acsami.6b06890
10.1002/adfm.201604307
10.1039/c2cc32730a
10.1039/C7TA08139A
10.1021/cm504091z
10.1039/C7TA04172A
10.1016/j.jallcom.2017.09.146
10.1039/C7NR03579A
10.1103/PhysRevB.71.054414
10.1039/C7RA10292E
10.1016/j.electacta.2016.10.062
10.1038/ncomms4007
10.1021/acsami.7b05178
10.1016/j.electacta.2016.05.176
10.1039/C4TA04644G
10.1016/j.jpowsour.2016.12.015
10.1021/nl203193q
10.1038/srep18263
10.1021/acsami.6b15110
10.1021/acsami.6b11070
10.1039/C5TA10571D
10.1016/j.elecom.2012.05.017
10.1002/adfm.201100854
10.1021/acsami.7b06334
10.1002/aenm.201601491
10.1039/C5RA04769B
10.1021/acsami.6b01592
10.1039/c3dt51369f
10.1002/adma.201600846
10.1016/j.jpowsour.2016.03.011
10.1002/anie.201206854
10.1016/j.jpowsour.2014.09.101
10.1039/C7TA05121B
10.3390/en8099486
10.1002/cplu.201700258
10.1002/adma.201700587
10.1016/j.jhazmat.2013.04.024
10.1149/1.1393348
10.1021/acsami.6b10884
10.1016/j.jpowsour.2016.05.050
10.1016/j.nanoen.2017.07.005
10.1021/acsami.6b06880
10.1021/acsenergylett.7b00179
10.1021/ic0201654
10.1039/C5CC01180A
10.1016/j.matchemphys.2014.11.014
10.1039/C5TA03197D
10.1038/ncomms1563
10.1002/cjoc.201600713
10.1149/2.0701706jes
10.1021/acsami.6b15666
10.1016/j.jpowsour.2016.05.003
10.1016/j.nanoen.2015.02.019
10.1038/ncomms2139
10.1016/j.nanoen.2015.01.012
10.1039/C6QI00595K
10.1002/cnma.201500021
10.1016/j.elecom.2015.07.014
10.1016/j.jpowsour.2014.08.025
10.1039/C6CS00776G
10.1039/C6RA23261B
10.1016/j.elecom.2013.06.019
10.1021/acsenergylett.7b00040
10.1002/asia.201701715
10.1016/j.jpowsour.2016.10.083
10.1039/C6CC02093C
10.1039/c4ra02559h
10.1016/j.jcis.2016.05.056
10.1039/C4CC05830E
10.1021/acsami.6b07989
10.1021/acs.jpcc.7b07920
10.1039/c3ta12036h
10.1002/cssc.201403143
10.1039/C7TA00220C
10.1016/j.jpowsour.2016.08.059
10.1126/science.1212741
10.1002/adma.201606132
10.1039/C4TA00062E
10.1039/C5CC04694G
10.1021/acsami.5b12620
10.1039/C5DT03030G
10.1016/j.electacta.2016.03.131
10.1149/2.0751512jes
10.1016/j.materresbull.2016.10.019
10.1002/anie.201209689
10.1039/C7QM00503B
10.1021/nn204666v
ContentType Journal Article
Copyright 2018 The Author(s)
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
2018 The Author(s) 2018
Copyright_xml – notice: 2018 The Author(s)
– notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2018 The Author(s) 2018
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2018.04.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 133
ExternalDocumentID oai_doaj_org_article_501f65f989c741dca4f37334e97c8019
PMC6137327
30428315
10_1016_j_isci_2018_04_008
S2589004218300403
Genre Journal Article
Review
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-e702e3f3c98e3f0ae5655450eb25568f243e8f340e608aaa522ebeb15fa78b403
IEDL.DBID DOA
ISICitedReferencesCount 402
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449721600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-0042
IngestDate Fri Oct 03 12:17:14 EDT 2025
Tue Sep 30 17:08:02 EDT 2025
Thu Oct 02 11:19:14 EDT 2025
Wed Feb 19 02:44:13 EST 2025
Wed Nov 12 18:36:12 EST 2025
Tue Nov 18 21:51:28 EST 2025
Thu Jul 20 20:15:28 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Energy Materials
Organometallic Chemistry
Electrochemical Energy Storage
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-e702e3f3c98e3f0ae5655450eb25568f243e8f340e608aaa522ebeb15fa78b403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0639-2562
OpenAccessLink https://doaj.org/article/501f65f989c741dca4f37334e97c8019
PMID 30428315
PQID 2133822148
PQPubID 23479
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_501f65f989c741dca4f37334e97c8019
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137327
proquest_miscellaneous_2133822148
pubmed_primary_30428315
crossref_primary_10_1016_j_isci_2018_04_008
crossref_citationtrail_10_1016_j_isci_2018_04_008
elsevier_sciencedirect_doi_10_1016_j_isci_2018_04_008
PublicationCentury 2000
PublicationDate 2018-05-25
PublicationDateYYYYMMDD 2018-05-25
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Zhang, Xu, Zhou, Liang, Dong, Wu, Yang, Lei (bib142) 2017; 27
Guo, Mo, Shi, Huang, Leong, Ding, Chen, Yang (bib20) 2017; 9
Kim, Kim, Arumugam, Woo, Jo, Park, Kim, Choi, Lee (bib40) 2016; 8
Seh, Sun, Zhang, Cui (bib96) 2016; 45
Piernas-MuñOz, Castillo-Mart Nez, Bondarchuk, Armand, Rojo (bib87) 2016; 324
Xie, Xu, Huang, Chen, Zhang, Li, Wu (bib127) 2015; 59
Jiang, Zhang, Yang, Li, Lee (bib34) 2017; 4
Lipson, Han, Kim, Pan, Sa, Liao, Fister, Burrell, Vaughey, Ingram (bib59) 2016; 325
Jia, Wang, Wang (bib31) 2014; 4
Yuan, Wang, Hu, Lei, Tian, Jiao (bib140) 2016; 685
Ji, Han, Liang, Zhou, Gao, Xia, Wu (bib28) 2016; 8
Wang, Krumeich, Nesper (bib112) 2013; 34
Fu, Liu, Zhang, Ma, Wang, Li, Lu, Cao (bib18) 2017; 5
Paolella, Faure, Timoshevskii, Marras, Bertoni, Guerfi, Vijh, Armand, Zaghib (bib81) 2017; 5
Ghasemi, Hosseini, Asen (bib19) 2015; 160
Wu, Sun, Guo, Qian, Liu, Cao, Ai, Yang (bib122) 2015; 1
Chae, Heo, Kwak, Lee, Hong (bib5) 2017; 337
Kasiri, Tr Coli, Bani Hashemi, La Mantia (bib39) 2016; 222
Nie, Shen, Luo, Ding, Xu, Wang, Zhang (bib72) 2014; 2
Padigi, Goncher, Evans, Solanki (bib79) 2015; 273
Padigi, Thiebes, Swan, Goncher, Evans, Solanki (bib80) 2015; 166
Pasta, Wessells, Liu, Nelson, Mcdowell, Huggins, Toney, Cui (bib84) 2014; 5
Wu, Song, Dai, Zhuo, Wray, Liu, Shen, Zeng, Lu, Yang (bib118) 2017; 139
Jia, Cai, Chen, Wang, Xu, Zhang, Ma, Wu, Shi, Chen (bib29) 2015; 7
Li, Chou, Wang, Wang, Gu, Liu, Dou (bib54) 2015; 13
Chong, Chen, Zheng, Tan, Shu, Liu, Guo (bib10) 2017; 5
Mizuno, Okubo, Hosono, Kudo, Oh-Ishi, Okazawa, Kojima, Kurono, Nishimura, Yamada (bib68) 2013; 1
Reed, Ortiz, Xiong, Menke (bib93) 2015; 51
Su, Mcdonagh, Qiao, Wang (bib103) 2017; 29
Yagi, Fukuda, Ichitsubo, Nitta, Mizumaki, Matsubara (bib130) 2015; 162
Jiang, Liu, Song, Yin, Xu (bib33) 2016; 4
You, Yu, Yin, Nam, Guo (bib138) 2014; 8
Karyakin, Gitelmacher, Karyakina (bib38) 1995; 67
Xie, Huang, Xu, Chen, Zhang, Li, Wu (bib126) 2016; 302
Asakura, Li, Mizuno, Okubo, Zhou, Talham (bib2) 2013; 135
Kumar, Yusuf, Keller (bib44) 2005; 71
Chae, Hyoung, Jang, Lee, Hong (bib6) 2017; 363
Pasta, Wessells, Huggins, Cui (bib83) 2012; 3
Fernández-Ropero, Piernas-MuñOz, Castillo-Mart Nez, Rojo, Casas-Cabanas (bib17) 2016; 210
Jia, Wang, Wang (bib30) 2015; 149-150
Lu, Wang, Cheng, Goodenough (bib65) 2012; 48
Nie, Yuan, Wang, Le, Xu, Hao, Pang, Wu, Dou, Yan, Zhang (bib74) 2017; 9
Wang, Lu, Liu, Xu, Cheng, Zhang, Goodenough (bib109) 2013; 52
Liu, Pulletikurthi, Endres (bib63) 2016; 8
Qian, Wu, Cao, Ma, Huang, Ai, Yang (bib90) 2018
Lee, Ali, Kim, Chung (bib49) 2017; 7
Widmann, Kahlert, Petrovic-Prelevic, Wulff, Yakhmi, Bagkar, Scholz (bib116) 2002; 41
Jiang, Shao, Chen, Feng, Liu (bib32) 2017; 5
Prabakar, Jeong, Pyo (bib89) 2015; 5
Wang, Shyam, Stone, Weker, Pasta, Lee, Toney, Cui (bib111) 2015; 5
Fang, Zhao, Sun, Wang, Cheng, Li (bib15) 2017; 29
Moritomo, Urase, Shibata (bib70) 2016; 210
Komaba, Matsuura, Ishikawa, Yabuuchi, Murata, Kuze (bib42) 2012; 21
Su, Cortie, Fan, Wang (bib102) 2017; 29
Wu, Shao, Wu, Qian, Cao, Ai, Yang (bib121) 2016; 8
Lee, Wang, Pasta, Woo Lee, Liu, Cui (bib48) 2014; 5
Hu, Li, Jiang (bib23) 2017; 35
Xiong, Zeng, Zeng, Wei (bib128) 2015; 44
Kuperman, Padigi, Goncher, Evans, Thiebes, Solanki (bib45) 2017; 342
Liu, Qiao, Zhang, Li, Ji, Miao, Yuan, Hu, Huang (bib62) 2015; 12
Lu, Song, Zhang, Ma (bib64) 2016; 321
Okubo, Honma (bib76) 2013; 42
You, Wu, Yin, Guo (bib135) 2013; 1
Rudola, Du, Balaya (bib95) 2017; 164
Wu, Wu, Wei, Hu, Qian, Cao, Ai, Wang, Yang (bib123) 2016; 8
Chen, Huang, Xie, Wang, Ye, Li, Wu (bib9) 2016; 8
Zhang, Meng, Mao, Guo, Qin, Cao (bib146) 2017; 7
Wu, Deng, Qian, Cao, Ai, Yang (bib119) 2013; 1
Cai, Yang, Qu, Wang (bib4) 2017; 53
Hwang, Myung, Sun (bib27) 2017; 46
Jiao, Tuo, Xie, Cai, Wang, Zhu (bib36) 2017; 86
Ye, Wang, Zhao, Huang, Han, Zhou, Zeng, Li (bib134) 2016; 4
Abirami, Hwang, Yang, Senthilkumar, Kim, Go, Senthilkumar, Song, Kim (bib1) 2016; 8
Nie, Shen, Pang, Zhu, Xu, Qing, Dou, Zhang (bib73) 2015; 3
Nakamoto, Sakamoto, Ito, Kitajou, Okada (bib71) 2017; 85
Yan, Yang, Liu, Sun, Wang, Liao, He, Ma (bib131) 2017; 225
Zhang, Zhang, Niu, Li, Wang, Yang (bib143) 2017; 82
Eftekhari, Jian, Ji (bib14) 2017; 9
Omarova, Koishybay, Yesibolati, Mentbayeva, Umirov, Ismailov, Adair, Babaa, Kurmanbayeva, Bakenov (bib78) 2015; 184
Vipin, Hu, Fugetsu (bib107) 2013; 258
Xie, Yang, Zhong, Zhang (bib125) 2016; 642
Li, Liu, Cui, Lau, Stuart, Wang, Licht (bib52) 2015; 5
Wu, Jian, Li, Ji (bib124) 2017; 77
Qian, Wu, Cao, Ai, Yang (bib91) 2013; 52
Wang, Song, Qiao, Wray, Hossain, Chuang, Yang, Lu, Evans, Lee (bib110) 2015; 137
Zhao, Zhao, Qiu, Pang, Lai, Huang (bib147) 2017; 4
Komaba, Murata, Ishikawa, Yabuuchi, Ozeki, Nakayama, Ogata, Gotoh, Fujiwara (bib43) 2011; 21
Lipson, Pan, Lapidus, Liao, Vaughey, Ingram (bib60) 2015; 27
Hu, Luo, Ye, Zhu, Lyu, Wang (bib24) 2017; 29
He, Nazar (bib22) 2017; 2
Tojo, Sugiura, Inada, Sakurai (bib105) 2016; 207
Bie, Kubota, Hosaka, Chihara, Komaba (bib3) 2017; 5
Li, Chou, Wang, Kang, Wang, Liu, Gu, Liu, Dou (bib53) 2015; 27
Wessells, Mcdowell, Peddada, Pasta, Huggins, Cui (bib114) 2012; 6
Wu, Luo, Sun, Qian, Cao, Ai, Yang (bib120) 2015; 13
Zhang, Chen, Zhou, Liu (bib145) 2015; 5
Lee, Pasta, Wang, Ruffo, Cui (bib47) 2014; 176
Song, Wang, Lu, Liu, Guo, Xiao, Lee, Yang, Henkelman, Goodenough (bib99) 2015; 137
Wong, Zhang, Yang, Chen, Ying (bib117) 2015; 51
Liao, Hu, Zou, Xiang, Chen (bib57) 2016; 220
You, Yao, Xin, Yin, Zuo, Yang, Guo, Cui, Wan, Goodenough (bib137) 2016; 28
Matsuda, Takachi, Moritomo (bib67) 2013; 49
Moritomo, Goto, Shibata (bib69) 2015; 8
Peng, Li, Wang, He, Huang, Zhao (bib86) 2017; 9
Lee, Nam, Sun, Higashi, Lee, Lee, Chen, Cui, Cho (bib50) 2016; 6
Li, Zang, Li, Man, Wang, Li, Wu, Liu, Wang (bib51) 2017; 13
Dunn, Kamath, Tarascon (bib12) 2011; 334
Stevens, Dahn (bib101) 2000; 147
Paulitsch, Yun, Bandarenka (bib85) 2017; 9
Wessells, Huggins, Cui (bib113) 2011; 2
Chen, Bao, Dong, Truhlar, Wang, Wang, Xia (bib8) 2017; 2
Zhang, Chen, Zhou, Liu (bib144) 2015; 5
Jiang, Yu, Wang, Li, Sun, Lu, Yan, Song, Dou (bib35) 2016; 26
Li, Zhang, Xiang, Zhang (bib55) 2017; 121
Pasta, Wang, Ruffo, Qiao, Lee, Shyam, Guo, Wang, Wray, Yang (bib82) 2016; 4
Shen, Wang, Chen (bib98) 2014; 20
Nossol, Souza, Zarbin (bib75) 2016; 478
You, Wu, Yin, Guo (bib136) 2014; 7
Lai, Jiao, Song, Zhang, Li, Zhang (bib46) 2018; 2
Gupta, Kim, Phadke, Biswas, Luong, Hertzberg, Chamoun, Evans-Lutterodt, Steingart (bib21) 2016; 305
Luo, Sun, Peng, Liu, Huang, Wang, Zhang, Li, Jin, Liu (bib66) 2017; 9
Xu, Zheng, Tang, Guo, Xue, Pang (bib129) 2017; 9
Yang, Xu, Liao, Wang, He, Ma (bib133) 2015; 51
Chen, Li, Kumar, Lee (bib7) 2017; 7
Hu, Ye, Luo, Hu, Zhu, Wang, Li, Peng, Wang (bib25) 2018; 30
Wan, Tang, Wang, Xiang, Li, Chen, Xue, Zhang, Huang (bib108) 2016; 329
Zhao, Wen, Liang, Jiang, Zhou, Shen, Xu (bib148) 2017; 9
Huang, Xie, Zhang, Wang, Jiang, Xiao, Li, Li, Wu, Chen (bib26) 2017; 39
Sottmann, Bernal, Yusenko, Herrmann, Emerich, Wragg, Margadonna (bib100) 2016; 200
Ren, Qin, Zhu, Yan, Li, Zhang, Liu, Mai (bib94) 2017; 17
Trocoli, La Mantia (bib106) 2015; 8
Yu, Li, Lu, Xu, Wang, Yan, Jiang (bib139) 2015; 275
Darwiche, Marino, Sougrati, Fraisse, Stievano, Monconduit (bib11) 2012; 134
Piernas-MuñOz, Castillo-Mart Nez, Roddatis, Armand, Rojo (bib88) 2014; 271
Oliver-Tolentino, Vazquez-Samperio, Cabrera-Sierra, Reguera (bib77) 2016; 6
Wessells, Peddada, Huggins, Cui (bib115) 2011; 11
Jo, Lee, Kim, Jin (bib37) 2017; 729
Senthilkumar, Abirami, Kim, Go, Hwang, Kim (bib97) 2017; 341
Kim, Zakaria, Park, Alowasheeir, Alshehri, Yamauchi, Kim (bib41) 2017; 240
Qian, Chen, Wu, Cao, Ai, Yang (bib92) 2012; 48
Eftekhari (bib13) 2004; 126
Liu, Pan, Li, Gao (bib61) 2015; 3
Feng, Yu, Paik (bib16) 2016; 52
Lim, Wang, Kong, Guo, Wong, Ang, Yang (bib58) 2017; 5
Yue, Binder, Guo, Zhang, Qiao, Tian, Dai (bib141) 2014; 53
Li, Zhang, Xiang, Zhang (bib56) 2017; 4
Sun, Ji, Zhou, Shao, Zang, Wen, Chen (bib104) 2016; 314
Yang, Xu, Liao, He, Liu, Ma (bib132) 2014; 50
Nie (10.1016/j.isci.2018.04.008_bib73) 2015; 3
Piernas-MuñOz (10.1016/j.isci.2018.04.008_bib88) 2014; 271
Jiao (10.1016/j.isci.2018.04.008_bib36) 2017; 86
Tojo (10.1016/j.isci.2018.04.008_bib105) 2016; 207
Moritomo (10.1016/j.isci.2018.04.008_bib69) 2015; 8
Luo (10.1016/j.isci.2018.04.008_bib66) 2017; 9
Oliver-Tolentino (10.1016/j.isci.2018.04.008_bib77) 2016; 6
Wang (10.1016/j.isci.2018.04.008_bib111) 2015; 5
Wu (10.1016/j.isci.2018.04.008_bib122) 2015; 1
Yang (10.1016/j.isci.2018.04.008_bib133) 2015; 51
Pasta (10.1016/j.isci.2018.04.008_bib83) 2012; 3
Komaba (10.1016/j.isci.2018.04.008_bib42) 2012; 21
Jia (10.1016/j.isci.2018.04.008_bib31) 2014; 4
Guo (10.1016/j.isci.2018.04.008_bib20) 2017; 9
Li (10.1016/j.isci.2018.04.008_bib55) 2017; 121
Li (10.1016/j.isci.2018.04.008_bib56) 2017; 4
Lipson (10.1016/j.isci.2018.04.008_bib60) 2015; 27
Liu (10.1016/j.isci.2018.04.008_bib62) 2015; 12
Widmann (10.1016/j.isci.2018.04.008_bib116) 2002; 41
Wan (10.1016/j.isci.2018.04.008_bib108) 2016; 329
Li (10.1016/j.isci.2018.04.008_bib53) 2015; 27
Qian (10.1016/j.isci.2018.04.008_bib90) 2018
Abirami (10.1016/j.isci.2018.04.008_bib1) 2016; 8
Li (10.1016/j.isci.2018.04.008_bib54) 2015; 13
Lu (10.1016/j.isci.2018.04.008_bib65) 2012; 48
You (10.1016/j.isci.2018.04.008_bib136) 2014; 7
Yuan (10.1016/j.isci.2018.04.008_bib140) 2016; 685
Chae (10.1016/j.isci.2018.04.008_bib5) 2017; 337
Jiang (10.1016/j.isci.2018.04.008_bib35) 2016; 26
Song (10.1016/j.isci.2018.04.008_bib99) 2015; 137
Lee (10.1016/j.isci.2018.04.008_bib47) 2014; 176
Wessells (10.1016/j.isci.2018.04.008_bib113) 2011; 2
Li (10.1016/j.isci.2018.04.008_bib51) 2017; 13
Trocoli (10.1016/j.isci.2018.04.008_bib106) 2015; 8
Ye (10.1016/j.isci.2018.04.008_bib134) 2016; 4
Komaba (10.1016/j.isci.2018.04.008_bib43) 2011; 21
You (10.1016/j.isci.2018.04.008_bib137) 2016; 28
Cai (10.1016/j.isci.2018.04.008_bib4) 2017; 53
Jia (10.1016/j.isci.2018.04.008_bib29) 2015; 7
Nossol (10.1016/j.isci.2018.04.008_bib75) 2016; 478
Wu (10.1016/j.isci.2018.04.008_bib121) 2016; 8
Kuperman (10.1016/j.isci.2018.04.008_bib45) 2017; 342
Senthilkumar (10.1016/j.isci.2018.04.008_bib97) 2017; 341
Xu (10.1016/j.isci.2018.04.008_bib129) 2017; 9
Zhang (10.1016/j.isci.2018.04.008_bib143) 2017; 82
Wang (10.1016/j.isci.2018.04.008_bib109) 2013; 52
Wu (10.1016/j.isci.2018.04.008_bib120) 2015; 13
Jia (10.1016/j.isci.2018.04.008_bib30) 2015; 149-150
Wu (10.1016/j.isci.2018.04.008_bib118) 2017; 139
Zhang (10.1016/j.isci.2018.04.008_bib144) 2015; 5
Eftekhari (10.1016/j.isci.2018.04.008_bib13) 2004; 126
Prabakar (10.1016/j.isci.2018.04.008_bib89) 2015; 5
Hu (10.1016/j.isci.2018.04.008_bib24) 2017; 29
Lu (10.1016/j.isci.2018.04.008_bib64) 2016; 321
Shen (10.1016/j.isci.2018.04.008_bib98) 2014; 20
Yan (10.1016/j.isci.2018.04.008_bib131) 2017; 225
Kumar (10.1016/j.isci.2018.04.008_bib44) 2005; 71
Yu (10.1016/j.isci.2018.04.008_bib139) 2015; 275
Liao (10.1016/j.isci.2018.04.008_bib57) 2016; 220
Li (10.1016/j.isci.2018.04.008_bib52) 2015; 5
Wu (10.1016/j.isci.2018.04.008_bib123) 2016; 8
Padigi (10.1016/j.isci.2018.04.008_bib79) 2015; 273
He (10.1016/j.isci.2018.04.008_bib22) 2017; 2
Omarova (10.1016/j.isci.2018.04.008_bib78) 2015; 184
Seh (10.1016/j.isci.2018.04.008_bib96) 2016; 45
Zhao (10.1016/j.isci.2018.04.008_bib147) 2017; 4
Asakura (10.1016/j.isci.2018.04.008_bib2) 2013; 135
Lipson (10.1016/j.isci.2018.04.008_bib59) 2016; 325
Wessells (10.1016/j.isci.2018.04.008_bib114) 2012; 6
Vipin (10.1016/j.isci.2018.04.008_bib107) 2013; 258
Ren (10.1016/j.isci.2018.04.008_bib94) 2017; 17
Lai (10.1016/j.isci.2018.04.008_bib46) 2018; 2
Dunn (10.1016/j.isci.2018.04.008_bib12) 2011; 334
Paolella (10.1016/j.isci.2018.04.008_bib81) 2017; 5
Lim (10.1016/j.isci.2018.04.008_bib58) 2017; 5
Moritomo (10.1016/j.isci.2018.04.008_bib70) 2016; 210
You (10.1016/j.isci.2018.04.008_bib135) 2013; 1
Yue (10.1016/j.isci.2018.04.008_bib141) 2014; 53
You (10.1016/j.isci.2018.04.008_bib138) 2014; 8
Chong (10.1016/j.isci.2018.04.008_bib10) 2017; 5
Sottmann (10.1016/j.isci.2018.04.008_bib100) 2016; 200
Chen (10.1016/j.isci.2018.04.008_bib7) 2017; 7
Fang (10.1016/j.isci.2018.04.008_bib15) 2017; 29
Kasiri (10.1016/j.isci.2018.04.008_bib39) 2016; 222
Huang (10.1016/j.isci.2018.04.008_bib26) 2017; 39
Jiang (10.1016/j.isci.2018.04.008_bib33) 2016; 4
Qian (10.1016/j.isci.2018.04.008_bib92) 2012; 48
Xiong (10.1016/j.isci.2018.04.008_bib128) 2015; 44
Su (10.1016/j.isci.2018.04.008_bib102) 2017; 29
Yagi (10.1016/j.isci.2018.04.008_bib130) 2015; 162
Lee (10.1016/j.isci.2018.04.008_bib49) 2017; 7
Okubo (10.1016/j.isci.2018.04.008_bib76) 2013; 42
Pasta (10.1016/j.isci.2018.04.008_bib84) 2014; 5
Lee (10.1016/j.isci.2018.04.008_bib50) 2016; 6
Nie (10.1016/j.isci.2018.04.008_bib74) 2017; 9
Pasta (10.1016/j.isci.2018.04.008_bib82) 2016; 4
Lee (10.1016/j.isci.2018.04.008_bib48) 2014; 5
Stevens (10.1016/j.isci.2018.04.008_bib101) 2000; 147
Rudola (10.1016/j.isci.2018.04.008_bib95) 2017; 164
Gupta (10.1016/j.isci.2018.04.008_bib21) 2016; 305
Xie (10.1016/j.isci.2018.04.008_bib125) 2016; 642
Liu (10.1016/j.isci.2018.04.008_bib61) 2015; 3
Su (10.1016/j.isci.2018.04.008_bib103) 2017; 29
Fernández-Ropero (10.1016/j.isci.2018.04.008_bib17) 2016; 210
Xie (10.1016/j.isci.2018.04.008_bib127) 2015; 59
Feng (10.1016/j.isci.2018.04.008_bib16) 2016; 52
Karyakin (10.1016/j.isci.2018.04.008_bib38) 1995; 67
Kim (10.1016/j.isci.2018.04.008_bib41) 2017; 240
Mizuno (10.1016/j.isci.2018.04.008_bib68) 2013; 1
Nakamoto (10.1016/j.isci.2018.04.008_bib71) 2017; 85
Chen (10.1016/j.isci.2018.04.008_bib9) 2016; 8
Hu (10.1016/j.isci.2018.04.008_bib25) 2018; 30
Fu (10.1016/j.isci.2018.04.008_bib18) 2017; 5
Chen (10.1016/j.isci.2018.04.008_bib8) 2017; 2
Jiang (10.1016/j.isci.2018.04.008_bib34) 2017; 4
Piernas-MuñOz (10.1016/j.isci.2018.04.008_bib87) 2016; 324
Reed (10.1016/j.isci.2018.04.008_bib93) 2015; 51
Wong (10.1016/j.isci.2018.04.008_bib117) 2015; 51
Bie (10.1016/j.isci.2018.04.008_bib3) 2017; 5
Zhang (10.1016/j.isci.2018.04.008_bib146) 2017; 7
Eftekhari (10.1016/j.isci.2018.04.008_bib14) 2017; 9
Zhao (10.1016/j.isci.2018.04.008_bib148) 2017; 9
Wang (10.1016/j.isci.2018.04.008_bib110) 2015; 137
Nie (10.1016/j.isci.2018.04.008_bib72) 2014; 2
Wu (10.1016/j.isci.2018.04.008_bib119) 2013; 1
Zhang (10.1016/j.isci.2018.04.008_bib145) 2015; 5
Qian (10.1016/j.isci.2018.04.008_bib91) 2013; 52
Darwiche (10.1016/j.isci.2018.04.008_bib11) 2012; 134
Padigi (10.1016/j.isci.2018.04.008_bib80) 2015; 166
Xie (10.1016/j.isci.2018.04.008_bib126) 2016; 302
Jiang (10.1016/j.isci.2018.04.008_bib32) 2017; 5
Ji (10.1016/j.isci.2018.04.008_bib28) 2016; 8
Wu (10.1016/j.isci.2018.04.008_bib124) 2017; 77
Liu (10.1016/j.isci.2018.04.008_bib63) 2016; 8
Hwang (10.1016/j.isci.2018.04.008_bib27) 2017; 46
Peng (10.1016/j.isci.2018.04.008_bib86) 2017; 9
Sun (10.1016/j.isci.2018.04.008_bib104) 2016; 314
Wang (10.1016/j.isci.2018.04.008_bib112) 2013; 34
Yang (10.1016/j.isci.2018.04.008_bib132) 2014; 50
Jo (10.1016/j.isci.2018.04.008_bib37) 2017; 729
Kim (10.1016/j.isci.2018.04.008_bib40) 2016; 8
Matsuda (10.1016/j.isci.2018.04.008_bib67) 2013; 49
Wessells (10.1016/j.isci.2018.04.008_bib115) 2011; 11
Chae (10.1016/j.isci.2018.04.008_bib6) 2017; 363
Paulitsch (10.1016/j.isci.2018.04.008_bib85) 2017; 9
Zhang (10.1016/j.isci.2018.04.008_bib142) 2017; 27
Ghasemi (10.1016/j.isci.2018.04.008_bib19) 2015; 160
Hu (10.1016/j.isci.2018.04.008_bib23) 2017; 35
27960427 - ACS Appl Mater Interfaces. 2016 Dec 14;8(49):33619-33625
23708451 - J Hazard Mater. 2013 Aug 15;258-259:93-101
23194439 - J Am Chem Soc. 2012 Dec 26;134(51):20805-11
28370537 - Adv Mater. 2017 Dec;29(48)
25679040 - J Am Chem Soc. 2015 Feb 25;137(7):2658-64
27288576 - J Colloid Interface Sci. 2016 Sep 15;478:107-16
28691793 - ACS Appl Mater Interfaces. 2017 Aug 2;9(30):25317-25322
28570041 - ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20306-20312
27479707 - ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4397-4403
26271479 - Chem Commun (Camb). 2015 Oct 1;51(76):14397-400
28665610 - Nano Lett. 2017 Aug 9;17(8):4713-4718
22109524 - Nat Commun. 2011 Nov 22;2:550
25311066 - Nat Commun. 2014 Oct 14;5:5280
25111752 - Chemistry. 2014 Sep 22;20(39):12559-62
28858348 - Nanoscale. 2017 Sep 14;9(35):13305-13312
26849278 - ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5393-9
27078114 - Chem Commun (Camb). 2016 May 7;52(37):6269-72
22096188 - Science. 2011 Nov 18;334(6058):928-35
28643406 - Adv Mater. 2017 Dec;29(48)
23407705 - Chem Commun (Camb). 2013 Apr 7;49(27):2750-2
27714999 - ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4404-4419
23391305 - J Am Chem Soc. 2013 Feb 20;135(7):2793-9
28071884 - ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3757-3765
23512686 - Angew Chem Int Ed Engl. 2013 Apr 22;52(17):4633-6
26332606 - Dalton Trans. 2015 Oct 14;44(38):16746-51
28597877 - Chem Commun (Camb). 2017 Jun 20;53(50):6780-6783
27119430 - ACS Appl Mater Interfaces. 2016 May 18;8(19):12158-64
27305570 - Adv Mater. 2016 Sep;28(33):7243-8
26967192 - ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8554-60
27781313 - Adv Mater. 2017 Jan;29(1)
29169239 - J Am Chem Soc. 2017 Dec 20;139(50):18358-18364
27934150 - ACS Appl Mater Interfaces. 2016 Dec 7;8(48):32778-32787
25510850 - ChemSusChem. 2015 Feb;8(3):481-5
26669272 - Sci Rep. 2015 Dec 16;5:18263
23319239 - Angew Chem Int Ed Engl. 2013 Feb 11;52(7):1964-7
24677672 - Angew Chem Int Ed Engl. 2014 Mar 17;53(12):3134-7
22622269 - Chem Commun (Camb). 2012 Jul 4;48(52):6544-6
25406368 - Faraday Discuss. 2014;176:69-81
12401075 - Inorg Chem. 2002 Nov 4;41(22):5706-15
24389854 - Nat Commun. 2014;5:3007
22684188 - Chem Commun (Camb). 2012 Jul 18;48(56):7070-2
26225418 - Chem Commun (Camb). 2015 Sep 14;51(71):13674-7
23093186 - Nat Commun. 2012;3:1149
27797476 - ACS Appl Mater Interfaces. 2016 Nov 23;8(46):31669-31676
25615887 - J Am Chem Soc. 2015 Feb 25;137(7):2548-54
27460222 - Chem Soc Rev. 2016 Oct 21;45(20):5605-5634
22283739 - ACS Nano. 2012 Feb 28;6(2):1688-94
28380284 - Adv Mater. 2017 Dec;29(48)
23824231 - Dalton Trans. 2013 Dec 7;42(45):15881-4
29281173 - Chem Asian J. 2018 Feb 2;13(3):342-349
25233263 - Chem Commun (Camb). 2014 Nov 11;50(87):13377-80
27556906 - ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23706-12
25874448 - Chem Commun (Camb). 2015 May 11;51(38):8181-4
25646576 - ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4579-88
28206743 - ACS Appl Mater Interfaces. 2017 Mar 8;9(9):8107-8112
28349134 - Chem Soc Rev. 2017 Jun 19;46(12):3529-3614
29164706 - Adv Mater. 2018 Jan;30(2)
22043814 - Nano Lett. 2011 Dec 14;11(12):5421-5
References_xml – volume: 12
  start-page: 386
  year: 2015
  end-page: 393
  ident: bib62
  article-title: Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes
  publication-title: Nano Energy
– volume: 49
  start-page: 2750
  year: 2013
  end-page: 2752
  ident: bib67
  article-title: A sodium manganese ferrocyanide thin film for Na-ion batteries
  publication-title: Chem. Commun. (Camb)
– volume: 67
  start-page: 2419
  year: 1995
  end-page: 2423
  ident: bib38
  article-title: Prussian blue based first-generation biosensor - a sensitive amperometric electrode for glucose
  publication-title: Anal. Chem.
– volume: 77
  start-page: 54
  year: 2017
  end-page: 57
  ident: bib124
  article-title: Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries
  publication-title: Electrochem. Commun.
– volume: 363
  start-page: 269
  year: 2017
  end-page: 276
  ident: bib6
  article-title: Potassium nickel hexacyanoferrate as a high-voltage cathode material for nonaqueous magnesium-ion batteries
  publication-title: J. Power Sources
– volume: 52
  start-page: 6269
  year: 2016
  end-page: 6272
  ident: bib16
  article-title: Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation
  publication-title: Chem. Commun. (Camb)
– volume: 240
  start-page: 300
  year: 2017
  end-page: 306
  ident: bib41
  article-title: Dual-textured Prussian blue nanocubes as sodium ion storage materials
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 9486
  year: 2015
  end-page: 9494
  ident: bib69
  article-title: Glucose-treated manganese hexacyanoferrate for sodium-ion secondary battery
  publication-title: Energies
– volume: 20
  start-page: 12559
  year: 2014
  end-page: 12562
  ident: bib98
  article-title: Prussian blues as a cathode material for lithium ion batteries
  publication-title: Chemistry
– volume: 13
  start-page: 117
  year: 2015
  end-page: 123
  ident: bib120
  article-title: Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries
  publication-title: Nano Energy
– volume: 8
  start-page: 31669
  year: 2016
  end-page: 31676
  ident: bib9
  article-title: Chemical inhibition method to synthesize highly crystalline Prussian blue analogs for sodium-ion battery cathodes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 35
  start-page: 415
  year: 2017
  end-page: 419
  ident: bib23
  article-title: Hierarchical octahedral Na2MnFe(CN)6 and Na2MnFe(CN)6@Ppy as cathode materials for sodium-ion batteries
  publication-title: Chin. J. Chem.
– volume: 729
  start-page: 590
  year: 2017
  end-page: 596
  ident: bib37
  article-title: Electrochemical properties of Na x MnFe(CN) 6 · z H 2 O synthesized in a Taylor-Couette reactor as a Na-ion battery cathode material
  publication-title: J. Alloys Compd.
– volume: 137
  start-page: 2658
  year: 2015
  end-page: 2664
  ident: bib99
  article-title: Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 5852
  year: 2014
  end-page: 5857
  ident: bib72
  article-title: Prussian blue analogues: a new class of anode materials for lithium ion batteries
  publication-title: J. Mater. Chem. A.
– volume: 176
  start-page: 69
  year: 2014
  end-page: 81
  ident: bib47
  article-title: Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes
  publication-title: Faraday Discuss
– volume: 51
  start-page: 13674
  year: 2015
  end-page: 13677
  ident: bib117
  article-title: One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes
  publication-title: Chem. Commun. (Camb)
– volume: 8
  start-page: 5393
  year: 2016
  end-page: 5399
  ident: bib123
  article-title: Highly crystallized Na(2)CoFe(CN)(6) with suppressed lattice defects as superior cathode material for sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 149-150
  start-page: 601
  year: 2015
  end-page: 606
  ident: bib30
  article-title: Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries
  publication-title: Mater. Chem. Phys.
– volume: 222
  start-page: 74
  year: 2016
  end-page: 83
  ident: bib39
  article-title: An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries
  publication-title: Electrochim. Acta
– volume: 48
  start-page: 6544
  year: 2012
  end-page: 6546
  ident: bib65
  article-title: Prussian blue: a new framework of electrode materials for sodium batteries
  publication-title: Chem. Commun. (Camb)
– volume: 1
  start-page: 13055
  year: 2013
  ident: bib68
  article-title: Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 16740
  year: 2017
  end-page: 16747
  ident: bib32
  article-title: Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 550
  year: 2011
  ident: bib113
  article-title: Copper hexacyanoferrate battery electrodes with long cycle life and high power
  publication-title: Nat. Commun.
– volume: 2
  start-page: 376
  year: 2018
  end-page: 384
  ident: bib46
  article-title: Fe/Fe3C@graphitic carbon shell embedded in carbon nanotubes derived from Prussian blue as cathodes for Li-O-2 batteries
  publication-title: Mater. Chem. Front.
– volume: 5
  start-page: 18263
  year: 2015
  ident: bib144
  article-title: Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery
  publication-title: Sci. Rep.
– volume: 48
  start-page: 7070
  year: 2012
  end-page: 7072
  ident: bib92
  article-title: High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries
  publication-title: Chem. Comm.
– volume: 8
  start-page: 8554
  year: 2016
  end-page: 8560
  ident: bib40
  article-title: Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a high-voltage cathode for magnesium batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 2237
  year: 2017
  end-page: 2242
  ident: bib34
  article-title: A Fe/Mn-based Prussian blue analogue as a K-rich cathode material for potassium-ion batteries
  publication-title: ChemElectroChem
– volume: 7
  start-page: 50812
  year: 2017
  end-page: 50821
  ident: bib146
  article-title: Multifunctional Prussian blue analogous@polyaniline core–shell nanocubes for lithium storage and overall water splitting
  publication-title: RSC Adv.
– volume: 3
  start-page: 16590
  year: 2015
  end-page: 16597
  ident: bib73
  article-title: Flexible metal–organic frameworks as superior cathodes for rechargeable sodium-ion batteries
  publication-title: J. Mater. Chem. A.
– volume: 7
  start-page: 1643
  year: 2014
  end-page: 1647
  ident: bib136
  article-title: High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 3529
  year: 2017
  end-page: 3614
  ident: bib27
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 442
  year: 2017
  end-page: 449
  ident: bib147
  article-title: Facile synthesis of Mn-3[Co(CN)(6)](2)center dot nH(2)O nanocrystals for high-performance electrochemical energy storage devices
  publication-title: Inorg. Chem. Front.
– volume: 200
  start-page: 305
  year: 2016
  end-page: 313
  ident: bib100
  article-title: In operando synchrotron XRD/XAS investigation of sodium insertion into the Prussian blue analogue cathode material Na 1.32 Mn[Fe(CN) 6 ] 0.83 · z H 2 O
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 4397
  year: 2017
  end-page: 4403
  ident: bib86
  article-title: Prussian blue: a potential material to improve the electrochemical performance of lithium-sulfur batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 82
  start-page: 1170
  year: 2017
  end-page: 1173
  ident: bib143
  article-title: FeFe(CN)6 nanocubes as a bipolar electrode material in aqueous symmetric sodium-ion batteries
  publication-title: ChemPlusChem
– volume: 4
  start-page: 22768
  year: 2014
  ident: bib31
  article-title: Electrochemical sodium storage of copper hexacyanoferrate with a well-defined open framework for sodium ion batteries
  publication-title: RSC Adv.
– volume: 225
  start-page: 235
  year: 2017
  end-page: 242
  ident: bib131
  article-title: Improved cycling performance of Prussian blue cathode for sodium ion batteries by controlling operation voltage range
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 20306
  year: 2017
  end-page: 20312
  ident: bib74
  article-title: Prussian blue analogue with fast kinetics through electronic coupling for sodium ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 2870
  year: 2017
  end-page: 2876
  ident: bib56
  article-title: High-efficiency Na-storage performance of a nickel-based ferricyanide cathode in high-concentration electrolytes for aqueous sodium-ion batteries
  publication-title: ChemElectroChem
– volume: 85
  start-page: 179
  year: 2017
  end-page: 185
  ident: bib71
  article-title: Effect of Concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode
  publication-title: Electrochemistry
– volume: 337
  start-page: 204
  year: 2017
  end-page: 211
  ident: bib5
  article-title: Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material
  publication-title: J. Power Sources
– volume: 325
  start-page: 646
  year: 2016
  end-page: 652
  ident: bib59
  article-title: Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes
  publication-title: J. Power Sources
– volume: 53
  start-page: 6780
  year: 2017
  end-page: 6783
  ident: bib4
  article-title: Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries
  publication-title: Chem. Commun. (Camb)
– volume: 7
  start-page: 1601491
  year: 2017
  ident: bib49
  article-title: Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries
  publication-title: Adv. Energy Mater.
– volume: 134
  start-page: 20805
  year: 2012
  end-page: 20811
  ident: bib11
  article-title: Better cycling performances of bulk Sb in Na-Ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 12158
  year: 2016
  end-page: 12164
  ident: bib63
  article-title: A Prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte
  publication-title: ACS Appl. Mater. Interfaces
– volume: 41
  start-page: 5706
  year: 2002
  end-page: 5715
  ident: bib116
  article-title: Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron hexacyanoferrates/hexacyanocobaltates
  publication-title: Inorg. Chem.
– volume: 135
  start-page: 2793
  year: 2013
  end-page: 2799
  ident: bib2
  article-title: Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1754
  year: 2016
  end-page: 1761
  ident: bib134
  article-title: Iron-based sodium-ion full batteries
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 23706
  year: 2016
  end-page: 23712
  ident: bib121
  article-title: Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 121
  start-page: 27805
  year: 2017
  end-page: 27812
  ident: bib55
  article-title: Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries
  publication-title: J. Phys. Chem. C
– volume: 29
  start-page: 1606132
  year: 2017
  ident: bib24
  article-title: An Innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries
  publication-title: Adv. Mater.
– volume: 9
  start-page: 13305
  year: 2017
  end-page: 13312
  ident: bib20
  article-title: A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism
  publication-title: Nanoscale
– volume: 6
  start-page: 108627
  year: 2016
  end-page: 108634
  ident: bib77
  article-title: Materials for aqueous sodium-ion batteries: cation mobility in a zinc hexacyanoferrate electrode
  publication-title: RSC Adv.
– volume: 5
  start-page: 3007
  year: 2014
  ident: bib84
  article-title: Full open-framework batteries for stationary energy storage
  publication-title: Nat. Commun.
– volume: 8
  start-page: 32778
  year: 2016
  end-page: 32787
  ident: bib1
  article-title: A metal-organic framework derived porous cobalt manganese oxide bifunctional electrocatalyst for hybrid Na-air/seawater batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 5421
  year: 2011
  end-page: 5425
  ident: bib115
  article-title: Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries
  publication-title: Nano Lett.
– volume: 4
  start-page: 4211
  year: 2016
  end-page: 4223
  ident: bib82
  article-title: Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1400930
  year: 2015
  ident: bib145
  article-title: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system
  publication-title: Adv. Energy Mater.
– volume: 324
  start-page: 766
  year: 2016
  end-page: 773
  ident: bib87
  article-title: Higher voltage plateau cubic Prussian White for Na-ion batteries
  publication-title: J. Power Sources
– volume: 28
  start-page: 7243
  year: 2016
  end-page: 7248
  ident: bib137
  article-title: Subzero-temperature cathode for a sodium-ion battery
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1604307
  year: 2017
  ident: bib142
  article-title: Potassium Prussian Blue nanoparticles: a low-cost cathode material for potassium-ion batteries
  publication-title: Adv. Funct. Mater.
– volume: 314
  start-page: 35
  year: 2016
  end-page: 38
  ident: bib104
  article-title: A new gridding cyanoferrate anode material for lithium and sodium ion batteries: Ti0.75Fe0.25[Fe(CN)6]0.96·1.9H2O with excellent electrochemical properties
  publication-title: J. Power Sources
– volume: 5
  start-page: 22465
  year: 2017
  end-page: 22471
  ident: bib10
  article-title: Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 5605
  year: 2016
  end-page: 5634
  ident: bib96
  article-title: Designing high-energy lithium-sulfur batteries
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 1604007
  year: 2017
  ident: bib103
  article-title: High-capacity aqueous potassium-ion batteries for large-scale energy storage
  publication-title: Adv. Mater.
– volume: 302
  start-page: 7
  year: 2016
  end-page: 12
  ident: bib126
  article-title: Sodium titanium hexacyanoferrate as an environmentally friendly and low-cost cathode material for sodium-ion batteries
  publication-title: J. Power Sources
– volume: 17
  start-page: 4713
  year: 2017
  end-page: 4718
  ident: bib94
  article-title: Activation of sodium storage sites in Prussian blue analogues via surface etching
  publication-title: Nano Lett.
– volume: 6
  start-page: 1688
  year: 2012
  end-page: 1694
  ident: bib114
  article-title: Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage
  publication-title: ACS Nano
– volume: 71
  start-page: 054414
  year: 2005
  ident: bib44
  article-title: Structural and magnetic properties of Fe[Fe(CN)6]∙4H2O
  publication-title: Phys. Rev. B
– volume: 342
  start-page: 414
  year: 2017
  end-page: 418
  ident: bib45
  article-title: High performance Prussian blue cathode for nonaqueous Ca-ion intercalation battery
  publication-title: J. Power Sources
– volume: 5
  start-page: 18919
  year: 2017
  end-page: 18932
  ident: bib81
  article-title: A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1122
  year: 2017
  end-page: 1127
  ident: bib22
  article-title: Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 8107
  year: 2017
  end-page: 8112
  ident: bib85
  article-title: Electrodeposited Na2VOx[Fe(CN)6] films as a cathode material for aqueous Na-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 39
  start-page: 273
  year: 2017
  end-page: 283
  ident: bib26
  article-title: A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries
  publication-title: Nano Energy
– volume: 271
  start-page: 489
  year: 2014
  end-page: 496
  ident: bib88
  article-title: K 1−x Fe 2+x/3 (CN) 6 · y H 2 O, Prussian blue as a displacement anode for lithium ion batteries
  publication-title: J. Power Sources
– volume: 5
  start-page: 37545
  year: 2015
  end-page: 37552
  ident: bib89
  article-title: Highly crystalline Prussian blue/graphene composites for high-rate performance cathodes in Na-ion batteries
  publication-title: RSC Adv.
– volume: 8
  start-page: 481
  year: 2015
  end-page: 485
  ident: bib106
  article-title: An aqueous zinc-ion battery based on copper hexacyanoferrate
  publication-title: ChemSusChem
– volume: 52
  start-page: 1964
  year: 2013
  end-page: 1967
  ident: bib109
  article-title: A superior low-cost cathode for a Na-ion battery
  publication-title: Angew. Chem. Int. Ed.
– volume: 642
  start-page: 289
  year: 2016
  end-page: 293
  ident: bib125
  article-title: Improving the performance of a ternary Prussian blue analogue as cathode of lithium battery via annealing treatment
  publication-title: J. Inorg. Gen. Chem.
– volume: 305
  start-page: 22
  year: 2016
  end-page: 29
  ident: bib21
  article-title: Improving the cycle life of a high-rate, high-potential aqueous dual-ion battery using hyper-dendritic zinc and copper hexacyanoferrate
  publication-title: J. Power Sources
– volume: 5
  start-page: 1401791
  year: 2015
  ident: bib52
  article-title: A one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 2548
  year: 2015
  end-page: 2554
  ident: bib110
  article-title: Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 4579
  year: 2015
  end-page: 4588
  ident: bib29
  article-title: Perfluoropentane-encapsulated hollow mesoporous Prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer
  publication-title: ACS Appl. Mater. Interfaces
– volume: 341
  start-page: 404
  year: 2017
  end-page: 410
  ident: bib97
  article-title: Sodium-ion hybrid electrolyte battery for sustainable energy storage applications
  publication-title: J. Power Sources
– year: 2018
  ident: bib90
  article-title: Prussian blue cathode materials for sodium-ion batteries and other ion batteries
  publication-title: Adv. Energy Mater
– volume: 147
  start-page: 1271
  year: 2000
  end-page: 1273
  ident: bib101
  article-title: High capacity anode materials for rechargeable sodium-ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 34
  start-page: 246
  year: 2013
  end-page: 249
  ident: bib112
  article-title: Nanocomposite of manganese ferrocyanide and graphene: a promising cathode material for rechargeable lithium ion batteries
  publication-title: Electrochem. Commun.
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  ident: bib12
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
– volume: 21
  start-page: 65
  year: 2012
  end-page: 68
  ident: bib42
  article-title: Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell
  publication-title: Electrochem. Commun.
– volume: 126
  start-page: 221
  year: 2004
  end-page: 228
  ident: bib13
  article-title: Potassium secondary cell based on Prussian blue cathode
  publication-title: J. Power Sources
– volume: 4
  start-page: 16205
  year: 2016
  end-page: 16212
  ident: bib33
  article-title: Hierarchical mesoporous octahedral K2Mn1−xCoxFe(CN)6as a superior cathode material for sodium-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 273
  start-page: 460
  year: 2015
  end-page: 464
  ident: bib79
  article-title: Potassium barium hexacyanoferrate – a potential cathode material for rechargeable calcium ion batteries
  publication-title: J. Power Sources
– volume: 160
  start-page: 337
  year: 2015
  end-page: 346
  ident: bib19
  article-title: Preparation of graphene/nickel-iron hexacyanoferrate coordination polymer nanocomposite for electrochemical energy storage
  publication-title: Electrochim. Acta
– volume: 210
  start-page: 352
  year: 2016
  end-page: 357
  ident: bib17
  article-title: Electrochemical characterization of NaFe2(CN)6 Prussian blue as positive electrode for aqueous sodium-ion batteries
  publication-title: Electrochimica Acta
– volume: 27
  start-page: 8442
  year: 2015
  end-page: 8447
  ident: bib60
  article-title: Rechargeable Ca-ion batteries: a new energy storage system
  publication-title: Chem. Mater.
– volume: 220
  start-page: 114
  year: 2016
  end-page: 121
  ident: bib57
  article-title: The role of potassium ions in iron hexacyanoferrate as a cathode material for hybrid ion batteries
  publication-title: Electrochim. Acta
– volume: 27
  start-page: 1997
  year: 2015
  end-page: 2003
  ident: bib53
  article-title: Facile method to synthesize Na-enriched Na1+xFeFe(CN)6 frameworks as cathode with superior electrochemical performance for sodium-ion batteries
  publication-title: Chem. Mater.
– volume: 8
  start-page: 117
  year: 2014
  end-page: 128
  ident: bib138
  article-title: Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries
  publication-title: Nano Res.
– volume: 59
  start-page: 91
  year: 2015
  end-page: 94
  ident: bib127
  article-title: Na2NixCo1−xFe(CN)6: a class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries
  publication-title: Electrochem. Commun.
– volume: 329
  start-page: 290
  year: 2016
  end-page: 296
  ident: bib108
  article-title: Core-shell hexacyanoferrate for superior Na-ion batteries
  publication-title: J. Power Sources
– volume: 164
  start-page: A1098
  year: 2017
  end-page: A1109
  ident: bib95
  article-title: Monoclinic sodium iron hexacyanoferrate cathode and non-flammable glyme-based electrolyte for inexpensive sodium-ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 13
  start-page: 342
  year: 2017
  end-page: 349
  ident: bib51
  article-title: High Crystalline Prussian white nanocubes as a promising cathode for sodium-ion batteries
  publication-title: Chem. Asian J.
– volume: 50
  start-page: 13377
  year: 2014
  end-page: 13380
  ident: bib132
  article-title: Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries
  publication-title: Chem. Commun. (Camb)
– volume: 29
  start-page: 1606823
  year: 2017
  ident: bib15
  article-title: More reliable lithium-sulfur batteries: status, solutions and prospects
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1601052
  year: 2016
  ident: bib50
  article-title: Composites of a Prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn-air Battery
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 10406
  year: 2017
  end-page: 10415
  ident: bib58
  article-title: Cubic-shaped WS2 nanopetals on a Prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1401869
  year: 2015
  ident: bib111
  article-title: Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 25317
  year: 2017
  end-page: 25322
  ident: bib66
  article-title: Graphene-roll-wrapped Prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 200
  year: 2015
  end-page: 207
  ident: bib54
  article-title: Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach
  publication-title: Nano Energy
– volume: 275
  start-page: 45
  year: 2015
  end-page: 49
  ident: bib139
  article-title: A promising cathode material of sodium iron–nickel hexacyanoferrate for sodium ion batteries
  publication-title: J. Power Sources
– volume: 478
  start-page: 107
  year: 2016
  end-page: 116
  ident: bib75
  article-title: Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery
  publication-title: J. Colloid Interface Sci.
– volume: 9
  start-page: 4404
  year: 2017
  end-page: 4419
  ident: bib14
  article-title: Potassium secondary batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 139
  start-page: 18358
  year: 2017
  end-page: 18364
  ident: bib118
  article-title: Modification of transition-metal redox by interstitial water in hexacyanometalate electrodes for sodium-ion batteries
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 33619
  year: 2016
  end-page: 33625
  ident: bib28
  article-title: On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 258
  start-page: 93
  year: 2013
  end-page: 101
  ident: bib107
  article-title: Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water
  publication-title: J. Hazard. Mater.
– volume: 184
  start-page: 58
  year: 2015
  end-page: 63
  ident: bib78
  article-title: Nickel hexacyanoferrate nanoparticles as a low cost cathode material for lithium-ion batteries
  publication-title: Electrochim. Acta
– volume: 166
  start-page: 32
  year: 2015
  end-page: 39
  ident: bib80
  article-title: Prussian green: a high rate capacity cathode for potassium ion batteries
  publication-title: Electrochim. Acta
– volume: 21
  start-page: 3859
  year: 2011
  end-page: 3867
  ident: bib43
  article-title: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries
  publication-title: Adv. Funct. Mater.
– volume: 162
  start-page: A2356
  year: 2015
  end-page: A2361
  ident: bib130
  article-title: EQCM analysis of redox behavior of CuFe Prussian blue analog in Mg battery electrolytes
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 3757
  year: 2017
  end-page: 3765
  ident: bib148
  article-title: Carbon-coated Fe3O4/VOx hollow microboxes derived from metal-organic frameworks as a high-performance anode material for lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 11
  year: 2017
  end-page: 30
  ident: bib129
  article-title: Prussian blue and its derivatives as electrode materials for electrochemical energy storage
  publication-title: Energy Storage Mater.
– volume: 207
  start-page: 22
  year: 2016
  end-page: 27
  ident: bib105
  article-title: Reversible calcium ion batteries using a dehydrated Prussian blue analogue cathode
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 1149
  year: 2012
  ident: bib83
  article-title: A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
  publication-title: Nat. Commun.
– volume: 5
  start-page: 9604
  year: 2017
  end-page: 9610
  ident: bib18
  article-title: Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping
  publication-title: J. Mater. Chem. A.
– volume: 210
  start-page: 963
  year: 2016
  end-page: 969
  ident: bib70
  article-title: Enhanced battery performance in manganese hexacyanoferrate by partial substitution
  publication-title: Electrochim. Acta
– volume: 52
  start-page: 4633
  year: 2013
  end-page: 4636
  ident: bib91
  article-title: High capacity and rate capability of amorphous phosphorus for sodium ion batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 42
  start-page: 15881
  year: 2013
  end-page: 15884
  ident: bib76
  article-title: Ternary metal Prussian blue analogue nanoparticles as cathode materials for Li-ion batteries
  publication-title: Dalton Trans.
– volume: 685
  start-page: 344
  year: 2016
  end-page: 349
  ident: bib140
  article-title: Na 2 Co 3 [Fe(CN) 6 ] 2 : a promising cathode material for lithium-ion and sodium-ion batteries
  publication-title: J. Alloys Compd.
– volume: 2
  start-page: 1115
  year: 2017
  end-page: 1121
  ident: bib8
  article-title: Aqueous Mg-Ion battery based on polyimide anode and Prussian blue cathode
  publication-title: ACS Energy Lett.
– volume: 26
  start-page: 5315
  year: 2016
  end-page: 5321
  ident: bib35
  article-title: Prussian blue@c composite as an ultrahigh-rate and long-life sodium-ion battery cathode
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 3134
  year: 2014
  end-page: 3137
  ident: bib141
  article-title: Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 10130
  year: 2013
  ident: bib119
  article-title: Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 14397
  year: 2015
  end-page: 14400
  ident: bib93
  article-title: A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte
  publication-title: Chem. Commun. (Camb)
– volume: 5
  start-page: 4325
  year: 2017
  end-page: 4330
  ident: bib3
  article-title: A novel K-ion battery: hexacyanoferrate(ii)/graphite cell
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 1703824
  year: 2018
  ident: bib25
  article-title: A binder-free and free-standing cobalt Sulfide@Carbon nanotube cathode material for aluminum-ion batteries
  publication-title: Adv. Mater.
– volume: 3
  start-page: 959
  year: 2015
  end-page: 962
  ident: bib61
  article-title: Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 44
  start-page: 16746
  year: 2015
  end-page: 16751
  ident: bib128
  article-title: Prussian blue analogues Mn[Fe(CN)6]0.6667.nH2O cubes as an anode material for lithium-ion batteries
  publication-title: Dalton Trans.
– volume: 29
  start-page: 1700587
  year: 2017
  ident: bib102
  article-title: Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries
  publication-title: Adv. Mater.
– volume: 86
  start-page: 194
  year: 2017
  end-page: 200
  ident: bib36
  article-title: The electrochemical performance of Cu3[Fe(CN)6]2 as a cathode material for sodium-ion batteries
  publication-title: Mater. Res. Bull.
– volume: 321
  start-page: 257
  year: 2016
  end-page: 263
  ident: bib64
  article-title: A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc
  publication-title: J. Power Sources
– volume: 7
  year: 2017
  ident: bib7
  article-title: Carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 5280
  year: 2014
  ident: bib48
  article-title: Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries
  publication-title: Nat. Commun.
– volume: 1
  start-page: 188
  year: 2015
  end-page: 193
  ident: bib122
  article-title: Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries
  publication-title: ChemNanoMat
– volume: 51
  start-page: 8181
  year: 2015
  end-page: 8184
  ident: bib133
  article-title: Prussian blue without coordinated water as a superior cathode for sodium-ion batteries
  publication-title: Chem. Commun. (Camb)
– volume: 1
  start-page: 14061
  year: 2013
  ident: bib135
  article-title: A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 49
  start-page: 2750
  year: 2013
  ident: 10.1016/j.isci.2018.04.008_bib67
  article-title: A sodium manganese ferrocyanide thin film for Na-ion batteries
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/c3cc38839e
– volume: 53
  start-page: 6780
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib4
  article-title: Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C7CC02516E
– volume: 7
  start-page: 1643
  year: 2014
  ident: 10.1016/j.isci.2018.04.008_bib136
  article-title: High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE44004D
– volume: 5
  start-page: 5280
  year: 2014
  ident: 10.1016/j.isci.2018.04.008_bib48
  article-title: Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6280
– volume: 4
  start-page: 1754
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib134
  article-title: Iron-based sodium-ion full batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA09867J
– volume: 5
  start-page: 1400930
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib145
  article-title: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400930
– volume: 6
  start-page: 1601052
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib50
  article-title: Composites of a Prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn-air Battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601052
– volume: 20
  start-page: 12559
  year: 2014
  ident: 10.1016/j.isci.2018.04.008_bib98
  article-title: Prussian blues as a cathode material for lithium ion batteries
  publication-title: Chemistry
  doi: 10.1002/chem.201403061
– volume: 240
  start-page: 300
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib41
  article-title: Dual-textured Prussian blue nanocubes as sodium ion storage materials
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.04.054
– volume: 8
  start-page: 32778
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib1
  article-title: A metal-organic framework derived porous cobalt manganese oxide bifunctional electrocatalyst for hybrid Na-air/seawater batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10082
– volume: 126
  start-page: 221
  year: 2004
  ident: 10.1016/j.isci.2018.04.008_bib13
  article-title: Potassium secondary cell based on Prussian blue cathode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.08.007
– volume: 342
  start-page: 414
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib45
  article-title: High performance Prussian blue cathode for nonaqueous Ca-ion intercalation battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.074
– volume: 4
  start-page: 2870
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib56
  article-title: High-efficiency Na-storage performance of a nickel-based ferricyanide cathode in high-concentration electrolytes for aqueous sodium-ion batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201700776
– volume: 7
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib7
  article-title: Carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700180
– volume: 26
  start-page: 5315
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib35
  article-title: Prussian blue@c composite as an ultrahigh-rate and long-life sodium-ion battery cathode
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600747
– volume: 48
  start-page: 6544
  year: 2012
  ident: 10.1016/j.isci.2018.04.008_bib65
  article-title: Prussian blue: a new framework of electrode materials for sodium batteries
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/c2cc31777j
– volume: 27
  start-page: 8442
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib60
  article-title: Rechargeable Ca-ion batteries: a new energy storage system
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04027
– volume: 1
  start-page: 13055
  year: 2013
  ident: 10.1016/j.isci.2018.04.008_bib68
  article-title: Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13205f
– volume: 13
  start-page: 117
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib120
  article-title: Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.02.006
– volume: 5
  start-page: 9604
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib18
  article-title: Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA00132K
– volume: 134
  start-page: 20805
  year: 2012
  ident: 10.1016/j.isci.2018.04.008_bib11
  article-title: Better cycling performances of bulk Sb in Na-Ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310347x
– volume: 139
  start-page: 18358
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib118
  article-title: Modification of transition-metal redox by interstitial water in hexacyanometalate electrodes for sodium-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10460
– volume: 67
  start-page: 2419
  year: 1995
  ident: 10.1016/j.isci.2018.04.008_bib38
  article-title: Prussian blue based first-generation biosensor - a sensitive amperometric electrode for glucose
  publication-title: Anal. Chem.
  doi: 10.1021/ac00110a016
– volume: 30
  start-page: 1703824
  year: 2018
  ident: 10.1016/j.isci.2018.04.008_bib25
  article-title: A binder-free and free-standing cobalt Sulfide@Carbon nanotube cathode material for aluminum-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703824
– volume: 305
  start-page: 22
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib21
  article-title: Improving the cycle life of a high-rate, high-potential aqueous dual-ion battery using hyper-dendritic zinc and copper hexacyanoferrate
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.065
– volume: 5
  start-page: 1401869
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib111
  article-title: Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401869
– volume: 29
  start-page: 1606823
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib15
  article-title: More reliable lithium-sulfur batteries: status, solutions and prospects
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606823
– volume: 275
  start-page: 45
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib139
  article-title: A promising cathode material of sodium iron–nickel hexacyanoferrate for sodium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.10.196
– volume: 160
  start-page: 337
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib19
  article-title: Preparation of graphene/nickel-iron hexacyanoferrate coordination polymer nanocomposite for electrochemical energy storage
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.02.002
– volume: 207
  start-page: 22
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib105
  article-title: Reversible calcium ion batteries using a dehydrated Prussian blue analogue cathode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.04.159
– volume: 325
  start-page: 646
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib59
  article-title: Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.019
– volume: 302
  start-page: 7
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib126
  article-title: Sodium titanium hexacyanoferrate as an environmentally friendly and low-cost cathode material for sodium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.10.042
– volume: 1
  start-page: 14061
  year: 2013
  ident: 10.1016/j.isci.2018.04.008_bib135
  article-title: A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13223d
– volume: 222
  start-page: 74
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib39
  article-title: An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.155
– volume: 8
  start-page: 117
  year: 2014
  ident: 10.1016/j.isci.2018.04.008_bib138
  article-title: Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0588-7
– volume: 184
  start-page: 58
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib78
  article-title: Nickel hexacyanoferrate nanoparticles as a low cost cathode material for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.10.031
– volume: 29
  start-page: 1604007
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib103
  article-title: High-capacity aqueous potassium-ion batteries for large-scale energy storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604007
– volume: 8
  start-page: 8554
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib40
  article-title: Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a high-voltage cathode for magnesium batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01352
– volume: 17
  start-page: 4713
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib94
  article-title: Activation of sodium storage sites in Prussian blue analogues via surface etching
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01366
– volume: 77
  start-page: 54
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib124
  article-title: Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.02.012
– volume: 135
  start-page: 2793
  year: 2013
  ident: 10.1016/j.isci.2018.04.008_bib2
  article-title: Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312160v
– volume: 45
  start-page: 5605
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib96
  article-title: Designing high-energy lithium-sulfur batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00410A
– volume: 7
  start-page: 4579
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib29
  article-title: Perfluoropentane-encapsulated hollow mesoporous Prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507443p
– volume: 137
  start-page: 2548
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib110
  article-title: Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510347s
– volume: 225
  start-page: 235
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib131
  article-title: Improved cycling performance of Prussian blue cathode for sodium ion batteries by controlling operation voltage range
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.121
– volume: 4
  start-page: 16205
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib33
  article-title: Hierarchical mesoporous octahedral K2Mn1−xCoxFe(CN)6as a superior cathode material for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06658E
– volume: 166
  start-page: 32
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib80
  article-title: Prussian green: a high rate capacity cathode for potassium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.03.084
– volume: 53
  start-page: 3134
  year: 2014
  ident: 10.1016/j.isci.2018.04.008_bib141
  article-title: Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201310679
– volume: 9
  start-page: 11
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib129
  article-title: Prussian blue and its derivatives as electrode materials for electrochemical energy storage
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.06.002
– volume: 4
  start-page: 2237
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib34
  article-title: A Fe/Mn-based Prussian blue analogue as a K-rich cathode material for potassium-ion batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201700410
– volume: 176
  start-page: 69
  year: 2014
  ident: 10.1016/j.isci.2018.04.008_bib47
  article-title: Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes
  publication-title: Faraday Discuss
  doi: 10.1039/C4FD00147H
– volume: 5
  start-page: 1401791
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib52
  article-title: A one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401791
– volume: 85
  start-page: 179
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib71
  article-title: Effect of Concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.85.179
– volume: 5
  start-page: 10406
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib58
  article-title: Cubic-shaped WS2 nanopetals on a Prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01821E
– volume: 210
  start-page: 963
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib70
  article-title: Enhanced battery performance in manganese hexacyanoferrate by partial substitution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.05.205
– volume: 137
  start-page: 2658
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib99
  article-title: Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512383b
– volume: 642
  start-page: 289
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib125
  article-title: Improving the performance of a ternary Prussian blue analogue as cathode of lithium battery via annealing treatment
  publication-title: J. Inorg. Gen. Chem.
– volume: 51
  start-page: 14397
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib93
  article-title: A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C5CC06053B
– volume: 685
  start-page: 344
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib140
  article-title: Na 2 Co 3 [Fe(CN) 6 ] 2 : a promising cathode material for lithium-ion and sodium-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.05.335
– volume: 363
  start-page: 269
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib6
  article-title: Potassium nickel hexacyanoferrate as a high-voltage cathode material for nonaqueous magnesium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.094
– volume: 9
  start-page: 4397
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib86
  article-title: Prussian blue: a potential material to improve the electrochemical performance of lithium-sulfur batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b06890
– volume: 27
  start-page: 1604307
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib142
  article-title: Potassium Prussian Blue nanoparticles: a low-cost cathode material for potassium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604307
– volume: 48
  start-page: 7070
  year: 2012
  ident: 10.1016/j.isci.2018.04.008_bib92
  article-title: High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries
  publication-title: Chem. Comm.
  doi: 10.1039/c2cc32730a
– volume: 5
  start-page: 22465
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib10
  article-title: Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08139A
– volume: 27
  start-page: 1997
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib53
  article-title: Facile method to synthesize Na-enriched Na1+xFeFe(CN)6 frameworks as cathode with superior electrochemical performance for sodium-ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm504091z
– year: 2018
  ident: 10.1016/j.isci.2018.04.008_bib90
  article-title: Prussian blue cathode materials for sodium-ion batteries and other ion batteries
  publication-title: Adv. Energy Mater
– volume: 5
  start-page: 16740
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib32
  article-title: Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04172A
– volume: 729
  start-page: 590
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib37
  article-title: Electrochemical properties of Na x MnFe(CN) 6 · z H 2 O synthesized in a Taylor-Couette reactor as a Na-ion battery cathode material
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.09.146
– volume: 9
  start-page: 13305
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib20
  article-title: A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism
  publication-title: Nanoscale
  doi: 10.1039/C7NR03579A
– volume: 71
  start-page: 054414
  year: 2005
  ident: 10.1016/j.isci.2018.04.008_bib44
  article-title: Structural and magnetic properties of Fe[Fe(CN)6]∙4H2O
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.054414
– volume: 7
  start-page: 50812
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib146
  article-title: Multifunctional Prussian blue analogous@polyaniline core–shell nanocubes for lithium storage and overall water splitting
  publication-title: RSC Adv.
  doi: 10.1039/C7RA10292E
– volume: 220
  start-page: 114
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib57
  article-title: The role of potassium ions in iron hexacyanoferrate as a cathode material for hybrid ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.062
– volume: 5
  start-page: 3007
  year: 2014
  ident: 10.1016/j.isci.2018.04.008_bib84
  article-title: Full open-framework batteries for stationary energy storage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4007
– volume: 9
  start-page: 20306
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib74
  article-title: Prussian blue analogue with fast kinetics through electronic coupling for sodium ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05178
– volume: 210
  start-page: 352
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib17
  article-title: Electrochemical characterization of NaFe2(CN)6 Prussian blue as positive electrode for aqueous sodium-ion batteries
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2016.05.176
– volume: 3
  start-page: 959
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib61
  article-title: Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04644G
– volume: 341
  start-page: 404
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib97
  article-title: Sodium-ion hybrid electrolyte battery for sustainable energy storage applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.015
– volume: 11
  start-page: 5421
  year: 2011
  ident: 10.1016/j.isci.2018.04.008_bib115
  article-title: Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl203193q
– volume: 5
  start-page: 18263
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib144
  article-title: Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery
  publication-title: Sci. Rep.
  doi: 10.1038/srep18263
– volume: 9
  start-page: 3757
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib148
  article-title: Carbon-coated Fe3O4/VOx hollow microboxes derived from metal-organic frameworks as a high-performance anode material for lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15110
– volume: 8
  start-page: 33619
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib28
  article-title: On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11070
– volume: 4
  start-page: 4211
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib82
  article-title: Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10571D
– volume: 21
  start-page: 65
  year: 2012
  ident: 10.1016/j.isci.2018.04.008_bib42
  article-title: Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.05.017
– volume: 21
  start-page: 3859
  year: 2011
  ident: 10.1016/j.isci.2018.04.008_bib43
  article-title: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100854
– volume: 9
  start-page: 25317
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib66
  article-title: Graphene-roll-wrapped Prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b06334
– volume: 7
  start-page: 1601491
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib49
  article-title: Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601491
– volume: 5
  start-page: 37545
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib89
  article-title: Highly crystalline Prussian blue/graphene composites for high-rate performance cathodes in Na-ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C5RA04769B
– volume: 8
  start-page: 12158
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib63
  article-title: A Prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01592
– volume: 42
  start-page: 15881
  year: 2013
  ident: 10.1016/j.isci.2018.04.008_bib76
  article-title: Ternary metal Prussian blue analogue nanoparticles as cathode materials for Li-ion batteries
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt51369f
– volume: 28
  start-page: 7243
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib137
  article-title: Subzero-temperature cathode for a sodium-ion battery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600846
– volume: 314
  start-page: 35
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib104
  article-title: A new gridding cyanoferrate anode material for lithium and sodium ion batteries: Ti0.75Fe0.25[Fe(CN)6]0.96·1.9H2O with excellent electrochemical properties
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.011
– volume: 52
  start-page: 1964
  year: 2013
  ident: 10.1016/j.isci.2018.04.008_bib109
  article-title: A superior low-cost cathode for a Na-ion battery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201206854
– volume: 273
  start-page: 460
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib79
  article-title: Potassium barium hexacyanoferrate – a potential cathode material for rechargeable calcium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.101
– volume: 5
  start-page: 18919
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib81
  article-title: A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05121B
– volume: 8
  start-page: 9486
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib69
  article-title: Glucose-treated manganese hexacyanoferrate for sodium-ion secondary battery
  publication-title: Energies
  doi: 10.3390/en8099486
– volume: 82
  start-page: 1170
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib143
  article-title: FeFe(CN)6 nanocubes as a bipolar electrode material in aqueous symmetric sodium-ion batteries
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201700258
– volume: 29
  start-page: 1700587
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib102
  article-title: Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700587
– volume: 258
  start-page: 93
  year: 2013
  ident: 10.1016/j.isci.2018.04.008_bib107
  article-title: Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.04.024
– volume: 147
  start-page: 1271
  year: 2000
  ident: 10.1016/j.isci.2018.04.008_bib101
  article-title: High capacity anode materials for rechargeable sodium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393348
– volume: 8
  start-page: 31669
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib9
  article-title: Chemical inhibition method to synthesize highly crystalline Prussian blue analogs for sodium-ion battery cathodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10884
– volume: 324
  start-page: 766
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib87
  article-title: Higher voltage plateau cubic Prussian White for Na-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.05.050
– volume: 39
  start-page: 273
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib26
  article-title: A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.005
– volume: 8
  start-page: 23706
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib121
  article-title: Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b06880
– volume: 2
  start-page: 1122
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib22
  article-title: Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00179
– volume: 41
  start-page: 5706
  year: 2002
  ident: 10.1016/j.isci.2018.04.008_bib116
  article-title: Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron hexacyanoferrates/hexacyanocobaltates
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0201654
– volume: 51
  start-page: 8181
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib133
  article-title: Prussian blue without coordinated water as a superior cathode for sodium-ion batteries
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C5CC01180A
– volume: 149-150
  start-page: 601
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib30
  article-title: Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.11.014
– volume: 3
  start-page: 16590
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib73
  article-title: Flexible metal–organic frameworks as superior cathodes for rechargeable sodium-ion batteries
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA03197D
– volume: 2
  start-page: 550
  year: 2011
  ident: 10.1016/j.isci.2018.04.008_bib113
  article-title: Copper hexacyanoferrate battery electrodes with long cycle life and high power
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1563
– volume: 35
  start-page: 415
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib23
  article-title: Hierarchical octahedral Na2MnFe(CN)6 and Na2MnFe(CN)6@Ppy as cathode materials for sodium-ion batteries
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201600713
– volume: 164
  start-page: A1098
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib95
  article-title: Monoclinic sodium iron hexacyanoferrate cathode and non-flammable glyme-based electrolyte for inexpensive sodium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0701706jes
– volume: 9
  start-page: 8107
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib85
  article-title: Electrodeposited Na2VOx[Fe(CN)6] films as a cathode material for aqueous Na-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15666
– volume: 321
  start-page: 257
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib64
  article-title: A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.05.003
– volume: 13
  start-page: 200
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib54
  article-title: Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.02.019
– volume: 3
  start-page: 1149
  year: 2012
  ident: 10.1016/j.isci.2018.04.008_bib83
  article-title: A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2139
– volume: 12
  start-page: 386
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib62
  article-title: Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.012
– volume: 4
  start-page: 442
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib147
  article-title: Facile synthesis of Mn-3[Co(CN)(6)](2)center dot nH(2)O nanocrystals for high-performance electrochemical energy storage devices
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C6QI00595K
– volume: 1
  start-page: 188
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib122
  article-title: Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.201500021
– volume: 59
  start-page: 91
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib127
  article-title: Na2NixCo1−xFe(CN)6: a class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.07.014
– volume: 271
  start-page: 489
  year: 2014
  ident: 10.1016/j.isci.2018.04.008_bib88
  article-title: K 1−x Fe 2+x/3 (CN) 6 · y H 2 O, Prussian blue as a displacement anode for lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.08.025
– volume: 46
  start-page: 3529
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib27
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 6
  start-page: 108627
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib77
  article-title: Materials for aqueous sodium-ion batteries: cation mobility in a zinc hexacyanoferrate electrode
  publication-title: RSC Adv.
  doi: 10.1039/C6RA23261B
– volume: 34
  start-page: 246
  year: 2013
  ident: 10.1016/j.isci.2018.04.008_bib112
  article-title: Nanocomposite of manganese ferrocyanide and graphene: a promising cathode material for rechargeable lithium ion batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2013.06.019
– volume: 2
  start-page: 1115
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib8
  article-title: Aqueous Mg-Ion battery based on polyimide anode and Prussian blue cathode
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00040
– volume: 13
  start-page: 342
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib51
  article-title: High Crystalline Prussian white nanocubes as a promising cathode for sodium-ion batteries
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201701715
– volume: 337
  start-page: 204
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib5
  article-title: Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.10.083
– volume: 52
  start-page: 6269
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib16
  article-title: Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C6CC02093C
– volume: 4
  start-page: 22768
  year: 2014
  ident: 10.1016/j.isci.2018.04.008_bib31
  article-title: Electrochemical sodium storage of copper hexacyanoferrate with a well-defined open framework for sodium ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/c4ra02559h
– volume: 478
  start-page: 107
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib75
  article-title: Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.05.056
– volume: 50
  start-page: 13377
  year: 2014
  ident: 10.1016/j.isci.2018.04.008_bib132
  article-title: Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C4CC05830E
– volume: 9
  start-page: 4404
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib14
  article-title: Potassium secondary batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07989
– volume: 121
  start-page: 27805
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib55
  article-title: Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b07920
– volume: 1
  start-page: 10130
  year: 2013
  ident: 10.1016/j.isci.2018.04.008_bib119
  article-title: Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12036h
– volume: 8
  start-page: 481
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib106
  article-title: An aqueous zinc-ion battery based on copper hexacyanoferrate
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201403143
– volume: 5
  start-page: 4325
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib3
  article-title: A novel K-ion battery: hexacyanoferrate(ii)/graphite cell
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00220C
– volume: 329
  start-page: 290
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib108
  article-title: Core-shell hexacyanoferrate for superior Na-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.059
– volume: 334
  start-page: 928
  year: 2011
  ident: 10.1016/j.isci.2018.04.008_bib12
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 29
  start-page: 1606132
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib24
  article-title: An Innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606132
– volume: 2
  start-page: 5852
  year: 2014
  ident: 10.1016/j.isci.2018.04.008_bib72
  article-title: Prussian blue analogues: a new class of anode materials for lithium ion batteries
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C4TA00062E
– volume: 51
  start-page: 13674
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib117
  article-title: One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes
  publication-title: Chem. Commun. (Camb)
  doi: 10.1039/C5CC04694G
– volume: 8
  start-page: 5393
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib123
  article-title: Highly crystallized Na(2)CoFe(CN)(6) with suppressed lattice defects as superior cathode material for sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12620
– volume: 44
  start-page: 16746
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib128
  article-title: Prussian blue analogues Mn[Fe(CN)6]0.6667.nH2O cubes as an anode material for lithium-ion batteries
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT03030G
– volume: 200
  start-page: 305
  year: 2016
  ident: 10.1016/j.isci.2018.04.008_bib100
  article-title: In operando synchrotron XRD/XAS investigation of sodium insertion into the Prussian blue analogue cathode material Na 1.32 Mn[Fe(CN) 6 ] 0.83 · z H 2 O
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.03.131
– volume: 162
  start-page: A2356
  year: 2015
  ident: 10.1016/j.isci.2018.04.008_bib130
  article-title: EQCM analysis of redox behavior of CuFe Prussian blue analog in Mg battery electrolytes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0751512jes
– volume: 86
  start-page: 194
  year: 2017
  ident: 10.1016/j.isci.2018.04.008_bib36
  article-title: The electrochemical performance of Cu3[Fe(CN)6]2 as a cathode material for sodium-ion batteries
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2016.10.019
– volume: 52
  start-page: 4633
  year: 2013
  ident: 10.1016/j.isci.2018.04.008_bib91
  article-title: High capacity and rate capability of amorphous phosphorus for sodium ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201209689
– volume: 2
  start-page: 376
  year: 2018
  ident: 10.1016/j.isci.2018.04.008_bib46
  article-title: Fe/Fe3C@graphitic carbon shell embedded in carbon nanotubes derived from Prussian blue as cathodes for Li-O-2 batteries
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00503B
– volume: 6
  start-page: 1688
  year: 2012
  ident: 10.1016/j.isci.2018.04.008_bib114
  article-title: Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage
  publication-title: ACS Nano
  doi: 10.1021/nn204666v
– reference: 26849278 - ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5393-9
– reference: 22283739 - ACS Nano. 2012 Feb 28;6(2):1688-94
– reference: 27934150 - ACS Appl Mater Interfaces. 2016 Dec 7;8(48):32778-32787
– reference: 22684188 - Chem Commun (Camb). 2012 Jul 18;48(56):7070-2
– reference: 25111752 - Chemistry. 2014 Sep 22;20(39):12559-62
– reference: 26271479 - Chem Commun (Camb). 2015 Oct 1;51(76):14397-400
– reference: 27714999 - ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4404-4419
– reference: 28206743 - ACS Appl Mater Interfaces. 2017 Mar 8;9(9):8107-8112
– reference: 28691793 - ACS Appl Mater Interfaces. 2017 Aug 2;9(30):25317-25322
– reference: 25615887 - J Am Chem Soc. 2015 Feb 25;137(7):2548-54
– reference: 22109524 - Nat Commun. 2011 Nov 22;2:550
– reference: 28071884 - ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3757-3765
– reference: 27305570 - Adv Mater. 2016 Sep;28(33):7243-8
– reference: 23512686 - Angew Chem Int Ed Engl. 2013 Apr 22;52(17):4633-6
– reference: 22043814 - Nano Lett. 2011 Dec 14;11(12):5421-5
– reference: 27960427 - ACS Appl Mater Interfaces. 2016 Dec 14;8(49):33619-33625
– reference: 25679040 - J Am Chem Soc. 2015 Feb 25;137(7):2658-64
– reference: 26669272 - Sci Rep. 2015 Dec 16;5:18263
– reference: 28643406 - Adv Mater. 2017 Dec;29(48):
– reference: 25406368 - Faraday Discuss. 2014;176:69-81
– reference: 28858348 - Nanoscale. 2017 Sep 14;9(35):13305-13312
– reference: 23319239 - Angew Chem Int Ed Engl. 2013 Feb 11;52(7):1964-7
– reference: 27119430 - ACS Appl Mater Interfaces. 2016 May 18;8(19):12158-64
– reference: 22096188 - Science. 2011 Nov 18;334(6058):928-35
– reference: 26967192 - ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8554-60
– reference: 27460222 - Chem Soc Rev. 2016 Oct 21;45(20):5605-5634
– reference: 28570041 - ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20306-20312
– reference: 27781313 - Adv Mater. 2017 Jan;29(1):
– reference: 28597877 - Chem Commun (Camb). 2017 Jun 20;53(50):6780-6783
– reference: 23824231 - Dalton Trans. 2013 Dec 7;42(45):15881-4
– reference: 29164706 - Adv Mater. 2018 Jan;30(2):
– reference: 25646576 - ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4579-88
– reference: 27479707 - ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4397-4403
– reference: 28349134 - Chem Soc Rev. 2017 Jun 19;46(12):3529-3614
– reference: 29281173 - Chem Asian J. 2018 Feb 2;13(3):342-349
– reference: 28380284 - Adv Mater. 2017 Dec;29(48):
– reference: 27556906 - ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23706-12
– reference: 28665610 - Nano Lett. 2017 Aug 9;17(8):4713-4718
– reference: 23391305 - J Am Chem Soc. 2013 Feb 20;135(7):2793-9
– reference: 25510850 - ChemSusChem. 2015 Feb;8(3):481-5
– reference: 23708451 - J Hazard Mater. 2013 Aug 15;258-259:93-101
– reference: 23407705 - Chem Commun (Camb). 2013 Apr 7;49(27):2750-2
– reference: 22622269 - Chem Commun (Camb). 2012 Jul 4;48(52):6544-6
– reference: 12401075 - Inorg Chem. 2002 Nov 4;41(22):5706-15
– reference: 27797476 - ACS Appl Mater Interfaces. 2016 Nov 23;8(46):31669-31676
– reference: 27288576 - J Colloid Interface Sci. 2016 Sep 15;478:107-16
– reference: 25874448 - Chem Commun (Camb). 2015 May 11;51(38):8181-4
– reference: 25311066 - Nat Commun. 2014 Oct 14;5:5280
– reference: 28370537 - Adv Mater. 2017 Dec;29(48):
– reference: 26225418 - Chem Commun (Camb). 2015 Sep 14;51(71):13674-7
– reference: 24677672 - Angew Chem Int Ed Engl. 2014 Mar 17;53(12):3134-7
– reference: 26332606 - Dalton Trans. 2015 Oct 14;44(38):16746-51
– reference: 23194439 - J Am Chem Soc. 2012 Dec 26;134(51):20805-11
– reference: 23093186 - Nat Commun. 2012;3:1149
– reference: 25233263 - Chem Commun (Camb). 2014 Nov 11;50(87):13377-80
– reference: 24389854 - Nat Commun. 2014;5:3007
– reference: 27078114 - Chem Commun (Camb). 2016 May 7;52(37):6269-72
– reference: 29169239 - J Am Chem Soc. 2017 Dec 20;139(50):18358-18364
SSID ssj0002002496
Score 2.5672922
SecondaryResourceType review_article
Snippet Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110
SubjectTerms Electrochemical Energy Storage
Energy Materials
Organometallic Chemistry
Review
Title Prussian Blue Analogs for Rechargeable Batteries
URI https://dx.doi.org/10.1016/j.isci.2018.04.008
https://www.ncbi.nlm.nih.gov/pubmed/30428315
https://www.proquest.com/docview/2133822148
https://pubmed.ncbi.nlm.nih.gov/PMC6137327
https://doaj.org/article/501f65f989c741dca4f37334e97c8019
Volume 3
WOSCitedRecordID wos000449721600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLYAceCCQLzKS0XihirSpFnSIyAQBzTtANJuUZolMIQ6tDF-P3baTRtIcOFUqU0fdtz6c2N_BjgPoUOhj89EKUVWCKszi34uc1VJFlKxThVJXB9Ut6v7_bK30OqLcsIaeuBGcZeS5aEjQ6lLh85v4GwRhBKi8KVy-HWNpXuIehaCqde4vEZUeLGznKScIDTNtmKmSe6iilfK69KR55R6Sy54pUjev-ScfoLP7zmUC07pbgs2WzSZXjVSbMOKr3eA9cbTCdVGptdvU58S7cjoeZIiOk0RJBIzkqd6qbSh1sRIeRee7m4fb-6ztjFC5qj_QOYV414E4UqNG2Y9ojJEQgyjZCIUC7wQXgdRMN9h2lqLGAvnqsplsEpXBRN7sFaPan8A6cBTQCZzT4zVnAltyyLnFnE3V04MWAL5TDHGtazh1LzizczSw14NKdOQMg0rDCozgYv5Oe8NZ8avo69J3_ORxHcdd6AVmNYKzF9WkICczZZpoUMDCfBSw19vfjabWoPvFS2W2NqPphPDKXjnHKPFBPabqZ4_Iv0C0iKXCaglI1iSYflIPXyJ3N2InpTg6vA_hD6CDRKFchm4PIa1j_HUn8C6-_wYTsansKr6-jS-Fl9lSAty
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prussian+Blue+Analogs+for+Rechargeable+Batteries&rft.jtitle=iScience&rft.au=Baoqi+Wang&rft.au=Yu+Han&rft.au=Xiao+Wang&rft.au=Naoufal+Bahlawane&rft.date=2018-05-25&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=3&rft.spage=110&rft.epage=133&rft_id=info:doi/10.1016%2Fj.isci.2018.04.008&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_501f65f989c741dca4f37334e97c8019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon