Prussian Blue Analogs for Rechargeable Batteries
Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used fo...
Uloženo v:
| Vydáno v: | iScience Ročník 3; s. 110 - 133 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
25.05.2018
Elsevier |
| Témata: | |
| ISSN: | 2589-0042, 2589-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage.
[Display omitted]
Organometallic Chemistry; Electrochemical Energy Storage; Energy Materials |
|---|---|
| AbstractList | Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage.
[Display omitted]
Organometallic Chemistry; Electrochemical Energy Storage; Energy Materials Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage.Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage. Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage. : Organometallic Chemistry; Electrochemical Energy Storage; Energy Materials Subject Areas: Organometallic Chemistry, Electrochemical Energy Storage, Energy Materials Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage. Organometallic Chemistry; Electrochemical Energy Storage; Energy Materials Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources. Prussian blue and its analogs (Prussian blue analogs [PBAs]), or hexacyanoferrates, are well-known since the 18th century and have been used for hydrogen storage, cancer therapy, biosensing, seawater desalination, and sewage treatment. Owing to their unique features, PBAs are receiving increasing interest in the field of energy storage, such as their high theoretical specific capacity, ease of synthesis, as well as low cost. In this review, a general summary and evaluation of the applications of PBAs for rechargeable batteries are given. After a brief review of the history of PBAs, their crystal structure, nomenclature, synthesis, and working principle in rechargeable batteries are discussed. Then, previous works classified based on the combination of insertion cations and transition metals are analyzed comprehensively. The review includes an outlook toward the further development of PBAs in electrochemical energy storage. |
| Author | Pan, Hongge Yan, Mi Bahlawane, Naoufal Jiang, Yinzhu Wang, Baoqi Han, Yu Wang, Xiao |
| AuthorAffiliation | 2 State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Co. Ltd, Beijing 102211, China 3 Material Research and Technology Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxemburg 1 State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China |
| AuthorAffiliation_xml | – name: 2 State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Co. Ltd, Beijing 102211, China – name: 3 Material Research and Technology Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxemburg – name: 1 State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China |
| Author_xml | – sequence: 1 givenname: Baoqi surname: Wang fullname: Wang, Baoqi organization: State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 2 givenname: Yu surname: Han fullname: Han, Yu organization: State Key Laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute Co. Ltd, Beijing 102211, China – sequence: 3 givenname: Xiao surname: Wang fullname: Wang, Xiao organization: State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 4 givenname: Naoufal surname: Bahlawane fullname: Bahlawane, Naoufal organization: Material Research and Technology Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxemburg – sequence: 5 givenname: Hongge surname: Pan fullname: Pan, Hongge organization: State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 6 givenname: Mi surname: Yan fullname: Yan, Mi organization: State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 7 givenname: Yinzhu orcidid: 0000-0003-0639-2562 surname: Jiang fullname: Jiang, Yinzhu email: yzjiang@zju.edu.cn organization: State Key Laboratory of Silicon Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30428315$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kVtr3DAQhUVJaC7NH-hD8WNf1h3dbBlKIQlNGwgkhPZZjLWjjRavlUp2oP--2m4akj4EBCNG53wj5hyxvTGOxNh7DjUH3nxa1yG7UAvgpgZVA5g37FBo0y0AlNh7dj9gJzmvAUCUo7rmLTuQpW0k14cMbtKcc8CxOhtmqk5HHOIqVz6m6pbcHaYVYT9QdYbTRClQfsf2PQ6ZTh7rMft58fXH-ffF1fW3y_PTq4XTgk8LakGQ9NJ1phRA0o3WSgP1QuvGeKEkGS8VUAMGEbUQ1FPPtcfW9ArkMbvccZcR1_Y-hQ2m3zZisH8bMa0spim4gawG7hvtO9O5VvGlQ-VlK6WirnUGeFdYX3as-7nf0NLROCUcXkBfvozhzq7ig214AYm2AD4-AlL8NVOe7KZsn4YBR4pztoJLaYTgyhTph-eznob8W3kRiJ3ApZhzIv8k4WC30dq13UZrt9FaULZEW0zmP5MLE04hbv8bhtetn3dWKmk9BEq2KGh0tAyJ3FTWGV6z_wGxJ70e |
| CitedBy_id | crossref_primary_10_1002_smll_202101137 crossref_primary_10_1016_j_est_2024_111900 crossref_primary_10_3390_en13010031 crossref_primary_10_1002_anie_202106240 crossref_primary_10_1016_j_ccr_2020_213764 crossref_primary_10_1016_j_est_2025_115435 crossref_primary_10_1002_aenm_202100867 crossref_primary_10_1002_ange_202212031 crossref_primary_10_1016_j_electacta_2020_137077 crossref_primary_10_1016_j_trechm_2019_04_007 crossref_primary_10_1039_D2NR05285G crossref_primary_10_1002_ange_202410420 crossref_primary_10_1021_acs_chemmater_5c00213 crossref_primary_10_1155_er_8856604 crossref_primary_10_1016_j_cej_2020_124162 crossref_primary_10_1016_j_mtchem_2023_101540 crossref_primary_10_1016_j_mtsust_2022_100113 crossref_primary_10_1016_j_nxener_2025_100345 crossref_primary_10_1016_j_ccr_2024_216100 crossref_primary_10_1016_j_jpowsour_2024_235066 crossref_primary_10_1039_D0QI01197E crossref_primary_10_1039_D2RA00617K crossref_primary_10_1016_j_electacta_2019_06_062 crossref_primary_10_1016_j_electacta_2021_139525 crossref_primary_10_1039_D4SE00783B crossref_primary_10_1016_j_desal_2021_115218 crossref_primary_10_1002_cssc_201902013 crossref_primary_10_1016_j_jechem_2024_02_013 crossref_primary_10_1002_anie_202107697 crossref_primary_10_1007_s11581_023_05295_2 crossref_primary_10_1002_ange_202414479 crossref_primary_10_1002_cctc_202300357 crossref_primary_10_1002_ange_202500254 crossref_primary_10_1016_j_cattod_2024_114507 crossref_primary_10_1007_s10008_020_04746_4 crossref_primary_10_1016_j_ijhydene_2024_09_155 crossref_primary_10_1016_j_jallcom_2022_164388 crossref_primary_10_1002_celc_201901223 crossref_primary_10_1002_chem_202302136 crossref_primary_10_1016_j_colsurfa_2024_135099 crossref_primary_10_1002_adfm_202006970 crossref_primary_10_1016_j_jelechem_2022_117094 crossref_primary_10_1016_j_mattod_2023_06_013 crossref_primary_10_3390_batteries8100181 crossref_primary_10_1021_acs_inorgchem_4c05245 crossref_primary_10_1002_smll_202306709 crossref_primary_10_1016_j_jechem_2021_01_014 crossref_primary_10_3390_nano8120968 crossref_primary_10_1016_j_nanoen_2019_05_059 crossref_primary_10_1016_j_jallcom_2019_03_317 crossref_primary_10_1039_D3SC06912E crossref_primary_10_1002_sstr_202000064 crossref_primary_10_1039_D1SE00729G crossref_primary_10_1039_C9NH00751B crossref_primary_10_1038_s41467_020_14444_4 crossref_primary_10_3390_solids5020014 crossref_primary_10_1002_anie_202413866 crossref_primary_10_1002_anie_202500254 crossref_primary_10_3390_ma13163453 crossref_primary_10_1016_j_ijhydene_2022_04_216 crossref_primary_10_1016_j_mtener_2022_101095 crossref_primary_10_1002_batt_202100108 crossref_primary_10_1016_j_cej_2024_156410 crossref_primary_10_1016_j_triboint_2025_111062 crossref_primary_10_1002_cssc_202002339 crossref_primary_10_1039_D3RA03187J crossref_primary_10_1002_aenm_202202532 crossref_primary_10_1002_smll_202403084 crossref_primary_10_1016_j_cej_2021_129003 crossref_primary_10_1002_celc_201901919 crossref_primary_10_1002_ange_202309852 crossref_primary_10_1016_j_cclet_2024_110388 crossref_primary_10_1007_s10008_023_05402_3 crossref_primary_10_1016_j_jpowsour_2020_229307 crossref_primary_10_1002_smtd_201900445 crossref_primary_10_1016_j_est_2024_112999 crossref_primary_10_1016_j_mtener_2025_102030 crossref_primary_10_1002_ange_202301629 crossref_primary_10_1039_D4SE00976B crossref_primary_10_1002_smll_202406369 crossref_primary_10_1088_1742_6596_1706_1_012006 crossref_primary_10_1016_j_ccr_2022_214497 crossref_primary_10_1021_jacs_1c06727 crossref_primary_10_1016_j_jechem_2023_11_004 crossref_primary_10_3389_fenrg_2020_605129 crossref_primary_10_1016_j_jechem_2025_03_008 crossref_primary_10_1016_j_jpowsour_2021_230375 crossref_primary_10_1016_j_susmat_2022_e00532 crossref_primary_10_1002_ente_202201368 crossref_primary_10_1002_ijch_202100002 crossref_primary_10_1002_ange_202215865 crossref_primary_10_3390_batteries8090105 crossref_primary_10_1002_adma_201804740 crossref_primary_10_1002_batt_201900054 crossref_primary_10_1016_j_compositesb_2022_110434 crossref_primary_10_1016_j_matre_2025_100331 crossref_primary_10_1002_adfm_202210725 crossref_primary_10_1002_chem_201905384 crossref_primary_10_1007_s43939_021_00013_z crossref_primary_10_1016_j_jpowsour_2021_230021 crossref_primary_10_1016_j_bbrc_2025_152446 crossref_primary_10_1016_j_materresbull_2023_112351 crossref_primary_10_1007_s10008_023_05388_y crossref_primary_10_1002_ange_202413866 crossref_primary_10_1002_cey2_449 crossref_primary_10_1021_acs_jpcc_5c00877 crossref_primary_10_1002_adfm_202314860 crossref_primary_10_1002_smll_201805427 crossref_primary_10_1007_s40820_021_00700_9 crossref_primary_10_1557_s43578_022_00646_7 crossref_primary_10_1002_aenm_202404032 crossref_primary_10_1002_batt_202400280 crossref_primary_10_1002_smll_201803495 crossref_primary_10_1016_j_jallcom_2025_182014 crossref_primary_10_1002_adma_202004689 crossref_primary_10_1016_j_jpowsour_2021_229924 crossref_primary_10_1002_anie_202410420 crossref_primary_10_1039_D5TA00894H crossref_primary_10_1149_1945_7111_ad51a8 crossref_primary_10_1088_1755_1315_621_1_012061 crossref_primary_10_1016_j_est_2024_112537 crossref_primary_10_1016_j_electacta_2022_141561 crossref_primary_10_1002_eom2_12218 crossref_primary_10_1016_j_ccr_2022_214478 crossref_primary_10_1002_cnl2_70000 crossref_primary_10_1002_ange_202107697 crossref_primary_10_1002_cssc_202301224 crossref_primary_10_1002_adfm_202517871 crossref_primary_10_1039_D4NJ04067H crossref_primary_10_1002_celc_202500073 crossref_primary_10_1016_j_jpowsour_2025_237949 crossref_primary_10_4491_eer_2024_099 crossref_primary_10_1002_advs_202104234 crossref_primary_10_1002_aenm_202301329 crossref_primary_10_1002_anie_202414479 crossref_primary_10_1016_j_surfin_2022_102222 crossref_primary_10_1016_j_est_2025_116995 crossref_primary_10_1002_ange_202106240 crossref_primary_10_1016_j_jconrel_2022_10_007 crossref_primary_10_1007_s10948_023_06648_8 crossref_primary_10_1016_j_nxmate_2025_100930 crossref_primary_10_1002_cnl2_64 crossref_primary_10_1002_er_8574 crossref_primary_10_1016_j_ijhydene_2022_06_253 crossref_primary_10_1002_chem_202004091 crossref_primary_10_1016_j_electacta_2020_137021 crossref_primary_10_1002_adma_202105611 crossref_primary_10_1002_cssc_202200706 crossref_primary_10_1039_D3SE01597A crossref_primary_10_1002_ejic_202300246 crossref_primary_10_1002_adfm_202510376 crossref_primary_10_1016_j_jechem_2022_01_034 crossref_primary_10_1016_j_seppur_2025_132770 crossref_primary_10_1016_j_cej_2023_142834 crossref_primary_10_1021_acsnano_4c10091 crossref_primary_10_1039_D0SE01313G crossref_primary_10_1016_j_jcis_2022_08_098 crossref_primary_10_1016_j_joule_2018_07_017 crossref_primary_10_1002_cssc_201900582 crossref_primary_10_1007_s12274_021_3830_0 crossref_primary_10_1002_ejic_202100349 crossref_primary_10_3390_app10217573 crossref_primary_10_1016_j_mseb_2025_118308 crossref_primary_10_1016_j_nanoen_2023_109099 crossref_primary_10_1016_j_jpowsour_2025_236299 crossref_primary_10_1002_ange_202415050 crossref_primary_10_1002_sus2_170 crossref_primary_10_1007_s11581_023_04961_9 crossref_primary_10_1002_anie_202301629 crossref_primary_10_1016_j_jallcom_2023_169284 crossref_primary_10_1021_acsmaterialslett_4c01833 crossref_primary_10_1016_j_jallcom_2021_161316 crossref_primary_10_1016_j_jechem_2025_03_035 crossref_primary_10_1016_j_jechem_2020_05_045 crossref_primary_10_1002_batt_202000116 crossref_primary_10_1002_aenm_202002244 crossref_primary_10_1039_D1SE01292D crossref_primary_10_1002_adfm_201909530 crossref_primary_10_1016_j_isci_2023_108470 crossref_primary_10_1002_ange_202306185 crossref_primary_10_1016_j_elecom_2024_107696 crossref_primary_10_1002_adts_202100196 crossref_primary_10_1002_anie_202414302 crossref_primary_10_1021_acscentsci_3c01022 crossref_primary_10_1002_advs_202406842 crossref_primary_10_1002_aenm_202503627 crossref_primary_10_1016_j_apsusc_2023_157580 crossref_primary_10_1007_s40820_021_00671_x crossref_primary_10_1016_j_cej_2020_124228 crossref_primary_10_1016_j_jwpe_2023_104379 crossref_primary_10_1039_D2MH01149B crossref_primary_10_1016_j_matchemphys_2024_128946 crossref_primary_10_1016_j_cej_2022_135001 crossref_primary_10_1016_j_ccr_2022_214431 crossref_primary_10_1016_j_rser_2025_115677 crossref_primary_10_1016_j_jpowsour_2023_233104 crossref_primary_10_1002_smll_202408018 crossref_primary_10_1016_j_electacta_2020_136243 crossref_primary_10_3389_fchem_2020_00152 crossref_primary_10_3390_molecules28020461 crossref_primary_10_1002_celc_202300824 crossref_primary_10_1038_s41467_023_44155_5 crossref_primary_10_1016_j_nanoen_2021_105945 crossref_primary_10_3390_electronicmat4010003 crossref_primary_10_1016_j_matt_2019_05_007 crossref_primary_10_1007_s11581_019_03292_y crossref_primary_10_1007_s40820_022_00923_4 crossref_primary_10_1039_D5TC01760B crossref_primary_10_1002_adfm_202108616 crossref_primary_10_1039_D0EE00725K crossref_primary_10_1002_batt_202300546 crossref_primary_10_1002_aenm_202001128 crossref_primary_10_1007_s13770_025_00751_8 crossref_primary_10_1002_anie_202306185 crossref_primary_10_1016_j_ccr_2025_216702 crossref_primary_10_1016_j_cej_2023_143216 crossref_primary_10_1038_s41578_020_0193_1 crossref_primary_10_1016_j_cej_2022_138883 crossref_primary_10_1016_j_jallcom_2024_173849 crossref_primary_10_1002_aenm_202400543 crossref_primary_10_1002_celc_201900317 crossref_primary_10_1002_smll_202206848 crossref_primary_10_1016_j_jcis_2023_01_017 crossref_primary_10_1007_s10904_020_01625_3 crossref_primary_10_1016_j_electacta_2023_141815 crossref_primary_10_1002_sus2_53 crossref_primary_10_1002_sus2_57 crossref_primary_10_1002_adfm_202111901 crossref_primary_10_1016_j_mattod_2021_03_015 crossref_primary_10_3390_batteries11060213 crossref_primary_10_1002_anie_202215865 crossref_primary_10_1016_j_jpowsour_2022_232407 crossref_primary_10_1021_acsaem_5c00766 crossref_primary_10_1016_j_mtener_2020_100404 crossref_primary_10_1016_j_desal_2024_117695 crossref_primary_10_1039_D2SE00171C crossref_primary_10_1002_aenm_202000943 crossref_primary_10_1016_j_apsusc_2020_148843 crossref_primary_10_1016_j_jechem_2022_02_032 crossref_primary_10_1002_adma_201905440 crossref_primary_10_1002_ange_202414302 crossref_primary_10_1002_smll_202303896 crossref_primary_10_1002_anie_202003275 crossref_primary_10_1002_anie_202309852 crossref_primary_10_1038_s41467_022_35376_1 crossref_primary_10_1016_j_ccr_2020_213393 crossref_primary_10_1016_j_cej_2020_128159 crossref_primary_10_1002_adma_202108384 crossref_primary_10_1016_j_electacta_2021_137828 crossref_primary_10_1007_s11051_024_05984_7 crossref_primary_10_1039_D0SE00675K crossref_primary_10_3390_nano12234268 crossref_primary_10_1007_s10854_020_04381_9 crossref_primary_10_1016_j_nanoen_2020_105632 crossref_primary_10_1021_jacs_4c11741 crossref_primary_10_1002_cite_202400017 crossref_primary_10_1007_s10854_023_11606_0 crossref_primary_10_1016_j_solidstatesciences_2021_106603 crossref_primary_10_1016_j_mtener_2022_101115 crossref_primary_10_1016_j_cej_2025_162410 crossref_primary_10_1002_adfm_202409171 crossref_primary_10_1002_advs_202000196 crossref_primary_10_1016_j_jechem_2021_09_002 crossref_primary_10_1016_j_jpowsour_2020_229263 crossref_primary_10_1002_aesr_202500065 crossref_primary_10_1016_j_jechem_2022_01_010 crossref_primary_10_1016_j_cej_2020_126688 crossref_primary_10_1039_D0EE01277G crossref_primary_10_1002_adfm_202409518 crossref_primary_10_1016_j_electacta_2024_144237 crossref_primary_10_1016_j_electacta_2023_142773 crossref_primary_10_1016_j_ces_2024_120669 crossref_primary_10_1002_smll_202409947 crossref_primary_10_1016_j_electacta_2019_03_094 crossref_primary_10_1002_adfm_202508749 crossref_primary_10_1016_j_apmt_2020_100886 crossref_primary_10_1016_j_desal_2020_114479 crossref_primary_10_1021_acsaem_5c01717 crossref_primary_10_1016_j_electacta_2020_135928 crossref_primary_10_1016_j_scenem_2025_100013 crossref_primary_10_1016_j_carbon_2022_05_041 crossref_primary_10_3390_nano14131092 crossref_primary_10_1016_j_cej_2020_127767 crossref_primary_10_1002_adfm_202106751 crossref_primary_10_3390_ijms21093113 crossref_primary_10_1039_D2SE00475E crossref_primary_10_1002_smtd_202301372 crossref_primary_10_1007_s11356_019_06865_6 crossref_primary_10_1002_anie_202212031 crossref_primary_10_1002_ange_202003275 crossref_primary_10_1016_j_jpowsour_2021_230521 crossref_primary_10_1002_anie_202415050 crossref_primary_10_1002_batt_202200486 crossref_primary_10_1016_j_desal_2023_116646 crossref_primary_10_1016_j_jpowsour_2019_227421 crossref_primary_10_3390_mi14030521 crossref_primary_10_1016_j_colsurfa_2025_137829 |
| Cites_doi | 10.1039/c3cc38839e 10.1039/C7CC02516E 10.1039/C3EE44004D 10.1038/ncomms6280 10.1039/C5TA09867J 10.1002/aenm.201400930 10.1002/aenm.201601052 10.1002/chem.201403061 10.1016/j.electacta.2017.04.054 10.1021/acsami.6b10082 10.1016/j.jpowsour.2003.08.007 10.1016/j.jpowsour.2016.12.074 10.1002/celc.201700776 10.1002/aenm.201700180 10.1002/adfm.201600747 10.1039/c2cc31777j 10.1021/acs.chemmater.5b04027 10.1039/c3ta13205f 10.1016/j.nanoen.2015.02.006 10.1039/C7TA00132K 10.1021/ja310347x 10.1021/jacs.7b10460 10.1021/ac00110a016 10.1002/adma.201703824 10.1016/j.jpowsour.2015.11.065 10.1002/aenm.201401869 10.1002/adma.201606823 10.1016/j.jpowsour.2014.10.196 10.1016/j.electacta.2015.02.002 10.1016/j.electacta.2016.04.159 10.1016/j.jpowsour.2016.06.019 10.1016/j.jpowsour.2015.10.042 10.1039/c3ta13223d 10.1016/j.electacta.2016.10.155 10.1007/s12274-014-0588-7 10.1016/j.electacta.2015.10.031 10.1002/adma.201604007 10.1021/acsami.6b01352 10.1021/acs.nanolett.7b01366 10.1016/j.elecom.2017.02.012 10.1021/ja312160v 10.1039/C5CS00410A 10.1021/am507443p 10.1021/ja510347s 10.1016/j.electacta.2016.12.121 10.1039/C6TA06658E 10.1016/j.electacta.2015.03.084 10.1002/anie.201310679 10.1016/j.ensm.2017.06.002 10.1002/celc.201700410 10.1039/C4FD00147H 10.1002/aenm.201401791 10.5796/electrochemistry.85.179 10.1039/C7TA01821E 10.1016/j.electacta.2016.05.205 10.1021/ja512383b 10.1039/C5CC06053B 10.1016/j.jallcom.2016.05.335 10.1016/j.jpowsour.2017.07.094 10.1021/acsami.6b06890 10.1002/adfm.201604307 10.1039/c2cc32730a 10.1039/C7TA08139A 10.1021/cm504091z 10.1039/C7TA04172A 10.1016/j.jallcom.2017.09.146 10.1039/C7NR03579A 10.1103/PhysRevB.71.054414 10.1039/C7RA10292E 10.1016/j.electacta.2016.10.062 10.1038/ncomms4007 10.1021/acsami.7b05178 10.1016/j.electacta.2016.05.176 10.1039/C4TA04644G 10.1016/j.jpowsour.2016.12.015 10.1021/nl203193q 10.1038/srep18263 10.1021/acsami.6b15110 10.1021/acsami.6b11070 10.1039/C5TA10571D 10.1016/j.elecom.2012.05.017 10.1002/adfm.201100854 10.1021/acsami.7b06334 10.1002/aenm.201601491 10.1039/C5RA04769B 10.1021/acsami.6b01592 10.1039/c3dt51369f 10.1002/adma.201600846 10.1016/j.jpowsour.2016.03.011 10.1002/anie.201206854 10.1016/j.jpowsour.2014.09.101 10.1039/C7TA05121B 10.3390/en8099486 10.1002/cplu.201700258 10.1002/adma.201700587 10.1016/j.jhazmat.2013.04.024 10.1149/1.1393348 10.1021/acsami.6b10884 10.1016/j.jpowsour.2016.05.050 10.1016/j.nanoen.2017.07.005 10.1021/acsami.6b06880 10.1021/acsenergylett.7b00179 10.1021/ic0201654 10.1039/C5CC01180A 10.1016/j.matchemphys.2014.11.014 10.1039/C5TA03197D 10.1038/ncomms1563 10.1002/cjoc.201600713 10.1149/2.0701706jes 10.1021/acsami.6b15666 10.1016/j.jpowsour.2016.05.003 10.1016/j.nanoen.2015.02.019 10.1038/ncomms2139 10.1016/j.nanoen.2015.01.012 10.1039/C6QI00595K 10.1002/cnma.201500021 10.1016/j.elecom.2015.07.014 10.1016/j.jpowsour.2014.08.025 10.1039/C6CS00776G 10.1039/C6RA23261B 10.1016/j.elecom.2013.06.019 10.1021/acsenergylett.7b00040 10.1002/asia.201701715 10.1016/j.jpowsour.2016.10.083 10.1039/C6CC02093C 10.1039/c4ra02559h 10.1016/j.jcis.2016.05.056 10.1039/C4CC05830E 10.1021/acsami.6b07989 10.1021/acs.jpcc.7b07920 10.1039/c3ta12036h 10.1002/cssc.201403143 10.1039/C7TA00220C 10.1016/j.jpowsour.2016.08.059 10.1126/science.1212741 10.1002/adma.201606132 10.1039/C4TA00062E 10.1039/C5CC04694G 10.1021/acsami.5b12620 10.1039/C5DT03030G 10.1016/j.electacta.2016.03.131 10.1149/2.0751512jes 10.1016/j.materresbull.2016.10.019 10.1002/anie.201209689 10.1039/C7QM00503B 10.1021/nn204666v |
| ContentType | Journal Article |
| Copyright | 2018 The Author(s) Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. 2018 The Author(s) 2018 |
| Copyright_xml | – notice: 2018 The Author(s) – notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2018 The Author(s) 2018 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.isci.2018.04.008 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2589-0042 |
| EndPage | 133 |
| ExternalDocumentID | oai_doaj_org_article_501f65f989c741dca4f37334e97c8019 PMC6137327 30428315 10_1016_j_isci_2018_04_008 S2589004218300403 |
| Genre | Journal Article Review |
| GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c521t-e702e3f3c98e3f0ae5655450eb25568f243e8f340e608aaa522ebeb15fa78b403 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 402 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449721600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2589-0042 |
| IngestDate | Fri Oct 03 12:17:14 EDT 2025 Tue Sep 30 17:08:02 EDT 2025 Thu Oct 02 11:19:14 EDT 2025 Wed Feb 19 02:44:13 EST 2025 Wed Nov 12 18:36:12 EST 2025 Tue Nov 18 21:51:28 EST 2025 Thu Jul 20 20:15:28 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Energy Materials Organometallic Chemistry Electrochemical Energy Storage |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c521t-e702e3f3c98e3f0ae5655450eb25568f243e8f340e608aaa522ebeb15fa78b403 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-0639-2562 |
| OpenAccessLink | https://doaj.org/article/501f65f989c741dca4f37334e97c8019 |
| PMID | 30428315 |
| PQID | 2133822148 |
| PQPubID | 23479 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_501f65f989c741dca4f37334e97c8019 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137327 proquest_miscellaneous_2133822148 pubmed_primary_30428315 crossref_primary_10_1016_j_isci_2018_04_008 crossref_citationtrail_10_1016_j_isci_2018_04_008 elsevier_sciencedirect_doi_10_1016_j_isci_2018_04_008 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-25 |
| PublicationDateYYYYMMDD | 2018-05-25 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | iScience |
| PublicationTitleAlternate | iScience |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Zhang, Xu, Zhou, Liang, Dong, Wu, Yang, Lei (bib142) 2017; 27 Guo, Mo, Shi, Huang, Leong, Ding, Chen, Yang (bib20) 2017; 9 Kim, Kim, Arumugam, Woo, Jo, Park, Kim, Choi, Lee (bib40) 2016; 8 Seh, Sun, Zhang, Cui (bib96) 2016; 45 Piernas-MuñOz, Castillo-Mart Nez, Bondarchuk, Armand, Rojo (bib87) 2016; 324 Xie, Xu, Huang, Chen, Zhang, Li, Wu (bib127) 2015; 59 Jiang, Zhang, Yang, Li, Lee (bib34) 2017; 4 Lipson, Han, Kim, Pan, Sa, Liao, Fister, Burrell, Vaughey, Ingram (bib59) 2016; 325 Jia, Wang, Wang (bib31) 2014; 4 Yuan, Wang, Hu, Lei, Tian, Jiao (bib140) 2016; 685 Ji, Han, Liang, Zhou, Gao, Xia, Wu (bib28) 2016; 8 Wang, Krumeich, Nesper (bib112) 2013; 34 Fu, Liu, Zhang, Ma, Wang, Li, Lu, Cao (bib18) 2017; 5 Paolella, Faure, Timoshevskii, Marras, Bertoni, Guerfi, Vijh, Armand, Zaghib (bib81) 2017; 5 Ghasemi, Hosseini, Asen (bib19) 2015; 160 Wu, Sun, Guo, Qian, Liu, Cao, Ai, Yang (bib122) 2015; 1 Chae, Heo, Kwak, Lee, Hong (bib5) 2017; 337 Kasiri, Tr Coli, Bani Hashemi, La Mantia (bib39) 2016; 222 Nie, Shen, Luo, Ding, Xu, Wang, Zhang (bib72) 2014; 2 Padigi, Goncher, Evans, Solanki (bib79) 2015; 273 Padigi, Thiebes, Swan, Goncher, Evans, Solanki (bib80) 2015; 166 Pasta, Wessells, Liu, Nelson, Mcdowell, Huggins, Toney, Cui (bib84) 2014; 5 Wu, Song, Dai, Zhuo, Wray, Liu, Shen, Zeng, Lu, Yang (bib118) 2017; 139 Jia, Cai, Chen, Wang, Xu, Zhang, Ma, Wu, Shi, Chen (bib29) 2015; 7 Li, Chou, Wang, Wang, Gu, Liu, Dou (bib54) 2015; 13 Chong, Chen, Zheng, Tan, Shu, Liu, Guo (bib10) 2017; 5 Mizuno, Okubo, Hosono, Kudo, Oh-Ishi, Okazawa, Kojima, Kurono, Nishimura, Yamada (bib68) 2013; 1 Reed, Ortiz, Xiong, Menke (bib93) 2015; 51 Su, Mcdonagh, Qiao, Wang (bib103) 2017; 29 Yagi, Fukuda, Ichitsubo, Nitta, Mizumaki, Matsubara (bib130) 2015; 162 Jiang, Liu, Song, Yin, Xu (bib33) 2016; 4 You, Yu, Yin, Nam, Guo (bib138) 2014; 8 Karyakin, Gitelmacher, Karyakina (bib38) 1995; 67 Xie, Huang, Xu, Chen, Zhang, Li, Wu (bib126) 2016; 302 Asakura, Li, Mizuno, Okubo, Zhou, Talham (bib2) 2013; 135 Kumar, Yusuf, Keller (bib44) 2005; 71 Chae, Hyoung, Jang, Lee, Hong (bib6) 2017; 363 Pasta, Wessells, Huggins, Cui (bib83) 2012; 3 Fernández-Ropero, Piernas-MuñOz, Castillo-Mart Nez, Rojo, Casas-Cabanas (bib17) 2016; 210 Jia, Wang, Wang (bib30) 2015; 149-150 Lu, Wang, Cheng, Goodenough (bib65) 2012; 48 Nie, Yuan, Wang, Le, Xu, Hao, Pang, Wu, Dou, Yan, Zhang (bib74) 2017; 9 Wang, Lu, Liu, Xu, Cheng, Zhang, Goodenough (bib109) 2013; 52 Liu, Pulletikurthi, Endres (bib63) 2016; 8 Qian, Wu, Cao, Ma, Huang, Ai, Yang (bib90) 2018 Lee, Ali, Kim, Chung (bib49) 2017; 7 Widmann, Kahlert, Petrovic-Prelevic, Wulff, Yakhmi, Bagkar, Scholz (bib116) 2002; 41 Jiang, Shao, Chen, Feng, Liu (bib32) 2017; 5 Prabakar, Jeong, Pyo (bib89) 2015; 5 Wang, Shyam, Stone, Weker, Pasta, Lee, Toney, Cui (bib111) 2015; 5 Fang, Zhao, Sun, Wang, Cheng, Li (bib15) 2017; 29 Moritomo, Urase, Shibata (bib70) 2016; 210 Komaba, Matsuura, Ishikawa, Yabuuchi, Murata, Kuze (bib42) 2012; 21 Su, Cortie, Fan, Wang (bib102) 2017; 29 Wu, Shao, Wu, Qian, Cao, Ai, Yang (bib121) 2016; 8 Lee, Wang, Pasta, Woo Lee, Liu, Cui (bib48) 2014; 5 Hu, Li, Jiang (bib23) 2017; 35 Xiong, Zeng, Zeng, Wei (bib128) 2015; 44 Kuperman, Padigi, Goncher, Evans, Thiebes, Solanki (bib45) 2017; 342 Liu, Qiao, Zhang, Li, Ji, Miao, Yuan, Hu, Huang (bib62) 2015; 12 Lu, Song, Zhang, Ma (bib64) 2016; 321 Okubo, Honma (bib76) 2013; 42 You, Wu, Yin, Guo (bib135) 2013; 1 Rudola, Du, Balaya (bib95) 2017; 164 Wu, Wu, Wei, Hu, Qian, Cao, Ai, Wang, Yang (bib123) 2016; 8 Chen, Huang, Xie, Wang, Ye, Li, Wu (bib9) 2016; 8 Zhang, Meng, Mao, Guo, Qin, Cao (bib146) 2017; 7 Wu, Deng, Qian, Cao, Ai, Yang (bib119) 2013; 1 Cai, Yang, Qu, Wang (bib4) 2017; 53 Hwang, Myung, Sun (bib27) 2017; 46 Jiao, Tuo, Xie, Cai, Wang, Zhu (bib36) 2017; 86 Ye, Wang, Zhao, Huang, Han, Zhou, Zeng, Li (bib134) 2016; 4 Abirami, Hwang, Yang, Senthilkumar, Kim, Go, Senthilkumar, Song, Kim (bib1) 2016; 8 Nie, Shen, Pang, Zhu, Xu, Qing, Dou, Zhang (bib73) 2015; 3 Nakamoto, Sakamoto, Ito, Kitajou, Okada (bib71) 2017; 85 Yan, Yang, Liu, Sun, Wang, Liao, He, Ma (bib131) 2017; 225 Zhang, Zhang, Niu, Li, Wang, Yang (bib143) 2017; 82 Eftekhari, Jian, Ji (bib14) 2017; 9 Omarova, Koishybay, Yesibolati, Mentbayeva, Umirov, Ismailov, Adair, Babaa, Kurmanbayeva, Bakenov (bib78) 2015; 184 Vipin, Hu, Fugetsu (bib107) 2013; 258 Xie, Yang, Zhong, Zhang (bib125) 2016; 642 Li, Liu, Cui, Lau, Stuart, Wang, Licht (bib52) 2015; 5 Wu, Jian, Li, Ji (bib124) 2017; 77 Qian, Wu, Cao, Ai, Yang (bib91) 2013; 52 Wang, Song, Qiao, Wray, Hossain, Chuang, Yang, Lu, Evans, Lee (bib110) 2015; 137 Zhao, Zhao, Qiu, Pang, Lai, Huang (bib147) 2017; 4 Komaba, Murata, Ishikawa, Yabuuchi, Ozeki, Nakayama, Ogata, Gotoh, Fujiwara (bib43) 2011; 21 Lipson, Pan, Lapidus, Liao, Vaughey, Ingram (bib60) 2015; 27 Hu, Luo, Ye, Zhu, Lyu, Wang (bib24) 2017; 29 He, Nazar (bib22) 2017; 2 Tojo, Sugiura, Inada, Sakurai (bib105) 2016; 207 Bie, Kubota, Hosaka, Chihara, Komaba (bib3) 2017; 5 Li, Chou, Wang, Kang, Wang, Liu, Gu, Liu, Dou (bib53) 2015; 27 Wessells, Mcdowell, Peddada, Pasta, Huggins, Cui (bib114) 2012; 6 Wu, Luo, Sun, Qian, Cao, Ai, Yang (bib120) 2015; 13 Zhang, Chen, Zhou, Liu (bib145) 2015; 5 Lee, Pasta, Wang, Ruffo, Cui (bib47) 2014; 176 Song, Wang, Lu, Liu, Guo, Xiao, Lee, Yang, Henkelman, Goodenough (bib99) 2015; 137 Wong, Zhang, Yang, Chen, Ying (bib117) 2015; 51 Liao, Hu, Zou, Xiang, Chen (bib57) 2016; 220 You, Yao, Xin, Yin, Zuo, Yang, Guo, Cui, Wan, Goodenough (bib137) 2016; 28 Matsuda, Takachi, Moritomo (bib67) 2013; 49 Moritomo, Goto, Shibata (bib69) 2015; 8 Peng, Li, Wang, He, Huang, Zhao (bib86) 2017; 9 Lee, Nam, Sun, Higashi, Lee, Lee, Chen, Cui, Cho (bib50) 2016; 6 Li, Zang, Li, Man, Wang, Li, Wu, Liu, Wang (bib51) 2017; 13 Dunn, Kamath, Tarascon (bib12) 2011; 334 Stevens, Dahn (bib101) 2000; 147 Paulitsch, Yun, Bandarenka (bib85) 2017; 9 Wessells, Huggins, Cui (bib113) 2011; 2 Chen, Bao, Dong, Truhlar, Wang, Wang, Xia (bib8) 2017; 2 Zhang, Chen, Zhou, Liu (bib144) 2015; 5 Jiang, Yu, Wang, Li, Sun, Lu, Yan, Song, Dou (bib35) 2016; 26 Li, Zhang, Xiang, Zhang (bib55) 2017; 121 Pasta, Wang, Ruffo, Qiao, Lee, Shyam, Guo, Wang, Wray, Yang (bib82) 2016; 4 Shen, Wang, Chen (bib98) 2014; 20 Nossol, Souza, Zarbin (bib75) 2016; 478 You, Wu, Yin, Guo (bib136) 2014; 7 Lai, Jiao, Song, Zhang, Li, Zhang (bib46) 2018; 2 Gupta, Kim, Phadke, Biswas, Luong, Hertzberg, Chamoun, Evans-Lutterodt, Steingart (bib21) 2016; 305 Luo, Sun, Peng, Liu, Huang, Wang, Zhang, Li, Jin, Liu (bib66) 2017; 9 Xu, Zheng, Tang, Guo, Xue, Pang (bib129) 2017; 9 Yang, Xu, Liao, Wang, He, Ma (bib133) 2015; 51 Chen, Li, Kumar, Lee (bib7) 2017; 7 Hu, Ye, Luo, Hu, Zhu, Wang, Li, Peng, Wang (bib25) 2018; 30 Wan, Tang, Wang, Xiang, Li, Chen, Xue, Zhang, Huang (bib108) 2016; 329 Zhao, Wen, Liang, Jiang, Zhou, Shen, Xu (bib148) 2017; 9 Huang, Xie, Zhang, Wang, Jiang, Xiao, Li, Li, Wu, Chen (bib26) 2017; 39 Sottmann, Bernal, Yusenko, Herrmann, Emerich, Wragg, Margadonna (bib100) 2016; 200 Ren, Qin, Zhu, Yan, Li, Zhang, Liu, Mai (bib94) 2017; 17 Trocoli, La Mantia (bib106) 2015; 8 Yu, Li, Lu, Xu, Wang, Yan, Jiang (bib139) 2015; 275 Darwiche, Marino, Sougrati, Fraisse, Stievano, Monconduit (bib11) 2012; 134 Piernas-MuñOz, Castillo-Mart Nez, Roddatis, Armand, Rojo (bib88) 2014; 271 Oliver-Tolentino, Vazquez-Samperio, Cabrera-Sierra, Reguera (bib77) 2016; 6 Wessells, Peddada, Huggins, Cui (bib115) 2011; 11 Jo, Lee, Kim, Jin (bib37) 2017; 729 Senthilkumar, Abirami, Kim, Go, Hwang, Kim (bib97) 2017; 341 Kim, Zakaria, Park, Alowasheeir, Alshehri, Yamauchi, Kim (bib41) 2017; 240 Qian, Chen, Wu, Cao, Ai, Yang (bib92) 2012; 48 Eftekhari (bib13) 2004; 126 Liu, Pan, Li, Gao (bib61) 2015; 3 Feng, Yu, Paik (bib16) 2016; 52 Lim, Wang, Kong, Guo, Wong, Ang, Yang (bib58) 2017; 5 Yue, Binder, Guo, Zhang, Qiao, Tian, Dai (bib141) 2014; 53 Li, Zhang, Xiang, Zhang (bib56) 2017; 4 Sun, Ji, Zhou, Shao, Zang, Wen, Chen (bib104) 2016; 314 Yang, Xu, Liao, He, Liu, Ma (bib132) 2014; 50 Nie (10.1016/j.isci.2018.04.008_bib73) 2015; 3 Piernas-MuñOz (10.1016/j.isci.2018.04.008_bib88) 2014; 271 Jiao (10.1016/j.isci.2018.04.008_bib36) 2017; 86 Tojo (10.1016/j.isci.2018.04.008_bib105) 2016; 207 Moritomo (10.1016/j.isci.2018.04.008_bib69) 2015; 8 Luo (10.1016/j.isci.2018.04.008_bib66) 2017; 9 Oliver-Tolentino (10.1016/j.isci.2018.04.008_bib77) 2016; 6 Wang (10.1016/j.isci.2018.04.008_bib111) 2015; 5 Wu (10.1016/j.isci.2018.04.008_bib122) 2015; 1 Yang (10.1016/j.isci.2018.04.008_bib133) 2015; 51 Pasta (10.1016/j.isci.2018.04.008_bib83) 2012; 3 Komaba (10.1016/j.isci.2018.04.008_bib42) 2012; 21 Jia (10.1016/j.isci.2018.04.008_bib31) 2014; 4 Guo (10.1016/j.isci.2018.04.008_bib20) 2017; 9 Li (10.1016/j.isci.2018.04.008_bib55) 2017; 121 Li (10.1016/j.isci.2018.04.008_bib56) 2017; 4 Lipson (10.1016/j.isci.2018.04.008_bib60) 2015; 27 Liu (10.1016/j.isci.2018.04.008_bib62) 2015; 12 Widmann (10.1016/j.isci.2018.04.008_bib116) 2002; 41 Wan (10.1016/j.isci.2018.04.008_bib108) 2016; 329 Li (10.1016/j.isci.2018.04.008_bib53) 2015; 27 Qian (10.1016/j.isci.2018.04.008_bib90) 2018 Abirami (10.1016/j.isci.2018.04.008_bib1) 2016; 8 Li (10.1016/j.isci.2018.04.008_bib54) 2015; 13 Lu (10.1016/j.isci.2018.04.008_bib65) 2012; 48 You (10.1016/j.isci.2018.04.008_bib136) 2014; 7 Yuan (10.1016/j.isci.2018.04.008_bib140) 2016; 685 Chae (10.1016/j.isci.2018.04.008_bib5) 2017; 337 Jiang (10.1016/j.isci.2018.04.008_bib35) 2016; 26 Song (10.1016/j.isci.2018.04.008_bib99) 2015; 137 Lee (10.1016/j.isci.2018.04.008_bib47) 2014; 176 Wessells (10.1016/j.isci.2018.04.008_bib113) 2011; 2 Li (10.1016/j.isci.2018.04.008_bib51) 2017; 13 Trocoli (10.1016/j.isci.2018.04.008_bib106) 2015; 8 Ye (10.1016/j.isci.2018.04.008_bib134) 2016; 4 Komaba (10.1016/j.isci.2018.04.008_bib43) 2011; 21 You (10.1016/j.isci.2018.04.008_bib137) 2016; 28 Cai (10.1016/j.isci.2018.04.008_bib4) 2017; 53 Jia (10.1016/j.isci.2018.04.008_bib29) 2015; 7 Nossol (10.1016/j.isci.2018.04.008_bib75) 2016; 478 Wu (10.1016/j.isci.2018.04.008_bib121) 2016; 8 Kuperman (10.1016/j.isci.2018.04.008_bib45) 2017; 342 Senthilkumar (10.1016/j.isci.2018.04.008_bib97) 2017; 341 Xu (10.1016/j.isci.2018.04.008_bib129) 2017; 9 Zhang (10.1016/j.isci.2018.04.008_bib143) 2017; 82 Wang (10.1016/j.isci.2018.04.008_bib109) 2013; 52 Wu (10.1016/j.isci.2018.04.008_bib120) 2015; 13 Jia (10.1016/j.isci.2018.04.008_bib30) 2015; 149-150 Wu (10.1016/j.isci.2018.04.008_bib118) 2017; 139 Zhang (10.1016/j.isci.2018.04.008_bib144) 2015; 5 Eftekhari (10.1016/j.isci.2018.04.008_bib13) 2004; 126 Prabakar (10.1016/j.isci.2018.04.008_bib89) 2015; 5 Hu (10.1016/j.isci.2018.04.008_bib24) 2017; 29 Lu (10.1016/j.isci.2018.04.008_bib64) 2016; 321 Shen (10.1016/j.isci.2018.04.008_bib98) 2014; 20 Yan (10.1016/j.isci.2018.04.008_bib131) 2017; 225 Kumar (10.1016/j.isci.2018.04.008_bib44) 2005; 71 Yu (10.1016/j.isci.2018.04.008_bib139) 2015; 275 Liao (10.1016/j.isci.2018.04.008_bib57) 2016; 220 Li (10.1016/j.isci.2018.04.008_bib52) 2015; 5 Wu (10.1016/j.isci.2018.04.008_bib123) 2016; 8 Padigi (10.1016/j.isci.2018.04.008_bib79) 2015; 273 He (10.1016/j.isci.2018.04.008_bib22) 2017; 2 Omarova (10.1016/j.isci.2018.04.008_bib78) 2015; 184 Seh (10.1016/j.isci.2018.04.008_bib96) 2016; 45 Zhao (10.1016/j.isci.2018.04.008_bib147) 2017; 4 Asakura (10.1016/j.isci.2018.04.008_bib2) 2013; 135 Lipson (10.1016/j.isci.2018.04.008_bib59) 2016; 325 Wessells (10.1016/j.isci.2018.04.008_bib114) 2012; 6 Vipin (10.1016/j.isci.2018.04.008_bib107) 2013; 258 Ren (10.1016/j.isci.2018.04.008_bib94) 2017; 17 Lai (10.1016/j.isci.2018.04.008_bib46) 2018; 2 Dunn (10.1016/j.isci.2018.04.008_bib12) 2011; 334 Paolella (10.1016/j.isci.2018.04.008_bib81) 2017; 5 Lim (10.1016/j.isci.2018.04.008_bib58) 2017; 5 Moritomo (10.1016/j.isci.2018.04.008_bib70) 2016; 210 You (10.1016/j.isci.2018.04.008_bib135) 2013; 1 Yue (10.1016/j.isci.2018.04.008_bib141) 2014; 53 You (10.1016/j.isci.2018.04.008_bib138) 2014; 8 Chong (10.1016/j.isci.2018.04.008_bib10) 2017; 5 Sottmann (10.1016/j.isci.2018.04.008_bib100) 2016; 200 Chen (10.1016/j.isci.2018.04.008_bib7) 2017; 7 Fang (10.1016/j.isci.2018.04.008_bib15) 2017; 29 Kasiri (10.1016/j.isci.2018.04.008_bib39) 2016; 222 Huang (10.1016/j.isci.2018.04.008_bib26) 2017; 39 Jiang (10.1016/j.isci.2018.04.008_bib33) 2016; 4 Qian (10.1016/j.isci.2018.04.008_bib92) 2012; 48 Xiong (10.1016/j.isci.2018.04.008_bib128) 2015; 44 Su (10.1016/j.isci.2018.04.008_bib102) 2017; 29 Yagi (10.1016/j.isci.2018.04.008_bib130) 2015; 162 Lee (10.1016/j.isci.2018.04.008_bib49) 2017; 7 Okubo (10.1016/j.isci.2018.04.008_bib76) 2013; 42 Pasta (10.1016/j.isci.2018.04.008_bib84) 2014; 5 Lee (10.1016/j.isci.2018.04.008_bib50) 2016; 6 Nie (10.1016/j.isci.2018.04.008_bib74) 2017; 9 Pasta (10.1016/j.isci.2018.04.008_bib82) 2016; 4 Lee (10.1016/j.isci.2018.04.008_bib48) 2014; 5 Stevens (10.1016/j.isci.2018.04.008_bib101) 2000; 147 Rudola (10.1016/j.isci.2018.04.008_bib95) 2017; 164 Gupta (10.1016/j.isci.2018.04.008_bib21) 2016; 305 Xie (10.1016/j.isci.2018.04.008_bib125) 2016; 642 Liu (10.1016/j.isci.2018.04.008_bib61) 2015; 3 Su (10.1016/j.isci.2018.04.008_bib103) 2017; 29 Fernández-Ropero (10.1016/j.isci.2018.04.008_bib17) 2016; 210 Xie (10.1016/j.isci.2018.04.008_bib127) 2015; 59 Feng (10.1016/j.isci.2018.04.008_bib16) 2016; 52 Karyakin (10.1016/j.isci.2018.04.008_bib38) 1995; 67 Kim (10.1016/j.isci.2018.04.008_bib41) 2017; 240 Mizuno (10.1016/j.isci.2018.04.008_bib68) 2013; 1 Nakamoto (10.1016/j.isci.2018.04.008_bib71) 2017; 85 Chen (10.1016/j.isci.2018.04.008_bib9) 2016; 8 Hu (10.1016/j.isci.2018.04.008_bib25) 2018; 30 Fu (10.1016/j.isci.2018.04.008_bib18) 2017; 5 Chen (10.1016/j.isci.2018.04.008_bib8) 2017; 2 Jiang (10.1016/j.isci.2018.04.008_bib34) 2017; 4 Piernas-MuñOz (10.1016/j.isci.2018.04.008_bib87) 2016; 324 Reed (10.1016/j.isci.2018.04.008_bib93) 2015; 51 Wong (10.1016/j.isci.2018.04.008_bib117) 2015; 51 Bie (10.1016/j.isci.2018.04.008_bib3) 2017; 5 Zhang (10.1016/j.isci.2018.04.008_bib146) 2017; 7 Eftekhari (10.1016/j.isci.2018.04.008_bib14) 2017; 9 Zhao (10.1016/j.isci.2018.04.008_bib148) 2017; 9 Wang (10.1016/j.isci.2018.04.008_bib110) 2015; 137 Nie (10.1016/j.isci.2018.04.008_bib72) 2014; 2 Wu (10.1016/j.isci.2018.04.008_bib119) 2013; 1 Zhang (10.1016/j.isci.2018.04.008_bib145) 2015; 5 Qian (10.1016/j.isci.2018.04.008_bib91) 2013; 52 Darwiche (10.1016/j.isci.2018.04.008_bib11) 2012; 134 Padigi (10.1016/j.isci.2018.04.008_bib80) 2015; 166 Xie (10.1016/j.isci.2018.04.008_bib126) 2016; 302 Jiang (10.1016/j.isci.2018.04.008_bib32) 2017; 5 Ji (10.1016/j.isci.2018.04.008_bib28) 2016; 8 Wu (10.1016/j.isci.2018.04.008_bib124) 2017; 77 Liu (10.1016/j.isci.2018.04.008_bib63) 2016; 8 Hwang (10.1016/j.isci.2018.04.008_bib27) 2017; 46 Peng (10.1016/j.isci.2018.04.008_bib86) 2017; 9 Sun (10.1016/j.isci.2018.04.008_bib104) 2016; 314 Wang (10.1016/j.isci.2018.04.008_bib112) 2013; 34 Yang (10.1016/j.isci.2018.04.008_bib132) 2014; 50 Jo (10.1016/j.isci.2018.04.008_bib37) 2017; 729 Kim (10.1016/j.isci.2018.04.008_bib40) 2016; 8 Matsuda (10.1016/j.isci.2018.04.008_bib67) 2013; 49 Wessells (10.1016/j.isci.2018.04.008_bib115) 2011; 11 Chae (10.1016/j.isci.2018.04.008_bib6) 2017; 363 Paulitsch (10.1016/j.isci.2018.04.008_bib85) 2017; 9 Zhang (10.1016/j.isci.2018.04.008_bib142) 2017; 27 Ghasemi (10.1016/j.isci.2018.04.008_bib19) 2015; 160 Hu (10.1016/j.isci.2018.04.008_bib23) 2017; 35 27960427 - ACS Appl Mater Interfaces. 2016 Dec 14;8(49):33619-33625 23708451 - J Hazard Mater. 2013 Aug 15;258-259:93-101 23194439 - J Am Chem Soc. 2012 Dec 26;134(51):20805-11 28370537 - Adv Mater. 2017 Dec;29(48) 25679040 - J Am Chem Soc. 2015 Feb 25;137(7):2658-64 27288576 - J Colloid Interface Sci. 2016 Sep 15;478:107-16 28691793 - ACS Appl Mater Interfaces. 2017 Aug 2;9(30):25317-25322 28570041 - ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20306-20312 27479707 - ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4397-4403 26271479 - Chem Commun (Camb). 2015 Oct 1;51(76):14397-400 28665610 - Nano Lett. 2017 Aug 9;17(8):4713-4718 22109524 - Nat Commun. 2011 Nov 22;2:550 25311066 - Nat Commun. 2014 Oct 14;5:5280 25111752 - Chemistry. 2014 Sep 22;20(39):12559-62 28858348 - Nanoscale. 2017 Sep 14;9(35):13305-13312 26849278 - ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5393-9 27078114 - Chem Commun (Camb). 2016 May 7;52(37):6269-72 22096188 - Science. 2011 Nov 18;334(6058):928-35 28643406 - Adv Mater. 2017 Dec;29(48) 23407705 - Chem Commun (Camb). 2013 Apr 7;49(27):2750-2 27714999 - ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4404-4419 23391305 - J Am Chem Soc. 2013 Feb 20;135(7):2793-9 28071884 - ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3757-3765 23512686 - Angew Chem Int Ed Engl. 2013 Apr 22;52(17):4633-6 26332606 - Dalton Trans. 2015 Oct 14;44(38):16746-51 28597877 - Chem Commun (Camb). 2017 Jun 20;53(50):6780-6783 27119430 - ACS Appl Mater Interfaces. 2016 May 18;8(19):12158-64 27305570 - Adv Mater. 2016 Sep;28(33):7243-8 26967192 - ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8554-60 27781313 - Adv Mater. 2017 Jan;29(1) 29169239 - J Am Chem Soc. 2017 Dec 20;139(50):18358-18364 27934150 - ACS Appl Mater Interfaces. 2016 Dec 7;8(48):32778-32787 25510850 - ChemSusChem. 2015 Feb;8(3):481-5 26669272 - Sci Rep. 2015 Dec 16;5:18263 23319239 - Angew Chem Int Ed Engl. 2013 Feb 11;52(7):1964-7 24677672 - Angew Chem Int Ed Engl. 2014 Mar 17;53(12):3134-7 22622269 - Chem Commun (Camb). 2012 Jul 4;48(52):6544-6 25406368 - Faraday Discuss. 2014;176:69-81 12401075 - Inorg Chem. 2002 Nov 4;41(22):5706-15 24389854 - Nat Commun. 2014;5:3007 22684188 - Chem Commun (Camb). 2012 Jul 18;48(56):7070-2 26225418 - Chem Commun (Camb). 2015 Sep 14;51(71):13674-7 23093186 - Nat Commun. 2012;3:1149 27797476 - ACS Appl Mater Interfaces. 2016 Nov 23;8(46):31669-31676 25615887 - J Am Chem Soc. 2015 Feb 25;137(7):2548-54 27460222 - Chem Soc Rev. 2016 Oct 21;45(20):5605-5634 22283739 - ACS Nano. 2012 Feb 28;6(2):1688-94 28380284 - Adv Mater. 2017 Dec;29(48) 23824231 - Dalton Trans. 2013 Dec 7;42(45):15881-4 29281173 - Chem Asian J. 2018 Feb 2;13(3):342-349 25233263 - Chem Commun (Camb). 2014 Nov 11;50(87):13377-80 27556906 - ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23706-12 25874448 - Chem Commun (Camb). 2015 May 11;51(38):8181-4 25646576 - ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4579-88 28206743 - ACS Appl Mater Interfaces. 2017 Mar 8;9(9):8107-8112 28349134 - Chem Soc Rev. 2017 Jun 19;46(12):3529-3614 29164706 - Adv Mater. 2018 Jan;30(2) 22043814 - Nano Lett. 2011 Dec 14;11(12):5421-5 |
| References_xml | – volume: 12 start-page: 386 year: 2015 end-page: 393 ident: bib62 article-title: Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes publication-title: Nano Energy – volume: 49 start-page: 2750 year: 2013 end-page: 2752 ident: bib67 article-title: A sodium manganese ferrocyanide thin film for Na-ion batteries publication-title: Chem. Commun. (Camb) – volume: 67 start-page: 2419 year: 1995 end-page: 2423 ident: bib38 article-title: Prussian blue based first-generation biosensor - a sensitive amperometric electrode for glucose publication-title: Anal. Chem. – volume: 77 start-page: 54 year: 2017 end-page: 57 ident: bib124 article-title: Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries publication-title: Electrochem. Commun. – volume: 363 start-page: 269 year: 2017 end-page: 276 ident: bib6 article-title: Potassium nickel hexacyanoferrate as a high-voltage cathode material for nonaqueous magnesium-ion batteries publication-title: J. Power Sources – volume: 52 start-page: 6269 year: 2016 end-page: 6272 ident: bib16 article-title: Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation publication-title: Chem. Commun. (Camb) – volume: 240 start-page: 300 year: 2017 end-page: 306 ident: bib41 article-title: Dual-textured Prussian blue nanocubes as sodium ion storage materials publication-title: Electrochim. Acta – volume: 8 start-page: 9486 year: 2015 end-page: 9494 ident: bib69 article-title: Glucose-treated manganese hexacyanoferrate for sodium-ion secondary battery publication-title: Energies – volume: 20 start-page: 12559 year: 2014 end-page: 12562 ident: bib98 article-title: Prussian blues as a cathode material for lithium ion batteries publication-title: Chemistry – volume: 13 start-page: 117 year: 2015 end-page: 123 ident: bib120 article-title: Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries publication-title: Nano Energy – volume: 8 start-page: 31669 year: 2016 end-page: 31676 ident: bib9 article-title: Chemical inhibition method to synthesize highly crystalline Prussian blue analogs for sodium-ion battery cathodes publication-title: ACS Appl. Mater. Interfaces – volume: 35 start-page: 415 year: 2017 end-page: 419 ident: bib23 article-title: Hierarchical octahedral Na2MnFe(CN)6 and Na2MnFe(CN)6@Ppy as cathode materials for sodium-ion batteries publication-title: Chin. J. Chem. – volume: 729 start-page: 590 year: 2017 end-page: 596 ident: bib37 article-title: Electrochemical properties of Na x MnFe(CN) 6 · z H 2 O synthesized in a Taylor-Couette reactor as a Na-ion battery cathode material publication-title: J. Alloys Compd. – volume: 137 start-page: 2658 year: 2015 end-page: 2664 ident: bib99 article-title: Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 5852 year: 2014 end-page: 5857 ident: bib72 article-title: Prussian blue analogues: a new class of anode materials for lithium ion batteries publication-title: J. Mater. Chem. A. – volume: 176 start-page: 69 year: 2014 end-page: 81 ident: bib47 article-title: Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes publication-title: Faraday Discuss – volume: 51 start-page: 13674 year: 2015 end-page: 13677 ident: bib117 article-title: One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes publication-title: Chem. Commun. (Camb) – volume: 8 start-page: 5393 year: 2016 end-page: 5399 ident: bib123 article-title: Highly crystallized Na(2)CoFe(CN)(6) with suppressed lattice defects as superior cathode material for sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 149-150 start-page: 601 year: 2015 end-page: 606 ident: bib30 article-title: Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries publication-title: Mater. Chem. Phys. – volume: 222 start-page: 74 year: 2016 end-page: 83 ident: bib39 article-title: An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries publication-title: Electrochim. Acta – volume: 48 start-page: 6544 year: 2012 end-page: 6546 ident: bib65 article-title: Prussian blue: a new framework of electrode materials for sodium batteries publication-title: Chem. Commun. (Camb) – volume: 1 start-page: 13055 year: 2013 ident: bib68 article-title: Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes publication-title: J. Mater. Chem. A – volume: 5 start-page: 16740 year: 2017 end-page: 16747 ident: bib32 article-title: Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries publication-title: J. Mater. Chem. A – volume: 2 start-page: 550 year: 2011 ident: bib113 article-title: Copper hexacyanoferrate battery electrodes with long cycle life and high power publication-title: Nat. Commun. – volume: 2 start-page: 376 year: 2018 end-page: 384 ident: bib46 article-title: Fe/Fe3C@graphitic carbon shell embedded in carbon nanotubes derived from Prussian blue as cathodes for Li-O-2 batteries publication-title: Mater. Chem. Front. – volume: 5 start-page: 18263 year: 2015 ident: bib144 article-title: Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery publication-title: Sci. Rep. – volume: 48 start-page: 7070 year: 2012 end-page: 7072 ident: bib92 article-title: High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries publication-title: Chem. Comm. – volume: 8 start-page: 8554 year: 2016 end-page: 8560 ident: bib40 article-title: Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a high-voltage cathode for magnesium batteries publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 2237 year: 2017 end-page: 2242 ident: bib34 article-title: A Fe/Mn-based Prussian blue analogue as a K-rich cathode material for potassium-ion batteries publication-title: ChemElectroChem – volume: 7 start-page: 50812 year: 2017 end-page: 50821 ident: bib146 article-title: Multifunctional Prussian blue analogous@polyaniline core–shell nanocubes for lithium storage and overall water splitting publication-title: RSC Adv. – volume: 3 start-page: 16590 year: 2015 end-page: 16597 ident: bib73 article-title: Flexible metal–organic frameworks as superior cathodes for rechargeable sodium-ion batteries publication-title: J. Mater. Chem. A. – volume: 7 start-page: 1643 year: 2014 end-page: 1647 ident: bib136 article-title: High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries publication-title: Energy Environ. Sci. – volume: 46 start-page: 3529 year: 2017 end-page: 3614 ident: bib27 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. – volume: 4 start-page: 442 year: 2017 end-page: 449 ident: bib147 article-title: Facile synthesis of Mn-3[Co(CN)(6)](2)center dot nH(2)O nanocrystals for high-performance electrochemical energy storage devices publication-title: Inorg. Chem. Front. – volume: 200 start-page: 305 year: 2016 end-page: 313 ident: bib100 article-title: In operando synchrotron XRD/XAS investigation of sodium insertion into the Prussian blue analogue cathode material Na 1.32 Mn[Fe(CN) 6 ] 0.83 · z H 2 O publication-title: Electrochim. Acta – volume: 9 start-page: 4397 year: 2017 end-page: 4403 ident: bib86 article-title: Prussian blue: a potential material to improve the electrochemical performance of lithium-sulfur batteries publication-title: ACS Appl. Mater. Interfaces – volume: 82 start-page: 1170 year: 2017 end-page: 1173 ident: bib143 article-title: FeFe(CN)6 nanocubes as a bipolar electrode material in aqueous symmetric sodium-ion batteries publication-title: ChemPlusChem – volume: 4 start-page: 22768 year: 2014 ident: bib31 article-title: Electrochemical sodium storage of copper hexacyanoferrate with a well-defined open framework for sodium ion batteries publication-title: RSC Adv. – volume: 225 start-page: 235 year: 2017 end-page: 242 ident: bib131 article-title: Improved cycling performance of Prussian blue cathode for sodium ion batteries by controlling operation voltage range publication-title: Electrochim. Acta – volume: 9 start-page: 20306 year: 2017 end-page: 20312 ident: bib74 article-title: Prussian blue analogue with fast kinetics through electronic coupling for sodium ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 2870 year: 2017 end-page: 2876 ident: bib56 article-title: High-efficiency Na-storage performance of a nickel-based ferricyanide cathode in high-concentration electrolytes for aqueous sodium-ion batteries publication-title: ChemElectroChem – volume: 85 start-page: 179 year: 2017 end-page: 185 ident: bib71 article-title: Effect of Concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode publication-title: Electrochemistry – volume: 337 start-page: 204 year: 2017 end-page: 211 ident: bib5 article-title: Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material publication-title: J. Power Sources – volume: 325 start-page: 646 year: 2016 end-page: 652 ident: bib59 article-title: Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes publication-title: J. Power Sources – volume: 53 start-page: 6780 year: 2017 end-page: 6783 ident: bib4 article-title: Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries publication-title: Chem. Commun. (Camb) – volume: 7 start-page: 1601491 year: 2017 ident: bib49 article-title: Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries publication-title: Adv. Energy Mater. – volume: 134 start-page: 20805 year: 2012 end-page: 20811 ident: bib11 article-title: Better cycling performances of bulk Sb in Na-Ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 12158 year: 2016 end-page: 12164 ident: bib63 article-title: A Prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte publication-title: ACS Appl. Mater. Interfaces – volume: 41 start-page: 5706 year: 2002 end-page: 5715 ident: bib116 article-title: Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron hexacyanoferrates/hexacyanocobaltates publication-title: Inorg. Chem. – volume: 135 start-page: 2793 year: 2013 end-page: 2799 ident: bib2 article-title: Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1754 year: 2016 end-page: 1761 ident: bib134 article-title: Iron-based sodium-ion full batteries publication-title: J. Mater. Chem. A – volume: 8 start-page: 23706 year: 2016 end-page: 23712 ident: bib121 article-title: Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 121 start-page: 27805 year: 2017 end-page: 27812 ident: bib55 article-title: Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries publication-title: J. Phys. Chem. C – volume: 29 start-page: 1606132 year: 2017 ident: bib24 article-title: An Innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries publication-title: Adv. Mater. – volume: 9 start-page: 13305 year: 2017 end-page: 13312 ident: bib20 article-title: A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism publication-title: Nanoscale – volume: 6 start-page: 108627 year: 2016 end-page: 108634 ident: bib77 article-title: Materials for aqueous sodium-ion batteries: cation mobility in a zinc hexacyanoferrate electrode publication-title: RSC Adv. – volume: 5 start-page: 3007 year: 2014 ident: bib84 article-title: Full open-framework batteries for stationary energy storage publication-title: Nat. Commun. – volume: 8 start-page: 32778 year: 2016 end-page: 32787 ident: bib1 article-title: A metal-organic framework derived porous cobalt manganese oxide bifunctional electrocatalyst for hybrid Na-air/seawater batteries publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 5421 year: 2011 end-page: 5425 ident: bib115 article-title: Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries publication-title: Nano Lett. – volume: 4 start-page: 4211 year: 2016 end-page: 4223 ident: bib82 article-title: Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries publication-title: J. Mater. Chem. A – volume: 5 start-page: 1400930 year: 2015 ident: bib145 article-title: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system publication-title: Adv. Energy Mater. – volume: 324 start-page: 766 year: 2016 end-page: 773 ident: bib87 article-title: Higher voltage plateau cubic Prussian White for Na-ion batteries publication-title: J. Power Sources – volume: 28 start-page: 7243 year: 2016 end-page: 7248 ident: bib137 article-title: Subzero-temperature cathode for a sodium-ion battery publication-title: Adv. Mater. – volume: 27 start-page: 1604307 year: 2017 ident: bib142 article-title: Potassium Prussian Blue nanoparticles: a low-cost cathode material for potassium-ion batteries publication-title: Adv. Funct. Mater. – volume: 314 start-page: 35 year: 2016 end-page: 38 ident: bib104 article-title: A new gridding cyanoferrate anode material for lithium and sodium ion batteries: Ti0.75Fe0.25[Fe(CN)6]0.96·1.9H2O with excellent electrochemical properties publication-title: J. Power Sources – volume: 5 start-page: 22465 year: 2017 end-page: 22471 ident: bib10 article-title: Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries publication-title: J. Mater. Chem. A – volume: 45 start-page: 5605 year: 2016 end-page: 5634 ident: bib96 article-title: Designing high-energy lithium-sulfur batteries publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1604007 year: 2017 ident: bib103 article-title: High-capacity aqueous potassium-ion batteries for large-scale energy storage publication-title: Adv. Mater. – volume: 302 start-page: 7 year: 2016 end-page: 12 ident: bib126 article-title: Sodium titanium hexacyanoferrate as an environmentally friendly and low-cost cathode material for sodium-ion batteries publication-title: J. Power Sources – volume: 17 start-page: 4713 year: 2017 end-page: 4718 ident: bib94 article-title: Activation of sodium storage sites in Prussian blue analogues via surface etching publication-title: Nano Lett. – volume: 6 start-page: 1688 year: 2012 end-page: 1694 ident: bib114 article-title: Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage publication-title: ACS Nano – volume: 71 start-page: 054414 year: 2005 ident: bib44 article-title: Structural and magnetic properties of Fe[Fe(CN)6]∙4H2O publication-title: Phys. Rev. B – volume: 342 start-page: 414 year: 2017 end-page: 418 ident: bib45 article-title: High performance Prussian blue cathode for nonaqueous Ca-ion intercalation battery publication-title: J. Power Sources – volume: 5 start-page: 18919 year: 2017 end-page: 18932 ident: bib81 article-title: A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives publication-title: J. Mater. Chem. A – volume: 2 start-page: 1122 year: 2017 end-page: 1127 ident: bib22 article-title: Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries publication-title: ACS Energy Lett. – volume: 9 start-page: 8107 year: 2017 end-page: 8112 ident: bib85 article-title: Electrodeposited Na2VOx[Fe(CN)6] films as a cathode material for aqueous Na-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 39 start-page: 273 year: 2017 end-page: 283 ident: bib26 article-title: A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries publication-title: Nano Energy – volume: 271 start-page: 489 year: 2014 end-page: 496 ident: bib88 article-title: K 1−x Fe 2+x/3 (CN) 6 · y H 2 O, Prussian blue as a displacement anode for lithium ion batteries publication-title: J. Power Sources – volume: 5 start-page: 37545 year: 2015 end-page: 37552 ident: bib89 article-title: Highly crystalline Prussian blue/graphene composites for high-rate performance cathodes in Na-ion batteries publication-title: RSC Adv. – volume: 8 start-page: 481 year: 2015 end-page: 485 ident: bib106 article-title: An aqueous zinc-ion battery based on copper hexacyanoferrate publication-title: ChemSusChem – volume: 52 start-page: 1964 year: 2013 end-page: 1967 ident: bib109 article-title: A superior low-cost cathode for a Na-ion battery publication-title: Angew. Chem. Int. Ed. – volume: 642 start-page: 289 year: 2016 end-page: 293 ident: bib125 article-title: Improving the performance of a ternary Prussian blue analogue as cathode of lithium battery via annealing treatment publication-title: J. Inorg. Gen. Chem. – volume: 305 start-page: 22 year: 2016 end-page: 29 ident: bib21 article-title: Improving the cycle life of a high-rate, high-potential aqueous dual-ion battery using hyper-dendritic zinc and copper hexacyanoferrate publication-title: J. Power Sources – volume: 5 start-page: 1401791 year: 2015 ident: bib52 article-title: A one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide publication-title: Adv. Energy Mater. – volume: 137 start-page: 2548 year: 2015 end-page: 2554 ident: bib110 article-title: Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 4579 year: 2015 end-page: 4588 ident: bib29 article-title: Perfluoropentane-encapsulated hollow mesoporous Prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer publication-title: ACS Appl. Mater. Interfaces – volume: 341 start-page: 404 year: 2017 end-page: 410 ident: bib97 article-title: Sodium-ion hybrid electrolyte battery for sustainable energy storage applications publication-title: J. Power Sources – year: 2018 ident: bib90 article-title: Prussian blue cathode materials for sodium-ion batteries and other ion batteries publication-title: Adv. Energy Mater – volume: 147 start-page: 1271 year: 2000 end-page: 1273 ident: bib101 article-title: High capacity anode materials for rechargeable sodium-ion batteries publication-title: J. Electrochem. Soc. – volume: 34 start-page: 246 year: 2013 end-page: 249 ident: bib112 article-title: Nanocomposite of manganese ferrocyanide and graphene: a promising cathode material for rechargeable lithium ion batteries publication-title: Electrochem. Commun. – volume: 334 start-page: 928 year: 2011 end-page: 935 ident: bib12 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science – volume: 21 start-page: 65 year: 2012 end-page: 68 ident: bib42 article-title: Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell publication-title: Electrochem. Commun. – volume: 126 start-page: 221 year: 2004 end-page: 228 ident: bib13 article-title: Potassium secondary cell based on Prussian blue cathode publication-title: J. Power Sources – volume: 4 start-page: 16205 year: 2016 end-page: 16212 ident: bib33 article-title: Hierarchical mesoporous octahedral K2Mn1−xCoxFe(CN)6as a superior cathode material for sodium-ion batteries publication-title: J. Mater. Chem. A – volume: 273 start-page: 460 year: 2015 end-page: 464 ident: bib79 article-title: Potassium barium hexacyanoferrate – a potential cathode material for rechargeable calcium ion batteries publication-title: J. Power Sources – volume: 160 start-page: 337 year: 2015 end-page: 346 ident: bib19 article-title: Preparation of graphene/nickel-iron hexacyanoferrate coordination polymer nanocomposite for electrochemical energy storage publication-title: Electrochim. Acta – volume: 210 start-page: 352 year: 2016 end-page: 357 ident: bib17 article-title: Electrochemical characterization of NaFe2(CN)6 Prussian blue as positive electrode for aqueous sodium-ion batteries publication-title: Electrochimica Acta – volume: 27 start-page: 8442 year: 2015 end-page: 8447 ident: bib60 article-title: Rechargeable Ca-ion batteries: a new energy storage system publication-title: Chem. Mater. – volume: 220 start-page: 114 year: 2016 end-page: 121 ident: bib57 article-title: The role of potassium ions in iron hexacyanoferrate as a cathode material for hybrid ion batteries publication-title: Electrochim. Acta – volume: 27 start-page: 1997 year: 2015 end-page: 2003 ident: bib53 article-title: Facile method to synthesize Na-enriched Na1+xFeFe(CN)6 frameworks as cathode with superior electrochemical performance for sodium-ion batteries publication-title: Chem. Mater. – volume: 8 start-page: 117 year: 2014 end-page: 128 ident: bib138 article-title: Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries publication-title: Nano Res. – volume: 59 start-page: 91 year: 2015 end-page: 94 ident: bib127 article-title: Na2NixCo1−xFe(CN)6: a class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries publication-title: Electrochem. Commun. – volume: 329 start-page: 290 year: 2016 end-page: 296 ident: bib108 article-title: Core-shell hexacyanoferrate for superior Na-ion batteries publication-title: J. Power Sources – volume: 164 start-page: A1098 year: 2017 end-page: A1109 ident: bib95 article-title: Monoclinic sodium iron hexacyanoferrate cathode and non-flammable glyme-based electrolyte for inexpensive sodium-ion batteries publication-title: J. Electrochem. Soc. – volume: 13 start-page: 342 year: 2017 end-page: 349 ident: bib51 article-title: High Crystalline Prussian white nanocubes as a promising cathode for sodium-ion batteries publication-title: Chem. Asian J. – volume: 50 start-page: 13377 year: 2014 end-page: 13380 ident: bib132 article-title: Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries publication-title: Chem. Commun. (Camb) – volume: 29 start-page: 1606823 year: 2017 ident: bib15 article-title: More reliable lithium-sulfur batteries: status, solutions and prospects publication-title: Adv. Mater. – volume: 6 start-page: 1601052 year: 2016 ident: bib50 article-title: Composites of a Prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn-air Battery publication-title: Adv. Energy Mater. – volume: 5 start-page: 10406 year: 2017 end-page: 10415 ident: bib58 article-title: Cubic-shaped WS2 nanopetals on a Prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries publication-title: J. Mater. Chem. A – volume: 5 start-page: 1401869 year: 2015 ident: bib111 article-title: Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials publication-title: Adv. Energy Mater. – volume: 9 start-page: 25317 year: 2017 end-page: 25322 ident: bib66 article-title: Graphene-roll-wrapped Prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 200 year: 2015 end-page: 207 ident: bib54 article-title: Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach publication-title: Nano Energy – volume: 275 start-page: 45 year: 2015 end-page: 49 ident: bib139 article-title: A promising cathode material of sodium iron–nickel hexacyanoferrate for sodium ion batteries publication-title: J. Power Sources – volume: 478 start-page: 107 year: 2016 end-page: 116 ident: bib75 article-title: Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery publication-title: J. Colloid Interface Sci. – volume: 9 start-page: 4404 year: 2017 end-page: 4419 ident: bib14 article-title: Potassium secondary batteries publication-title: ACS Appl. Mater. Interfaces – volume: 139 start-page: 18358 year: 2017 end-page: 18364 ident: bib118 article-title: Modification of transition-metal redox by interstitial water in hexacyanometalate electrodes for sodium-ion batteries publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 33619 year: 2016 end-page: 33625 ident: bib28 article-title: On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 258 start-page: 93 year: 2013 end-page: 101 ident: bib107 article-title: Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water publication-title: J. Hazard. Mater. – volume: 184 start-page: 58 year: 2015 end-page: 63 ident: bib78 article-title: Nickel hexacyanoferrate nanoparticles as a low cost cathode material for lithium-ion batteries publication-title: Electrochim. Acta – volume: 166 start-page: 32 year: 2015 end-page: 39 ident: bib80 article-title: Prussian green: a high rate capacity cathode for potassium ion batteries publication-title: Electrochim. Acta – volume: 21 start-page: 3859 year: 2011 end-page: 3867 ident: bib43 article-title: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries publication-title: Adv. Funct. Mater. – volume: 162 start-page: A2356 year: 2015 end-page: A2361 ident: bib130 article-title: EQCM analysis of redox behavior of CuFe Prussian blue analog in Mg battery electrolytes publication-title: J. Electrochem. Soc. – volume: 9 start-page: 3757 year: 2017 end-page: 3765 ident: bib148 article-title: Carbon-coated Fe3O4/VOx hollow microboxes derived from metal-organic frameworks as a high-performance anode material for lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 11 year: 2017 end-page: 30 ident: bib129 article-title: Prussian blue and its derivatives as electrode materials for electrochemical energy storage publication-title: Energy Storage Mater. – volume: 207 start-page: 22 year: 2016 end-page: 27 ident: bib105 article-title: Reversible calcium ion batteries using a dehydrated Prussian blue analogue cathode publication-title: Electrochim. Acta – volume: 3 start-page: 1149 year: 2012 ident: bib83 article-title: A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage publication-title: Nat. Commun. – volume: 5 start-page: 9604 year: 2017 end-page: 9610 ident: bib18 article-title: Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping publication-title: J. Mater. Chem. A. – volume: 210 start-page: 963 year: 2016 end-page: 969 ident: bib70 article-title: Enhanced battery performance in manganese hexacyanoferrate by partial substitution publication-title: Electrochim. Acta – volume: 52 start-page: 4633 year: 2013 end-page: 4636 ident: bib91 article-title: High capacity and rate capability of amorphous phosphorus for sodium ion batteries publication-title: Angew. Chem. Int. Ed. – volume: 42 start-page: 15881 year: 2013 end-page: 15884 ident: bib76 article-title: Ternary metal Prussian blue analogue nanoparticles as cathode materials for Li-ion batteries publication-title: Dalton Trans. – volume: 685 start-page: 344 year: 2016 end-page: 349 ident: bib140 article-title: Na 2 Co 3 [Fe(CN) 6 ] 2 : a promising cathode material for lithium-ion and sodium-ion batteries publication-title: J. Alloys Compd. – volume: 2 start-page: 1115 year: 2017 end-page: 1121 ident: bib8 article-title: Aqueous Mg-Ion battery based on polyimide anode and Prussian blue cathode publication-title: ACS Energy Lett. – volume: 26 start-page: 5315 year: 2016 end-page: 5321 ident: bib35 article-title: Prussian blue@c composite as an ultrahigh-rate and long-life sodium-ion battery cathode publication-title: Adv. Funct. Mater. – volume: 53 start-page: 3134 year: 2014 end-page: 3137 ident: bib141 article-title: Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 10130 year: 2013 ident: bib119 article-title: Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries publication-title: J. Mater. Chem. A – volume: 51 start-page: 14397 year: 2015 end-page: 14400 ident: bib93 article-title: A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte publication-title: Chem. Commun. (Camb) – volume: 5 start-page: 4325 year: 2017 end-page: 4330 ident: bib3 article-title: A novel K-ion battery: hexacyanoferrate(ii)/graphite cell publication-title: J. Mater. Chem. A – volume: 30 start-page: 1703824 year: 2018 ident: bib25 article-title: A binder-free and free-standing cobalt Sulfide@Carbon nanotube cathode material for aluminum-ion batteries publication-title: Adv. Mater. – volume: 3 start-page: 959 year: 2015 end-page: 962 ident: bib61 article-title: Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries publication-title: J. Mater. Chem. A – volume: 44 start-page: 16746 year: 2015 end-page: 16751 ident: bib128 article-title: Prussian blue analogues Mn[Fe(CN)6]0.6667.nH2O cubes as an anode material for lithium-ion batteries publication-title: Dalton Trans. – volume: 29 start-page: 1700587 year: 2017 ident: bib102 article-title: Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries publication-title: Adv. Mater. – volume: 86 start-page: 194 year: 2017 end-page: 200 ident: bib36 article-title: The electrochemical performance of Cu3[Fe(CN)6]2 as a cathode material for sodium-ion batteries publication-title: Mater. Res. Bull. – volume: 321 start-page: 257 year: 2016 end-page: 263 ident: bib64 article-title: A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc publication-title: J. Power Sources – volume: 7 year: 2017 ident: bib7 article-title: Carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode publication-title: Adv. Energy Mater. – volume: 5 start-page: 5280 year: 2014 ident: bib48 article-title: Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries publication-title: Nat. Commun. – volume: 1 start-page: 188 year: 2015 end-page: 193 ident: bib122 article-title: Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries publication-title: ChemNanoMat – volume: 51 start-page: 8181 year: 2015 end-page: 8184 ident: bib133 article-title: Prussian blue without coordinated water as a superior cathode for sodium-ion batteries publication-title: Chem. Commun. (Camb) – volume: 1 start-page: 14061 year: 2013 ident: bib135 article-title: A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries publication-title: J. Mater. Chem. A – volume: 49 start-page: 2750 year: 2013 ident: 10.1016/j.isci.2018.04.008_bib67 article-title: A sodium manganese ferrocyanide thin film for Na-ion batteries publication-title: Chem. Commun. (Camb) doi: 10.1039/c3cc38839e – volume: 53 start-page: 6780 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib4 article-title: Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries publication-title: Chem. Commun. (Camb) doi: 10.1039/C7CC02516E – volume: 7 start-page: 1643 year: 2014 ident: 10.1016/j.isci.2018.04.008_bib136 article-title: High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C3EE44004D – volume: 5 start-page: 5280 year: 2014 ident: 10.1016/j.isci.2018.04.008_bib48 article-title: Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries publication-title: Nat. Commun. doi: 10.1038/ncomms6280 – volume: 4 start-page: 1754 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib134 article-title: Iron-based sodium-ion full batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA09867J – volume: 5 start-page: 1400930 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib145 article-title: Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400930 – volume: 6 start-page: 1601052 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib50 article-title: Composites of a Prussian blue analogue and gelatin-derived nitrogen-doped carbon-supported porous spinel oxides as electrocatalysts for a Zn-air Battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601052 – volume: 20 start-page: 12559 year: 2014 ident: 10.1016/j.isci.2018.04.008_bib98 article-title: Prussian blues as a cathode material for lithium ion batteries publication-title: Chemistry doi: 10.1002/chem.201403061 – volume: 240 start-page: 300 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib41 article-title: Dual-textured Prussian blue nanocubes as sodium ion storage materials publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.04.054 – volume: 8 start-page: 32778 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib1 article-title: A metal-organic framework derived porous cobalt manganese oxide bifunctional electrocatalyst for hybrid Na-air/seawater batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10082 – volume: 126 start-page: 221 year: 2004 ident: 10.1016/j.isci.2018.04.008_bib13 article-title: Potassium secondary cell based on Prussian blue cathode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2003.08.007 – volume: 342 start-page: 414 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib45 article-title: High performance Prussian blue cathode for nonaqueous Ca-ion intercalation battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.12.074 – volume: 4 start-page: 2870 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib56 article-title: High-efficiency Na-storage performance of a nickel-based ferricyanide cathode in high-concentration electrolytes for aqueous sodium-ion batteries publication-title: ChemElectroChem doi: 10.1002/celc.201700776 – volume: 7 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib7 article-title: Carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700180 – volume: 26 start-page: 5315 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib35 article-title: Prussian blue@c composite as an ultrahigh-rate and long-life sodium-ion battery cathode publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600747 – volume: 48 start-page: 6544 year: 2012 ident: 10.1016/j.isci.2018.04.008_bib65 article-title: Prussian blue: a new framework of electrode materials for sodium batteries publication-title: Chem. Commun. (Camb) doi: 10.1039/c2cc31777j – volume: 27 start-page: 8442 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib60 article-title: Rechargeable Ca-ion batteries: a new energy storage system publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04027 – volume: 1 start-page: 13055 year: 2013 ident: 10.1016/j.isci.2018.04.008_bib68 article-title: Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13205f – volume: 13 start-page: 117 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib120 article-title: Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.006 – volume: 5 start-page: 9604 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib18 article-title: Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA00132K – volume: 134 start-page: 20805 year: 2012 ident: 10.1016/j.isci.2018.04.008_bib11 article-title: Better cycling performances of bulk Sb in Na-Ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310347x – volume: 139 start-page: 18358 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib118 article-title: Modification of transition-metal redox by interstitial water in hexacyanometalate electrodes for sodium-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10460 – volume: 67 start-page: 2419 year: 1995 ident: 10.1016/j.isci.2018.04.008_bib38 article-title: Prussian blue based first-generation biosensor - a sensitive amperometric electrode for glucose publication-title: Anal. Chem. doi: 10.1021/ac00110a016 – volume: 30 start-page: 1703824 year: 2018 ident: 10.1016/j.isci.2018.04.008_bib25 article-title: A binder-free and free-standing cobalt Sulfide@Carbon nanotube cathode material for aluminum-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201703824 – volume: 305 start-page: 22 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib21 article-title: Improving the cycle life of a high-rate, high-potential aqueous dual-ion battery using hyper-dendritic zinc and copper hexacyanoferrate publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.11.065 – volume: 5 start-page: 1401869 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib111 article-title: Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401869 – volume: 29 start-page: 1606823 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib15 article-title: More reliable lithium-sulfur batteries: status, solutions and prospects publication-title: Adv. Mater. doi: 10.1002/adma.201606823 – volume: 275 start-page: 45 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib139 article-title: A promising cathode material of sodium iron–nickel hexacyanoferrate for sodium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.196 – volume: 160 start-page: 337 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib19 article-title: Preparation of graphene/nickel-iron hexacyanoferrate coordination polymer nanocomposite for electrochemical energy storage publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.02.002 – volume: 207 start-page: 22 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib105 article-title: Reversible calcium ion batteries using a dehydrated Prussian blue analogue cathode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.04.159 – volume: 325 start-page: 646 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib59 article-title: Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.019 – volume: 302 start-page: 7 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib126 article-title: Sodium titanium hexacyanoferrate as an environmentally friendly and low-cost cathode material for sodium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.10.042 – volume: 1 start-page: 14061 year: 2013 ident: 10.1016/j.isci.2018.04.008_bib135 article-title: A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13223d – volume: 222 start-page: 74 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib39 article-title: An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.155 – volume: 8 start-page: 117 year: 2014 ident: 10.1016/j.isci.2018.04.008_bib138 article-title: Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries publication-title: Nano Res. doi: 10.1007/s12274-014-0588-7 – volume: 184 start-page: 58 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib78 article-title: Nickel hexacyanoferrate nanoparticles as a low cost cathode material for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.10.031 – volume: 29 start-page: 1604007 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib103 article-title: High-capacity aqueous potassium-ion batteries for large-scale energy storage publication-title: Adv. Mater. doi: 10.1002/adma.201604007 – volume: 8 start-page: 8554 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib40 article-title: Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a high-voltage cathode for magnesium batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01352 – volume: 17 start-page: 4713 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib94 article-title: Activation of sodium storage sites in Prussian blue analogues via surface etching publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01366 – volume: 77 start-page: 54 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib124 article-title: Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.02.012 – volume: 135 start-page: 2793 year: 2013 ident: 10.1016/j.isci.2018.04.008_bib2 article-title: Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312160v – volume: 45 start-page: 5605 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib96 article-title: Designing high-energy lithium-sulfur batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00410A – volume: 7 start-page: 4579 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib29 article-title: Perfluoropentane-encapsulated hollow mesoporous Prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507443p – volume: 137 start-page: 2548 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib110 article-title: Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510347s – volume: 225 start-page: 235 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib131 article-title: Improved cycling performance of Prussian blue cathode for sodium ion batteries by controlling operation voltage range publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.121 – volume: 4 start-page: 16205 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib33 article-title: Hierarchical mesoporous octahedral K2Mn1−xCoxFe(CN)6as a superior cathode material for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06658E – volume: 166 start-page: 32 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib80 article-title: Prussian green: a high rate capacity cathode for potassium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.03.084 – volume: 53 start-page: 3134 year: 2014 ident: 10.1016/j.isci.2018.04.008_bib141 article-title: Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201310679 – volume: 9 start-page: 11 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib129 article-title: Prussian blue and its derivatives as electrode materials for electrochemical energy storage publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.06.002 – volume: 4 start-page: 2237 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib34 article-title: A Fe/Mn-based Prussian blue analogue as a K-rich cathode material for potassium-ion batteries publication-title: ChemElectroChem doi: 10.1002/celc.201700410 – volume: 176 start-page: 69 year: 2014 ident: 10.1016/j.isci.2018.04.008_bib47 article-title: Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes publication-title: Faraday Discuss doi: 10.1039/C4FD00147H – volume: 5 start-page: 1401791 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib52 article-title: A one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401791 – volume: 85 start-page: 179 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib71 article-title: Effect of Concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode publication-title: Electrochemistry doi: 10.5796/electrochemistry.85.179 – volume: 5 start-page: 10406 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib58 article-title: Cubic-shaped WS2 nanopetals on a Prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01821E – volume: 210 start-page: 963 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib70 article-title: Enhanced battery performance in manganese hexacyanoferrate by partial substitution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.05.205 – volume: 137 start-page: 2658 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib99 article-title: Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512383b – volume: 642 start-page: 289 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib125 article-title: Improving the performance of a ternary Prussian blue analogue as cathode of lithium battery via annealing treatment publication-title: J. Inorg. Gen. Chem. – volume: 51 start-page: 14397 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib93 article-title: A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte publication-title: Chem. Commun. (Camb) doi: 10.1039/C5CC06053B – volume: 685 start-page: 344 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib140 article-title: Na 2 Co 3 [Fe(CN) 6 ] 2 : a promising cathode material for lithium-ion and sodium-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.05.335 – volume: 363 start-page: 269 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib6 article-title: Potassium nickel hexacyanoferrate as a high-voltage cathode material for nonaqueous magnesium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.07.094 – volume: 9 start-page: 4397 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib86 article-title: Prussian blue: a potential material to improve the electrochemical performance of lithium-sulfur batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b06890 – volume: 27 start-page: 1604307 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib142 article-title: Potassium Prussian Blue nanoparticles: a low-cost cathode material for potassium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604307 – volume: 48 start-page: 7070 year: 2012 ident: 10.1016/j.isci.2018.04.008_bib92 article-title: High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries publication-title: Chem. Comm. doi: 10.1039/c2cc32730a – volume: 5 start-page: 22465 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib10 article-title: Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08139A – volume: 27 start-page: 1997 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib53 article-title: Facile method to synthesize Na-enriched Na1+xFeFe(CN)6 frameworks as cathode with superior electrochemical performance for sodium-ion batteries publication-title: Chem. Mater. doi: 10.1021/cm504091z – year: 2018 ident: 10.1016/j.isci.2018.04.008_bib90 article-title: Prussian blue cathode materials for sodium-ion batteries and other ion batteries publication-title: Adv. Energy Mater – volume: 5 start-page: 16740 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib32 article-title: Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04172A – volume: 729 start-page: 590 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib37 article-title: Electrochemical properties of Na x MnFe(CN) 6 · z H 2 O synthesized in a Taylor-Couette reactor as a Na-ion battery cathode material publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.09.146 – volume: 9 start-page: 13305 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib20 article-title: A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism publication-title: Nanoscale doi: 10.1039/C7NR03579A – volume: 71 start-page: 054414 year: 2005 ident: 10.1016/j.isci.2018.04.008_bib44 article-title: Structural and magnetic properties of Fe[Fe(CN)6]∙4H2O publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.054414 – volume: 7 start-page: 50812 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib146 article-title: Multifunctional Prussian blue analogous@polyaniline core–shell nanocubes for lithium storage and overall water splitting publication-title: RSC Adv. doi: 10.1039/C7RA10292E – volume: 220 start-page: 114 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib57 article-title: The role of potassium ions in iron hexacyanoferrate as a cathode material for hybrid ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.062 – volume: 5 start-page: 3007 year: 2014 ident: 10.1016/j.isci.2018.04.008_bib84 article-title: Full open-framework batteries for stationary energy storage publication-title: Nat. Commun. doi: 10.1038/ncomms4007 – volume: 9 start-page: 20306 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib74 article-title: Prussian blue analogue with fast kinetics through electronic coupling for sodium ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05178 – volume: 210 start-page: 352 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib17 article-title: Electrochemical characterization of NaFe2(CN)6 Prussian blue as positive electrode for aqueous sodium-ion batteries publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2016.05.176 – volume: 3 start-page: 959 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib61 article-title: Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04644G – volume: 341 start-page: 404 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib97 article-title: Sodium-ion hybrid electrolyte battery for sustainable energy storage applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.12.015 – volume: 11 start-page: 5421 year: 2011 ident: 10.1016/j.isci.2018.04.008_bib115 article-title: Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries publication-title: Nano Lett. doi: 10.1021/nl203193q – volume: 5 start-page: 18263 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib144 article-title: Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery publication-title: Sci. Rep. doi: 10.1038/srep18263 – volume: 9 start-page: 3757 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib148 article-title: Carbon-coated Fe3O4/VOx hollow microboxes derived from metal-organic frameworks as a high-performance anode material for lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15110 – volume: 8 start-page: 33619 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib28 article-title: On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11070 – volume: 4 start-page: 4211 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib82 article-title: Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10571D – volume: 21 start-page: 65 year: 2012 ident: 10.1016/j.isci.2018.04.008_bib42 article-title: Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.05.017 – volume: 21 start-page: 3859 year: 2011 ident: 10.1016/j.isci.2018.04.008_bib43 article-title: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100854 – volume: 9 start-page: 25317 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib66 article-title: Graphene-roll-wrapped Prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06334 – volume: 7 start-page: 1601491 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib49 article-title: Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601491 – volume: 5 start-page: 37545 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib89 article-title: Highly crystalline Prussian blue/graphene composites for high-rate performance cathodes in Na-ion batteries publication-title: RSC Adv. doi: 10.1039/C5RA04769B – volume: 8 start-page: 12158 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib63 article-title: A Prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01592 – volume: 42 start-page: 15881 year: 2013 ident: 10.1016/j.isci.2018.04.008_bib76 article-title: Ternary metal Prussian blue analogue nanoparticles as cathode materials for Li-ion batteries publication-title: Dalton Trans. doi: 10.1039/c3dt51369f – volume: 28 start-page: 7243 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib137 article-title: Subzero-temperature cathode for a sodium-ion battery publication-title: Adv. Mater. doi: 10.1002/adma.201600846 – volume: 314 start-page: 35 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib104 article-title: A new gridding cyanoferrate anode material for lithium and sodium ion batteries: Ti0.75Fe0.25[Fe(CN)6]0.96·1.9H2O with excellent electrochemical properties publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.011 – volume: 52 start-page: 1964 year: 2013 ident: 10.1016/j.isci.2018.04.008_bib109 article-title: A superior low-cost cathode for a Na-ion battery publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201206854 – volume: 273 start-page: 460 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib79 article-title: Potassium barium hexacyanoferrate – a potential cathode material for rechargeable calcium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.101 – volume: 5 start-page: 18919 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib81 article-title: A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05121B – volume: 8 start-page: 9486 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib69 article-title: Glucose-treated manganese hexacyanoferrate for sodium-ion secondary battery publication-title: Energies doi: 10.3390/en8099486 – volume: 82 start-page: 1170 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib143 article-title: FeFe(CN)6 nanocubes as a bipolar electrode material in aqueous symmetric sodium-ion batteries publication-title: ChemPlusChem doi: 10.1002/cplu.201700258 – volume: 29 start-page: 1700587 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib102 article-title: Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201700587 – volume: 258 start-page: 93 year: 2013 ident: 10.1016/j.isci.2018.04.008_bib107 article-title: Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.04.024 – volume: 147 start-page: 1271 year: 2000 ident: 10.1016/j.isci.2018.04.008_bib101 article-title: High capacity anode materials for rechargeable sodium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393348 – volume: 8 start-page: 31669 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib9 article-title: Chemical inhibition method to synthesize highly crystalline Prussian blue analogs for sodium-ion battery cathodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10884 – volume: 324 start-page: 766 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib87 article-title: Higher voltage plateau cubic Prussian White for Na-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.05.050 – volume: 39 start-page: 273 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib26 article-title: A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.005 – volume: 8 start-page: 23706 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib121 article-title: Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b06880 – volume: 2 start-page: 1122 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib22 article-title: Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00179 – volume: 41 start-page: 5706 year: 2002 ident: 10.1016/j.isci.2018.04.008_bib116 article-title: Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron hexacyanoferrates/hexacyanocobaltates publication-title: Inorg. Chem. doi: 10.1021/ic0201654 – volume: 51 start-page: 8181 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib133 article-title: Prussian blue without coordinated water as a superior cathode for sodium-ion batteries publication-title: Chem. Commun. (Camb) doi: 10.1039/C5CC01180A – volume: 149-150 start-page: 601 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib30 article-title: Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.11.014 – volume: 3 start-page: 16590 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib73 article-title: Flexible metal–organic frameworks as superior cathodes for rechargeable sodium-ion batteries publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA03197D – volume: 2 start-page: 550 year: 2011 ident: 10.1016/j.isci.2018.04.008_bib113 article-title: Copper hexacyanoferrate battery electrodes with long cycle life and high power publication-title: Nat. Commun. doi: 10.1038/ncomms1563 – volume: 35 start-page: 415 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib23 article-title: Hierarchical octahedral Na2MnFe(CN)6 and Na2MnFe(CN)6@Ppy as cathode materials for sodium-ion batteries publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201600713 – volume: 164 start-page: A1098 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib95 article-title: Monoclinic sodium iron hexacyanoferrate cathode and non-flammable glyme-based electrolyte for inexpensive sodium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0701706jes – volume: 9 start-page: 8107 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib85 article-title: Electrodeposited Na2VOx[Fe(CN)6] films as a cathode material for aqueous Na-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15666 – volume: 321 start-page: 257 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib64 article-title: A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.05.003 – volume: 13 start-page: 200 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib54 article-title: Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.019 – volume: 3 start-page: 1149 year: 2012 ident: 10.1016/j.isci.2018.04.008_bib83 article-title: A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage publication-title: Nat. Commun. doi: 10.1038/ncomms2139 – volume: 12 start-page: 386 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib62 article-title: Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.012 – volume: 4 start-page: 442 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib147 article-title: Facile synthesis of Mn-3[Co(CN)(6)](2)center dot nH(2)O nanocrystals for high-performance electrochemical energy storage devices publication-title: Inorg. Chem. Front. doi: 10.1039/C6QI00595K – volume: 1 start-page: 188 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib122 article-title: Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries publication-title: ChemNanoMat doi: 10.1002/cnma.201500021 – volume: 59 start-page: 91 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib127 article-title: Na2NixCo1−xFe(CN)6: a class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.07.014 – volume: 271 start-page: 489 year: 2014 ident: 10.1016/j.isci.2018.04.008_bib88 article-title: K 1−x Fe 2+x/3 (CN) 6 · y H 2 O, Prussian blue as a displacement anode for lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.08.025 – volume: 46 start-page: 3529 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib27 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 6 start-page: 108627 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib77 article-title: Materials for aqueous sodium-ion batteries: cation mobility in a zinc hexacyanoferrate electrode publication-title: RSC Adv. doi: 10.1039/C6RA23261B – volume: 34 start-page: 246 year: 2013 ident: 10.1016/j.isci.2018.04.008_bib112 article-title: Nanocomposite of manganese ferrocyanide and graphene: a promising cathode material for rechargeable lithium ion batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2013.06.019 – volume: 2 start-page: 1115 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib8 article-title: Aqueous Mg-Ion battery based on polyimide anode and Prussian blue cathode publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00040 – volume: 13 start-page: 342 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib51 article-title: High Crystalline Prussian white nanocubes as a promising cathode for sodium-ion batteries publication-title: Chem. Asian J. doi: 10.1002/asia.201701715 – volume: 337 start-page: 204 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib5 article-title: Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.10.083 – volume: 52 start-page: 6269 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib16 article-title: Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation publication-title: Chem. Commun. (Camb) doi: 10.1039/C6CC02093C – volume: 4 start-page: 22768 year: 2014 ident: 10.1016/j.isci.2018.04.008_bib31 article-title: Electrochemical sodium storage of copper hexacyanoferrate with a well-defined open framework for sodium ion batteries publication-title: RSC Adv. doi: 10.1039/c4ra02559h – volume: 478 start-page: 107 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib75 article-title: Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.05.056 – volume: 50 start-page: 13377 year: 2014 ident: 10.1016/j.isci.2018.04.008_bib132 article-title: Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries publication-title: Chem. Commun. (Camb) doi: 10.1039/C4CC05830E – volume: 9 start-page: 4404 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib14 article-title: Potassium secondary batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07989 – volume: 121 start-page: 27805 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib55 article-title: Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b07920 – volume: 1 start-page: 10130 year: 2013 ident: 10.1016/j.isci.2018.04.008_bib119 article-title: Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12036h – volume: 8 start-page: 481 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib106 article-title: An aqueous zinc-ion battery based on copper hexacyanoferrate publication-title: ChemSusChem doi: 10.1002/cssc.201403143 – volume: 5 start-page: 4325 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib3 article-title: A novel K-ion battery: hexacyanoferrate(ii)/graphite cell publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00220C – volume: 329 start-page: 290 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib108 article-title: Core-shell hexacyanoferrate for superior Na-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.08.059 – volume: 334 start-page: 928 year: 2011 ident: 10.1016/j.isci.2018.04.008_bib12 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science doi: 10.1126/science.1212741 – volume: 29 start-page: 1606132 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib24 article-title: An Innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201606132 – volume: 2 start-page: 5852 year: 2014 ident: 10.1016/j.isci.2018.04.008_bib72 article-title: Prussian blue analogues: a new class of anode materials for lithium ion batteries publication-title: J. Mater. Chem. A. doi: 10.1039/C4TA00062E – volume: 51 start-page: 13674 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib117 article-title: One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes publication-title: Chem. Commun. (Camb) doi: 10.1039/C5CC04694G – volume: 8 start-page: 5393 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib123 article-title: Highly crystallized Na(2)CoFe(CN)(6) with suppressed lattice defects as superior cathode material for sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12620 – volume: 44 start-page: 16746 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib128 article-title: Prussian blue analogues Mn[Fe(CN)6]0.6667.nH2O cubes as an anode material for lithium-ion batteries publication-title: Dalton Trans. doi: 10.1039/C5DT03030G – volume: 200 start-page: 305 year: 2016 ident: 10.1016/j.isci.2018.04.008_bib100 article-title: In operando synchrotron XRD/XAS investigation of sodium insertion into the Prussian blue analogue cathode material Na 1.32 Mn[Fe(CN) 6 ] 0.83 · z H 2 O publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.03.131 – volume: 162 start-page: A2356 year: 2015 ident: 10.1016/j.isci.2018.04.008_bib130 article-title: EQCM analysis of redox behavior of CuFe Prussian blue analog in Mg battery electrolytes publication-title: J. Electrochem. Soc. doi: 10.1149/2.0751512jes – volume: 86 start-page: 194 year: 2017 ident: 10.1016/j.isci.2018.04.008_bib36 article-title: The electrochemical performance of Cu3[Fe(CN)6]2 as a cathode material for sodium-ion batteries publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2016.10.019 – volume: 52 start-page: 4633 year: 2013 ident: 10.1016/j.isci.2018.04.008_bib91 article-title: High capacity and rate capability of amorphous phosphorus for sodium ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201209689 – volume: 2 start-page: 376 year: 2018 ident: 10.1016/j.isci.2018.04.008_bib46 article-title: Fe/Fe3C@graphitic carbon shell embedded in carbon nanotubes derived from Prussian blue as cathodes for Li-O-2 batteries publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00503B – volume: 6 start-page: 1688 year: 2012 ident: 10.1016/j.isci.2018.04.008_bib114 article-title: Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage publication-title: ACS Nano doi: 10.1021/nn204666v – reference: 26849278 - ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5393-9 – reference: 22283739 - ACS Nano. 2012 Feb 28;6(2):1688-94 – reference: 27934150 - ACS Appl Mater Interfaces. 2016 Dec 7;8(48):32778-32787 – reference: 22684188 - Chem Commun (Camb). 2012 Jul 18;48(56):7070-2 – reference: 25111752 - Chemistry. 2014 Sep 22;20(39):12559-62 – reference: 26271479 - Chem Commun (Camb). 2015 Oct 1;51(76):14397-400 – reference: 27714999 - ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4404-4419 – reference: 28206743 - ACS Appl Mater Interfaces. 2017 Mar 8;9(9):8107-8112 – reference: 28691793 - ACS Appl Mater Interfaces. 2017 Aug 2;9(30):25317-25322 – reference: 25615887 - J Am Chem Soc. 2015 Feb 25;137(7):2548-54 – reference: 22109524 - Nat Commun. 2011 Nov 22;2:550 – reference: 28071884 - ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3757-3765 – reference: 27305570 - Adv Mater. 2016 Sep;28(33):7243-8 – reference: 23512686 - Angew Chem Int Ed Engl. 2013 Apr 22;52(17):4633-6 – reference: 22043814 - Nano Lett. 2011 Dec 14;11(12):5421-5 – reference: 27960427 - ACS Appl Mater Interfaces. 2016 Dec 14;8(49):33619-33625 – reference: 25679040 - J Am Chem Soc. 2015 Feb 25;137(7):2658-64 – reference: 26669272 - Sci Rep. 2015 Dec 16;5:18263 – reference: 28643406 - Adv Mater. 2017 Dec;29(48): – reference: 25406368 - Faraday Discuss. 2014;176:69-81 – reference: 28858348 - Nanoscale. 2017 Sep 14;9(35):13305-13312 – reference: 23319239 - Angew Chem Int Ed Engl. 2013 Feb 11;52(7):1964-7 – reference: 27119430 - ACS Appl Mater Interfaces. 2016 May 18;8(19):12158-64 – reference: 22096188 - Science. 2011 Nov 18;334(6058):928-35 – reference: 26967192 - ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8554-60 – reference: 27460222 - Chem Soc Rev. 2016 Oct 21;45(20):5605-5634 – reference: 28570041 - ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20306-20312 – reference: 27781313 - Adv Mater. 2017 Jan;29(1): – reference: 28597877 - Chem Commun (Camb). 2017 Jun 20;53(50):6780-6783 – reference: 23824231 - Dalton Trans. 2013 Dec 7;42(45):15881-4 – reference: 29164706 - Adv Mater. 2018 Jan;30(2): – reference: 25646576 - ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4579-88 – reference: 27479707 - ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4397-4403 – reference: 28349134 - Chem Soc Rev. 2017 Jun 19;46(12):3529-3614 – reference: 29281173 - Chem Asian J. 2018 Feb 2;13(3):342-349 – reference: 28380284 - Adv Mater. 2017 Dec;29(48): – reference: 27556906 - ACS Appl Mater Interfaces. 2016 Sep 14;8(36):23706-12 – reference: 28665610 - Nano Lett. 2017 Aug 9;17(8):4713-4718 – reference: 23391305 - J Am Chem Soc. 2013 Feb 20;135(7):2793-9 – reference: 25510850 - ChemSusChem. 2015 Feb;8(3):481-5 – reference: 23708451 - J Hazard Mater. 2013 Aug 15;258-259:93-101 – reference: 23407705 - Chem Commun (Camb). 2013 Apr 7;49(27):2750-2 – reference: 22622269 - Chem Commun (Camb). 2012 Jul 4;48(52):6544-6 – reference: 12401075 - Inorg Chem. 2002 Nov 4;41(22):5706-15 – reference: 27797476 - ACS Appl Mater Interfaces. 2016 Nov 23;8(46):31669-31676 – reference: 27288576 - J Colloid Interface Sci. 2016 Sep 15;478:107-16 – reference: 25874448 - Chem Commun (Camb). 2015 May 11;51(38):8181-4 – reference: 25311066 - Nat Commun. 2014 Oct 14;5:5280 – reference: 28370537 - Adv Mater. 2017 Dec;29(48): – reference: 26225418 - Chem Commun (Camb). 2015 Sep 14;51(71):13674-7 – reference: 24677672 - Angew Chem Int Ed Engl. 2014 Mar 17;53(12):3134-7 – reference: 26332606 - Dalton Trans. 2015 Oct 14;44(38):16746-51 – reference: 23194439 - J Am Chem Soc. 2012 Dec 26;134(51):20805-11 – reference: 23093186 - Nat Commun. 2012;3:1149 – reference: 25233263 - Chem Commun (Camb). 2014 Nov 11;50(87):13377-80 – reference: 24389854 - Nat Commun. 2014;5:3007 – reference: 27078114 - Chem Commun (Camb). 2016 May 7;52(37):6269-72 – reference: 29169239 - J Am Chem Soc. 2017 Dec 20;139(50):18358-18364 |
| SSID | ssj0002002496 |
| Score | 2.5672922 |
| SecondaryResourceType | review_article |
| Snippet | Non-lithium energy storage devices, especially sodium ion batteries, are drawing attention due to insufficient and uneven distribution of lithium resources.... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 110 |
| SubjectTerms | Electrochemical Energy Storage Energy Materials Organometallic Chemistry Review |
| Title | Prussian Blue Analogs for Rechargeable Batteries |
| URI | https://dx.doi.org/10.1016/j.isci.2018.04.008 https://www.ncbi.nlm.nih.gov/pubmed/30428315 https://www.proquest.com/docview/2133822148 https://pubmed.ncbi.nlm.nih.gov/PMC6137327 https://doaj.org/article/501f65f989c741dca4f37334e97c8019 |
| Volume | 3 |
| WOSCitedRecordID | wos000449721600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLYAceCCQLzKS0XihirSpFnSIyAQBzTtANJuUZolMIQ6tDF-P3baTRtIcOFUqU0fdtz6c2N_BjgPoUOhj89EKUVWCKszi34uc1VJFlKxThVJXB9Ut6v7_bK30OqLcsIaeuBGcZeS5aEjQ6lLh85v4GwRhBKi8KVy-HWNpXuIehaCqde4vEZUeLGznKScIDTNtmKmSe6iilfK69KR55R6Sy54pUjev-ScfoLP7zmUC07pbgs2WzSZXjVSbMOKr3eA9cbTCdVGptdvU58S7cjoeZIiOk0RJBIzkqd6qbSh1sRIeRee7m4fb-6ztjFC5qj_QOYV414E4UqNG2Y9ojJEQgyjZCIUC7wQXgdRMN9h2lqLGAvnqsplsEpXBRN7sFaPan8A6cBTQCZzT4zVnAltyyLnFnE3V04MWAL5TDHGtazh1LzizczSw14NKdOQMg0rDCozgYv5Oe8NZ8avo69J3_ORxHcdd6AVmNYKzF9WkICczZZpoUMDCfBSw19vfjabWoPvFS2W2NqPphPDKXjnHKPFBPabqZ4_Iv0C0iKXCaglI1iSYflIPXyJ3N2InpTg6vA_hD6CDRKFchm4PIa1j_HUn8C6-_wYTsansKr6-jS-Fl9lSAty |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prussian+Blue+Analogs+for+Rechargeable+Batteries&rft.jtitle=iScience&rft.au=Baoqi+Wang&rft.au=Yu+Han&rft.au=Xiao+Wang&rft.au=Naoufal+Bahlawane&rft.date=2018-05-25&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=3&rft.spage=110&rft.epage=133&rft_id=info:doi/10.1016%2Fj.isci.2018.04.008&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_501f65f989c741dca4f37334e97c8019 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |