Discrete Morse Theoretic Algorithms for Computing Homology of Complexes and Maps
We provide explicit and efficient reduction algorithms based on discrete Morse theory to simplify homology computation for a very general class of complexes. A set-valued map of top-dimensional cells between such complexes is a natural discrete approximation of an underlying (and possibly unknown) c...
Uloženo v:
| Vydáno v: | Foundations of computational mathematics Ročník 14; číslo 1; s. 151 - 184 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.02.2014
Springer Nature B.V |
| Témata: | |
| ISSN: | 1615-3375, 1615-3383 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We provide explicit and efficient reduction algorithms based on discrete Morse theory to simplify homology computation for a very general class of complexes. A set-valued map of top-dimensional cells between such complexes is a natural discrete approximation of an underlying (and possibly unknown) continuous function, especially when the evaluation of that function is subject to measurement errors. We introduce a new Morse theoretic preprocessing framework for deriving chain maps from such set-valued maps, and hence provide an effective scheme for computing the morphism induced on homology by the approximated continuous function. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 1615-3375 1615-3383 |
| DOI: | 10.1007/s10208-013-9145-0 |