Improved sparrow search algorithm optimization deep extreme learning machine for lithium-ion battery state-of-health prediction

Accurate state-of-health (SOH) prediction of lithium-ion batteries (LIBs) plays an important role in improving the performance and assuring the safe operation of the battery energy storage system (BESS). Deep extreme learning machine (DELM) optimized by the improved sparrow search algorithm (ISSA) i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience Jg. 25; H. 4; S. 103988
Hauptverfasser: Jia, Jianfang, Yuan, Shufang, Shi, Yuanhao, Wen, Jie, Pang, Xiaoqiong, Zeng, Jianchao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 15.04.2022
Elsevier
Schlagworte:
ISSN:2589-0042, 2589-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate state-of-health (SOH) prediction of lithium-ion batteries (LIBs) plays an important role in improving the performance and assuring the safe operation of the battery energy storage system (BESS). Deep extreme learning machine (DELM) optimized by the improved sparrow search algorithm (ISSA) is developed to predict the SOH of LIBs under random load conditions in the paper. Firstly, two indirect health indicators are extracted from the random partial discharging voltage and current data, which are chosen as the inputs of DELM by the Pearson correlation analysis. Then, ISSA is presented by combining the elite opposition-based learning (EOBL) and the Cauchy-Gaussian mutation strategy to increase the diversity of sparrow populations and prevent them from falling into the local optimization. Finally, the ISSA-DELM model is utilized to estimate the battery SOH. Experimental results illustrate the high accuracy and strong robustness of the proposed approach compared with other methods. [Display omitted] •An ISSA-DELM method is used to predict the battery state-of-health•Two indirect health indicators are extracted from the partial discharging data•EOBL and Cauchy-Gaussian mutation strategy are utilized to improve SSA•The proposed approach obtains better prediction accuracy in shorter computation time Machine learning; Energy management
AbstractList Accurate state-of-health (SOH) prediction of lithium-ion batteries (LIBs) plays an important role in improving the performance and assuring the safe operation of the battery energy storage system (BESS). Deep extreme learning machine (DELM) optimized by the improved sparrow search algorithm (ISSA) is developed to predict the SOH of LIBs under random load conditions in the paper. Firstly, two indirect health indicators are extracted from the random partial discharging voltage and current data, which are chosen as the inputs of DELM by the Pearson correlation analysis. Then, ISSA is presented by combining the elite opposition-based learning (EOBL) and the Cauchy-Gaussian mutation strategy to increase the diversity of sparrow populations and prevent them from falling into the local optimization. Finally, the ISSA-DELM model is utilized to estimate the battery SOH. Experimental results illustrate the high accuracy and strong robustness of the proposed approach compared with other methods. [Display omitted] •An ISSA-DELM method is used to predict the battery state-of-health•Two indirect health indicators are extracted from the partial discharging data•EOBL and Cauchy-Gaussian mutation strategy are utilized to improve SSA•The proposed approach obtains better prediction accuracy in shorter computation time Machine learning; Energy management
Accurate state-of-health (SOH) prediction of lithium-ion batteries (LIBs) plays an important role in improving the performance and assuring the safe operation of the battery energy storage system (BESS). Deep extreme learning machine (DELM) optimized by the improved sparrow search algorithm (ISSA) is developed to predict the SOH of LIBs under random load conditions in the paper. Firstly, two indirect health indicators are extracted from the random partial discharging voltage and current data, which are chosen as the inputs of DELM by the Pearson correlation analysis. Then, ISSA is presented by combining the elite opposition-based learning (EOBL) and the Cauchy-Gaussian mutation strategy to increase the diversity of sparrow populations and prevent them from falling into the local optimization. Finally, the ISSA-DELM model is utilized to estimate the battery SOH. Experimental results illustrate the high accuracy and strong robustness of the proposed approach compared with other methods. • An ISSA-DELM method is used to predict the battery state-of-health • Two indirect health indicators are extracted from the partial discharging data • EOBL and Cauchy-Gaussian mutation strategy are utilized to improve SSA • The proposed approach obtains better prediction accuracy in shorter computation time Machine learning; Energy management
Accurate state-of-health (SOH) prediction of lithium-ion batteries (LIBs) plays an important role in improving the performance and assuring the safe operation of the battery energy storage system (BESS). Deep extreme learning machine (DELM) optimized by the improved sparrow search algorithm (ISSA) is developed to predict the SOH of LIBs under random load conditions in the paper. Firstly, two indirect health indicators are extracted from the random partial discharging voltage and current data, which are chosen as the inputs of DELM by the Pearson correlation analysis. Then, ISSA is presented by combining the elite opposition-based learning (EOBL) and the Cauchy-Gaussian mutation strategy to increase the diversity of sparrow populations and prevent them from falling into the local optimization. Finally, the ISSA-DELM model is utilized to estimate the battery SOH. Experimental results illustrate the high accuracy and strong robustness of the proposed approach compared with other methods.Accurate state-of-health (SOH) prediction of lithium-ion batteries (LIBs) plays an important role in improving the performance and assuring the safe operation of the battery energy storage system (BESS). Deep extreme learning machine (DELM) optimized by the improved sparrow search algorithm (ISSA) is developed to predict the SOH of LIBs under random load conditions in the paper. Firstly, two indirect health indicators are extracted from the random partial discharging voltage and current data, which are chosen as the inputs of DELM by the Pearson correlation analysis. Then, ISSA is presented by combining the elite opposition-based learning (EOBL) and the Cauchy-Gaussian mutation strategy to increase the diversity of sparrow populations and prevent them from falling into the local optimization. Finally, the ISSA-DELM model is utilized to estimate the battery SOH. Experimental results illustrate the high accuracy and strong robustness of the proposed approach compared with other methods.
Accurate state-of-health (SOH) prediction of lithium-ion batteries (LIBs) plays an important role in improving the performance and assuring the safe operation of the battery energy storage system (BESS). Deep extreme learning machine (DELM) optimized by the improved sparrow search algorithm (ISSA) is developed to predict the SOH of LIBs under random load conditions in the paper. Firstly, two indirect health indicators are extracted from the random partial discharging voltage and current data, which are chosen as the inputs of DELM by the Pearson correlation analysis. Then, ISSA is presented by combining the elite opposition-based learning (EOBL) and the Cauchy-Gaussian mutation strategy to increase the diversity of sparrow populations and prevent them from falling into the local optimization. Finally, the ISSA-DELM model is utilized to estimate the battery SOH. Experimental results illustrate the high accuracy and strong robustness of the proposed approach compared with other methods.
ArticleNumber 103988
Author Shi, Yuanhao
Pang, Xiaoqiong
Jia, Jianfang
Yuan, Shufang
Wen, Jie
Zeng, Jianchao
Author_xml – sequence: 1
  givenname: Jianfang
  orcidid: 0000-0001-6117-6649
  surname: Jia
  fullname: Jia, Jianfang
  email: jiajianfang@nuc.edu.cn
  organization: School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China
– sequence: 2
  givenname: Shufang
  surname: Yuan
  fullname: Yuan, Shufang
  organization: School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China
– sequence: 3
  givenname: Yuanhao
  surname: Shi
  fullname: Shi, Yuanhao
  organization: School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China
– sequence: 4
  givenname: Jie
  orcidid: 0000-0003-0302-4123
  surname: Wen
  fullname: Wen, Jie
  organization: School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China
– sequence: 5
  givenname: Xiaoqiong
  surname: Pang
  fullname: Pang, Xiaoqiong
  organization: School of Data Science and Technology, North University of China, Taiyuan 030051, China
– sequence: 6
  givenname: Jianchao
  surname: Zeng
  fullname: Zeng, Jianchao
  organization: School of Data Science and Technology, North University of China, Taiyuan 030051, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35310948$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAUhU1JadI0f6CLomU3nkryQzKUQgl9DAS6adfiWroaa7AtV9ZMmm761yvHSUm6CAgkXZ3zXdC5L7OT0Y-YZa8Z3TDK6nf7jZu123DKeSoUjZTPsjNeySantOQnD86n2cU87ymlPK2yqV9kp0VVMNqU8iz7sx2m4I9oyDxBCP6azAhBdwT6nQ8udgPxU3SD-w3R-ZEYxIngrxhwQNIn6ejGHRlAd25EYn0gfTK5w5Av6hZixHBD5ggRc2_zDqGPHZkCGqcX4KvsuYV-xou7_Tz78fnT98uv-dW3L9vLj1e5rjiLuRaWicbaggPTjJfAhJECCtSmBM0Yr6CkYOq6tibdmBTcLBahtWgYt8V5tl25xsNeTcENEG6UB6duCz7sFITodI8KpLam5G1leVsKYZpWU2mkxULUbYl1Yn1YWdOhHdBoHGOA_hH08cvoOrXzRyUbLhq-AN7eAYL_ecA5qiGFiX0PI_rDrHhdsoqJmjZJ-uZhr39N7hNMArkKdPDzHNAq7eJtVqm16xWjapkXtVfLvKhlXtQ6L8nK_7Pe0580vV9NmNI6OgwqKXDUKdCAOqbvdE_Z_wLGjN0k
CitedBy_id crossref_primary_10_1016_j_physa_2023_129355
crossref_primary_10_1016_j_energy_2023_128094
crossref_primary_10_1016_j_eswa_2023_122042
crossref_primary_10_1016_j_jag_2023_103644
crossref_primary_10_1016_j_energy_2025_134810
crossref_primary_10_3390_su15129176
crossref_primary_10_3390_electronics13203991
crossref_primary_10_1051_ijmqe_2024012
crossref_primary_10_1155_2022_6486876
crossref_primary_10_1016_j_est_2023_107161
crossref_primary_10_3390_wevj16070356
crossref_primary_10_1016_j_est_2023_109069
crossref_primary_10_1016_j_est_2024_113086
crossref_primary_10_1109_ACCESS_2023_3320058
crossref_primary_10_1007_s11071_024_10815_4
crossref_primary_10_1007_s11831_023_09975_0
crossref_primary_10_1016_j_est_2023_108732
crossref_primary_10_1093_ce_zkad054
crossref_primary_10_1016_j_physa_2024_129870
crossref_primary_10_3390_biomimetics8020182
crossref_primary_10_1016_j_renene_2022_07_016
crossref_primary_10_1088_1361_6501_ad1ba0
crossref_primary_10_1016_j_microrel_2023_114975
crossref_primary_10_1007_s43937_024_00027_7
crossref_primary_10_1016_j_jenvman_2022_117081
crossref_primary_10_1016_j_renene_2025_123820
crossref_primary_10_1007_s11760_023_02607_x
crossref_primary_10_1002_ese3_1656
crossref_primary_10_1016_j_jpowsour_2025_236928
crossref_primary_10_1007_s44196_025_00759_x
crossref_primary_10_1007_s11831_022_09804_w
crossref_primary_10_1016_j_geits_2023_100108
crossref_primary_10_1016_j_est_2023_107868
crossref_primary_10_3390_app14135662
crossref_primary_10_3390_en18164416
crossref_primary_10_1021_acsnano_5c04200
crossref_primary_10_3389_fenrg_2022_972437
crossref_primary_10_1016_j_jpowsour_2024_234674
crossref_primary_10_1016_j_est_2023_109884
crossref_primary_10_1016_j_electacta_2024_144146
crossref_primary_10_1016_j_energy_2024_133978
crossref_primary_10_1007_s10586_024_04950_1
crossref_primary_10_1007_s10800_025_02262_9
crossref_primary_10_1016_j_eswa_2023_121904
crossref_primary_10_1109_MSMC_2023_3296932
crossref_primary_10_1016_j_isci_2024_109040
crossref_primary_10_1016_j_apenergy_2023_122417
crossref_primary_10_1007_s11581_024_05573_7
crossref_primary_10_1016_j_advengsoft_2024_103635
crossref_primary_10_3390_electronics13081423
crossref_primary_10_1016_j_energy_2022_124957
crossref_primary_10_1016_j_energy_2023_128739
Cites_doi 10.1039/C7CS00889A
10.1002/er.5934
10.3390/en10122012
10.1049/cje.2020.10.012
10.1016/j.est.2021.103076
10.3390/electronics10121497
10.3390/en12122247
10.1016/j.neucom.2019.03.084
10.1109/TIM.2008.2005965
10.1007/s10489-018-1334-8
10.1016/j.applthermaleng.2018.02.046
10.1016/j.ins.2017.02.026
10.1016/j.jpowsour.2019.227425
10.1142/S1469026817500122
10.32604/cmc.2020.013458
10.1016/j.est.2020.101741
10.1016/j.apenergy.2017.05.124
10.1109/JSEE.2015.00037
10.1109/ACCESS.2019.2947843
10.1016/j.jpowsour.2015.08.091
10.1039/C8TA10513H
10.1016/j.jpowsour.2019.227401
10.1007/s00521-013-1522-8
10.1016/j.asoc.2007.07.002
10.1080/21642583.2019.1708830
10.1016/j.jpowsour.2020.228863
10.3390/en13020375
10.1149/1945-7111/abc207
10.3390/en12224338
10.1016/j.neucom.2015.11.009
10.1016/j.jpowsour.2017.05.004
10.1016/j.neucom.2016.03.112
ContentType Journal Article
Copyright 2022 The Authors
2022 The Authors.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2022.103988
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_a8cfd42b5f2b477d9bc08d8fe376b4e6
PMC8927926
35310948
10_1016_j_isci_2022_103988
S2589004222002589
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-c7f179ff32a1c124a17d87a3ecd4ac1125a40ad666fd1121872d7f177cc7912f3
IEDL.DBID DOA
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000787731400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-0042
IngestDate Fri Oct 03 12:44:08 EDT 2025
Tue Sep 30 16:47:05 EDT 2025
Thu Jul 10 22:26:40 EDT 2025
Thu Jan 02 22:54:35 EST 2025
Thu Nov 13 04:35:47 EST 2025
Tue Nov 18 22:11:29 EST 2025
Tue Jul 25 20:59:21 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Energy management
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-c7f179ff32a1c124a17d87a3ecd4ac1125a40ad666fd1121872d7f177cc7912f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
ORCID 0000-0001-6117-6649
0000-0003-0302-4123
OpenAccessLink https://doaj.org/article/a8cfd42b5f2b477d9bc08d8fe376b4e6
PMID 35310948
PQID 2641517609
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a8cfd42b5f2b477d9bc08d8fe376b4e6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8927926
proquest_miscellaneous_2641517609
pubmed_primary_35310948
crossref_citationtrail_10_1016_j_isci_2022_103988
crossref_primary_10_1016_j_isci_2022_103988
elsevier_sciencedirect_doi_10_1016_j_isci_2022_103988
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Xue, Shen (bib33) 2020; 8
Tubishat, Abushariah, Idris, Aljarah (bib29) 2019; 49
Fan, Xiao, Li, Yang, Tang (bib6) 2020; 32
Richardson, Osborne, Howey (bib21) 2017; 357
Salinas, Kowal (bib24) 2020; 167
Ding, Xu, Nie (bib4) 2014; 25
Li, Sengupta, Dechent, Howey, Annaswamy, Sauer (bib15) 2021; 482
Pang, Huang, Wen, Shi, Jia, Zeng (bib19) 2019; 12
Rosa Palacin (bib22) 2018; 47
Saha, Goebel, Poll, Christophersen (bib23) 2009; 58
Panchal, Mathew, Fraser, Fowler (bib18) 2018; 135
Sepasi, Ghorbani, Liaw (bib25) 2015; 299
Yu, Mo, Tang, Yang, Wan, Liu (bib35) 2017; 10
Xiong, Tian, Mu, Wang (bib32) 2017; 207
Tizhoosh (bib28) 2005
Bole, Kulkarni, Daigle (bib2) 2014
Xie, Ren, Yang, Wang, Sun, Chen, He (bib31) 2020; 448
Venugopal, Vigneswaran (bib30) 2019; 12
Fan, Fan, Liu, Qu, Li (bib5) 2019; 7
Kim, Song, Son, Ono, Qi (bib12) 2019; 7
Luo, Zhang, Liu, Guo, Zheng (bib16) 2017; 261
Mu, Zeng (bib17) 2019; 13
Qu, Lang, Liang, Qin, Crisalle (bib20) 2016; 175
Tian, Qin (bib27) 2021; 45
Tang, Deng, Huang (bib26) 2017
Kao, Zahara (bib11) 2008; 8
Li, Xiong, Li, Su, Wu (bib14) 2019; 350
Hussain, Khan, Abbas, Naqvi, Mushtaq, Rehman, Nadeem (bib8) 2021; 66
Bole, Kulkarni, Daigle (bib3) 2014
Jia, Liang, Shi, Wen, Pang, Zeng (bib9) 2020; 13
Zhang, Luo, Zhou (bib36) 2017; 11
Bian, Liu, Yan, Zou, Zhao (bib1) 2020; 448
Jia, Wang, Shi, Wen, Pang, Zeng (bib38) 2021; 42
Huang, Zhou, Wu, Luo (bib7) 2016; 25
Yang, Wen, Shi, Zeng (bib34) 2021; 10
Li, Zhang, Lai, Zhou, Xu (bib13) 2017; 396
Jia, Wang, Pang, Shi, Wen, Zeng (bib10) 2021; 30
Zhu, Xu, Li, Wu, Liu (bib37) 2015; 26
Ding (10.1016/j.isci.2022.103988_bib4) 2014; 25
Richardson (10.1016/j.isci.2022.103988_bib21) 2017; 357
Panchal (10.1016/j.isci.2022.103988_bib18) 2018; 135
Mu (10.1016/j.isci.2022.103988_bib17) 2019; 13
Kao (10.1016/j.isci.2022.103988_bib11) 2008; 8
Xue (10.1016/j.isci.2022.103988_bib33) 2020; 8
Fan (10.1016/j.isci.2022.103988_bib5) 2019; 7
Tizhoosh (10.1016/j.isci.2022.103988_bib28) 2005
Pang (10.1016/j.isci.2022.103988_bib19) 2019; 12
Saha (10.1016/j.isci.2022.103988_bib23) 2009; 58
Bole (10.1016/j.isci.2022.103988_bib3) 2014
Huang (10.1016/j.isci.2022.103988_bib7) 2016; 25
Kim (10.1016/j.isci.2022.103988_bib12) 2019; 7
Salinas (10.1016/j.isci.2022.103988_bib24) 2020; 167
Tubishat (10.1016/j.isci.2022.103988_bib29) 2019; 49
Xie (10.1016/j.isci.2022.103988_bib31) 2020; 448
Rosa Palacin (10.1016/j.isci.2022.103988_bib22) 2018; 47
Tian (10.1016/j.isci.2022.103988_bib27) 2021; 45
Li (10.1016/j.isci.2022.103988_bib13) 2017; 396
Li (10.1016/j.isci.2022.103988_bib14) 2019; 350
Yang (10.1016/j.isci.2022.103988_bib34) 2021; 10
Venugopal (10.1016/j.isci.2022.103988_bib30) 2019; 12
Yu (10.1016/j.isci.2022.103988_bib35) 2017; 10
Jia (10.1016/j.isci.2022.103988_bib10) 2021; 30
Sepasi (10.1016/j.isci.2022.103988_bib25) 2015; 299
Jia (10.1016/j.isci.2022.103988_bib9) 2020; 13
Zhu (10.1016/j.isci.2022.103988_bib37) 2015; 26
Bian (10.1016/j.isci.2022.103988_bib1) 2020; 448
Luo (10.1016/j.isci.2022.103988_bib16) 2017; 261
Zhang (10.1016/j.isci.2022.103988_bib36) 2017; 11
Bole (10.1016/j.isci.2022.103988_bib2) 2014
Fan (10.1016/j.isci.2022.103988_bib6) 2020; 32
Jia (10.1016/j.isci.2022.103988_bib38) 2021; 42
Xiong (10.1016/j.isci.2022.103988_bib32) 2017; 207
Hussain (10.1016/j.isci.2022.103988_bib8) 2021; 66
Li (10.1016/j.isci.2022.103988_bib15) 2021; 482
Qu (10.1016/j.isci.2022.103988_bib20) 2016; 175
Tang (10.1016/j.isci.2022.103988_bib26) 2017
References_xml – volume: 32
  start-page: 101741
  year: 2020
  ident: bib6
  article-title: A novel deep learning framework for state of health estimation of lithium-ion battery
  publication-title: J. Energ. Storage
– volume: 45
  start-page: 2383
  year: 2021
  end-page: 2397
  ident: bib27
  article-title: State of health prediction for lithium-ion batteries with a novel online sequential extreme learning machine method
  publication-title: Int. J. Energ. Res.
– volume: 49
  start-page: 1688
  year: 2019
  end-page: 1707
  ident: bib29
  article-title: Improved whale optimization algorithm for feature selection in Arabic sentiment analysis
  publication-title: Appl. Intelligence
– volume: 167
  start-page: 140519
  year: 2020
  ident: bib24
  article-title: Discharge rate capability in aged Li-ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 299
  start-page: 246
  year: 2015
  end-page: 254
  ident: bib25
  article-title: Inline state of health estimation of lithium-ion batteries using state of charge calculation
  publication-title: J. Power Sourc.
– volume: 261
  start-page: 164
  year: 2017
  end-page: 170
  ident: bib16
  article-title: Distributed extreme learning machine with alternating direction method of multiplier
  publication-title: Neurocomputing
– volume: 13
  start-page: 1738
  year: 2019
  end-page: 1764
  ident: bib17
  article-title: A review of deep learning research
  publication-title: Ksii Trans. Internet Inf. Syst.
– volume: 135
  start-page: 123
  year: 2018
  end-page: 132
  ident: bib18
  article-title: Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV
  publication-title: Appl. Therm. Eng.
– start-page: 809
  year: 2017
  end-page: 821
  ident: bib26
  article-title: Extreme Learning Machine for Multilayer Perceptron
– volume: 10
  start-page: 2012
  year: 2017
  ident: bib35
  article-title: Indirect state-of-health estimation for lithium-ion batteries under randomized use
  publication-title: Energies
– volume: 448
  start-page: 227425
  year: 2020
  ident: bib31
  article-title: Influence of cycling aging and ambient pressure on the thermal safety features of lithium-ion battery
  publication-title: J. Power Sourc.
– volume: 350
  start-page: 261
  year: 2019
  end-page: 270
  ident: bib14
  article-title: A novel fault diagnosis algorithm for rotating machinery based on a sparsity and neighborhood preserving deep extreme learning machine
  publication-title: Neurocomputing
– volume: 25
  start-page: 567
  year: 2016
  end-page: 593
  ident: bib7
  article-title: A cuckoo search algorithm with elite opposition-based strategy
  publication-title: J. Intell. Syst.
– volume: 11
  start-page: 1750012
  year: 2017
  ident: bib36
  article-title: Hybrid grey wolf optimizer using elite opposition-based learning strategy and simplex method
  publication-title: Int. J. Comput. Intelligence Appl.
– volume: 175
  start-page: 826
  year: 2016
  end-page: 834
  ident: bib20
  article-title: Two-hidden-layer extreme learning machine for regression and classification
  publication-title: Neurocomputing
– volume: 448
  start-page: 227401
  year: 2020
  ident: bib1
  article-title: An open circuit voltage-based model for state-of-health estimation of lithium-ion batteries: model development and validation
  publication-title: J. Power Sourc.
– volume: 25
  start-page: 549
  year: 2014
  end-page: 556
  ident: bib4
  article-title: Extreme learning machine and its applications
  publication-title: Neural Comput. Appl.
– year: 2014
  ident: bib3
  article-title: Randomized Battery Usage Data Set. NASA Ames Prognostics Data Repository
– volume: 207
  start-page: 372
  year: 2017
  end-page: 383
  ident: bib32
  article-title: A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries
  publication-title: Appl. Energ.
– volume: 8
  start-page: 22
  year: 2020
  end-page: 34
  ident: bib33
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
– start-page: 695
  year: 2005
  end-page: 701
  ident: bib28
  article-title: Opposition-based learning: a new scheme for machine intelligence
  publication-title: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation (CIMCA '05) and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (IAWTIC '05)
– volume: 26
  start-page: 317
  year: 2015
  end-page: 328
  ident: bib37
  article-title: Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC
  publication-title: J. Syst. Eng. Electronics
– volume: 66
  start-page: 141
  year: 2021
  end-page: 156
  ident: bib8
  article-title: Enabling smart cities with cognition based intelligent route decision in vehicles empowered with deep extreme learning machine
  publication-title: Cmc-Computers Mater. Continua
– volume: 12
  start-page: 2247
  year: 2019
  ident: bib19
  article-title: A lithium-ion battery RUL prediction method considering the capacity regeneration phenomenon
  publication-title: Energies
– volume: 13
  start-page: 375
  year: 2020
  ident: bib9
  article-title: SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators
  publication-title: Energies
– volume: 12
  start-page: 4338
  year: 2019
  ident: bib30
  article-title: State-of-Health estimation of Li-ion batteries in electric vehicle using IndRNN under variable load condition
  publication-title: Energies
– volume: 7
  start-page: 160043
  year: 2019
  end-page: 160061
  ident: bib5
  article-title: A novel machine learning method based approach for Li-ion battery prognostic and health management
  publication-title: IEEE Access
– volume: 396
  start-page: 162
  year: 2017
  end-page: 181
  ident: bib13
  article-title: Design of a fractional-order PID controller for a pumped storage unit using a gravitational search algorithm based on the Cauchy and Gaussian mutation
  publication-title: Inf. Sci.
– volume: 8
  start-page: 849
  year: 2008
  end-page: 857
  ident: bib11
  article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions
  publication-title: Appl. Soft Comput.
– volume: 47
  start-page: 4924
  year: 2018
  end-page: 4933
  ident: bib22
  article-title: Understanding ageing in Li-ion batteries: a chemical issue
  publication-title: Chem. Soc. Rev.
– volume: 58
  start-page: 291
  year: 2009
  end-page: 296
  ident: bib23
  article-title: Prognostics methods for battery health monitoring using a Bayesian framework
  publication-title: IEEE Trans. Instrumentation Meas.
– volume: 30
  start-page: 26
  year: 2021
  end-page: 35
  ident: bib10
  article-title: Multi-scale prediction of RUL and SOH for lithium-ion batteries based on WNN-UPF combined model
  publication-title: Chin. J. Electronics
– volume: 7
  start-page: 2942
  year: 2019
  end-page: 2964
  ident: bib12
  article-title: Lithium-ion batteries: outlook on present, future, and hybridized technologies
  publication-title: J. Mater. Chem. A
– volume: 357
  start-page: 209
  year: 2017
  end-page: 219
  ident: bib21
  article-title: Gaussian process regression for forecasting battery state of health
  publication-title: J. Power Sourc.
– volume: 10
  start-page: 1497
  year: 2021
  ident: bib34
  article-title: State of health prediction of lithium-ion batteries based on the discharge voltage and temperature
  publication-title: Electronics
– year: 2014
  ident: bib2
  article-title: Adaptation of an Electrochemistry-Based Li-Ion Battery Model to Account for Deterioration Observed under Randomized Use
– volume: 42
  start-page: 103076
  year: 2021
  ident: bib38
  article-title: A multi-scale state of health prediction framework of lithium-ion batteries considering the temperature variation during battery discharge
  publication-title: Journal of Energy Storage
– volume: 482
  start-page: 228863
  year: 2021
  ident: bib15
  article-title: Online capacity estimation of lithium-ion batteries with deep long short-term memory networks
  publication-title: J. Power Sourc.
– volume: 47
  start-page: 4924
  year: 2018
  ident: 10.1016/j.isci.2022.103988_bib22
  article-title: Understanding ageing in Li-ion batteries: a chemical issue
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00889A
– volume: 45
  start-page: 2383
  year: 2021
  ident: 10.1016/j.isci.2022.103988_bib27
  article-title: State of health prediction for lithium-ion batteries with a novel online sequential extreme learning machine method
  publication-title: Int. J. Energ. Res.
  doi: 10.1002/er.5934
– volume: 10
  start-page: 2012
  year: 2017
  ident: 10.1016/j.isci.2022.103988_bib35
  article-title: Indirect state-of-health estimation for lithium-ion batteries under randomized use
  publication-title: Energies
  doi: 10.3390/en10122012
– volume: 30
  start-page: 26
  year: 2021
  ident: 10.1016/j.isci.2022.103988_bib10
  article-title: Multi-scale prediction of RUL and SOH for lithium-ion batteries based on WNN-UPF combined model
  publication-title: Chin. J. Electronics
  doi: 10.1049/cje.2020.10.012
– volume: 42
  start-page: 103076
  year: 2021
  ident: 10.1016/j.isci.2022.103988_bib38
  article-title: A multi-scale state of health prediction framework of lithium-ion batteries considering the temperature variation during battery discharge
  publication-title: Journal of Energy Storage
  doi: 10.1016/j.est.2021.103076
– volume: 10
  start-page: 1497
  year: 2021
  ident: 10.1016/j.isci.2022.103988_bib34
  article-title: State of health prediction of lithium-ion batteries based on the discharge voltage and temperature
  publication-title: Electronics
  doi: 10.3390/electronics10121497
– volume: 12
  start-page: 2247
  year: 2019
  ident: 10.1016/j.isci.2022.103988_bib19
  article-title: A lithium-ion battery RUL prediction method considering the capacity regeneration phenomenon
  publication-title: Energies
  doi: 10.3390/en12122247
– volume: 350
  start-page: 261
  year: 2019
  ident: 10.1016/j.isci.2022.103988_bib14
  article-title: A novel fault diagnosis algorithm for rotating machinery based on a sparsity and neighborhood preserving deep extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.084
– volume: 58
  start-page: 291
  year: 2009
  ident: 10.1016/j.isci.2022.103988_bib23
  article-title: Prognostics methods for battery health monitoring using a Bayesian framework
  publication-title: IEEE Trans. Instrumentation Meas.
  doi: 10.1109/TIM.2008.2005965
– volume: 49
  start-page: 1688
  year: 2019
  ident: 10.1016/j.isci.2022.103988_bib29
  article-title: Improved whale optimization algorithm for feature selection in Arabic sentiment analysis
  publication-title: Appl. Intelligence
  doi: 10.1007/s10489-018-1334-8
– volume: 135
  start-page: 123
  year: 2018
  ident: 10.1016/j.isci.2022.103988_bib18
  article-title: Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.02.046
– volume: 396
  start-page: 162
  year: 2017
  ident: 10.1016/j.isci.2022.103988_bib13
  article-title: Design of a fractional-order PID controller for a pumped storage unit using a gravitational search algorithm based on the Cauchy and Gaussian mutation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.02.026
– volume: 448
  start-page: 227425
  year: 2020
  ident: 10.1016/j.isci.2022.103988_bib31
  article-title: Influence of cycling aging and ambient pressure on the thermal safety features of lithium-ion battery
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2019.227425
– volume: 11
  start-page: 1750012
  year: 2017
  ident: 10.1016/j.isci.2022.103988_bib36
  article-title: Hybrid grey wolf optimizer using elite opposition-based learning strategy and simplex method
  publication-title: Int. J. Comput. Intelligence Appl.
  doi: 10.1142/S1469026817500122
– volume: 66
  start-page: 141
  year: 2021
  ident: 10.1016/j.isci.2022.103988_bib8
  article-title: Enabling smart cities with cognition based intelligent route decision in vehicles empowered with deep extreme learning machine
  publication-title: Cmc-Computers Mater. Continua
  doi: 10.32604/cmc.2020.013458
– year: 2014
  ident: 10.1016/j.isci.2022.103988_bib3
– volume: 32
  start-page: 101741
  year: 2020
  ident: 10.1016/j.isci.2022.103988_bib6
  article-title: A novel deep learning framework for state of health estimation of lithium-ion battery
  publication-title: J. Energ. Storage
  doi: 10.1016/j.est.2020.101741
– volume: 207
  start-page: 372
  year: 2017
  ident: 10.1016/j.isci.2022.103988_bib32
  article-title: A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2017.05.124
– volume: 25
  start-page: 567
  year: 2016
  ident: 10.1016/j.isci.2022.103988_bib7
  article-title: A cuckoo search algorithm with elite opposition-based strategy
  publication-title: J. Intell. Syst.
– volume: 26
  start-page: 317
  year: 2015
  ident: 10.1016/j.isci.2022.103988_bib37
  article-title: Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC
  publication-title: J. Syst. Eng. Electronics
  doi: 10.1109/JSEE.2015.00037
– volume: 7
  start-page: 160043
  year: 2019
  ident: 10.1016/j.isci.2022.103988_bib5
  article-title: A novel machine learning method based approach for Li-ion battery prognostic and health management
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947843
– volume: 299
  start-page: 246
  year: 2015
  ident: 10.1016/j.isci.2022.103988_bib25
  article-title: Inline state of health estimation of lithium-ion batteries using state of charge calculation
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2015.08.091
– start-page: 695
  year: 2005
  ident: 10.1016/j.isci.2022.103988_bib28
  article-title: Opposition-based learning: a new scheme for machine intelligence
– volume: 7
  start-page: 2942
  year: 2019
  ident: 10.1016/j.isci.2022.103988_bib12
  article-title: Lithium-ion batteries: outlook on present, future, and hybridized technologies
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10513H
– volume: 13
  start-page: 1738
  year: 2019
  ident: 10.1016/j.isci.2022.103988_bib17
  article-title: A review of deep learning research
  publication-title: Ksii Trans. Internet Inf. Syst.
– volume: 448
  start-page: 227401
  year: 2020
  ident: 10.1016/j.isci.2022.103988_bib1
  article-title: An open circuit voltage-based model for state-of-health estimation of lithium-ion batteries: model development and validation
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2019.227401
– volume: 25
  start-page: 549
  year: 2014
  ident: 10.1016/j.isci.2022.103988_bib4
  article-title: Extreme learning machine and its applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1522-8
– volume: 8
  start-page: 849
  year: 2008
  ident: 10.1016/j.isci.2022.103988_bib11
  article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.07.002
– volume: 8
  start-page: 22
  year: 2020
  ident: 10.1016/j.isci.2022.103988_bib33
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 482
  start-page: 228863
  year: 2021
  ident: 10.1016/j.isci.2022.103988_bib15
  article-title: Online capacity estimation of lithium-ion batteries with deep long short-term memory networks
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2020.228863
– start-page: 809
  year: 2017
  ident: 10.1016/j.isci.2022.103988_bib26
– volume: 13
  start-page: 375
  year: 2020
  ident: 10.1016/j.isci.2022.103988_bib9
  article-title: SOH and RUL prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators
  publication-title: Energies
  doi: 10.3390/en13020375
– volume: 167
  start-page: 140519
  year: 2020
  ident: 10.1016/j.isci.2022.103988_bib24
  article-title: Discharge rate capability in aged Li-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abc207
– volume: 12
  start-page: 4338
  year: 2019
  ident: 10.1016/j.isci.2022.103988_bib30
  article-title: State-of-Health estimation of Li-ion batteries in electric vehicle using IndRNN under variable load condition
  publication-title: Energies
  doi: 10.3390/en12224338
– year: 2014
  ident: 10.1016/j.isci.2022.103988_bib2
– volume: 175
  start-page: 826
  year: 2016
  ident: 10.1016/j.isci.2022.103988_bib20
  article-title: Two-hidden-layer extreme learning machine for regression and classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.009
– volume: 357
  start-page: 209
  year: 2017
  ident: 10.1016/j.isci.2022.103988_bib21
  article-title: Gaussian process regression for forecasting battery state of health
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2017.05.004
– volume: 261
  start-page: 164
  year: 2017
  ident: 10.1016/j.isci.2022.103988_bib16
  article-title: Distributed extreme learning machine with alternating direction method of multiplier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.112
SSID ssj0002002496
Score 2.462926
Snippet Accurate state-of-health (SOH) prediction of lithium-ion batteries (LIBs) plays an important role in improving the performance and assuring the safe operation...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103988
SubjectTerms Energy management
Machine learning
Title Improved sparrow search algorithm optimization deep extreme learning machine for lithium-ion battery state-of-health prediction
URI https://dx.doi.org/10.1016/j.isci.2022.103988
https://www.ncbi.nlm.nih.gov/pubmed/35310948
https://www.proquest.com/docview/2641517609
https://pubmed.ncbi.nlm.nih.gov/PMC8927926
https://doaj.org/article/a8cfd42b5f2b477d9bc08d8fe376b4e6
Volume 25
WOSCitedRecordID wos000787731400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgxYELAvHqAisjcUMReTgZ-wiIFacVB5B6s_zcZrVNqm6LxIm_zoydlhak5cIxiZ3Enhn7sz3zDWNvrFONMwElEEQohAW0ORks2pUpo6jBgszJJuDiQs7n6stBqi_yCcv0wLnj3hnpohe1bWNtBYBX1pXSyxjQMqwIiWy7BHWwmLpKx2tEhZcyy7XkE4SqOUXMZOcuinjFxWFdU9C5SmlXfs9Kibz_aHL6G3z-6UN5MCmdP2QPJjTJ3-dWPGJ3wvCY_cwbBcFzHC2IYpFndebm-nJc95vFko84UCynCEzuQ1hxHKNpp5BPWSQu-TJ5WQaOoJYjVF_022VBpW0i5PzBUyRSMcYiR1Ly1ZqOfOiFT9i3809fP34upjwLhaN0BoWDiGYZY1ObyuF8byrwEkwTnBfGISBrjSiNx4VO9HhVSag9VQHnQFV1bJ6yk2EcwnPGa6sCrRCrzoPoOm9aZ4yTEIWzANLPWLXrZ-0mEnLKhXGtd95mV5pko0k2Ostmxt7u66wyBcetpT-Q-PYliT473UCl0pNS6X8p1Yy1O-HrCYlkhIGv6m_9-Oudpmg0Uzp7MUMYtzcacSdiK-hKNWPPsubsf7FpiZ5VYG040qmjNhw_GfpFogKXigggu9P_0egX7D41hY7KqvYlO9mst-EVu-e-b_qb9Rm7C3N5lqzsF1-ZL6g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+sparrow+search+algorithm+optimization+deep+extreme+learning+machine+for+lithium-ion+battery+state-of-health+prediction&rft.jtitle=iScience&rft.au=Jia%2C+Jianfang&rft.au=Yuan%2C+Shufang&rft.au=Shi%2C+Yuanhao&rft.au=Wen%2C+Jie&rft.date=2022-04-15&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=25&rft.issue=4&rft.spage=103988&rft_id=info:doi/10.1016%2Fj.isci.2022.103988&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2022_103988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon