Global, regional, and national trends in under-5 mortality between 1990 and 2019 with scenario-based projections until 2030: a systematic analysis by the UN Inter-agency Group for Child Mortality Estimation

The Sustainable Development Goals (SDGs), set in 2015 by the UN General Assembly, call for all countries to reach an under-5 mortality rate (U5MR) of at least as low as 25 deaths per 1000 livebirths and a neonatal mortality rate (NMR) of at least as low as 12 deaths per 1000 livebirths by 2030. We e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Lancet global health Ročník 10; číslo 2; s. e195 - e206
Hlavní autori: Sharrow, David, Hug, Lucia, You, Danzhen, Alkema, Leontine, Black, Robert, Cousens, Simon, Croft, Trevor, Gaigbe-Togbe, Victor, Gerland, Patrick, Guillot, Michel, Hill, Kenneth, Masquelier, Bruno, Mathers, Colin, Pedersen, Jon, Strong, Kathleen L, Suzuki, Emi, Wakefield, Jon, Walker, Neff
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier Ltd 01.02.2022
Predmet:
ISSN:2214-109X, 2214-109X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Sustainable Development Goals (SDGs), set in 2015 by the UN General Assembly, call for all countries to reach an under-5 mortality rate (U5MR) of at least as low as 25 deaths per 1000 livebirths and a neonatal mortality rate (NMR) of at least as low as 12 deaths per 1000 livebirths by 2030. We estimated levels and trends in under-5 mortality for 195 countries from 1990 to 2019, and conducted scenario-based projections of the U5MR and NMR from 2020 to 2030 to assess country progress in, and potential for, reaching SDG targets on child survival and the potential under-5 and neonatal deaths over the next decade. Levels and trends in under-5 mortality are based on the UN Inter-agency Group for Child Mortality Estimation (UN IGME) database on under-5 mortality, which contains around 18 000 country-year datapoints for 195 countries—nearly 10 000 of those datapoints since 1990. The database includes nationally representative mortality data from vital registration systems, sample registration systems, population censuses, and household surveys. As with previous sets of national UN IGME estimates, a Bayesian B-spline bias-reduction model (B3) that considers the systematic biases associated with the different data source types was fitted to these data to generate estimates of under-5 (age 0–4 years) mortality with uncertainty intervals for 1990–2019 for all countries. Levels and trends in the neonatal mortality rate (0–27 days) are modelled separately as the log ratio of the neonatal mortality rate to the under-5 mortality rate using a Bayesian model. Estimated mortality rates are combined with livebirths data to calculate the number of under-5 and neonatal deaths. To assess the regional and global burden of under-5 deaths in the present decade and progress towards SDG targets, we constructed several scenario-based projections of under-5 mortality from 2020 to 2030 and estimated national, regional, and global under-5 mortality trends up to 2030 for each scenario. The global U5MR decreased by 59% (90% uncertainty interval [UI] 56–61) from 93·0 (91·7–94·5) deaths per 1000 livebirths in 1990 to 37·7 (36·1–40·8) in 2019, while the annual number of global under-5 deaths declined from 12·5 (12·3–12·7) million in 1990 to 5·2 (5·0–5·6) million in 2019—a 58% (55–60) reduction. The global NMR decreased by 52% (90% UI 48–55) from 36·6 (35·6–37·8) deaths per 1000 livebirths in 1990, to 17·5 (16·6–19·0) in 2019, and the annual number of global neonatal deaths declined from 5·0 (4·9–5·2) million in 1990, to 2·4 (2·3–2·7) million in 2019, a 51% (47–54) reduction. As of 2019, 122 of 195 countries have achieved the SDG U5MR target, and 20 countries are on track to achieve the target by 2030, while 53 will need to accelerate progress to meet the target by 2030. 116 countries have reached the SDG NMR target with 16 on track, leaving 63 at risk of missing the target. If current trends continue, 48·1 million under-5 deaths are projected to occur between 2020 and 2030, almost half of them projected to occur during the neonatal period. If all countries met the SDG target on under-5 mortality, 11 million under-5 deaths could be averted between 2020 and 2030. As a result of effective global health initiatives, millions of child deaths have been prevented since 1990. However, the task of ending all preventable child deaths is not done and millions more deaths could be averted by meeting international targets. Geographical and economic variation demonstrate the possibility of even lower mortality rates for children under age 5 years and point to the regions and countries with highest mortality rates and in greatest need of resources and action. Bill & Melinda Gates Foundation, US Agency for International Development.
AbstractList The Sustainable Development Goals (SDGs), set in 2015 by the UN General Assembly, call for all countries to reach an under-5 mortality rate (U5MR) of at least as low as 25 deaths per 1000 livebirths and a neonatal mortality rate (NMR) of at least as low as 12 deaths per 1000 livebirths by 2030. We estimated levels and trends in under-5 mortality for 195 countries from 1990 to 2019, and conducted scenario-based projections of the U5MR and NMR from 2020 to 2030 to assess country progress in, and potential for, reaching SDG targets on child survival and the potential under-5 and neonatal deaths over the next decade. Levels and trends in under-5 mortality are based on the UN Inter-agency Group for Child Mortality Estimation (UN IGME) database on under-5 mortality, which contains around 18 000 country-year datapoints for 195 countries—nearly 10 000 of those datapoints since 1990. The database includes nationally representative mortality data from vital registration systems, sample registration systems, population censuses, and household surveys. As with previous sets of national UN IGME estimates, a Bayesian B-spline bias-reduction model (B3) that considers the systematic biases associated with the different data source types was fitted to these data to generate estimates of under-5 (age 0–4 years) mortality with uncertainty intervals for 1990–2019 for all countries. Levels and trends in the neonatal mortality rate (0–27 days) are modelled separately as the log ratio of the neonatal mortality rate to the under-5 mortality rate using a Bayesian model. Estimated mortality rates are combined with livebirths data to calculate the number of under-5 and neonatal deaths. To assess the regional and global burden of under-5 deaths in the present decade and progress towards SDG targets, we constructed several scenario-based projections of under-5 mortality from 2020 to 2030 and estimated national, regional, and global under-5 mortality trends up to 2030 for each scenario. The global U5MR decreased by 59% (90% uncertainty interval [UI] 56–61) from 93·0 (91·7–94·5) deaths per 1000 livebirths in 1990 to 37·7 (36·1–40·8) in 2019, while the annual number of global under-5 deaths declined from 12·5 (12·3–12·7) million in 1990 to 5·2 (5·0–5·6) million in 2019—a 58% (55–60) reduction. The global NMR decreased by 52% (90% UI 48–55) from 36·6 (35·6–37·8) deaths per 1000 livebirths in 1990, to 17·5 (16·6–19·0) in 2019, and the annual number of global neonatal deaths declined from 5·0 (4·9–5·2) million in 1990, to 2·4 (2·3–2·7) million in 2019, a 51% (47–54) reduction. As of 2019, 122 of 195 countries have achieved the SDG U5MR target, and 20 countries are on track to achieve the target by 2030, while 53 will need to accelerate progress to meet the target by 2030. 116 countries have reached the SDG NMR target with 16 on track, leaving 63 at risk of missing the target. If current trends continue, 48·1 million under-5 deaths are projected to occur between 2020 and 2030, almost half of them projected to occur during the neonatal period. If all countries met the SDG target on under-5 mortality, 11 million under-5 deaths could be averted between 2020 and 2030. As a result of effective global health initiatives, millions of child deaths have been prevented since 1990. However, the task of ending all preventable child deaths is not done and millions more deaths could be averted by meeting international targets. Geographical and economic variation demonstrate the possibility of even lower mortality rates for children under age 5 years and point to the regions and countries with highest mortality rates and in greatest need of resources and action. Bill & Melinda Gates Foundation, US Agency for International Development.
The Sustainable Development Goals (SDGs), set in 2015 by the UN General Assembly, call for all countries to reach an under-5 mortality rate (U5MR) of at least as low as 25 deaths per 1000 livebirths and a neonatal mortality rate (NMR) of at least as low as 12 deaths per 1000 livebirths by 2030. We estimated levels and trends in under-5 mortality for 195 countries from 1990 to 2019, and conducted scenario-based projections of the U5MR and NMR from 2020 to 2030 to assess country progress in, and potential for, reaching SDG targets on child survival and the potential under-5 and neonatal deaths over the next decade.BACKGROUNDThe Sustainable Development Goals (SDGs), set in 2015 by the UN General Assembly, call for all countries to reach an under-5 mortality rate (U5MR) of at least as low as 25 deaths per 1000 livebirths and a neonatal mortality rate (NMR) of at least as low as 12 deaths per 1000 livebirths by 2030. We estimated levels and trends in under-5 mortality for 195 countries from 1990 to 2019, and conducted scenario-based projections of the U5MR and NMR from 2020 to 2030 to assess country progress in, and potential for, reaching SDG targets on child survival and the potential under-5 and neonatal deaths over the next decade.Levels and trends in under-5 mortality are based on the UN Inter-agency Group for Child Mortality Estimation (UN IGME) database on under-5 mortality, which contains around 18 000 country-year datapoints for 195 countries-nearly 10 000 of those datapoints since 1990. The database includes nationally representative mortality data from vital registration systems, sample registration systems, population censuses, and household surveys. As with previous sets of national UN IGME estimates, a Bayesian B-spline bias-reduction model (B3) that considers the systematic biases associated with the different data source types was fitted to these data to generate estimates of under-5 (age 0-4 years) mortality with uncertainty intervals for 1990-2019 for all countries. Levels and trends in the neonatal mortality rate (0-27 days) are modelled separately as the log ratio of the neonatal mortality rate to the under-5 mortality rate using a Bayesian model. Estimated mortality rates are combined with livebirths data to calculate the number of under-5 and neonatal deaths. To assess the regional and global burden of under-5 deaths in the present decade and progress towards SDG targets, we constructed several scenario-based projections of under-5 mortality from 2020 to 2030 and estimated national, regional, and global under-5 mortality trends up to 2030 for each scenario.METHODSLevels and trends in under-5 mortality are based on the UN Inter-agency Group for Child Mortality Estimation (UN IGME) database on under-5 mortality, which contains around 18 000 country-year datapoints for 195 countries-nearly 10 000 of those datapoints since 1990. The database includes nationally representative mortality data from vital registration systems, sample registration systems, population censuses, and household surveys. As with previous sets of national UN IGME estimates, a Bayesian B-spline bias-reduction model (B3) that considers the systematic biases associated with the different data source types was fitted to these data to generate estimates of under-5 (age 0-4 years) mortality with uncertainty intervals for 1990-2019 for all countries. Levels and trends in the neonatal mortality rate (0-27 days) are modelled separately as the log ratio of the neonatal mortality rate to the under-5 mortality rate using a Bayesian model. Estimated mortality rates are combined with livebirths data to calculate the number of under-5 and neonatal deaths. To assess the regional and global burden of under-5 deaths in the present decade and progress towards SDG targets, we constructed several scenario-based projections of under-5 mortality from 2020 to 2030 and estimated national, regional, and global under-5 mortality trends up to 2030 for each scenario.The global U5MR decreased by 59% (90% uncertainty interval [UI] 56-61) from 93·0 (91·7-94·5) deaths per 1000 livebirths in 1990 to 37·7 (36·1-40·8) in 2019, while the annual number of global under-5 deaths declined from 12·5 (12·3-12·7) million in 1990 to 5·2 (5·0-5·6) million in 2019-a 58% (55-60) reduction. The global NMR decreased by 52% (90% UI 48-55) from 36·6 (35·6-37·8) deaths per 1000 livebirths in 1990, to 17·5 (16·6-19·0) in 2019, and the annual number of global neonatal deaths declined from 5·0 (4·9-5·2) million in 1990, to 2·4 (2·3-2·7) million in 2019, a 51% (47-54) reduction. As of 2019, 122 of 195 countries have achieved the SDG U5MR target, and 20 countries are on track to achieve the target by 2030, while 53 will need to accelerate progress to meet the target by 2030. 116 countries have reached the SDG NMR target with 16 on track, leaving 63 at risk of missing the target. If current trends continue, 48·1 million under-5 deaths are projected to occur between 2020 and 2030, almost half of them projected to occur during the neonatal period. If all countries met the SDG target on under-5 mortality, 11 million under-5 deaths could be averted between 2020 and 2030.FINDINGSThe global U5MR decreased by 59% (90% uncertainty interval [UI] 56-61) from 93·0 (91·7-94·5) deaths per 1000 livebirths in 1990 to 37·7 (36·1-40·8) in 2019, while the annual number of global under-5 deaths declined from 12·5 (12·3-12·7) million in 1990 to 5·2 (5·0-5·6) million in 2019-a 58% (55-60) reduction. The global NMR decreased by 52% (90% UI 48-55) from 36·6 (35·6-37·8) deaths per 1000 livebirths in 1990, to 17·5 (16·6-19·0) in 2019, and the annual number of global neonatal deaths declined from 5·0 (4·9-5·2) million in 1990, to 2·4 (2·3-2·7) million in 2019, a 51% (47-54) reduction. As of 2019, 122 of 195 countries have achieved the SDG U5MR target, and 20 countries are on track to achieve the target by 2030, while 53 will need to accelerate progress to meet the target by 2030. 116 countries have reached the SDG NMR target with 16 on track, leaving 63 at risk of missing the target. If current trends continue, 48·1 million under-5 deaths are projected to occur between 2020 and 2030, almost half of them projected to occur during the neonatal period. If all countries met the SDG target on under-5 mortality, 11 million under-5 deaths could be averted between 2020 and 2030.As a result of effective global health initiatives, millions of child deaths have been prevented since 1990. However, the task of ending all preventable child deaths is not done and millions more deaths could be averted by meeting international targets. Geographical and economic variation demonstrate the possibility of even lower mortality rates for children under age 5 years and point to the regions and countries with highest mortality rates and in greatest need of resources and action.INTERPRETATIONAs a result of effective global health initiatives, millions of child deaths have been prevented since 1990. However, the task of ending all preventable child deaths is not done and millions more deaths could be averted by meeting international targets. Geographical and economic variation demonstrate the possibility of even lower mortality rates for children under age 5 years and point to the regions and countries with highest mortality rates and in greatest need of resources and action.Bill & Melinda Gates Foundation, US Agency for International Development.FUNDINGBill & Melinda Gates Foundation, US Agency for International Development.
Author Black, Robert
Gerland, Patrick
Cousens, Simon
Gaigbe-Togbe, Victor
Alkema, Leontine
Croft, Trevor
Pedersen, Jon
Hill, Kenneth
You, Danzhen
Guillot, Michel
Strong, Kathleen L
Suzuki, Emi
Wakefield, Jon
Walker, Neff
Masquelier, Bruno
Sharrow, David
Mathers, Colin
Hug, Lucia
Author_xml – sequence: 1
  givenname: David
  surname: Sharrow
  fullname: Sharrow, David
  organization: Division of Data, Analytics, Planning and Monitoring, UNICEF, New York, NY, USA
– sequence: 2
  givenname: Lucia
  surname: Hug
  fullname: Hug, Lucia
  organization: Division of Data, Analytics, Planning and Monitoring, UNICEF, New York, NY, USA
– sequence: 3
  givenname: Danzhen
  surname: You
  fullname: You, Danzhen
  email: dyou@unicef.org
  organization: Division of Data, Analytics, Planning and Monitoring, UNICEF, New York, NY, USA
– sequence: 4
  givenname: Leontine
  surname: Alkema
  fullname: Alkema, Leontine
  organization: Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
– sequence: 5
  givenname: Robert
  surname: Black
  fullname: Black, Robert
  organization: Department of International Health, Johns Hopkins University, Baltimore, MD, USA
– sequence: 6
  givenname: Simon
  surname: Cousens
  fullname: Cousens, Simon
  organization: London School of Hygiene & Tropical Medicine, London, UK
– sequence: 7
  givenname: Trevor
  surname: Croft
  fullname: Croft, Trevor
  organization: The Demographic and Health Surveys Program, ICF, Rockville, MD, USA
– sequence: 8
  givenname: Victor
  surname: Gaigbe-Togbe
  fullname: Gaigbe-Togbe, Victor
  organization: United Nations Population Division, New York, NY, USA
– sequence: 9
  givenname: Patrick
  surname: Gerland
  fullname: Gerland, Patrick
  organization: United Nations Population Division, New York, NY, USA
– sequence: 10
  givenname: Michel
  surname: Guillot
  fullname: Guillot, Michel
  organization: Population Studies Center, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 11
  givenname: Kenneth
  surname: Hill
  fullname: Hill, Kenneth
  organization: Stanton-Hill Research, Moultonborough, NH, USA
– sequence: 12
  givenname: Bruno
  surname: Masquelier
  fullname: Masquelier, Bruno
  organization: Catholic University of Louvain, Louvain-la-Neuve, Belgium
– sequence: 13
  givenname: Colin
  surname: Mathers
  fullname: Mathers, Colin
  organization: University of Edinburgh, Edinburgh, UK
– sequence: 14
  givenname: Jon
  surname: Pedersen
  fullname: Pedersen, Jon
  organization: Mikro, Oslo, Norway
– sequence: 15
  givenname: Kathleen L
  surname: Strong
  fullname: Strong, Kathleen L
  organization: Department of Maternal, Newborn, Child and Adolescent Health, World Health Organization, Geneva, Switzerland
– sequence: 16
  givenname: Emi
  surname: Suzuki
  fullname: Suzuki, Emi
  organization: The World Bank, Washington, DC, USA
– sequence: 17
  givenname: Jon
  surname: Wakefield
  fullname: Wakefield, Jon
  organization: University of Washington, Seattle, WA, USA
– sequence: 18
  givenname: Neff
  surname: Walker
  fullname: Walker, Neff
  organization: Department of International Health, Johns Hopkins University, Baltimore, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35063111$$D View this record in MEDLINE/PubMed
BookMark eNqNUsFu1DAQjVARLaWfAPKxSARsJ3FiKkBoVZZKBQ4UiZvlOJNdF6-92N5W-Um-CSfbrkovxReP7XnvjWfe02zPOgtZ9pzg1wQT9uY7paTMCeY_jyl5iXFFqrx6lB3srvfuxPvZUQiXOC3OC1rXT7L9osKsIIQcZH_mxrXSvEIeFtrZMZK2Q1bG6YSiB9sFpC3a2A58XqGV81EaHQfUQrwGsIhwjicUxYSjax2XKCiw0muXtzJAh9beXYIaKUPiidqk1AK_RRKFIURYJTWVGKQZgg6oHVBcAvrxFZ3ZmDTlAqwa0Ny7zRr1zqPZUpsOfdkVchqiXk0VP8se99IEOLrZD7OLT6cXs8_5-bf52ezjea4qSmKuGOtlh1nZsLaoS9WCkoq3qmRMMUUKWRJakr6vG0kobyUmtOO879uGyL4ui8Ps_ZZ2vWlX0KXPRi-NWPtUhh-Ek1r8-2L1UizclWjqhleMJILjGwLvfm8gRLHSqWfGSAtuEwRllNKG4nLUenFXaydyO8OUcLJNUN6F4KEXSsepG0laG0GwGE0jJtOI0RGCEjGZRlQJXd1D3wo8hPuwxUFq85UGL4LSaU7QaZ9GLTqnH2R4d49BGW21kuYXDP-B_wtmcu_e
CitedBy_id crossref_primary_10_1016_j_ssmph_2025_101842
crossref_primary_10_1002_hsr2_1938
crossref_primary_10_1093_jrsssa_qnae051
crossref_primary_10_1016_j_lana_2025_101133
crossref_primary_10_1186_s12884_025_07594_0
crossref_primary_10_1186_s12936_024_05213_5
crossref_primary_10_7759_cureus_78048
crossref_primary_10_3390_vaccines13050503
crossref_primary_10_3390_children10040710
crossref_primary_10_7189_jogh_15_04049
crossref_primary_10_1128_msystems_01675_24
crossref_primary_10_1177_2333794X231218193
crossref_primary_10_1186_s12963_023_00307_9
crossref_primary_10_1186_s13052_025_02072_x
crossref_primary_10_3390_vaccines13010038
crossref_primary_10_1136_bmjgh_2024_017683
crossref_primary_10_1016_j_cmi_2025_01_014
crossref_primary_10_1371_journal_pone_0308104
crossref_primary_10_1016_j_gpeds_2025_100268
crossref_primary_10_4102_jphia_v16i1_1326
crossref_primary_10_1016_j_sste_2025_100733
crossref_primary_10_1056_NEJMoa2312093
crossref_primary_10_1016_j_pedn_2024_04_004
crossref_primary_10_1002_psp_70030
crossref_primary_10_1093_inthealth_ihad107
crossref_primary_10_1186_s13031_024_00614_4
crossref_primary_10_1016_j_scitotenv_2023_165277
crossref_primary_10_1371_journal_pone_0295772
crossref_primary_10_3389_fpubh_2024_1394060
crossref_primary_10_1038_s41586_025_08907_1
crossref_primary_10_1186_s40814_024_01552_x
crossref_primary_10_3389_fmicb_2022_955051
crossref_primary_10_1136_bmjgh_2024_016386
crossref_primary_10_1186_s12889_025_23258_2
crossref_primary_10_1186_s12884_024_06934_w
crossref_primary_10_1001_jamanetworkopen_2024_24226
crossref_primary_10_1186_s12887_024_05036_y
crossref_primary_10_3389_fmed_2024_1323813
crossref_primary_10_1001_jamanetworkopen_2023_56609
crossref_primary_10_1016_j_mattod_2024_03_005
crossref_primary_10_1371_journal_pone_0310341
crossref_primary_10_3390_microorganisms12122548
crossref_primary_10_1001_jamanetworkopen_2022_37689
crossref_primary_10_3390_vaccines10070988
crossref_primary_10_1093_cid_ciae280
crossref_primary_10_3389_fped_2025_1535957
crossref_primary_10_4103_shb_shb_70_24
crossref_primary_10_1016_S2214_109X_25_00045_2
crossref_primary_10_3390_jcm11237227
crossref_primary_10_1186_s12887_025_05668_8
crossref_primary_10_12968_ajmw_2024_0012
crossref_primary_10_7189_jogh_15_04015
crossref_primary_10_1186_s12904_024_01522_3
crossref_primary_10_1080_19485565_2023_2301544
crossref_primary_10_1186_s13690_024_01398_y
crossref_primary_10_3390_publications13020026
crossref_primary_10_3390_children12040415
crossref_primary_10_4178_epih_e2025021
crossref_primary_10_1111_ppe_70067
crossref_primary_10_1186_s12887_025_05499_7
crossref_primary_10_1542_peds_2024_066588E
crossref_primary_10_1038_d41586_023_03234_9
crossref_primary_10_1080_16549716_2024_2403972
crossref_primary_10_1016_S2352_4642_23_00167_0
crossref_primary_10_1016_j_vaccine_2025_127060
crossref_primary_10_1186_s43054_025_00354_x
crossref_primary_10_1007_s40124_023_00297_0
crossref_primary_10_1016_j_vaccine_2024_02_072
crossref_primary_10_1186_s12889_025_23370_3
crossref_primary_10_1186_s12887_024_04979_6
crossref_primary_10_1186_s12889_024_21273_3
crossref_primary_10_1371_journal_pone_0291246
crossref_primary_10_1186_s12913_024_11951_8
crossref_primary_10_3389_fpubh_2023_1090405
crossref_primary_10_1001_jamanetworkopen_2023_46840
crossref_primary_10_1186_s13643_024_02740_9
crossref_primary_10_1016_S2352_4642_23_00328_0
crossref_primary_10_1016_j_jnn_2025_101694
crossref_primary_10_1186_s12889_025_24186_x
crossref_primary_10_3389_fpubh_2023_1146048
crossref_primary_10_1186_s12887_024_04676_4
crossref_primary_10_1186_s13690_023_01169_1
crossref_primary_10_1007_s12116_023_09386_z
crossref_primary_10_1080_15287394_2025_2521644
crossref_primary_10_3390_ijerph20043270
crossref_primary_10_1016_j_gpeds_2025_100275
crossref_primary_10_1186_s12887_024_05340_7
crossref_primary_10_1016_j_gpeds_2025_100276
crossref_primary_10_3389_fped_2022_877200
crossref_primary_10_7189_jogh_12_04081
crossref_primary_10_1016_j_chiabu_2025_107363
crossref_primary_10_1097_CM9_0000000000003642
crossref_primary_10_1016_S2468_2667_25_00167_7
crossref_primary_10_1016_j_microc_2025_114126
crossref_primary_10_1371_journal_pone_0281200
crossref_primary_10_1016_j_jpeds_2024_114001
crossref_primary_10_3390_v17060860
crossref_primary_10_1186_s12887_024_04928_3
crossref_primary_10_1186_s12942_023_00330_x
crossref_primary_10_1038_s41598_023_27728_8
crossref_primary_10_1136_bmjpo_2025_003379
crossref_primary_10_1001_jama_2024_12589
crossref_primary_10_1177_09720634241275840
crossref_primary_10_1186_s12887_025_05772_9
crossref_primary_10_3389_fped_2024_1390952
crossref_primary_10_1038_s41598_024_52282_2
crossref_primary_10_1371_journal_pone_0304841
crossref_primary_10_1186_s12889_024_19334_8
crossref_primary_10_1177_11786302231200997
crossref_primary_10_1371_journal_pone_0306581
crossref_primary_10_3389_ijph_2024_1607385
crossref_primary_10_1186_s12913_025_12885_5
crossref_primary_10_1186_s12887_024_04627_z
crossref_primary_10_1111_jnu_12951
crossref_primary_10_1186_s12939_022_01732_2
crossref_primary_10_1177_2333794X241275264
crossref_primary_10_1002_ijgo_15390
crossref_primary_10_1186_s12889_025_23053_z
crossref_primary_10_1016_S0140_6736_24_00495_1
crossref_primary_10_1097_EE9_0000000000000408
crossref_primary_10_1038_s41598_025_15705_2
crossref_primary_10_1177_02601060241256200
crossref_primary_10_1186_s41043_025_00971_7
crossref_primary_10_7759_cureus_62656
crossref_primary_10_1007_s13312_024_3163_7
crossref_primary_10_1016_S2352_4642_23_00052_4
crossref_primary_10_1136_archdischild_2022_324472
crossref_primary_10_1371_journal_pgph_0003843
crossref_primary_10_3390_ijms26062659
crossref_primary_10_1016_S0140_6736_21_02533_2
crossref_primary_10_1016_S2214_109X_25_00108_1
crossref_primary_10_1186_s12982_024_00316_5
crossref_primary_10_4054_DemRes_2025_52_16
crossref_primary_10_1186_s12884_023_05989_5
crossref_primary_10_4103_ijcm_ijcm_73_24
crossref_primary_10_1186_s13643_023_02397_w
crossref_primary_10_1038_s41390_023_02570_w
crossref_primary_10_1371_journal_pgph_0003732
crossref_primary_10_3389_fpubh_2024_1422203
crossref_primary_10_3390_ijerph21070856
crossref_primary_10_3389_fpubh_2024_1439320
crossref_primary_10_1136_bmjgh_2024_018133
crossref_primary_10_1002_hsr2_791
crossref_primary_10_1371_journal_pone_0291328
crossref_primary_10_1097_MS9_0000000000002087
crossref_primary_10_1186_s12884_025_07959_5
crossref_primary_10_1016_S0140_6736_25_01398_4
crossref_primary_10_1186_s12896_023_00804_7
crossref_primary_10_1017_S1368980024002647
crossref_primary_10_1186_s12884_025_07369_7
crossref_primary_10_1097_GH9_0000000000000543
crossref_primary_10_4103_aam_aam_112_23
crossref_primary_10_3390_nu17101696
crossref_primary_10_1371_journal_pone_0316155
crossref_primary_10_3389_fpubh_2025_1518427
crossref_primary_10_3390_pathogens13030264
crossref_primary_10_1002_hsr2_70266
crossref_primary_10_1136_bmjopen_2022_065257
crossref_primary_10_1371_journal_pone_0272016
crossref_primary_10_1093_heapol_czad057
crossref_primary_10_1186_s12889_024_21073_9
crossref_primary_10_1186_s12913_022_08641_8
crossref_primary_10_1186_s43058_025_00716_x
crossref_primary_10_18502_sjms_v20i1_17782
crossref_primary_10_1590_0102_311xen102922
crossref_primary_10_5334_aogh_3844
crossref_primary_10_1016_j_heliyon_2023_e13848
crossref_primary_10_7189_jogh_14_04260
crossref_primary_10_1371_journal_pmed_1004516
crossref_primary_10_3389_fpubh_2023_1189684
crossref_primary_10_1515_biol_2022_0643
crossref_primary_10_18621_eurj_1073285
crossref_primary_10_1097_QAD_0000000000004032
crossref_primary_10_1186_s12889_024_18955_3
crossref_primary_10_1093_ofid_ofad362
crossref_primary_10_1093_oodh_oqae006
crossref_primary_10_1038_s41591_025_03576_z
crossref_primary_10_1080_21642850_2023_2185245
crossref_primary_10_1097_QAD_0000000000003985
crossref_primary_10_1016_S0140_6736_22_00608_0
crossref_primary_10_3390_children12030262
crossref_primary_10_1016_j_ajic_2024_06_002
crossref_primary_10_53126_MEB44419
crossref_primary_10_1017_S0021932025100412
crossref_primary_10_1080_27707571_2023_2183563
crossref_primary_10_1136_bmjopen_2024_091246
crossref_primary_10_1371_journal_pgph_0005027
crossref_primary_10_3390_children10020349
crossref_primary_10_1016_j_ajog_2024_11_016
crossref_primary_10_1016_j_oneear_2025_101424
crossref_primary_10_1136_bmjgh_2024_017409
crossref_primary_10_1017_S1368980024001526
crossref_primary_10_1371_journal_pone_0282113
crossref_primary_10_1186_s12978_024_01932_9
crossref_primary_10_1080_16549716_2024_2412152
crossref_primary_10_1093_cid_ciad338
crossref_primary_10_1136_bmjopen_2024_097916
crossref_primary_10_1016_S2214_109X_25_00140_8
crossref_primary_10_1371_journal_pone_0301512
crossref_primary_10_1038_s41467_024_49890_x
crossref_primary_10_1186_s12963_025_00369_x
crossref_primary_10_1038_s41598_024_69924_0
crossref_primary_10_1186_s41182_023_00525_9
crossref_primary_10_3389_fped_2025_1380913
crossref_primary_10_1186_s41077_025_00338_2
crossref_primary_10_1093_qjmed_hcad220
crossref_primary_10_1016_j_lansea_2025_100535
crossref_primary_10_1097_QAD_0000000000004294
crossref_primary_10_3390_children9081196
crossref_primary_10_1016_j_lanwpc_2023_100691
crossref_primary_10_1371_journal_pdig_0000968
crossref_primary_10_3389_fped_2024_1426901
crossref_primary_10_3389_fpubh_2025_1483179
crossref_primary_10_1038_s41582_023_00921_z
crossref_primary_10_1136_bmjgh_2023_011801
crossref_primary_10_3389_fped_2024_1288260
crossref_primary_10_11648_j_mlr_20251002_12
crossref_primary_10_7189_jogh_15_04107
crossref_primary_10_1186_s41043_024_00650_z
crossref_primary_10_1371_journal_pone_0282012
crossref_primary_10_1371_journal_pone_0323845
crossref_primary_10_1016_j_wcn_2024_02_001
crossref_primary_10_1016_j_lana_2023_100618
crossref_primary_10_1186_s12982_024_00122_z
crossref_primary_10_1016_j_heliyon_2023_e18534
crossref_primary_10_1371_journal_pone_0303358
crossref_primary_10_1371_journal_pone_0300882
crossref_primary_10_1007_s12098_025_05484_z
crossref_primary_10_3390_children11091144
crossref_primary_10_3389_fpubh_2024_1413090
crossref_primary_10_1186_s12889_025_22191_8
crossref_primary_10_1038_s41598_025_02059_y
crossref_primary_10_7759_cureus_61418
crossref_primary_10_1080_16549716_2024_2392354
crossref_primary_10_1182_bloodadvances_2022007698
crossref_primary_10_1186_s12887_024_05027_z
crossref_primary_10_3389_fped_2022_966113
crossref_primary_10_1097_GOX_0000000000006721
crossref_primary_10_1002_isd2_70000
crossref_primary_10_7189_jogh_15_03009
crossref_primary_10_1007_s12015_025_10905_9
crossref_primary_10_1186_s12889_025_23412_w
crossref_primary_10_1001_jamanetworkopen_2024_10046
crossref_primary_10_4102_jomped_v8i1_264
crossref_primary_10_1186_s12884_022_05322_6
crossref_primary_10_1016_j_isci_2024_110626
Cites_doi 10.1093/heapol/czx108
10.4054/DemRes.2018.38.15
10.1016/S0140-6736(15)00120-8
10.1016/j.puhe.2016.10.020
10.1016/S0140-6736(20)31648-2
10.2105/AJPH.94.4.562
10.1186/1471-2458-13-S3-S1
ContentType Journal Article
Copyright 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license 2022
Copyright_xml – notice: 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
– notice: Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
– notice: 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license 2022
CorporateAuthor UN Inter-agency Group for Child Mortality Estimation and its Technical Advisory Group
CorporateAuthor_xml – name: UN Inter-agency Group for Child Mortality Estimation and its Technical Advisory Group
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/S2214-109X(21)00515-5
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2214-109X
EndPage e206
ExternalDocumentID PMC8789561
35063111
10_1016_S2214_109X_21_00515_5
S2214109X21005155
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation Bill & Melinda Gates Foundation, US Agency for International Development.
GrantInformation_xml – fundername: World Health Organization
  grantid: 001
GroupedDBID .1-
.FO
0R~
1P~
457
53G
AAEDT
AAEDW
AAIKJ
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACGFS
ACHQT
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AENEX
AEUPX
AEVXI
AEXQZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
O9-
OD.
OK1
OO~
RIG
ROL
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-c66fad06486b374cbecac9bc466c6c13a41241ff78a129ba012d99ffb81af743
ISICitedReferencesCount 288
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000759637600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2214-109X
IngestDate Thu Aug 21 18:45:18 EDT 2025
Fri Jul 11 09:04:51 EDT 2025
Mon Jul 21 05:45:42 EDT 2025
Tue Nov 18 21:42:08 EST 2025
Wed Nov 05 20:59:51 EST 2025
Wed May 17 00:03:32 EDT 2023
Tue Aug 26 16:35:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open access article under the CC BY license.
Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c521t-c66fad06486b374cbecac9bc466c6c13a41241ff78a129ba012d99ffb81af743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1016/S2214-109X(21)00515-5
PMID 35063111
PQID 2622282044
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8789561
proquest_miscellaneous_2622282044
pubmed_primary_35063111
crossref_citationtrail_10_1016_S2214_109X_21_00515_5
crossref_primary_10_1016_S2214_109X_21_00515_5
elsevier_sciencedirect_doi_10_1016_S2214_109X_21_00515_5
elsevier_clinicalkey_doi_10_1016_S2214_109X_21_00515_5
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Lancet global health
PublicationTitleAlternate Lancet Glob Health
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (bib14) 2014
(bib6) 2014
Chang, Huang, Lee, Hsu, Hsieh, Chou (bib18) 2004; 94
Ribacke, Saulnier, Eriksson, von Schreeb (bib17) 2016; 4
(bib8) 2017
Elston, Cartwright, Ndumbi, Wright (bib15) 2017; 143
Sochas, Channon, Nam (bib16) 2017; 32
Walker, Tam, Friberg (bib21) 2013; 13
(bib9) 2018
Alkema, New (bib5) 2014; 82
Fore, Dongyu, Beasley, Ghebreysus (bib19) 2020; 396
You, Hug, Ejdemyr (bib2) 2015; 386
(bib12) 2019
(bib3) 2015
Alexander, Alkema (bib11) 2018; 38
bib4
bib1
(bib7) 2015
(bib10) 2019
(bib13) 2019
(bib20) 2000-2017
Ribacke (10.1016/S2214-109X(21)00515-5_bib17) 2016; 4
Fore (10.1016/S2214-109X(21)00515-5_bib19) 2020; 396
Walker (10.1016/S2214-109X(21)00515-5_bib21) 2013; 13
Sochas (10.1016/S2214-109X(21)00515-5_bib16) 2017; 32
Chang (10.1016/S2214-109X(21)00515-5_bib18) 2004; 94
Alkema (10.1016/S2214-109X(21)00515-5_bib5) 2014; 82
You (10.1016/S2214-109X(21)00515-5_bib2) 2015; 386
Alexander (10.1016/S2214-109X(21)00515-5_bib11) 2018; 38
Elston (10.1016/S2214-109X(21)00515-5_bib15) 2017; 143
35063103 - Lancet Glob Health. 2022 Feb;10(2):e157-e158. doi: 10.1016/S2214-109X(21)00597-0.
References_xml – year: 2015
  ident: bib7
  article-title: Levels and trends in child mortality: report
– ident: bib1
  article-title: Millennium Development Goals. Goal 4: reduce child mortality
– volume: 94
  start-page: 562
  year: 2004
  end-page: 564
  ident: bib18
  article-title: The impact of the SARS epidemic on the utilization of medical services: SARS and the fear of SARS
  publication-title: Am J Public Health
– volume: 396
  start-page: 517
  year: 2020
  end-page: 518
  ident: bib19
  article-title: Child malnutrition and COVID-19: the time to act is now
  publication-title: Lancet
– volume: 32
  start-page: iii32
  year: 2017
  end-page: iii39
  ident: bib16
  article-title: Counting indirect crisis-related deaths in the context of a low-resilience health system: the case of maternal and neonatal health during the Ebola epidemic in Sierra Leone
  publication-title: Health Policy Plan
– year: 2019
  ident: bib12
  article-title: World population prospects
– year: 2017
  ident: bib8
  article-title: Levels and trends in child mortality: report
– year: 2000-2017
  ident: bib20
  article-title: Child causes of death
– year: 2014
  ident: bib6
  article-title: Levels and trends in child mortality: report
– year: 2015
  ident: bib3
  article-title: The global strategy for women's, children's and adolescents' health (2016–2030)
– year: 2019
  ident: bib10
  article-title: Levels and trends in child mortality: report
– ident: bib4
  article-title: Sustainable Development Goals
– year: 2019
  ident: bib13
  article-title: Probabilistic population projections revision 1 based on the World Population Prospects
– volume: 386
  start-page: 2275
  year: 2015
  end-page: 2286
  ident: bib2
  article-title: Global, regional, and national levels and trends in under-5 mortality between 1990 and 2015, with scenario-based projections to 2030: a systematic analysis by the UN Inter-agency Group for Child Mortality Estimation
  publication-title: Lancet
– volume: 143
  start-page: 60
  year: 2017
  end-page: 70
  ident: bib15
  article-title: The health impact of the 2014–15 Ebola outbreak
  publication-title: Public Health
– year: 2014
  ident: bib14
  article-title: Every Newborn: an action plan to end preventable deaths
– volume: 4
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib17
  article-title: Effects of the west Africa Ebola virus disease on health-care utilization – a systematic review
  publication-title: Front Public Health
– volume: 13
  start-page: S1
  year: 2013
  ident: bib21
  article-title: Overview of the Lives Saved Tool (LiST)
  publication-title: BMC Public Health
– volume: 82
  start-page: 2122
  year: 2014
  end-page: 2149
  ident: bib5
  article-title: Global estimation of child mortality using a Bayesian B-spline bias-reduction method
  publication-title: Ann Appl Stat
– year: 2018
  ident: bib9
  article-title: Levels and trends in child mortality: report
– volume: 38
  start-page: 335
  year: 2018
  end-page: 372
  ident: bib11
  article-title: Global estimation of neonatal mortality using a Bayesian hierarchical splines regression model
  publication-title: Demogr Res
– volume: 32
  start-page: iii32
  year: 2017
  ident: 10.1016/S2214-109X(21)00515-5_bib16
  article-title: Counting indirect crisis-related deaths in the context of a low-resilience health system: the case of maternal and neonatal health during the Ebola epidemic in Sierra Leone
  publication-title: Health Policy Plan
  doi: 10.1093/heapol/czx108
– volume: 4
  start-page: 1
  year: 2016
  ident: 10.1016/S2214-109X(21)00515-5_bib17
  article-title: Effects of the west Africa Ebola virus disease on health-care utilization – a systematic review
  publication-title: Front Public Health
– volume: 38
  start-page: 335
  year: 2018
  ident: 10.1016/S2214-109X(21)00515-5_bib11
  article-title: Global estimation of neonatal mortality using a Bayesian hierarchical splines regression model
  publication-title: Demogr Res
  doi: 10.4054/DemRes.2018.38.15
– volume: 386
  start-page: 2275
  year: 2015
  ident: 10.1016/S2214-109X(21)00515-5_bib2
  article-title: Global, regional, and national levels and trends in under-5 mortality between 1990 and 2015, with scenario-based projections to 2030: a systematic analysis by the UN Inter-agency Group for Child Mortality Estimation
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)00120-8
– volume: 82
  start-page: 2122
  year: 2014
  ident: 10.1016/S2214-109X(21)00515-5_bib5
  article-title: Global estimation of child mortality using a Bayesian B-spline bias-reduction method
  publication-title: Ann Appl Stat
– volume: 143
  start-page: 60
  year: 2017
  ident: 10.1016/S2214-109X(21)00515-5_bib15
  article-title: The health impact of the 2014–15 Ebola outbreak
  publication-title: Public Health
  doi: 10.1016/j.puhe.2016.10.020
– volume: 396
  start-page: 517
  year: 2020
  ident: 10.1016/S2214-109X(21)00515-5_bib19
  article-title: Child malnutrition and COVID-19: the time to act is now
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)31648-2
– volume: 94
  start-page: 562
  year: 2004
  ident: 10.1016/S2214-109X(21)00515-5_bib18
  article-title: The impact of the SARS epidemic on the utilization of medical services: SARS and the fear of SARS
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.94.4.562
– volume: 13
  start-page: S1
  issue: suppl 3
  year: 2013
  ident: 10.1016/S2214-109X(21)00515-5_bib21
  article-title: Overview of the Lives Saved Tool (LiST)
  publication-title: BMC Public Health
  doi: 10.1186/1471-2458-13-S3-S1
– reference: 35063103 - Lancet Glob Health. 2022 Feb;10(2):e157-e158. doi: 10.1016/S2214-109X(21)00597-0.
SSID ssj0000993277
Score 2.6631017
Snippet The Sustainable Development Goals (SDGs), set in 2015 by the UN General Assembly, call for all countries to reach an under-5 mortality rate (U5MR) of at least...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e195
SubjectTerms Child Mortality - trends
Child, Preschool
Computer Simulation
Global Health
Humans
Infant
United Nations
Title Global, regional, and national trends in under-5 mortality between 1990 and 2019 with scenario-based projections until 2030: a systematic analysis by the UN Inter-agency Group for Child Mortality Estimation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2214109X21005155
https://dx.doi.org/10.1016/S2214-109X(21)00515-5
https://www.ncbi.nlm.nih.gov/pubmed/35063111
https://www.proquest.com/docview/2622282044
https://pubmed.ncbi.nlm.nih.gov/PMC8789561
Volume 10
WOSCitedRecordID wos000759637600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2214-109X
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0000993277
  issn: 2214-109X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2214-109X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993277
  issn: 2214-109X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9NAEIBXbeGAhBDvhkc0SBxAqYu9fq25VaiIA42QCFJu1npjK4HUqdKkKhz4ifwmZna9a4eCWpC4RJW767iazzOz03kw9rwSMsq4KryJCmIvSqvQKxJkWeKbp-K0KDNlhk2kw6EYj7MPW9u7thbmbJ7WtTg_z07-q6jxGgqbSmf_QtzupngBf0ah4yeKHT-vJHjXxX9AQxfI0bYZmi7wt3KJsFRCtvTiwbH2wskjt4lbARoQvQttd9ZksquyxqP1wiPTR-0FdBBHZ9LRwIk5Lg19Uz3daRAtbdsTcnTJyx2aMKQnTdmnCYdRtqNuszw4co9yiOrnuCXncwu2qdy23UxMLaeLFU1dX8lOwj6Bq7Xa-7WayY6ua-rsv03bmriD-Rd8dr24XNAkjbIbG8Fjtb-RZ-KKdtoMKdSrnAcRWh89wRdN4G-uWcPgd14A3tHyZWAGgzYeQ8l104SL1sgERj66m-OZgaN9yvRgHS9uTbBLjNRraSmexPX0nW12jadxRvr66HsbPUS_PuR6rKi7eVue9qr9xhc8eNl8258cr4sHq1_zgzsO1-g2u9WclODAEH6HbZX1XXbThJnBVM_dYz8M7XtgWd8DZBYs6WBIh1kNDengSIeGdCDS9S4iHYh02CQdOqSDJh2I9NcgoeUcLOdQfAXkHD4Nocs5aM4BOQfNOTjOoeX8Phu9PRy9eec1I0o8RZNAPJUklZygWy-SIkwjhRpRqqxQUZKoRAWhpOHuQVWlQqJjXUh0BydZVlWFCGSFzvsDtlMv6nKXQRiX6QQ1o1QiiCa4FO8rqiwR8YT7svR7LLLiy1XTvp-myMxzl6dJUqeMknHOg1xLPY97bN9tOzH9ay7bkFg2clucje5EjkxftlG4jY33brzyq2x9ZiHM0brRvyxlXS7WpzlPKELN_SjqsYcGSvdnhDEer9BV67F0A1e3gDrnb_6mnk11B32RCirof_Tvj_yY3WgVzhO2s1quy6fsujpbzU6XfbadjkVfx_f6-sX9CX1ZPHk
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global%2C+regional%2C+and+national+trends+in+under-5+mortality+between+1990+and+2019+with+scenario-based+projections+until+2030%3A+a+systematic+analysis+by+the+UN+Inter-agency+Group+for+Child+Mortality+Estimation&rft.jtitle=The+Lancet+global+health&rft.au=Sharrow%2C+David&rft.au=Hug%2C+Lucia&rft.au=You%2C+Danzhen&rft.au=Alkema%2C+Leontine&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=2214-109X&rft.eissn=2214-109X&rft.volume=10&rft.issue=2&rft.spage=e195&rft.epage=e206&rft_id=info:doi/10.1016%2FS2214-109X%2821%2900515-5&rft.externalDocID=S2214109X21005155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-109X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-109X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-109X&client=summon