Global, regional, and national trends in under-5 mortality between 1990 and 2019 with scenario-based projections until 2030: a systematic analysis by the UN Inter-agency Group for Child Mortality Estimation
The Sustainable Development Goals (SDGs), set in 2015 by the UN General Assembly, call for all countries to reach an under-5 mortality rate (U5MR) of at least as low as 25 deaths per 1000 livebirths and a neonatal mortality rate (NMR) of at least as low as 12 deaths per 1000 livebirths by 2030. We e...
Uložené v:
| Vydané v: | The Lancet global health Ročník 10; číslo 2; s. e195 - e206 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Elsevier Ltd
01.02.2022
|
| Predmet: | |
| ISSN: | 2214-109X, 2214-109X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Sustainable Development Goals (SDGs), set in 2015 by the UN General Assembly, call for all countries to reach an under-5 mortality rate (U5MR) of at least as low as 25 deaths per 1000 livebirths and a neonatal mortality rate (NMR) of at least as low as 12 deaths per 1000 livebirths by 2030. We estimated levels and trends in under-5 mortality for 195 countries from 1990 to 2019, and conducted scenario-based projections of the U5MR and NMR from 2020 to 2030 to assess country progress in, and potential for, reaching SDG targets on child survival and the potential under-5 and neonatal deaths over the next decade.
Levels and trends in under-5 mortality are based on the UN Inter-agency Group for Child Mortality Estimation (UN IGME) database on under-5 mortality, which contains around 18 000 country-year datapoints for 195 countries—nearly 10 000 of those datapoints since 1990. The database includes nationally representative mortality data from vital registration systems, sample registration systems, population censuses, and household surveys. As with previous sets of national UN IGME estimates, a Bayesian B-spline bias-reduction model (B3) that considers the systematic biases associated with the different data source types was fitted to these data to generate estimates of under-5 (age 0–4 years) mortality with uncertainty intervals for 1990–2019 for all countries. Levels and trends in the neonatal mortality rate (0–27 days) are modelled separately as the log ratio of the neonatal mortality rate to the under-5 mortality rate using a Bayesian model. Estimated mortality rates are combined with livebirths data to calculate the number of under-5 and neonatal deaths. To assess the regional and global burden of under-5 deaths in the present decade and progress towards SDG targets, we constructed several scenario-based projections of under-5 mortality from 2020 to 2030 and estimated national, regional, and global under-5 mortality trends up to 2030 for each scenario.
The global U5MR decreased by 59% (90% uncertainty interval [UI] 56–61) from 93·0 (91·7–94·5) deaths per 1000 livebirths in 1990 to 37·7 (36·1–40·8) in 2019, while the annual number of global under-5 deaths declined from 12·5 (12·3–12·7) million in 1990 to 5·2 (5·0–5·6) million in 2019—a 58% (55–60) reduction. The global NMR decreased by 52% (90% UI 48–55) from 36·6 (35·6–37·8) deaths per 1000 livebirths in 1990, to 17·5 (16·6–19·0) in 2019, and the annual number of global neonatal deaths declined from 5·0 (4·9–5·2) million in 1990, to 2·4 (2·3–2·7) million in 2019, a 51% (47–54) reduction. As of 2019, 122 of 195 countries have achieved the SDG U5MR target, and 20 countries are on track to achieve the target by 2030, while 53 will need to accelerate progress to meet the target by 2030. 116 countries have reached the SDG NMR target with 16 on track, leaving 63 at risk of missing the target. If current trends continue, 48·1 million under-5 deaths are projected to occur between 2020 and 2030, almost half of them projected to occur during the neonatal period. If all countries met the SDG target on under-5 mortality, 11 million under-5 deaths could be averted between 2020 and 2030.
As a result of effective global health initiatives, millions of child deaths have been prevented since 1990. However, the task of ending all preventable child deaths is not done and millions more deaths could be averted by meeting international targets. Geographical and economic variation demonstrate the possibility of even lower mortality rates for children under age 5 years and point to the regions and countries with highest mortality rates and in greatest need of resources and action.
Bill & Melinda Gates Foundation, US Agency for International Development. |
|---|---|
| AbstractList | The Sustainable Development Goals (SDGs), set in 2015 by the UN General Assembly, call for all countries to reach an under-5 mortality rate (U5MR) of at least as low as 25 deaths per 1000 livebirths and a neonatal mortality rate (NMR) of at least as low as 12 deaths per 1000 livebirths by 2030. We estimated levels and trends in under-5 mortality for 195 countries from 1990 to 2019, and conducted scenario-based projections of the U5MR and NMR from 2020 to 2030 to assess country progress in, and potential for, reaching SDG targets on child survival and the potential under-5 and neonatal deaths over the next decade.
Levels and trends in under-5 mortality are based on the UN Inter-agency Group for Child Mortality Estimation (UN IGME) database on under-5 mortality, which contains around 18 000 country-year datapoints for 195 countries—nearly 10 000 of those datapoints since 1990. The database includes nationally representative mortality data from vital registration systems, sample registration systems, population censuses, and household surveys. As with previous sets of national UN IGME estimates, a Bayesian B-spline bias-reduction model (B3) that considers the systematic biases associated with the different data source types was fitted to these data to generate estimates of under-5 (age 0–4 years) mortality with uncertainty intervals for 1990–2019 for all countries. Levels and trends in the neonatal mortality rate (0–27 days) are modelled separately as the log ratio of the neonatal mortality rate to the under-5 mortality rate using a Bayesian model. Estimated mortality rates are combined with livebirths data to calculate the number of under-5 and neonatal deaths. To assess the regional and global burden of under-5 deaths in the present decade and progress towards SDG targets, we constructed several scenario-based projections of under-5 mortality from 2020 to 2030 and estimated national, regional, and global under-5 mortality trends up to 2030 for each scenario.
The global U5MR decreased by 59% (90% uncertainty interval [UI] 56–61) from 93·0 (91·7–94·5) deaths per 1000 livebirths in 1990 to 37·7 (36·1–40·8) in 2019, while the annual number of global under-5 deaths declined from 12·5 (12·3–12·7) million in 1990 to 5·2 (5·0–5·6) million in 2019—a 58% (55–60) reduction. The global NMR decreased by 52% (90% UI 48–55) from 36·6 (35·6–37·8) deaths per 1000 livebirths in 1990, to 17·5 (16·6–19·0) in 2019, and the annual number of global neonatal deaths declined from 5·0 (4·9–5·2) million in 1990, to 2·4 (2·3–2·7) million in 2019, a 51% (47–54) reduction. As of 2019, 122 of 195 countries have achieved the SDG U5MR target, and 20 countries are on track to achieve the target by 2030, while 53 will need to accelerate progress to meet the target by 2030. 116 countries have reached the SDG NMR target with 16 on track, leaving 63 at risk of missing the target. If current trends continue, 48·1 million under-5 deaths are projected to occur between 2020 and 2030, almost half of them projected to occur during the neonatal period. If all countries met the SDG target on under-5 mortality, 11 million under-5 deaths could be averted between 2020 and 2030.
As a result of effective global health initiatives, millions of child deaths have been prevented since 1990. However, the task of ending all preventable child deaths is not done and millions more deaths could be averted by meeting international targets. Geographical and economic variation demonstrate the possibility of even lower mortality rates for children under age 5 years and point to the regions and countries with highest mortality rates and in greatest need of resources and action.
Bill & Melinda Gates Foundation, US Agency for International Development. The Sustainable Development Goals (SDGs), set in 2015 by the UN General Assembly, call for all countries to reach an under-5 mortality rate (U5MR) of at least as low as 25 deaths per 1000 livebirths and a neonatal mortality rate (NMR) of at least as low as 12 deaths per 1000 livebirths by 2030. We estimated levels and trends in under-5 mortality for 195 countries from 1990 to 2019, and conducted scenario-based projections of the U5MR and NMR from 2020 to 2030 to assess country progress in, and potential for, reaching SDG targets on child survival and the potential under-5 and neonatal deaths over the next decade.BACKGROUNDThe Sustainable Development Goals (SDGs), set in 2015 by the UN General Assembly, call for all countries to reach an under-5 mortality rate (U5MR) of at least as low as 25 deaths per 1000 livebirths and a neonatal mortality rate (NMR) of at least as low as 12 deaths per 1000 livebirths by 2030. We estimated levels and trends in under-5 mortality for 195 countries from 1990 to 2019, and conducted scenario-based projections of the U5MR and NMR from 2020 to 2030 to assess country progress in, and potential for, reaching SDG targets on child survival and the potential under-5 and neonatal deaths over the next decade.Levels and trends in under-5 mortality are based on the UN Inter-agency Group for Child Mortality Estimation (UN IGME) database on under-5 mortality, which contains around 18 000 country-year datapoints for 195 countries-nearly 10 000 of those datapoints since 1990. The database includes nationally representative mortality data from vital registration systems, sample registration systems, population censuses, and household surveys. As with previous sets of national UN IGME estimates, a Bayesian B-spline bias-reduction model (B3) that considers the systematic biases associated with the different data source types was fitted to these data to generate estimates of under-5 (age 0-4 years) mortality with uncertainty intervals for 1990-2019 for all countries. Levels and trends in the neonatal mortality rate (0-27 days) are modelled separately as the log ratio of the neonatal mortality rate to the under-5 mortality rate using a Bayesian model. Estimated mortality rates are combined with livebirths data to calculate the number of under-5 and neonatal deaths. To assess the regional and global burden of under-5 deaths in the present decade and progress towards SDG targets, we constructed several scenario-based projections of under-5 mortality from 2020 to 2030 and estimated national, regional, and global under-5 mortality trends up to 2030 for each scenario.METHODSLevels and trends in under-5 mortality are based on the UN Inter-agency Group for Child Mortality Estimation (UN IGME) database on under-5 mortality, which contains around 18 000 country-year datapoints for 195 countries-nearly 10 000 of those datapoints since 1990. The database includes nationally representative mortality data from vital registration systems, sample registration systems, population censuses, and household surveys. As with previous sets of national UN IGME estimates, a Bayesian B-spline bias-reduction model (B3) that considers the systematic biases associated with the different data source types was fitted to these data to generate estimates of under-5 (age 0-4 years) mortality with uncertainty intervals for 1990-2019 for all countries. Levels and trends in the neonatal mortality rate (0-27 days) are modelled separately as the log ratio of the neonatal mortality rate to the under-5 mortality rate using a Bayesian model. Estimated mortality rates are combined with livebirths data to calculate the number of under-5 and neonatal deaths. To assess the regional and global burden of under-5 deaths in the present decade and progress towards SDG targets, we constructed several scenario-based projections of under-5 mortality from 2020 to 2030 and estimated national, regional, and global under-5 mortality trends up to 2030 for each scenario.The global U5MR decreased by 59% (90% uncertainty interval [UI] 56-61) from 93·0 (91·7-94·5) deaths per 1000 livebirths in 1990 to 37·7 (36·1-40·8) in 2019, while the annual number of global under-5 deaths declined from 12·5 (12·3-12·7) million in 1990 to 5·2 (5·0-5·6) million in 2019-a 58% (55-60) reduction. The global NMR decreased by 52% (90% UI 48-55) from 36·6 (35·6-37·8) deaths per 1000 livebirths in 1990, to 17·5 (16·6-19·0) in 2019, and the annual number of global neonatal deaths declined from 5·0 (4·9-5·2) million in 1990, to 2·4 (2·3-2·7) million in 2019, a 51% (47-54) reduction. As of 2019, 122 of 195 countries have achieved the SDG U5MR target, and 20 countries are on track to achieve the target by 2030, while 53 will need to accelerate progress to meet the target by 2030. 116 countries have reached the SDG NMR target with 16 on track, leaving 63 at risk of missing the target. If current trends continue, 48·1 million under-5 deaths are projected to occur between 2020 and 2030, almost half of them projected to occur during the neonatal period. If all countries met the SDG target on under-5 mortality, 11 million under-5 deaths could be averted between 2020 and 2030.FINDINGSThe global U5MR decreased by 59% (90% uncertainty interval [UI] 56-61) from 93·0 (91·7-94·5) deaths per 1000 livebirths in 1990 to 37·7 (36·1-40·8) in 2019, while the annual number of global under-5 deaths declined from 12·5 (12·3-12·7) million in 1990 to 5·2 (5·0-5·6) million in 2019-a 58% (55-60) reduction. The global NMR decreased by 52% (90% UI 48-55) from 36·6 (35·6-37·8) deaths per 1000 livebirths in 1990, to 17·5 (16·6-19·0) in 2019, and the annual number of global neonatal deaths declined from 5·0 (4·9-5·2) million in 1990, to 2·4 (2·3-2·7) million in 2019, a 51% (47-54) reduction. As of 2019, 122 of 195 countries have achieved the SDG U5MR target, and 20 countries are on track to achieve the target by 2030, while 53 will need to accelerate progress to meet the target by 2030. 116 countries have reached the SDG NMR target with 16 on track, leaving 63 at risk of missing the target. If current trends continue, 48·1 million under-5 deaths are projected to occur between 2020 and 2030, almost half of them projected to occur during the neonatal period. If all countries met the SDG target on under-5 mortality, 11 million under-5 deaths could be averted between 2020 and 2030.As a result of effective global health initiatives, millions of child deaths have been prevented since 1990. However, the task of ending all preventable child deaths is not done and millions more deaths could be averted by meeting international targets. Geographical and economic variation demonstrate the possibility of even lower mortality rates for children under age 5 years and point to the regions and countries with highest mortality rates and in greatest need of resources and action.INTERPRETATIONAs a result of effective global health initiatives, millions of child deaths have been prevented since 1990. However, the task of ending all preventable child deaths is not done and millions more deaths could be averted by meeting international targets. Geographical and economic variation demonstrate the possibility of even lower mortality rates for children under age 5 years and point to the regions and countries with highest mortality rates and in greatest need of resources and action.Bill & Melinda Gates Foundation, US Agency for International Development.FUNDINGBill & Melinda Gates Foundation, US Agency for International Development. |
| Author | Black, Robert Gerland, Patrick Cousens, Simon Gaigbe-Togbe, Victor Alkema, Leontine Croft, Trevor Pedersen, Jon Hill, Kenneth You, Danzhen Guillot, Michel Strong, Kathleen L Suzuki, Emi Wakefield, Jon Walker, Neff Masquelier, Bruno Sharrow, David Mathers, Colin Hug, Lucia |
| Author_xml | – sequence: 1 givenname: David surname: Sharrow fullname: Sharrow, David organization: Division of Data, Analytics, Planning and Monitoring, UNICEF, New York, NY, USA – sequence: 2 givenname: Lucia surname: Hug fullname: Hug, Lucia organization: Division of Data, Analytics, Planning and Monitoring, UNICEF, New York, NY, USA – sequence: 3 givenname: Danzhen surname: You fullname: You, Danzhen email: dyou@unicef.org organization: Division of Data, Analytics, Planning and Monitoring, UNICEF, New York, NY, USA – sequence: 4 givenname: Leontine surname: Alkema fullname: Alkema, Leontine organization: Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA – sequence: 5 givenname: Robert surname: Black fullname: Black, Robert organization: Department of International Health, Johns Hopkins University, Baltimore, MD, USA – sequence: 6 givenname: Simon surname: Cousens fullname: Cousens, Simon organization: London School of Hygiene & Tropical Medicine, London, UK – sequence: 7 givenname: Trevor surname: Croft fullname: Croft, Trevor organization: The Demographic and Health Surveys Program, ICF, Rockville, MD, USA – sequence: 8 givenname: Victor surname: Gaigbe-Togbe fullname: Gaigbe-Togbe, Victor organization: United Nations Population Division, New York, NY, USA – sequence: 9 givenname: Patrick surname: Gerland fullname: Gerland, Patrick organization: United Nations Population Division, New York, NY, USA – sequence: 10 givenname: Michel surname: Guillot fullname: Guillot, Michel organization: Population Studies Center, University of Pennsylvania, Philadelphia, PA, USA – sequence: 11 givenname: Kenneth surname: Hill fullname: Hill, Kenneth organization: Stanton-Hill Research, Moultonborough, NH, USA – sequence: 12 givenname: Bruno surname: Masquelier fullname: Masquelier, Bruno organization: Catholic University of Louvain, Louvain-la-Neuve, Belgium – sequence: 13 givenname: Colin surname: Mathers fullname: Mathers, Colin organization: University of Edinburgh, Edinburgh, UK – sequence: 14 givenname: Jon surname: Pedersen fullname: Pedersen, Jon organization: Mikro, Oslo, Norway – sequence: 15 givenname: Kathleen L surname: Strong fullname: Strong, Kathleen L organization: Department of Maternal, Newborn, Child and Adolescent Health, World Health Organization, Geneva, Switzerland – sequence: 16 givenname: Emi surname: Suzuki fullname: Suzuki, Emi organization: The World Bank, Washington, DC, USA – sequence: 17 givenname: Jon surname: Wakefield fullname: Wakefield, Jon organization: University of Washington, Seattle, WA, USA – sequence: 18 givenname: Neff surname: Walker fullname: Walker, Neff organization: Department of International Health, Johns Hopkins University, Baltimore, MD, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35063111$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUsFu1DAQjVARLaWfAPKxSARsJ3FiKkBoVZZKBQ4UiZvlOJNdF6-92N5W-Um-CSfbrkovxReP7XnvjWfe02zPOgtZ9pzg1wQT9uY7paTMCeY_jyl5iXFFqrx6lB3srvfuxPvZUQiXOC3OC1rXT7L9osKsIIQcZH_mxrXSvEIeFtrZMZK2Q1bG6YSiB9sFpC3a2A58XqGV81EaHQfUQrwGsIhwjicUxYSjax2XKCiw0muXtzJAh9beXYIaKUPiidqk1AK_RRKFIURYJTWVGKQZgg6oHVBcAvrxFZ3ZmDTlAqwa0Ny7zRr1zqPZUpsOfdkVchqiXk0VP8se99IEOLrZD7OLT6cXs8_5-bf52ezjea4qSmKuGOtlh1nZsLaoS9WCkoq3qmRMMUUKWRJakr6vG0kobyUmtOO879uGyL4ui8Ps_ZZ2vWlX0KXPRi-NWPtUhh-Ek1r8-2L1UizclWjqhleMJILjGwLvfm8gRLHSqWfGSAtuEwRllNKG4nLUenFXaydyO8OUcLJNUN6F4KEXSsepG0laG0GwGE0jJtOI0RGCEjGZRlQJXd1D3wo8hPuwxUFq85UGL4LSaU7QaZ9GLTqnH2R4d49BGW21kuYXDP-B_wtmcu_e |
| CitedBy_id | crossref_primary_10_1016_j_ssmph_2025_101842 crossref_primary_10_1002_hsr2_1938 crossref_primary_10_1093_jrsssa_qnae051 crossref_primary_10_1016_j_lana_2025_101133 crossref_primary_10_1186_s12884_025_07594_0 crossref_primary_10_1186_s12936_024_05213_5 crossref_primary_10_7759_cureus_78048 crossref_primary_10_3390_vaccines13050503 crossref_primary_10_3390_children10040710 crossref_primary_10_7189_jogh_15_04049 crossref_primary_10_1128_msystems_01675_24 crossref_primary_10_1177_2333794X231218193 crossref_primary_10_1186_s12963_023_00307_9 crossref_primary_10_1186_s13052_025_02072_x crossref_primary_10_3390_vaccines13010038 crossref_primary_10_1136_bmjgh_2024_017683 crossref_primary_10_1016_j_cmi_2025_01_014 crossref_primary_10_1371_journal_pone_0308104 crossref_primary_10_1016_j_gpeds_2025_100268 crossref_primary_10_4102_jphia_v16i1_1326 crossref_primary_10_1016_j_sste_2025_100733 crossref_primary_10_1056_NEJMoa2312093 crossref_primary_10_1016_j_pedn_2024_04_004 crossref_primary_10_1002_psp_70030 crossref_primary_10_1093_inthealth_ihad107 crossref_primary_10_1186_s13031_024_00614_4 crossref_primary_10_1016_j_scitotenv_2023_165277 crossref_primary_10_1371_journal_pone_0295772 crossref_primary_10_3389_fpubh_2024_1394060 crossref_primary_10_1038_s41586_025_08907_1 crossref_primary_10_1186_s40814_024_01552_x crossref_primary_10_3389_fmicb_2022_955051 crossref_primary_10_1136_bmjgh_2024_016386 crossref_primary_10_1186_s12889_025_23258_2 crossref_primary_10_1186_s12884_024_06934_w crossref_primary_10_1001_jamanetworkopen_2024_24226 crossref_primary_10_1186_s12887_024_05036_y crossref_primary_10_3389_fmed_2024_1323813 crossref_primary_10_1001_jamanetworkopen_2023_56609 crossref_primary_10_1016_j_mattod_2024_03_005 crossref_primary_10_1371_journal_pone_0310341 crossref_primary_10_3390_microorganisms12122548 crossref_primary_10_1001_jamanetworkopen_2022_37689 crossref_primary_10_3390_vaccines10070988 crossref_primary_10_1093_cid_ciae280 crossref_primary_10_3389_fped_2025_1535957 crossref_primary_10_4103_shb_shb_70_24 crossref_primary_10_1016_S2214_109X_25_00045_2 crossref_primary_10_3390_jcm11237227 crossref_primary_10_1186_s12887_025_05668_8 crossref_primary_10_12968_ajmw_2024_0012 crossref_primary_10_7189_jogh_15_04015 crossref_primary_10_1186_s12904_024_01522_3 crossref_primary_10_1080_19485565_2023_2301544 crossref_primary_10_1186_s13690_024_01398_y crossref_primary_10_3390_publications13020026 crossref_primary_10_3390_children12040415 crossref_primary_10_4178_epih_e2025021 crossref_primary_10_1111_ppe_70067 crossref_primary_10_1186_s12887_025_05499_7 crossref_primary_10_1542_peds_2024_066588E crossref_primary_10_1038_d41586_023_03234_9 crossref_primary_10_1080_16549716_2024_2403972 crossref_primary_10_1016_S2352_4642_23_00167_0 crossref_primary_10_1016_j_vaccine_2025_127060 crossref_primary_10_1186_s43054_025_00354_x crossref_primary_10_1007_s40124_023_00297_0 crossref_primary_10_1016_j_vaccine_2024_02_072 crossref_primary_10_1186_s12889_025_23370_3 crossref_primary_10_1186_s12887_024_04979_6 crossref_primary_10_1186_s12889_024_21273_3 crossref_primary_10_1371_journal_pone_0291246 crossref_primary_10_1186_s12913_024_11951_8 crossref_primary_10_3389_fpubh_2023_1090405 crossref_primary_10_1001_jamanetworkopen_2023_46840 crossref_primary_10_1186_s13643_024_02740_9 crossref_primary_10_1016_S2352_4642_23_00328_0 crossref_primary_10_1016_j_jnn_2025_101694 crossref_primary_10_1186_s12889_025_24186_x crossref_primary_10_3389_fpubh_2023_1146048 crossref_primary_10_1186_s12887_024_04676_4 crossref_primary_10_1186_s13690_023_01169_1 crossref_primary_10_1007_s12116_023_09386_z crossref_primary_10_1080_15287394_2025_2521644 crossref_primary_10_3390_ijerph20043270 crossref_primary_10_1016_j_gpeds_2025_100275 crossref_primary_10_1186_s12887_024_05340_7 crossref_primary_10_1016_j_gpeds_2025_100276 crossref_primary_10_3389_fped_2022_877200 crossref_primary_10_7189_jogh_12_04081 crossref_primary_10_1016_j_chiabu_2025_107363 crossref_primary_10_1097_CM9_0000000000003642 crossref_primary_10_1016_S2468_2667_25_00167_7 crossref_primary_10_1016_j_microc_2025_114126 crossref_primary_10_1371_journal_pone_0281200 crossref_primary_10_1016_j_jpeds_2024_114001 crossref_primary_10_3390_v17060860 crossref_primary_10_1186_s12887_024_04928_3 crossref_primary_10_1186_s12942_023_00330_x crossref_primary_10_1038_s41598_023_27728_8 crossref_primary_10_1136_bmjpo_2025_003379 crossref_primary_10_1001_jama_2024_12589 crossref_primary_10_1177_09720634241275840 crossref_primary_10_1186_s12887_025_05772_9 crossref_primary_10_3389_fped_2024_1390952 crossref_primary_10_1038_s41598_024_52282_2 crossref_primary_10_1371_journal_pone_0304841 crossref_primary_10_1186_s12889_024_19334_8 crossref_primary_10_1177_11786302231200997 crossref_primary_10_1371_journal_pone_0306581 crossref_primary_10_3389_ijph_2024_1607385 crossref_primary_10_1186_s12913_025_12885_5 crossref_primary_10_1186_s12887_024_04627_z crossref_primary_10_1111_jnu_12951 crossref_primary_10_1186_s12939_022_01732_2 crossref_primary_10_1177_2333794X241275264 crossref_primary_10_1002_ijgo_15390 crossref_primary_10_1186_s12889_025_23053_z crossref_primary_10_1016_S0140_6736_24_00495_1 crossref_primary_10_1097_EE9_0000000000000408 crossref_primary_10_1038_s41598_025_15705_2 crossref_primary_10_1177_02601060241256200 crossref_primary_10_1186_s41043_025_00971_7 crossref_primary_10_7759_cureus_62656 crossref_primary_10_1007_s13312_024_3163_7 crossref_primary_10_1016_S2352_4642_23_00052_4 crossref_primary_10_1136_archdischild_2022_324472 crossref_primary_10_1371_journal_pgph_0003843 crossref_primary_10_3390_ijms26062659 crossref_primary_10_1016_S0140_6736_21_02533_2 crossref_primary_10_1016_S2214_109X_25_00108_1 crossref_primary_10_1186_s12982_024_00316_5 crossref_primary_10_4054_DemRes_2025_52_16 crossref_primary_10_1186_s12884_023_05989_5 crossref_primary_10_4103_ijcm_ijcm_73_24 crossref_primary_10_1186_s13643_023_02397_w crossref_primary_10_1038_s41390_023_02570_w crossref_primary_10_1371_journal_pgph_0003732 crossref_primary_10_3389_fpubh_2024_1422203 crossref_primary_10_3390_ijerph21070856 crossref_primary_10_3389_fpubh_2024_1439320 crossref_primary_10_1136_bmjgh_2024_018133 crossref_primary_10_1002_hsr2_791 crossref_primary_10_1371_journal_pone_0291328 crossref_primary_10_1097_MS9_0000000000002087 crossref_primary_10_1186_s12884_025_07959_5 crossref_primary_10_1016_S0140_6736_25_01398_4 crossref_primary_10_1186_s12896_023_00804_7 crossref_primary_10_1017_S1368980024002647 crossref_primary_10_1186_s12884_025_07369_7 crossref_primary_10_1097_GH9_0000000000000543 crossref_primary_10_4103_aam_aam_112_23 crossref_primary_10_3390_nu17101696 crossref_primary_10_1371_journal_pone_0316155 crossref_primary_10_3389_fpubh_2025_1518427 crossref_primary_10_3390_pathogens13030264 crossref_primary_10_1002_hsr2_70266 crossref_primary_10_1136_bmjopen_2022_065257 crossref_primary_10_1371_journal_pone_0272016 crossref_primary_10_1093_heapol_czad057 crossref_primary_10_1186_s12889_024_21073_9 crossref_primary_10_1186_s12913_022_08641_8 crossref_primary_10_1186_s43058_025_00716_x crossref_primary_10_18502_sjms_v20i1_17782 crossref_primary_10_1590_0102_311xen102922 crossref_primary_10_5334_aogh_3844 crossref_primary_10_1016_j_heliyon_2023_e13848 crossref_primary_10_7189_jogh_14_04260 crossref_primary_10_1371_journal_pmed_1004516 crossref_primary_10_3389_fpubh_2023_1189684 crossref_primary_10_1515_biol_2022_0643 crossref_primary_10_18621_eurj_1073285 crossref_primary_10_1097_QAD_0000000000004032 crossref_primary_10_1186_s12889_024_18955_3 crossref_primary_10_1093_ofid_ofad362 crossref_primary_10_1093_oodh_oqae006 crossref_primary_10_1038_s41591_025_03576_z crossref_primary_10_1080_21642850_2023_2185245 crossref_primary_10_1097_QAD_0000000000003985 crossref_primary_10_1016_S0140_6736_22_00608_0 crossref_primary_10_3390_children12030262 crossref_primary_10_1016_j_ajic_2024_06_002 crossref_primary_10_53126_MEB44419 crossref_primary_10_1017_S0021932025100412 crossref_primary_10_1080_27707571_2023_2183563 crossref_primary_10_1136_bmjopen_2024_091246 crossref_primary_10_1371_journal_pgph_0005027 crossref_primary_10_3390_children10020349 crossref_primary_10_1016_j_ajog_2024_11_016 crossref_primary_10_1016_j_oneear_2025_101424 crossref_primary_10_1136_bmjgh_2024_017409 crossref_primary_10_1017_S1368980024001526 crossref_primary_10_1371_journal_pone_0282113 crossref_primary_10_1186_s12978_024_01932_9 crossref_primary_10_1080_16549716_2024_2412152 crossref_primary_10_1093_cid_ciad338 crossref_primary_10_1136_bmjopen_2024_097916 crossref_primary_10_1016_S2214_109X_25_00140_8 crossref_primary_10_1371_journal_pone_0301512 crossref_primary_10_1038_s41467_024_49890_x crossref_primary_10_1186_s12963_025_00369_x crossref_primary_10_1038_s41598_024_69924_0 crossref_primary_10_1186_s41182_023_00525_9 crossref_primary_10_3389_fped_2025_1380913 crossref_primary_10_1186_s41077_025_00338_2 crossref_primary_10_1093_qjmed_hcad220 crossref_primary_10_1016_j_lansea_2025_100535 crossref_primary_10_1097_QAD_0000000000004294 crossref_primary_10_3390_children9081196 crossref_primary_10_1016_j_lanwpc_2023_100691 crossref_primary_10_1371_journal_pdig_0000968 crossref_primary_10_3389_fped_2024_1426901 crossref_primary_10_3389_fpubh_2025_1483179 crossref_primary_10_1038_s41582_023_00921_z crossref_primary_10_1136_bmjgh_2023_011801 crossref_primary_10_3389_fped_2024_1288260 crossref_primary_10_11648_j_mlr_20251002_12 crossref_primary_10_7189_jogh_15_04107 crossref_primary_10_1186_s41043_024_00650_z crossref_primary_10_1371_journal_pone_0282012 crossref_primary_10_1371_journal_pone_0323845 crossref_primary_10_1016_j_wcn_2024_02_001 crossref_primary_10_1016_j_lana_2023_100618 crossref_primary_10_1186_s12982_024_00122_z crossref_primary_10_1016_j_heliyon_2023_e18534 crossref_primary_10_1371_journal_pone_0303358 crossref_primary_10_1371_journal_pone_0300882 crossref_primary_10_1007_s12098_025_05484_z crossref_primary_10_3390_children11091144 crossref_primary_10_3389_fpubh_2024_1413090 crossref_primary_10_1186_s12889_025_22191_8 crossref_primary_10_1038_s41598_025_02059_y crossref_primary_10_7759_cureus_61418 crossref_primary_10_1080_16549716_2024_2392354 crossref_primary_10_1182_bloodadvances_2022007698 crossref_primary_10_1186_s12887_024_05027_z crossref_primary_10_3389_fped_2022_966113 crossref_primary_10_1097_GOX_0000000000006721 crossref_primary_10_1002_isd2_70000 crossref_primary_10_7189_jogh_15_03009 crossref_primary_10_1007_s12015_025_10905_9 crossref_primary_10_1186_s12889_025_23412_w crossref_primary_10_1001_jamanetworkopen_2024_10046 crossref_primary_10_4102_jomped_v8i1_264 crossref_primary_10_1186_s12884_022_05322_6 crossref_primary_10_1016_j_isci_2024_110626 |
| Cites_doi | 10.1093/heapol/czx108 10.4054/DemRes.2018.38.15 10.1016/S0140-6736(15)00120-8 10.1016/j.puhe.2016.10.020 10.1016/S0140-6736(20)31648-2 10.2105/AJPH.94.4.562 10.1186/1471-2458-13-S3-S1 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved. 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license 2022 |
| Copyright_xml | – notice: 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license – notice: Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved. – notice: 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license 2022 |
| CorporateAuthor | UN Inter-agency Group for Child Mortality Estimation and its Technical Advisory Group |
| CorporateAuthor_xml | – name: UN Inter-agency Group for Child Mortality Estimation and its Technical Advisory Group |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/S2214-109X(21)00515-5 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 2214-109X |
| EndPage | e206 |
| ExternalDocumentID | PMC8789561 35063111 10_1016_S2214_109X_21_00515_5 S2214109X21005155 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation | Bill & Melinda Gates Foundation, US Agency for International Development. |
| GrantInformation_xml | – fundername: World Health Organization grantid: 001 |
| GroupedDBID | .1- .FO 0R~ 1P~ 457 53G AAEDT AAEDW AAIKJ AALRI AAMRU AAXUO AAYWO ABMAC ACGFS ACHQT ACVFH ADBBV ADCNI ADEZE ADVLN AENEX AEUPX AEVXI AEXQZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E O9- OD. OK1 OO~ RIG ROL SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c521t-c66fad06486b374cbecac9bc466c6c13a41241ff78a129ba012d99ffb81af743 |
| ISICitedReferencesCount | 288 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000759637600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2214-109X |
| IngestDate | Thu Aug 21 18:45:18 EDT 2025 Fri Jul 11 09:04:51 EDT 2025 Mon Jul 21 05:45:42 EDT 2025 Tue Nov 18 21:42:08 EST 2025 Wed Nov 05 20:59:51 EST 2025 Wed May 17 00:03:32 EDT 2023 Tue Aug 26 16:35:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c521t-c66fad06486b374cbecac9bc466c6c13a41241ff78a129ba012d99ffb81af743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://dx.doi.org/10.1016/S2214-109X(21)00515-5 |
| PMID | 35063111 |
| PQID | 2622282044 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8789561 proquest_miscellaneous_2622282044 pubmed_primary_35063111 crossref_citationtrail_10_1016_S2214_109X_21_00515_5 crossref_primary_10_1016_S2214_109X_21_00515_5 elsevier_sciencedirect_doi_10_1016_S2214_109X_21_00515_5 elsevier_clinicalkey_doi_10_1016_S2214_109X_21_00515_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | The Lancet global health |
| PublicationTitleAlternate | Lancet Glob Health |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | (bib14) 2014 (bib6) 2014 Chang, Huang, Lee, Hsu, Hsieh, Chou (bib18) 2004; 94 Ribacke, Saulnier, Eriksson, von Schreeb (bib17) 2016; 4 (bib8) 2017 Elston, Cartwright, Ndumbi, Wright (bib15) 2017; 143 Sochas, Channon, Nam (bib16) 2017; 32 Walker, Tam, Friberg (bib21) 2013; 13 (bib9) 2018 Alkema, New (bib5) 2014; 82 Fore, Dongyu, Beasley, Ghebreysus (bib19) 2020; 396 You, Hug, Ejdemyr (bib2) 2015; 386 (bib12) 2019 (bib3) 2015 Alexander, Alkema (bib11) 2018; 38 bib4 bib1 (bib7) 2015 (bib10) 2019 (bib13) 2019 (bib20) 2000-2017 Ribacke (10.1016/S2214-109X(21)00515-5_bib17) 2016; 4 Fore (10.1016/S2214-109X(21)00515-5_bib19) 2020; 396 Walker (10.1016/S2214-109X(21)00515-5_bib21) 2013; 13 Sochas (10.1016/S2214-109X(21)00515-5_bib16) 2017; 32 Chang (10.1016/S2214-109X(21)00515-5_bib18) 2004; 94 Alkema (10.1016/S2214-109X(21)00515-5_bib5) 2014; 82 You (10.1016/S2214-109X(21)00515-5_bib2) 2015; 386 Alexander (10.1016/S2214-109X(21)00515-5_bib11) 2018; 38 Elston (10.1016/S2214-109X(21)00515-5_bib15) 2017; 143 35063103 - Lancet Glob Health. 2022 Feb;10(2):e157-e158. doi: 10.1016/S2214-109X(21)00597-0. |
| References_xml | – year: 2015 ident: bib7 article-title: Levels and trends in child mortality: report – ident: bib1 article-title: Millennium Development Goals. Goal 4: reduce child mortality – volume: 94 start-page: 562 year: 2004 end-page: 564 ident: bib18 article-title: The impact of the SARS epidemic on the utilization of medical services: SARS and the fear of SARS publication-title: Am J Public Health – volume: 396 start-page: 517 year: 2020 end-page: 518 ident: bib19 article-title: Child malnutrition and COVID-19: the time to act is now publication-title: Lancet – volume: 32 start-page: iii32 year: 2017 end-page: iii39 ident: bib16 article-title: Counting indirect crisis-related deaths in the context of a low-resilience health system: the case of maternal and neonatal health during the Ebola epidemic in Sierra Leone publication-title: Health Policy Plan – year: 2019 ident: bib12 article-title: World population prospects – year: 2017 ident: bib8 article-title: Levels and trends in child mortality: report – year: 2000-2017 ident: bib20 article-title: Child causes of death – year: 2014 ident: bib6 article-title: Levels and trends in child mortality: report – year: 2015 ident: bib3 article-title: The global strategy for women's, children's and adolescents' health (2016–2030) – year: 2019 ident: bib10 article-title: Levels and trends in child mortality: report – ident: bib4 article-title: Sustainable Development Goals – year: 2019 ident: bib13 article-title: Probabilistic population projections revision 1 based on the World Population Prospects – volume: 386 start-page: 2275 year: 2015 end-page: 2286 ident: bib2 article-title: Global, regional, and national levels and trends in under-5 mortality between 1990 and 2015, with scenario-based projections to 2030: a systematic analysis by the UN Inter-agency Group for Child Mortality Estimation publication-title: Lancet – volume: 143 start-page: 60 year: 2017 end-page: 70 ident: bib15 article-title: The health impact of the 2014–15 Ebola outbreak publication-title: Public Health – year: 2014 ident: bib14 article-title: Every Newborn: an action plan to end preventable deaths – volume: 4 start-page: 1 year: 2016 end-page: 12 ident: bib17 article-title: Effects of the west Africa Ebola virus disease on health-care utilization – a systematic review publication-title: Front Public Health – volume: 13 start-page: S1 year: 2013 ident: bib21 article-title: Overview of the Lives Saved Tool (LiST) publication-title: BMC Public Health – volume: 82 start-page: 2122 year: 2014 end-page: 2149 ident: bib5 article-title: Global estimation of child mortality using a Bayesian B-spline bias-reduction method publication-title: Ann Appl Stat – year: 2018 ident: bib9 article-title: Levels and trends in child mortality: report – volume: 38 start-page: 335 year: 2018 end-page: 372 ident: bib11 article-title: Global estimation of neonatal mortality using a Bayesian hierarchical splines regression model publication-title: Demogr Res – volume: 32 start-page: iii32 year: 2017 ident: 10.1016/S2214-109X(21)00515-5_bib16 article-title: Counting indirect crisis-related deaths in the context of a low-resilience health system: the case of maternal and neonatal health during the Ebola epidemic in Sierra Leone publication-title: Health Policy Plan doi: 10.1093/heapol/czx108 – volume: 4 start-page: 1 year: 2016 ident: 10.1016/S2214-109X(21)00515-5_bib17 article-title: Effects of the west Africa Ebola virus disease on health-care utilization – a systematic review publication-title: Front Public Health – volume: 38 start-page: 335 year: 2018 ident: 10.1016/S2214-109X(21)00515-5_bib11 article-title: Global estimation of neonatal mortality using a Bayesian hierarchical splines regression model publication-title: Demogr Res doi: 10.4054/DemRes.2018.38.15 – volume: 386 start-page: 2275 year: 2015 ident: 10.1016/S2214-109X(21)00515-5_bib2 article-title: Global, regional, and national levels and trends in under-5 mortality between 1990 and 2015, with scenario-based projections to 2030: a systematic analysis by the UN Inter-agency Group for Child Mortality Estimation publication-title: Lancet doi: 10.1016/S0140-6736(15)00120-8 – volume: 82 start-page: 2122 year: 2014 ident: 10.1016/S2214-109X(21)00515-5_bib5 article-title: Global estimation of child mortality using a Bayesian B-spline bias-reduction method publication-title: Ann Appl Stat – volume: 143 start-page: 60 year: 2017 ident: 10.1016/S2214-109X(21)00515-5_bib15 article-title: The health impact of the 2014–15 Ebola outbreak publication-title: Public Health doi: 10.1016/j.puhe.2016.10.020 – volume: 396 start-page: 517 year: 2020 ident: 10.1016/S2214-109X(21)00515-5_bib19 article-title: Child malnutrition and COVID-19: the time to act is now publication-title: Lancet doi: 10.1016/S0140-6736(20)31648-2 – volume: 94 start-page: 562 year: 2004 ident: 10.1016/S2214-109X(21)00515-5_bib18 article-title: The impact of the SARS epidemic on the utilization of medical services: SARS and the fear of SARS publication-title: Am J Public Health doi: 10.2105/AJPH.94.4.562 – volume: 13 start-page: S1 issue: suppl 3 year: 2013 ident: 10.1016/S2214-109X(21)00515-5_bib21 article-title: Overview of the Lives Saved Tool (LiST) publication-title: BMC Public Health doi: 10.1186/1471-2458-13-S3-S1 – reference: 35063103 - Lancet Glob Health. 2022 Feb;10(2):e157-e158. doi: 10.1016/S2214-109X(21)00597-0. |
| SSID | ssj0000993277 |
| Score | 2.6631017 |
| Snippet | The Sustainable Development Goals (SDGs), set in 2015 by the UN General Assembly, call for all countries to reach an under-5 mortality rate (U5MR) of at least... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e195 |
| SubjectTerms | Child Mortality - trends Child, Preschool Computer Simulation Global Health Humans Infant United Nations |
| Title | Global, regional, and national trends in under-5 mortality between 1990 and 2019 with scenario-based projections until 2030: a systematic analysis by the UN Inter-agency Group for Child Mortality Estimation |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2214109X21005155 https://dx.doi.org/10.1016/S2214-109X(21)00515-5 https://www.ncbi.nlm.nih.gov/pubmed/35063111 https://www.proquest.com/docview/2622282044 https://pubmed.ncbi.nlm.nih.gov/PMC8789561 |
| Volume | 10 |
| WOSCitedRecordID | wos000759637600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2214-109X dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0000993277 issn: 2214-109X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2214-109X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000993277 issn: 2214-109X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9NAEIBXbeGAhBDvhkc0SBxAqYu9fq25VaiIA42QCFJu1npjK4HUqdKkKhz4ifwmZna9a4eCWpC4RJW767iazzOz03kw9rwSMsq4KryJCmIvSqvQKxJkWeKbp-K0KDNlhk2kw6EYj7MPW9u7thbmbJ7WtTg_z07-q6jxGgqbSmf_QtzupngBf0ah4yeKHT-vJHjXxX9AQxfI0bYZmi7wt3KJsFRCtvTiwbH2wskjt4lbARoQvQttd9ZksquyxqP1wiPTR-0FdBBHZ9LRwIk5Lg19Uz3daRAtbdsTcnTJyx2aMKQnTdmnCYdRtqNuszw4co9yiOrnuCXncwu2qdy23UxMLaeLFU1dX8lOwj6Bq7Xa-7WayY6ua-rsv03bmriD-Rd8dr24XNAkjbIbG8Fjtb-RZ-KKdtoMKdSrnAcRWh89wRdN4G-uWcPgd14A3tHyZWAGgzYeQ8l104SL1sgERj66m-OZgaN9yvRgHS9uTbBLjNRraSmexPX0nW12jadxRvr66HsbPUS_PuR6rKi7eVue9qr9xhc8eNl8258cr4sHq1_zgzsO1-g2u9WclODAEH6HbZX1XXbThJnBVM_dYz8M7XtgWd8DZBYs6WBIh1kNDengSIeGdCDS9S4iHYh02CQdOqSDJh2I9NcgoeUcLOdQfAXkHD4Nocs5aM4BOQfNOTjOoeX8Phu9PRy9eec1I0o8RZNAPJUklZygWy-SIkwjhRpRqqxQUZKoRAWhpOHuQVWlQqJjXUh0BydZVlWFCGSFzvsDtlMv6nKXQRiX6QQ1o1QiiCa4FO8rqiwR8YT7svR7LLLiy1XTvp-myMxzl6dJUqeMknHOg1xLPY97bN9tOzH9ay7bkFg2clucje5EjkxftlG4jY33brzyq2x9ZiHM0brRvyxlXS7WpzlPKELN_SjqsYcGSvdnhDEer9BV67F0A1e3gDrnb_6mnk11B32RCirof_Tvj_yY3WgVzhO2s1quy6fsujpbzU6XfbadjkVfx_f6-sX9CX1ZPHk |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global%2C+regional%2C+and+national+trends+in+under-5+mortality+between+1990+and+2019+with+scenario-based+projections+until+2030%3A+a+systematic+analysis+by+the+UN+Inter-agency+Group+for+Child+Mortality+Estimation&rft.jtitle=The+Lancet+global+health&rft.au=Sharrow%2C+David&rft.au=Hug%2C+Lucia&rft.au=You%2C+Danzhen&rft.au=Alkema%2C+Leontine&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=2214-109X&rft.eissn=2214-109X&rft.volume=10&rft.issue=2&rft.spage=e195&rft.epage=e206&rft_id=info:doi/10.1016%2FS2214-109X%2821%2900515-5&rft.externalDocID=S2214109X21005155 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-109X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-109X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-109X&client=summon |