An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics

This paper defines a new transport metric over the space of nonnegative measures. This metric interpolates between the quadratic Wasserstein and the Fisher–Rao metrics and generalizes optimal transport to measures with different masses. It is defined as a generalization of the dynamical formulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics Jg. 18; H. 1; S. 1 - 44
Hauptverfasser: Chizat, Lénaïc, Peyré, Gabriel, Schmitzer, Bernhard, Vialard, François-Xavier
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.02.2018
Springer Nature B.V
Schlagworte:
ISSN:1615-3375, 1615-3383
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper defines a new transport metric over the space of nonnegative measures. This metric interpolates between the quadratic Wasserstein and the Fisher–Rao metrics and generalizes optimal transport to measures with different masses. It is defined as a generalization of the dynamical formulation of optimal transport of Benamou and Brenier, by introducing a source term in the continuity equation. The influence of this source term is measured using the Fisher–Rao metric and is averaged with the transportation term. This gives rise to a convex variational problem defining the new metric. Our first contribution is a proof of the existence of geodesics (i.e., solutions to this variational problem). We then show that (generalized) optimal transport and Hellinger metrics are obtained as limiting cases of our metric. Our last theoretical contribution is a proof that geodesics between mixtures of sufficiently close Dirac measures are made of translating mixtures of Dirac masses. Lastly, we propose a numerical scheme making use of first-order proximal splitting methods and we show an application of this new distance to image interpolation.
AbstractList This paper defines a new transport metric over the space of nonnegative measures. This metric interpolates between the quadratic Wasserstein and the Fisher–Rao metrics and generalizes optimal transport to measures with different masses. It is defined as a generalization of the dynamical formulation of optimal transport of Benamou and Brenier, by introducing a source term in the continuity equation. The influence of this source term is measured using the Fisher–Rao metric and is averaged with the transportation term. This gives rise to a convex variational problem defining the new metric. Our first contribution is a proof of the existence of geodesics (i.e., solutions to this variational problem). We then show that (generalized) optimal transport and Hellinger metrics are obtained as limiting cases of our metric. Our last theoretical contribution is a proof that geodesics between mixtures of sufficiently close Dirac measures are made of translating mixtures of Dirac masses. Lastly, we propose a numerical scheme making use of first-order proximal splitting methods and we show an application of this new distance to image interpolation.
Author Chizat, Lénaïc
Vialard, François-Xavier
Peyré, Gabriel
Schmitzer, Bernhard
Author_xml – sequence: 1
  givenname: Lénaïc
  surname: Chizat
  fullname: Chizat, Lénaïc
  organization: Project team Mokaplan, CEREMADE, CNRS, INRIA, Université Paris-Dauphine
– sequence: 2
  givenname: Gabriel
  surname: Peyré
  fullname: Peyré, Gabriel
  organization: Project team Mokaplan, CEREMADE, CNRS, INRIA, Université Paris-Dauphine
– sequence: 3
  givenname: Bernhard
  surname: Schmitzer
  fullname: Schmitzer, Bernhard
  organization: Project team Mokaplan, CEREMADE, CNRS, INRIA, Université Paris-Dauphine
– sequence: 4
  givenname: François-Xavier
  surname: Vialard
  fullname: Vialard, François-Xavier
  email: vialard@ceremade.dauphine.fr
  organization: Project team Mokaplan, CEREMADE, CNRS, INRIA, Université Paris-Dauphine
BookMark eNp9kN9KwzAUh4NMcJs-gHcBr6tJsyTt5ZxOBxNB5nVI29PZUZOaZMjufAff0Ccxo6Ig6FVO4PedP98IDYw1gNApJeeUEHnhKUlJlhAqkpwxmuwO0JAKyhPGMjb4riU_QiPvN4RQntPJEC2nBi9MANfZVofGrPFV44M2JeBLCK8ABt93oXnWLV45bXxnXcDaVHje-CdwH2_vD9riOwiuKf0xOqx16-Hk6x2jx_n1anabLO9vFrPpMil5SkNSgCR1VmgpWJ4KInn8Mj7JU1JCLnUmeVFOKp1Xkgqpi1pnAKLkhSC6ylikxuis79s5-7IFH9TGbp2JI1VKBONMZkTGlOxTpbPeO6hV2YR4ozXB6aZVlKi9OtWrU1Gd2qtTu0jSX2TnogK3-5dJe8bHrFmD-9npb-gTwhCEAw
CitedBy_id crossref_primary_10_1007_s10455_021_09795_0
crossref_primary_10_1112_blms_12509
crossref_primary_10_1017_S0956792518000219
crossref_primary_10_1007_s41884_022_00066_w
crossref_primary_10_1007_s41884_024_00139_y
crossref_primary_10_1007_s00245_022_09911_x
crossref_primary_10_1137_20M1315555
crossref_primary_10_1088_1361_6544_ade21d
crossref_primary_10_1007_s00245_022_09948_y
crossref_primary_10_1007_s13373_017_0101_1
crossref_primary_10_3390_a16070346
crossref_primary_10_3390_e26080679
crossref_primary_10_1109_ACCESS_2020_3038567
crossref_primary_10_1007_s10851_017_0726_4
crossref_primary_10_1137_20M1357226
crossref_primary_10_1007_s00222_017_0759_8
crossref_primary_10_1007_s10915_017_0600_y
crossref_primary_10_1103_PhysRevE_103_012113
crossref_primary_10_1137_19M1274857
crossref_primary_10_1007_s10107_021_01636_z
crossref_primary_10_1007_s00205_023_01941_1
crossref_primary_10_1007_s10208_025_09722_w
crossref_primary_10_1137_23M1570430
crossref_primary_10_1007_s10208_020_09484_7
crossref_primary_10_1007_s40687_019_0198_9
crossref_primary_10_5194_npg_25_55_2018
crossref_primary_10_1016_j_jfa_2019_108310
crossref_primary_10_1016_j_jcp_2019_108940
crossref_primary_10_1016_j_jde_2019_10_006
crossref_primary_10_1016_j_jfa_2018_03_008
crossref_primary_10_1007_s00526_021_01946_2
crossref_primary_10_1007_s00526_022_02286_5
crossref_primary_10_1016_j_jcp_2020_110041
crossref_primary_10_1137_18M1213063
crossref_primary_10_1007_s00205_019_01453_x
crossref_primary_10_1007_s10915_023_02396_y
crossref_primary_10_1109_TSP_2020_3046227
crossref_primary_10_1007_s00526_020_01871_w
crossref_primary_10_1137_18M1185065
crossref_primary_10_1214_24_AOS2416
crossref_primary_10_3390_e27050453
crossref_primary_10_1088_1361_6544_acf988
crossref_primary_10_1137_17M1143459
crossref_primary_10_1007_s10915_017_0599_0
crossref_primary_10_1016_j_jcp_2022_111409
crossref_primary_10_1016_j_jfa_2018_12_013
crossref_primary_10_1080_03605302_2022_2109172
crossref_primary_10_1007_s41884_021_00053_7
crossref_primary_10_1137_22M1520748
crossref_primary_10_1007_s00526_017_1195_8
crossref_primary_10_1103_PhysRevResearch_5_L022052
crossref_primary_10_1007_s00526_020_1722_x
crossref_primary_10_1088_1361_6420_aceb17
crossref_primary_10_1038_s42256_023_00763_w
crossref_primary_10_1007_s10208_022_09561_z
crossref_primary_10_1137_16M1106018
crossref_primary_10_1016_j_matpur_2024_05_009
crossref_primary_10_1038_s41598_023_50874_y
crossref_primary_10_1088_1361_6420_ab7e04
crossref_primary_10_1007_s00205_020_01595_3
crossref_primary_10_1016_j_matpur_2025_103773
crossref_primary_10_1088_1361_6420_aae993
crossref_primary_10_1137_21M1400080
crossref_primary_10_1109_TSP_2021_3069677
crossref_primary_10_1177_03611981211073103
crossref_primary_10_1007_s10957_019_01590_z
crossref_primary_10_1007_s10208_019_09425_z
crossref_primary_10_1007_s10208_025_09721_x
crossref_primary_10_1007_s00245_022_09867_y
crossref_primary_10_1080_10618600_2023_2165500
crossref_primary_10_1093_bib_bbae603
crossref_primary_10_1007_s11430_024_1498_0
crossref_primary_10_1016_j_jcp_2024_113657
crossref_primary_10_1007_s00205_022_01754_8
crossref_primary_10_1007_s00498_019_0241_9
Cites_doi 10.1112/blms/bdw020
10.1007/s00205-013-0669-x
10.1016/S1874-5717(07)80004-1
10.1137/130920058
10.2140/pjm.1971.39.439
10.1090/S0002-9939-1992-1097344-5
10.2140/pjm.1967.21.167
10.1007/s00526-012-0555-7
10.1007/s10208-004-0128-z
10.1007/978-1-4419-9569-8_10
10.1007/s00205-008-0212-7
10.1090/gsm/058
10.1051/m2an:2003058
10.1051/m2an/2015043
10.1007/s00440-014-0574-8
10.1016/0362-546X(90)90007-4
10.1007/s00526-008-0182-5
10.1023/A:1011926116573
10.1109/JSTSP.2007.910264
10.1023/B:VISI.0000043755.93987.aa
10.1051/m2an/2015025
10.4007/annals.2010.171.673
10.1007/s002110050002
10.1016/j.matpur.2009.11.005
10.1023/B:VISI.0000036836.66311.97
ContentType Journal Article
Copyright SFoCM 2016
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: SFoCM 2016
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-016-9331-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 44
ExternalDocumentID 10_1007_s10208_016_9331_y
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c521t-be70f8ba76392607570f354920ce97a875bc4da9d7167abfa8ee6c5b60ad83763
IEDL.DBID RSV
ISICitedReferencesCount 124
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423153100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-3375
IngestDate Fri Jul 25 19:19:02 EDT 2025
Sat Nov 29 06:41:14 EST 2025
Tue Nov 18 22:06:29 EST 2025
Fri Feb 21 02:36:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Wasserstein
Fisher–Rao metric
Positive Radon measures
metric
Unbalanced optimal transport
49-XX
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-be70f8ba76392607570f354920ce97a875bc4da9d7167abfa8ee6c5b60ad83763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2063537807
PQPubID 43692
PageCount 44
ParticipantIDs proquest_journals_2063537807
crossref_citationtrail_10_1007_s10208_016_9331_y
crossref_primary_10_1007_s10208_016_9331_y
springer_journals_10_1007_s10208_016_9331_y
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BenamouJ-DBrenierYA computational fluid mechanics solution to the Monge-Kantorovich mass transfer problemNumerische Mathematik2000843375393173816310.1007/s0021100500020968.76069
AyNJostJLêHVSchwachhöferLInformation geometry and sufficient statisticsProbability Theory and Related Fields20151621327364335004710.1007/s00440-014-0574-81321.62008
BenamouJ-DBrenierYMixed L2-Wasserstein optimal mapping between prescribed density functionsJournal of Optimization Theory and Applications20011112255271186566810.1023/A:10119261165731010.49029
P. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse problems in science and engineering, pages 185–212. Springer, 2011.
K. Guittet. Extended Kantorovich norms: a tool for optimization. Technical report, Tech. Rep. 4402, INRIA, 2002.
MaasJRumpfMSchönliebCSimonSA generalized model for optimal transport of images including dissipation and density modulationESAIM: M2AN201549617451769342327410.1051/m2an/20150431348.94009
BenamouJ-DNumerical resolution of an "unbalanced" mass transport problemESAIM. Mathematical Modelling and Numerical Analysis20033705851868202086710.1051/m2an:20030581037.65063
FigalliAGigliNA new transportation distance between non-negative measures, with applications to gradients flows with dirichlet boundary conditionsJournal de mathématiques pures et appliquées2010942107130266541410.1016/j.matpur.2009.11.0051203.35126
BegMFMillerMITrouvéAYounesLComputing large deformation metric mappings via geodesic flows of diffeomorphismsInternational journal of computer vision200561213915710.1023/B:VISI.0000043755.93987.aa
HaninLGKantorovich-Rubinstein norm and its application in the theory of Lipschitz spacesProceedings of the American Mathematical Society19921152345352109734410.1090/S0002-9939-1992-1097344-50768.46012
FigalliAThe optimal partial transport problemArchive for rational mechanics and analysis20101952533560259228710.1007/s00205-008-0212-71245.49059
KantorovichLOn the transfer of masses (in russian)Doklady Akademii Nauk1942372227229
L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows: in metric spaces and in the space of probability measures. Springer Science & Business Media, 2008.
KondratyevSMonsaingeonLVorotnikovDA new optimal transport distance on the space of finite Radon measures2015Pre-printTechnical report1375.49062
DolbeaultJNazaretBSavaréGA new class of transport distances between measuresCalculus of Variations and Partial Differential Equations2009342193231244865010.1007/s00526-008-0182-51157.49042
RockafellarRIntegrals which are convex functionals. iiPacific Journal of Mathematics197139243946931061210.2140/pjm.1971.39.4390236.46031
JimenezCDynamic formulation of optimal transport problemsJournal of Convex Analysis200815359324314141145.49026
BouchittéGButtazzoGNew lower semicontinuity results for nonconvex functionals defined on measuresNonlinear Analysis: Theory, Methods & Applications1990157679692107395810.1016/0362-546X(90)90007-40736.49007
LombardiDMaitreEEulerian models and algorithms for unbalanced optimal transportESAIM: M2AN201549617171744342327310.1051/m2an/20150251334.65112
CardaliaguetPCarlierGNazaretBGeodesics for a class of distances in the space of probability measuresCalculus of Variations and Partial Differential Equations2013483–4395420311601610.1007/s00526-012-0555-71279.49029
CombettesPLPesquetJ-CA Douglas-Rachford splitting approach to nonsmooth convex variational signal recoverySelected Topics in Signal Processing, IEEE Journal of20071456457410.1109/JSTSP.2007.910264
RaoCInformation and accuracy attainable in the estimation of statistical parametersBulletin of the Calcutta Mathematical Society19453738191157480063.06420
HakerSZhuLTannenbaumAAngenentSOptimal mass transport for registration and warpingInternational Journal of computer vision200460322524010.1023/B:VISI.0000036836.66311.97
RockafellarRDuality and stability in extremum problems involving convex functionsPacific Journal of Mathematics196721116718721175910.2140/pjm.1967.21.1670154.44902
PiccoliBRossiFGeneralized Wasserstein distance and its application to transport equations with sourceArchive for Rational Mechanics and Analysis20142111335358318248310.1007/s00205-013-0669-x06260964
CaffarelliLMcCannRJFree boundaries in optimal transport and Monge-Ampere obstacle problemsAnnals of mathematics20101712673730263005410.4007/annals.2010.171.6731196.35231
TrouvéAYounesLMetamorphoses through lie group actionFoundations of Computational Mathematics200552173198214941510.1007/s10208-004-0128-z1099.68116
PapadakisNPeyréGOudetEOptimal transport with proximal splittingSIAM Journal on Imaging Sciences201471212238315878510.1137/1309200581295.90047
B. Piccoli and F. Rossi. On properties of the Generalized Wasserstein distance. arXiv:1304.7014, 2013.
BauerMBruverisMMichorPWUniqueness of the Fisher-Rao metric on the space of smooth densitiesBull. Lond. Math. Soc.2016483499506350990910.1112/blms/bdw0201347.58001
C. Villani. Topics in optimal transportation. Number 58. American Mathematical Soc., 2003.
PL Combettes (9331_CR12) 2007; 1
D Lombardi (9331_CR22) 2015; 49
A Figalli (9331_CR15) 2010; 94
G Bouchitté (9331_CR8) 1990; 15
L Kantorovich (9331_CR20) 1942; 37
S Kondratyev (9331_CR21) 2015
J-D Benamou (9331_CR6) 2000; 84
C Jimenez (9331_CR19) 2008; 15
S Haker (9331_CR17) 2004; 60
9331_CR16
N Ay (9331_CR2) 2015; 162
9331_CR11
J Maas (9331_CR23) 2015; 49
9331_CR31
R Rockafellar (9331_CR29) 1971; 39
J-D Benamou (9331_CR5) 2003; 37
R Rockafellar (9331_CR28) 1967; 21
A Trouvé (9331_CR30) 2005; 5
A Figalli (9331_CR14) 2010; 195
C Rao (9331_CR27) 1945; 37
P Cardaliaguet (9331_CR10) 2013; 48
M Bauer (9331_CR3) 2016; 48
MF Beg (9331_CR4) 2005; 61
B Piccoli (9331_CR26) 2014; 211
LG Hanin (9331_CR18) 1992; 115
9331_CR25
N Papadakis (9331_CR24) 2014; 7
L Caffarelli (9331_CR9) 2010; 171
9331_CR1
J-D Benamou (9331_CR7) 2001; 111
J Dolbeault (9331_CR13) 2009; 34
References_xml – reference: L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows: in metric spaces and in the space of probability measures. Springer Science & Business Media, 2008.
– reference: BegMFMillerMITrouvéAYounesLComputing large deformation metric mappings via geodesic flows of diffeomorphismsInternational journal of computer vision200561213915710.1023/B:VISI.0000043755.93987.aa
– reference: BenamouJ-DNumerical resolution of an "unbalanced" mass transport problemESAIM. Mathematical Modelling and Numerical Analysis20033705851868202086710.1051/m2an:20030581037.65063
– reference: HaninLGKantorovich-Rubinstein norm and its application in the theory of Lipschitz spacesProceedings of the American Mathematical Society19921152345352109734410.1090/S0002-9939-1992-1097344-50768.46012
– reference: C. Villani. Topics in optimal transportation. Number 58. American Mathematical Soc., 2003.
– reference: K. Guittet. Extended Kantorovich norms: a tool for optimization. Technical report, Tech. Rep. 4402, INRIA, 2002.
– reference: RaoCInformation and accuracy attainable in the estimation of statistical parametersBulletin of the Calcutta Mathematical Society19453738191157480063.06420
– reference: AyNJostJLêHVSchwachhöferLInformation geometry and sufficient statisticsProbability Theory and Related Fields20151621327364335004710.1007/s00440-014-0574-81321.62008
– reference: KantorovichLOn the transfer of masses (in russian)Doklady Akademii Nauk1942372227229
– reference: HakerSZhuLTannenbaumAAngenentSOptimal mass transport for registration and warpingInternational Journal of computer vision200460322524010.1023/B:VISI.0000036836.66311.97
– reference: FigalliAThe optimal partial transport problemArchive for rational mechanics and analysis20101952533560259228710.1007/s00205-008-0212-71245.49059
– reference: TrouvéAYounesLMetamorphoses through lie group actionFoundations of Computational Mathematics200552173198214941510.1007/s10208-004-0128-z1099.68116
– reference: PapadakisNPeyréGOudetEOptimal transport with proximal splittingSIAM Journal on Imaging Sciences201471212238315878510.1137/1309200581295.90047
– reference: BauerMBruverisMMichorPWUniqueness of the Fisher-Rao metric on the space of smooth densitiesBull. Lond. Math. Soc.2016483499506350990910.1112/blms/bdw0201347.58001
– reference: DolbeaultJNazaretBSavaréGA new class of transport distances between measuresCalculus of Variations and Partial Differential Equations2009342193231244865010.1007/s00526-008-0182-51157.49042
– reference: CaffarelliLMcCannRJFree boundaries in optimal transport and Monge-Ampere obstacle problemsAnnals of mathematics20101712673730263005410.4007/annals.2010.171.6731196.35231
– reference: JimenezCDynamic formulation of optimal transport problemsJournal of Convex Analysis200815359324314141145.49026
– reference: BouchittéGButtazzoGNew lower semicontinuity results for nonconvex functionals defined on measuresNonlinear Analysis: Theory, Methods & Applications1990157679692107395810.1016/0362-546X(90)90007-40736.49007
– reference: RockafellarRDuality and stability in extremum problems involving convex functionsPacific Journal of Mathematics196721116718721175910.2140/pjm.1967.21.1670154.44902
– reference: B. Piccoli and F. Rossi. On properties of the Generalized Wasserstein distance. arXiv:1304.7014, 2013.
– reference: PiccoliBRossiFGeneralized Wasserstein distance and its application to transport equations with sourceArchive for Rational Mechanics and Analysis20142111335358318248310.1007/s00205-013-0669-x06260964
– reference: CombettesPLPesquetJ-CA Douglas-Rachford splitting approach to nonsmooth convex variational signal recoverySelected Topics in Signal Processing, IEEE Journal of20071456457410.1109/JSTSP.2007.910264
– reference: P. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse problems in science and engineering, pages 185–212. Springer, 2011.
– reference: KondratyevSMonsaingeonLVorotnikovDA new optimal transport distance on the space of finite Radon measures2015Pre-printTechnical report1375.49062
– reference: LombardiDMaitreEEulerian models and algorithms for unbalanced optimal transportESAIM: M2AN201549617171744342327310.1051/m2an/20150251334.65112
– reference: BenamouJ-DBrenierYA computational fluid mechanics solution to the Monge-Kantorovich mass transfer problemNumerische Mathematik2000843375393173816310.1007/s0021100500020968.76069
– reference: BenamouJ-DBrenierYMixed L2-Wasserstein optimal mapping between prescribed density functionsJournal of Optimization Theory and Applications20011112255271186566810.1023/A:10119261165731010.49029
– reference: MaasJRumpfMSchönliebCSimonSA generalized model for optimal transport of images including dissipation and density modulationESAIM: M2AN201549617451769342327410.1051/m2an/20150431348.94009
– reference: RockafellarRIntegrals which are convex functionals. iiPacific Journal of Mathematics197139243946931061210.2140/pjm.1971.39.4390236.46031
– reference: CardaliaguetPCarlierGNazaretBGeodesics for a class of distances in the space of probability measuresCalculus of Variations and Partial Differential Equations2013483–4395420311601610.1007/s00526-012-0555-71279.49029
– reference: FigalliAGigliNA new transportation distance between non-negative measures, with applications to gradients flows with dirichlet boundary conditionsJournal de mathématiques pures et appliquées2010942107130266541410.1016/j.matpur.2009.11.0051203.35126
– volume: 48
  start-page: 499
  issue: 3
  year: 2016
  ident: 9331_CR3
  publication-title: Bull. Lond. Math. Soc.
  doi: 10.1112/blms/bdw020
– volume: 211
  start-page: 335
  issue: 1
  year: 2014
  ident: 9331_CR26
  publication-title: Archive for Rational Mechanics and Analysis
  doi: 10.1007/s00205-013-0669-x
– ident: 9331_CR1
  doi: 10.1016/S1874-5717(07)80004-1
– volume: 7
  start-page: 212
  issue: 1
  year: 2014
  ident: 9331_CR24
  publication-title: SIAM Journal on Imaging Sciences
  doi: 10.1137/130920058
– volume: 39
  start-page: 439
  issue: 2
  year: 1971
  ident: 9331_CR29
  publication-title: Pacific Journal of Mathematics
  doi: 10.2140/pjm.1971.39.439
– ident: 9331_CR25
– volume: 115
  start-page: 345
  issue: 2
  year: 1992
  ident: 9331_CR18
  publication-title: Proceedings of the American Mathematical Society
  doi: 10.1090/S0002-9939-1992-1097344-5
– volume: 21
  start-page: 167
  issue: 1
  year: 1967
  ident: 9331_CR28
  publication-title: Pacific Journal of Mathematics
  doi: 10.2140/pjm.1967.21.167
– volume-title: A new optimal transport distance on the space of finite Radon measures
  year: 2015
  ident: 9331_CR21
– volume: 48
  start-page: 395
  issue: 3–4
  year: 2013
  ident: 9331_CR10
  publication-title: Calculus of Variations and Partial Differential Equations
  doi: 10.1007/s00526-012-0555-7
– volume: 5
  start-page: 173
  issue: 2
  year: 2005
  ident: 9331_CR30
  publication-title: Foundations of Computational Mathematics
  doi: 10.1007/s10208-004-0128-z
– ident: 9331_CR11
  doi: 10.1007/978-1-4419-9569-8_10
– volume: 195
  start-page: 533
  issue: 2
  year: 2010
  ident: 9331_CR14
  publication-title: Archive for rational mechanics and analysis
  doi: 10.1007/s00205-008-0212-7
– ident: 9331_CR31
  doi: 10.1090/gsm/058
– volume: 37
  start-page: 851
  issue: 05
  year: 2003
  ident: 9331_CR5
  publication-title: ESAIM. Mathematical Modelling and Numerical Analysis
  doi: 10.1051/m2an:2003058
– volume: 49
  start-page: 1745
  issue: 6
  year: 2015
  ident: 9331_CR23
  publication-title: ESAIM: M2AN
  doi: 10.1051/m2an/2015043
– volume: 162
  start-page: 327
  issue: 1
  year: 2015
  ident: 9331_CR2
  publication-title: Probability Theory and Related Fields
  doi: 10.1007/s00440-014-0574-8
– volume: 15
  start-page: 593
  issue: 3
  year: 2008
  ident: 9331_CR19
  publication-title: Journal of Convex Analysis
– volume: 37
  start-page: 81
  issue: 3
  year: 1945
  ident: 9331_CR27
  publication-title: Bulletin of the Calcutta Mathematical Society
– volume: 15
  start-page: 679
  issue: 7
  year: 1990
  ident: 9331_CR8
  publication-title: Nonlinear Analysis: Theory, Methods & Applications
  doi: 10.1016/0362-546X(90)90007-4
– volume: 34
  start-page: 193
  issue: 2
  year: 2009
  ident: 9331_CR13
  publication-title: Calculus of Variations and Partial Differential Equations
  doi: 10.1007/s00526-008-0182-5
– volume: 111
  start-page: 255
  issue: 2
  year: 2001
  ident: 9331_CR7
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1023/A:1011926116573
– volume: 1
  start-page: 564
  issue: 4
  year: 2007
  ident: 9331_CR12
  publication-title: Selected Topics in Signal Processing, IEEE Journal of
  doi: 10.1109/JSTSP.2007.910264
– volume: 37
  start-page: 227
  issue: 2
  year: 1942
  ident: 9331_CR20
  publication-title: Doklady Akademii Nauk
– volume: 61
  start-page: 139
  issue: 2
  year: 2005
  ident: 9331_CR4
  publication-title: International journal of computer vision
  doi: 10.1023/B:VISI.0000043755.93987.aa
– volume: 49
  start-page: 1717
  issue: 6
  year: 2015
  ident: 9331_CR22
  publication-title: ESAIM: M2AN
  doi: 10.1051/m2an/2015025
– volume: 171
  start-page: 673
  issue: 2
  year: 2010
  ident: 9331_CR9
  publication-title: Annals of mathematics
  doi: 10.4007/annals.2010.171.673
– volume: 84
  start-page: 375
  issue: 3
  year: 2000
  ident: 9331_CR6
  publication-title: Numerische Mathematik
  doi: 10.1007/s002110050002
– volume: 94
  start-page: 107
  issue: 2
  year: 2010
  ident: 9331_CR15
  publication-title: Journal de mathématiques pures et appliquées
  doi: 10.1016/j.matpur.2009.11.005
– ident: 9331_CR16
– volume: 60
  start-page: 225
  issue: 3
  year: 2004
  ident: 9331_CR17
  publication-title: International Journal of computer vision
  doi: 10.1023/B:VISI.0000036836.66311.97
SSID ssj0015914
ssib031263371
Score 2.5488176
Snippet This paper defines a new transport metric over the space of nonnegative measures. This metric interpolates between the quadratic Wasserstein and the Fisher–Rao...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Applications of Mathematics
Computer Science
Continuity equation
Economics
Geodesy
Interpolation
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Numerical Analysis
Title An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics
URI https://link.springer.com/article/10.1007/s10208-016-9331-y
https://www.proquest.com/docview/2063537807
Volume 18
WOSCitedRecordID wos000423153100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Standard
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: RSV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQQIO7IhCQT5wAllKkyZ2jmWpOLQFsVTcIsd2EBKkqClIvfEP_CFfwjiJW0CABMd4i-Vl5o1mPA9gz-PaS6R2aEPFMW1oV1Eu3QYKQ2X0g3CD3Hvea7Nul9_chOflO-7MRrtbl2QuqT88dnPzwKuAohFep6NpmEFtxw1fw8Vlb-w68MM8obdBMtTzmG9dmd8N8VkZTRDmF6dormtaS_-a5TIsltCSNIuzsAJTOl2FpRJmkvISZ1hkmRxs2SrM2ffJWL3QGWdyzdag3UxJEZjYN1Fz6S05NogTe5HDIsSLnKHUecAfj_OkE5EqUnCqv728Xog-6RjeLpmtw3Xr5OrolJYMDFQaogMaa-YkPBYohEI0fJiPn57J6eZIHTKBtk4sG0qECq0uJuJEcK0D6ceBIxQ3omsDKmk_1ZtA8N7XtSMdGRt6k4RzFYQqEJ5WaDIx36-CY7cikmV6csOScR9NEiubpY1MSJpZ2mhUhf1xl8ciN8dvjWt2f6PymmaRiwDN9xh3WBUO7H5Oqn8cbOtPrbdhHmEWL2K9a1AZDp70DszK5-FdNtjNT-87syDpzg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH5oFdSDu1itmoMnJTDOlsyxLkWxreKGtyGTpCLoVJwq9OZ_8B_6S3yZmbQqKuhxsk3I8hbey_cBbHpcex2pHeqrJKG-dhXl0vVRGCqjH4Qb5tHzqyZrt_n1dXRavuPObLa7DUnmkvrDYzc3T7wKKTrhO7Q_CmM-KiwDmH92fjUIHQRRDuhtLBnqeSywoczvhvisjIYW5pegaK5rGjP_muUsTJemJakXZ2EORnQ6DzOlmUnKS5xhkWVysGXzMGHfJ2P1VGuA5JotQLOekiIxsWuy5tIbsm8sTuxFdosUL3KCUucefzzASSciVaTgVH97eT0TXdIyvF0yW4TLxsHF3iEtGRioNEQHNNHM6fBEoBCK0PFhAX56BtPNkTpiAn2dRPpKRAq9LiaSjuBahzJIQkcobkTXElTSbqqXgeC939GOdGRi6E06nKswUqHwtEKXiQVBFRy7FbEs4ckNS8ZdPARWNksbm5Q0s7Rxvwpbgy4PBTbHb41rdn_j8ppmsYsGWuAx7rAqbNv9HFb_ONjKn1pvwMThRasZN4_ax6swiSYXL_K-a1DpPT7pNRiXz73b7HE9P8nvsMbssg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQSwHdkShgA-cQFZDNjvHslQgSqnYxC1ybAchQYqagtQb_8Af8iXYSZwCAiTEMY7tRF7GM5rn9wC2HCqdmEsLuyKKsCttgSm3XWUMhT4fmO1n2fPrFmm36c1N0Cl0TlODdjcpyfxOg2ZpSvr1RxHXP1x8szMQlo9VQL6LB6Mw5mocvQ7XL67LNIIXZOTe2qvBjkM8k9b8rovPB9PQ2_ySIM3Onebsv_94DmYKlxM18jUyDyMyWYDZwv1ExeZOVZFReDBlCzBp7i2r19OnJcNrugitRoJywGJXo-mSW3SgPVHVCu3l0C90pqzRg_pwyZ-OWCJQrrX-9vJ6zrroVOt58XQJrpqHl_tHuFBmwFwLIOBIEiumEVPGKVABEfHUo6O53iwuA8JUDBRxV7BAqGiMsChmVEqfe5FvMUG1SVuGStJN5AogZQ92pcUtHmnZk5hS4QfCZ44UKpQinlcFy0xLyAvacq2ecR8OCZf10IYaqqaHNhxUYbts8phzdvxWuWbmOiy2bxraynHzHEItUoUdM7fD1z92tvqn2psw0Tlohq3j9skaTClPjOZw8BpU-r0nuQ7j_Ll_l_Y2skX9DlPn9ZY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Interpolating+Distance+Between+Optimal+Transport+and+Fisher%E2%80%93Rao+Metrics&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Chizat%2C+L%C3%A9na%C3%AFc&rft.au=Peyr%C3%A9%2C+Gabriel&rft.au=Schmitzer%2C+Bernhard&rft.au=Vialard%2C+Fran%C3%A7ois-Xavier&rft.date=2018-02-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=44&rft_id=info:doi/10.1007%2Fs10208-016-9331-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10208_016_9331_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon