An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics
This paper defines a new transport metric over the space of nonnegative measures. This metric interpolates between the quadratic Wasserstein and the Fisher–Rao metrics and generalizes optimal transport to measures with different masses. It is defined as a generalization of the dynamical formulation...
Gespeichert in:
| Veröffentlicht in: | Foundations of computational mathematics Jg. 18; H. 1; S. 1 - 44 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.02.2018
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1615-3375, 1615-3383 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper defines a new transport metric over the space of nonnegative measures. This metric interpolates between the quadratic Wasserstein and the Fisher–Rao metrics and generalizes optimal transport to measures with different masses. It is defined as a generalization of the dynamical formulation of optimal transport of Benamou and Brenier, by introducing a source term in the continuity equation. The influence of this source term is measured using the Fisher–Rao metric and is averaged with the transportation term. This gives rise to a convex variational problem defining the new metric. Our first contribution is a proof of the existence of geodesics (i.e., solutions to this variational problem). We then show that (generalized) optimal transport and Hellinger metrics are obtained as limiting cases of our metric. Our last theoretical contribution is a proof that geodesics between mixtures of sufficiently close Dirac measures are made of translating mixtures of Dirac masses. Lastly, we propose a numerical scheme making use of first-order proximal splitting methods and we show an application of this new distance to image interpolation. |
|---|---|
| AbstractList | This paper defines a new transport metric over the space of nonnegative measures. This metric interpolates between the quadratic Wasserstein and the Fisher–Rao metrics and generalizes optimal transport to measures with different masses. It is defined as a generalization of the dynamical formulation of optimal transport of Benamou and Brenier, by introducing a source term in the continuity equation. The influence of this source term is measured using the Fisher–Rao metric and is averaged with the transportation term. This gives rise to a convex variational problem defining the new metric. Our first contribution is a proof of the existence of geodesics (i.e., solutions to this variational problem). We then show that (generalized) optimal transport and Hellinger metrics are obtained as limiting cases of our metric. Our last theoretical contribution is a proof that geodesics between mixtures of sufficiently close Dirac measures are made of translating mixtures of Dirac masses. Lastly, we propose a numerical scheme making use of first-order proximal splitting methods and we show an application of this new distance to image interpolation. |
| Author | Chizat, Lénaïc Vialard, François-Xavier Peyré, Gabriel Schmitzer, Bernhard |
| Author_xml | – sequence: 1 givenname: Lénaïc surname: Chizat fullname: Chizat, Lénaïc organization: Project team Mokaplan, CEREMADE, CNRS, INRIA, Université Paris-Dauphine – sequence: 2 givenname: Gabriel surname: Peyré fullname: Peyré, Gabriel organization: Project team Mokaplan, CEREMADE, CNRS, INRIA, Université Paris-Dauphine – sequence: 3 givenname: Bernhard surname: Schmitzer fullname: Schmitzer, Bernhard organization: Project team Mokaplan, CEREMADE, CNRS, INRIA, Université Paris-Dauphine – sequence: 4 givenname: François-Xavier surname: Vialard fullname: Vialard, François-Xavier email: vialard@ceremade.dauphine.fr organization: Project team Mokaplan, CEREMADE, CNRS, INRIA, Université Paris-Dauphine |
| BookMark | eNp9kN9KwzAUh4NMcJs-gHcBr6tJsyTt5ZxOBxNB5nVI29PZUZOaZMjufAff0Ccxo6Ig6FVO4PedP98IDYw1gNApJeeUEHnhKUlJlhAqkpwxmuwO0JAKyhPGMjb4riU_QiPvN4RQntPJEC2nBi9MANfZVofGrPFV44M2JeBLCK8ABt93oXnWLV45bXxnXcDaVHje-CdwH2_vD9riOwiuKf0xOqx16-Hk6x2jx_n1anabLO9vFrPpMil5SkNSgCR1VmgpWJ4KInn8Mj7JU1JCLnUmeVFOKp1Xkgqpi1pnAKLkhSC6ylikxuis79s5-7IFH9TGbp2JI1VKBONMZkTGlOxTpbPeO6hV2YR4ozXB6aZVlKi9OtWrU1Gd2qtTu0jSX2TnogK3-5dJe8bHrFmD-9npb-gTwhCEAw |
| CitedBy_id | crossref_primary_10_1007_s10455_021_09795_0 crossref_primary_10_1112_blms_12509 crossref_primary_10_1017_S0956792518000219 crossref_primary_10_1007_s41884_022_00066_w crossref_primary_10_1007_s41884_024_00139_y crossref_primary_10_1007_s00245_022_09911_x crossref_primary_10_1137_20M1315555 crossref_primary_10_1088_1361_6544_ade21d crossref_primary_10_1007_s00245_022_09948_y crossref_primary_10_1007_s13373_017_0101_1 crossref_primary_10_3390_a16070346 crossref_primary_10_3390_e26080679 crossref_primary_10_1109_ACCESS_2020_3038567 crossref_primary_10_1007_s10851_017_0726_4 crossref_primary_10_1137_20M1357226 crossref_primary_10_1007_s00222_017_0759_8 crossref_primary_10_1007_s10915_017_0600_y crossref_primary_10_1103_PhysRevE_103_012113 crossref_primary_10_1137_19M1274857 crossref_primary_10_1007_s10107_021_01636_z crossref_primary_10_1007_s00205_023_01941_1 crossref_primary_10_1007_s10208_025_09722_w crossref_primary_10_1137_23M1570430 crossref_primary_10_1007_s10208_020_09484_7 crossref_primary_10_1007_s40687_019_0198_9 crossref_primary_10_5194_npg_25_55_2018 crossref_primary_10_1016_j_jfa_2019_108310 crossref_primary_10_1016_j_jcp_2019_108940 crossref_primary_10_1016_j_jde_2019_10_006 crossref_primary_10_1016_j_jfa_2018_03_008 crossref_primary_10_1007_s00526_021_01946_2 crossref_primary_10_1007_s00526_022_02286_5 crossref_primary_10_1016_j_jcp_2020_110041 crossref_primary_10_1137_18M1213063 crossref_primary_10_1007_s00205_019_01453_x crossref_primary_10_1007_s10915_023_02396_y crossref_primary_10_1109_TSP_2020_3046227 crossref_primary_10_1007_s00526_020_01871_w crossref_primary_10_1137_18M1185065 crossref_primary_10_1214_24_AOS2416 crossref_primary_10_3390_e27050453 crossref_primary_10_1088_1361_6544_acf988 crossref_primary_10_1137_17M1143459 crossref_primary_10_1007_s10915_017_0599_0 crossref_primary_10_1016_j_jcp_2022_111409 crossref_primary_10_1016_j_jfa_2018_12_013 crossref_primary_10_1080_03605302_2022_2109172 crossref_primary_10_1007_s41884_021_00053_7 crossref_primary_10_1137_22M1520748 crossref_primary_10_1007_s00526_017_1195_8 crossref_primary_10_1103_PhysRevResearch_5_L022052 crossref_primary_10_1007_s00526_020_1722_x crossref_primary_10_1088_1361_6420_aceb17 crossref_primary_10_1038_s42256_023_00763_w crossref_primary_10_1007_s10208_022_09561_z crossref_primary_10_1137_16M1106018 crossref_primary_10_1016_j_matpur_2024_05_009 crossref_primary_10_1038_s41598_023_50874_y crossref_primary_10_1088_1361_6420_ab7e04 crossref_primary_10_1007_s00205_020_01595_3 crossref_primary_10_1016_j_matpur_2025_103773 crossref_primary_10_1088_1361_6420_aae993 crossref_primary_10_1137_21M1400080 crossref_primary_10_1109_TSP_2021_3069677 crossref_primary_10_1177_03611981211073103 crossref_primary_10_1007_s10957_019_01590_z crossref_primary_10_1007_s10208_019_09425_z crossref_primary_10_1007_s10208_025_09721_x crossref_primary_10_1007_s00245_022_09867_y crossref_primary_10_1080_10618600_2023_2165500 crossref_primary_10_1093_bib_bbae603 crossref_primary_10_1007_s11430_024_1498_0 crossref_primary_10_1016_j_jcp_2024_113657 crossref_primary_10_1007_s00205_022_01754_8 crossref_primary_10_1007_s00498_019_0241_9 |
| Cites_doi | 10.1112/blms/bdw020 10.1007/s00205-013-0669-x 10.1016/S1874-5717(07)80004-1 10.1137/130920058 10.2140/pjm.1971.39.439 10.1090/S0002-9939-1992-1097344-5 10.2140/pjm.1967.21.167 10.1007/s00526-012-0555-7 10.1007/s10208-004-0128-z 10.1007/978-1-4419-9569-8_10 10.1007/s00205-008-0212-7 10.1090/gsm/058 10.1051/m2an:2003058 10.1051/m2an/2015043 10.1007/s00440-014-0574-8 10.1016/0362-546X(90)90007-4 10.1007/s00526-008-0182-5 10.1023/A:1011926116573 10.1109/JSTSP.2007.910264 10.1023/B:VISI.0000043755.93987.aa 10.1051/m2an/2015025 10.4007/annals.2010.171.673 10.1007/s002110050002 10.1016/j.matpur.2009.11.005 10.1023/B:VISI.0000036836.66311.97 |
| ContentType | Journal Article |
| Copyright | SFoCM 2016 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: SFoCM 2016 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s10208-016-9331-y |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Mathematics Applied Sciences Computer Science |
| EISSN | 1615-3383 |
| EndPage | 44 |
| ExternalDocumentID | 10_1007_s10208_016_9331_y |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IEA IHE IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ICD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c521t-be70f8ba76392607570f354920ce97a875bc4da9d7167abfa8ee6c5b60ad83763 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 124 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423153100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-3375 |
| IngestDate | Fri Jul 25 19:19:02 EDT 2025 Sat Nov 29 06:41:14 EST 2025 Tue Nov 18 22:06:29 EST 2025 Fri Feb 21 02:36:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Wasserstein Fisher–Rao metric Positive Radon measures metric Unbalanced optimal transport 49-XX |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c521t-be70f8ba76392607570f354920ce97a875bc4da9d7167abfa8ee6c5b60ad83763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2063537807 |
| PQPubID | 43692 |
| PageCount | 44 |
| ParticipantIDs | proquest_journals_2063537807 crossref_citationtrail_10_1007_s10208_016_9331_y crossref_primary_10_1007_s10208_016_9331_y springer_journals_10_1007_s10208_016_9331_y |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-01 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
| PublicationTitle | Foundations of computational mathematics |
| PublicationTitleAbbrev | Found Comput Math |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BenamouJ-DBrenierYA computational fluid mechanics solution to the Monge-Kantorovich mass transfer problemNumerische Mathematik2000843375393173816310.1007/s0021100500020968.76069 AyNJostJLêHVSchwachhöferLInformation geometry and sufficient statisticsProbability Theory and Related Fields20151621327364335004710.1007/s00440-014-0574-81321.62008 BenamouJ-DBrenierYMixed L2-Wasserstein optimal mapping between prescribed density functionsJournal of Optimization Theory and Applications20011112255271186566810.1023/A:10119261165731010.49029 P. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse problems in science and engineering, pages 185–212. Springer, 2011. K. Guittet. Extended Kantorovich norms: a tool for optimization. Technical report, Tech. Rep. 4402, INRIA, 2002. MaasJRumpfMSchönliebCSimonSA generalized model for optimal transport of images including dissipation and density modulationESAIM: M2AN201549617451769342327410.1051/m2an/20150431348.94009 BenamouJ-DNumerical resolution of an "unbalanced" mass transport problemESAIM. Mathematical Modelling and Numerical Analysis20033705851868202086710.1051/m2an:20030581037.65063 FigalliAGigliNA new transportation distance between non-negative measures, with applications to gradients flows with dirichlet boundary conditionsJournal de mathématiques pures et appliquées2010942107130266541410.1016/j.matpur.2009.11.0051203.35126 BegMFMillerMITrouvéAYounesLComputing large deformation metric mappings via geodesic flows of diffeomorphismsInternational journal of computer vision200561213915710.1023/B:VISI.0000043755.93987.aa HaninLGKantorovich-Rubinstein norm and its application in the theory of Lipschitz spacesProceedings of the American Mathematical Society19921152345352109734410.1090/S0002-9939-1992-1097344-50768.46012 FigalliAThe optimal partial transport problemArchive for rational mechanics and analysis20101952533560259228710.1007/s00205-008-0212-71245.49059 KantorovichLOn the transfer of masses (in russian)Doklady Akademii Nauk1942372227229 L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows: in metric spaces and in the space of probability measures. Springer Science & Business Media, 2008. KondratyevSMonsaingeonLVorotnikovDA new optimal transport distance on the space of finite Radon measures2015Pre-printTechnical report1375.49062 DolbeaultJNazaretBSavaréGA new class of transport distances between measuresCalculus of Variations and Partial Differential Equations2009342193231244865010.1007/s00526-008-0182-51157.49042 RockafellarRIntegrals which are convex functionals. iiPacific Journal of Mathematics197139243946931061210.2140/pjm.1971.39.4390236.46031 JimenezCDynamic formulation of optimal transport problemsJournal of Convex Analysis200815359324314141145.49026 BouchittéGButtazzoGNew lower semicontinuity results for nonconvex functionals defined on measuresNonlinear Analysis: Theory, Methods & Applications1990157679692107395810.1016/0362-546X(90)90007-40736.49007 LombardiDMaitreEEulerian models and algorithms for unbalanced optimal transportESAIM: M2AN201549617171744342327310.1051/m2an/20150251334.65112 CardaliaguetPCarlierGNazaretBGeodesics for a class of distances in the space of probability measuresCalculus of Variations and Partial Differential Equations2013483–4395420311601610.1007/s00526-012-0555-71279.49029 CombettesPLPesquetJ-CA Douglas-Rachford splitting approach to nonsmooth convex variational signal recoverySelected Topics in Signal Processing, IEEE Journal of20071456457410.1109/JSTSP.2007.910264 RaoCInformation and accuracy attainable in the estimation of statistical parametersBulletin of the Calcutta Mathematical Society19453738191157480063.06420 HakerSZhuLTannenbaumAAngenentSOptimal mass transport for registration and warpingInternational Journal of computer vision200460322524010.1023/B:VISI.0000036836.66311.97 RockafellarRDuality and stability in extremum problems involving convex functionsPacific Journal of Mathematics196721116718721175910.2140/pjm.1967.21.1670154.44902 PiccoliBRossiFGeneralized Wasserstein distance and its application to transport equations with sourceArchive for Rational Mechanics and Analysis20142111335358318248310.1007/s00205-013-0669-x06260964 CaffarelliLMcCannRJFree boundaries in optimal transport and Monge-Ampere obstacle problemsAnnals of mathematics20101712673730263005410.4007/annals.2010.171.6731196.35231 TrouvéAYounesLMetamorphoses through lie group actionFoundations of Computational Mathematics200552173198214941510.1007/s10208-004-0128-z1099.68116 PapadakisNPeyréGOudetEOptimal transport with proximal splittingSIAM Journal on Imaging Sciences201471212238315878510.1137/1309200581295.90047 B. Piccoli and F. Rossi. On properties of the Generalized Wasserstein distance. arXiv:1304.7014, 2013. BauerMBruverisMMichorPWUniqueness of the Fisher-Rao metric on the space of smooth densitiesBull. Lond. Math. Soc.2016483499506350990910.1112/blms/bdw0201347.58001 C. Villani. Topics in optimal transportation. Number 58. American Mathematical Soc., 2003. PL Combettes (9331_CR12) 2007; 1 D Lombardi (9331_CR22) 2015; 49 A Figalli (9331_CR15) 2010; 94 G Bouchitté (9331_CR8) 1990; 15 L Kantorovich (9331_CR20) 1942; 37 S Kondratyev (9331_CR21) 2015 J-D Benamou (9331_CR6) 2000; 84 C Jimenez (9331_CR19) 2008; 15 S Haker (9331_CR17) 2004; 60 9331_CR16 N Ay (9331_CR2) 2015; 162 9331_CR11 J Maas (9331_CR23) 2015; 49 9331_CR31 R Rockafellar (9331_CR29) 1971; 39 J-D Benamou (9331_CR5) 2003; 37 R Rockafellar (9331_CR28) 1967; 21 A Trouvé (9331_CR30) 2005; 5 A Figalli (9331_CR14) 2010; 195 C Rao (9331_CR27) 1945; 37 P Cardaliaguet (9331_CR10) 2013; 48 M Bauer (9331_CR3) 2016; 48 MF Beg (9331_CR4) 2005; 61 B Piccoli (9331_CR26) 2014; 211 LG Hanin (9331_CR18) 1992; 115 9331_CR25 N Papadakis (9331_CR24) 2014; 7 L Caffarelli (9331_CR9) 2010; 171 9331_CR1 J-D Benamou (9331_CR7) 2001; 111 J Dolbeault (9331_CR13) 2009; 34 |
| References_xml | – reference: L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows: in metric spaces and in the space of probability measures. Springer Science & Business Media, 2008. – reference: BegMFMillerMITrouvéAYounesLComputing large deformation metric mappings via geodesic flows of diffeomorphismsInternational journal of computer vision200561213915710.1023/B:VISI.0000043755.93987.aa – reference: BenamouJ-DNumerical resolution of an "unbalanced" mass transport problemESAIM. Mathematical Modelling and Numerical Analysis20033705851868202086710.1051/m2an:20030581037.65063 – reference: HaninLGKantorovich-Rubinstein norm and its application in the theory of Lipschitz spacesProceedings of the American Mathematical Society19921152345352109734410.1090/S0002-9939-1992-1097344-50768.46012 – reference: C. Villani. Topics in optimal transportation. Number 58. American Mathematical Soc., 2003. – reference: K. Guittet. Extended Kantorovich norms: a tool for optimization. Technical report, Tech. Rep. 4402, INRIA, 2002. – reference: RaoCInformation and accuracy attainable in the estimation of statistical parametersBulletin of the Calcutta Mathematical Society19453738191157480063.06420 – reference: AyNJostJLêHVSchwachhöferLInformation geometry and sufficient statisticsProbability Theory and Related Fields20151621327364335004710.1007/s00440-014-0574-81321.62008 – reference: KantorovichLOn the transfer of masses (in russian)Doklady Akademii Nauk1942372227229 – reference: HakerSZhuLTannenbaumAAngenentSOptimal mass transport for registration and warpingInternational Journal of computer vision200460322524010.1023/B:VISI.0000036836.66311.97 – reference: FigalliAThe optimal partial transport problemArchive for rational mechanics and analysis20101952533560259228710.1007/s00205-008-0212-71245.49059 – reference: TrouvéAYounesLMetamorphoses through lie group actionFoundations of Computational Mathematics200552173198214941510.1007/s10208-004-0128-z1099.68116 – reference: PapadakisNPeyréGOudetEOptimal transport with proximal splittingSIAM Journal on Imaging Sciences201471212238315878510.1137/1309200581295.90047 – reference: BauerMBruverisMMichorPWUniqueness of the Fisher-Rao metric on the space of smooth densitiesBull. Lond. Math. Soc.2016483499506350990910.1112/blms/bdw0201347.58001 – reference: DolbeaultJNazaretBSavaréGA new class of transport distances between measuresCalculus of Variations and Partial Differential Equations2009342193231244865010.1007/s00526-008-0182-51157.49042 – reference: CaffarelliLMcCannRJFree boundaries in optimal transport and Monge-Ampere obstacle problemsAnnals of mathematics20101712673730263005410.4007/annals.2010.171.6731196.35231 – reference: JimenezCDynamic formulation of optimal transport problemsJournal of Convex Analysis200815359324314141145.49026 – reference: BouchittéGButtazzoGNew lower semicontinuity results for nonconvex functionals defined on measuresNonlinear Analysis: Theory, Methods & Applications1990157679692107395810.1016/0362-546X(90)90007-40736.49007 – reference: RockafellarRDuality and stability in extremum problems involving convex functionsPacific Journal of Mathematics196721116718721175910.2140/pjm.1967.21.1670154.44902 – reference: B. Piccoli and F. Rossi. On properties of the Generalized Wasserstein distance. arXiv:1304.7014, 2013. – reference: PiccoliBRossiFGeneralized Wasserstein distance and its application to transport equations with sourceArchive for Rational Mechanics and Analysis20142111335358318248310.1007/s00205-013-0669-x06260964 – reference: CombettesPLPesquetJ-CA Douglas-Rachford splitting approach to nonsmooth convex variational signal recoverySelected Topics in Signal Processing, IEEE Journal of20071456457410.1109/JSTSP.2007.910264 – reference: P. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In Fixed-point algorithms for inverse problems in science and engineering, pages 185–212. Springer, 2011. – reference: KondratyevSMonsaingeonLVorotnikovDA new optimal transport distance on the space of finite Radon measures2015Pre-printTechnical report1375.49062 – reference: LombardiDMaitreEEulerian models and algorithms for unbalanced optimal transportESAIM: M2AN201549617171744342327310.1051/m2an/20150251334.65112 – reference: BenamouJ-DBrenierYA computational fluid mechanics solution to the Monge-Kantorovich mass transfer problemNumerische Mathematik2000843375393173816310.1007/s0021100500020968.76069 – reference: BenamouJ-DBrenierYMixed L2-Wasserstein optimal mapping between prescribed density functionsJournal of Optimization Theory and Applications20011112255271186566810.1023/A:10119261165731010.49029 – reference: MaasJRumpfMSchönliebCSimonSA generalized model for optimal transport of images including dissipation and density modulationESAIM: M2AN201549617451769342327410.1051/m2an/20150431348.94009 – reference: RockafellarRIntegrals which are convex functionals. iiPacific Journal of Mathematics197139243946931061210.2140/pjm.1971.39.4390236.46031 – reference: CardaliaguetPCarlierGNazaretBGeodesics for a class of distances in the space of probability measuresCalculus of Variations and Partial Differential Equations2013483–4395420311601610.1007/s00526-012-0555-71279.49029 – reference: FigalliAGigliNA new transportation distance between non-negative measures, with applications to gradients flows with dirichlet boundary conditionsJournal de mathématiques pures et appliquées2010942107130266541410.1016/j.matpur.2009.11.0051203.35126 – volume: 48 start-page: 499 issue: 3 year: 2016 ident: 9331_CR3 publication-title: Bull. Lond. Math. Soc. doi: 10.1112/blms/bdw020 – volume: 211 start-page: 335 issue: 1 year: 2014 ident: 9331_CR26 publication-title: Archive for Rational Mechanics and Analysis doi: 10.1007/s00205-013-0669-x – ident: 9331_CR1 doi: 10.1016/S1874-5717(07)80004-1 – volume: 7 start-page: 212 issue: 1 year: 2014 ident: 9331_CR24 publication-title: SIAM Journal on Imaging Sciences doi: 10.1137/130920058 – volume: 39 start-page: 439 issue: 2 year: 1971 ident: 9331_CR29 publication-title: Pacific Journal of Mathematics doi: 10.2140/pjm.1971.39.439 – ident: 9331_CR25 – volume: 115 start-page: 345 issue: 2 year: 1992 ident: 9331_CR18 publication-title: Proceedings of the American Mathematical Society doi: 10.1090/S0002-9939-1992-1097344-5 – volume: 21 start-page: 167 issue: 1 year: 1967 ident: 9331_CR28 publication-title: Pacific Journal of Mathematics doi: 10.2140/pjm.1967.21.167 – volume-title: A new optimal transport distance on the space of finite Radon measures year: 2015 ident: 9331_CR21 – volume: 48 start-page: 395 issue: 3–4 year: 2013 ident: 9331_CR10 publication-title: Calculus of Variations and Partial Differential Equations doi: 10.1007/s00526-012-0555-7 – volume: 5 start-page: 173 issue: 2 year: 2005 ident: 9331_CR30 publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-004-0128-z – ident: 9331_CR11 doi: 10.1007/978-1-4419-9569-8_10 – volume: 195 start-page: 533 issue: 2 year: 2010 ident: 9331_CR14 publication-title: Archive for rational mechanics and analysis doi: 10.1007/s00205-008-0212-7 – ident: 9331_CR31 doi: 10.1090/gsm/058 – volume: 37 start-page: 851 issue: 05 year: 2003 ident: 9331_CR5 publication-title: ESAIM. Mathematical Modelling and Numerical Analysis doi: 10.1051/m2an:2003058 – volume: 49 start-page: 1745 issue: 6 year: 2015 ident: 9331_CR23 publication-title: ESAIM: M2AN doi: 10.1051/m2an/2015043 – volume: 162 start-page: 327 issue: 1 year: 2015 ident: 9331_CR2 publication-title: Probability Theory and Related Fields doi: 10.1007/s00440-014-0574-8 – volume: 15 start-page: 593 issue: 3 year: 2008 ident: 9331_CR19 publication-title: Journal of Convex Analysis – volume: 37 start-page: 81 issue: 3 year: 1945 ident: 9331_CR27 publication-title: Bulletin of the Calcutta Mathematical Society – volume: 15 start-page: 679 issue: 7 year: 1990 ident: 9331_CR8 publication-title: Nonlinear Analysis: Theory, Methods & Applications doi: 10.1016/0362-546X(90)90007-4 – volume: 34 start-page: 193 issue: 2 year: 2009 ident: 9331_CR13 publication-title: Calculus of Variations and Partial Differential Equations doi: 10.1007/s00526-008-0182-5 – volume: 111 start-page: 255 issue: 2 year: 2001 ident: 9331_CR7 publication-title: Journal of Optimization Theory and Applications doi: 10.1023/A:1011926116573 – volume: 1 start-page: 564 issue: 4 year: 2007 ident: 9331_CR12 publication-title: Selected Topics in Signal Processing, IEEE Journal of doi: 10.1109/JSTSP.2007.910264 – volume: 37 start-page: 227 issue: 2 year: 1942 ident: 9331_CR20 publication-title: Doklady Akademii Nauk – volume: 61 start-page: 139 issue: 2 year: 2005 ident: 9331_CR4 publication-title: International journal of computer vision doi: 10.1023/B:VISI.0000043755.93987.aa – volume: 49 start-page: 1717 issue: 6 year: 2015 ident: 9331_CR22 publication-title: ESAIM: M2AN doi: 10.1051/m2an/2015025 – volume: 171 start-page: 673 issue: 2 year: 2010 ident: 9331_CR9 publication-title: Annals of mathematics doi: 10.4007/annals.2010.171.673 – volume: 84 start-page: 375 issue: 3 year: 2000 ident: 9331_CR6 publication-title: Numerische Mathematik doi: 10.1007/s002110050002 – volume: 94 start-page: 107 issue: 2 year: 2010 ident: 9331_CR15 publication-title: Journal de mathématiques pures et appliquées doi: 10.1016/j.matpur.2009.11.005 – ident: 9331_CR16 – volume: 60 start-page: 225 issue: 3 year: 2004 ident: 9331_CR17 publication-title: International Journal of computer vision doi: 10.1023/B:VISI.0000036836.66311.97 |
| SSID | ssj0015914 ssib031263371 |
| Score | 2.5488176 |
| Snippet | This paper defines a new transport metric over the space of nonnegative measures. This metric interpolates between the quadratic Wasserstein and the Fisher–Rao... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Applications of Mathematics Computer Science Continuity equation Economics Geodesy Interpolation Linear and Multilinear Algebras Math Applications in Computer Science Mathematics Mathematics and Statistics Matrix Theory Numerical Analysis |
| Title | An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics |
| URI | https://link.springer.com/article/10.1007/s10208-016-9331-y https://www.proquest.com/docview/2063537807 |
| Volume | 18 |
| WOSCitedRecordID | wos000423153100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Standard customDbUrl: eissn: 1615-3383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015914 issn: 1615-3375 databaseCode: RSV dateStart: 20010101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQQIO7IhCQT5wAllKkyZ2jmWpOLQFsVTcIsd2EBKkqClIvfEP_CFfwjiJW0CABMd4i-Vl5o1mPA9gz-PaS6R2aEPFMW1oV1Eu3QYKQ2X0g3CD3Hvea7Nul9_chOflO-7MRrtbl2QuqT88dnPzwKuAohFep6NpmEFtxw1fw8Vlb-w68MM8obdBMtTzmG9dmd8N8VkZTRDmF6dormtaS_-a5TIsltCSNIuzsAJTOl2FpRJmkvISZ1hkmRxs2SrM2ffJWL3QGWdyzdag3UxJEZjYN1Fz6S05NogTe5HDIsSLnKHUecAfj_OkE5EqUnCqv728Xog-6RjeLpmtw3Xr5OrolJYMDFQaogMaa-YkPBYohEI0fJiPn57J6eZIHTKBtk4sG0qECq0uJuJEcK0D6ceBIxQ3omsDKmk_1ZtA8N7XtSMdGRt6k4RzFYQqEJ5WaDIx36-CY7cikmV6csOScR9NEiubpY1MSJpZ2mhUhf1xl8ciN8dvjWt2f6PymmaRiwDN9xh3WBUO7H5Oqn8cbOtPrbdhHmEWL2K9a1AZDp70DszK5-FdNtjNT-87syDpzg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH5oFdSDu1itmoMnJTDOlsyxLkWxreKGtyGTpCLoVJwq9OZ_8B_6S3yZmbQqKuhxsk3I8hbey_cBbHpcex2pHeqrJKG-dhXl0vVRGCqjH4Qb5tHzqyZrt_n1dXRavuPObLa7DUnmkvrDYzc3T7wKKTrhO7Q_CmM-KiwDmH92fjUIHQRRDuhtLBnqeSywoczvhvisjIYW5pegaK5rGjP_muUsTJemJakXZ2EORnQ6DzOlmUnKS5xhkWVysGXzMGHfJ2P1VGuA5JotQLOekiIxsWuy5tIbsm8sTuxFdosUL3KCUucefzzASSciVaTgVH97eT0TXdIyvF0yW4TLxsHF3iEtGRioNEQHNNHM6fBEoBCK0PFhAX56BtPNkTpiAn2dRPpKRAq9LiaSjuBahzJIQkcobkTXElTSbqqXgeC939GOdGRi6E06nKswUqHwtEKXiQVBFRy7FbEs4ckNS8ZdPARWNksbm5Q0s7Rxvwpbgy4PBTbHb41rdn_j8ppmsYsGWuAx7rAqbNv9HFb_ONjKn1pvwMThRasZN4_ax6swiSYXL_K-a1DpPT7pNRiXz73b7HE9P8nvsMbssg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQSwHdkShgA-cQFZDNjvHslQgSqnYxC1ybAchQYqagtQb_8Af8iXYSZwCAiTEMY7tRF7GM5rn9wC2HCqdmEsLuyKKsCttgSm3XWUMhT4fmO1n2fPrFmm36c1N0Cl0TlODdjcpyfxOg2ZpSvr1RxHXP1x8szMQlo9VQL6LB6Mw5mocvQ7XL67LNIIXZOTe2qvBjkM8k9b8rovPB9PQ2_ySIM3Onebsv_94DmYKlxM18jUyDyMyWYDZwv1ExeZOVZFReDBlCzBp7i2r19OnJcNrugitRoJywGJXo-mSW3SgPVHVCu3l0C90pqzRg_pwyZ-OWCJQrrX-9vJ6zrroVOt58XQJrpqHl_tHuFBmwFwLIOBIEiumEVPGKVABEfHUo6O53iwuA8JUDBRxV7BAqGiMsChmVEqfe5FvMUG1SVuGStJN5AogZQ92pcUtHmnZk5hS4QfCZ44UKpQinlcFy0xLyAvacq2ecR8OCZf10IYaqqaHNhxUYbts8phzdvxWuWbmOiy2bxraynHzHEItUoUdM7fD1z92tvqn2psw0Tlohq3j9skaTClPjOZw8BpU-r0nuQ7j_Ll_l_Y2skX9DlPn9ZY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Interpolating+Distance+Between+Optimal+Transport+and+Fisher%E2%80%93Rao+Metrics&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Chizat%2C+L%C3%A9na%C3%AFc&rft.au=Peyr%C3%A9%2C+Gabriel&rft.au=Schmitzer%2C+Bernhard&rft.au=Vialard%2C+Fran%C3%A7ois-Xavier&rft.date=2018-02-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=44&rft_id=info:doi/10.1007%2Fs10208-016-9331-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10208_016_9331_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |