Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area

•Five new ensemble models were developed for forest fire susceptibility modeling.•10 conditioning factors were considered in this study.•RF-FR ensemble model outperformed SVM-FR, MLP-FR, CART-FR and LR-FR models. Forest fire disaster is currently the subject of intense research worldwide. The develo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ecological indicators Ročník 129; s. 107869
Hlavní autori: Mohajane, Meriame, Costache, Romulus, Karimi, Firoozeh, Bao Pham, Quoc, Essahlaoui, Ali, Nguyen, Hoang, Laneve, Giovanni, Oudija, Fatiha
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.10.2021
Elsevier
Predmet:
ISSN:1470-160X, 1872-7034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Five new ensemble models were developed for forest fire susceptibility modeling.•10 conditioning factors were considered in this study.•RF-FR ensemble model outperformed SVM-FR, MLP-FR, CART-FR and LR-FR models. Forest fire disaster is currently the subject of intense research worldwide. The development of accurate strategies to prevent potential impacts and minimize the occurrence of disastrous events as much as possible requires modeling and forecasting severe conditions. In this study, we developed five new hybrid machine learning algorithms namely, Frequency Ratio-Multilayer Perceptron (FR-MLP), Frequency Ratio-Logistic Regression (FR-LR), Frequency Ratio-Classification and Regression Tree (FR-CART), Frequency Ratio-Support Vector Machine (FR-SVM), and Frequency Ratio-Random Forest (FR-RF), for mapping forest fire susceptibility in the north of Morocco. To this end, a total of 510 points of historic forest fires as the forest fire inventory map and 10 independent causal factors including elevation, slope, aspect, distance to roads, distance to residential areas, land use, normalized difference vegetation index (NDVI), rainfall, temperature, and wind speed were used. The area under the receiver operating characteristics (ROC) curves (AUC) was computed to assess the effectiveness of the models. The results of conducting proposed models indicated that RF-FR achieved the highest performance (AUC = 0.989), followed by SVM-FR (AUC = 0.959), MLP-FR (AUC = 0.858), CART-FR (AUC = 0.847), LR-FR (AUC = 0.809) in the forecasting of the forest fire. The outcome of this research as a prediction map of forest fire risk areas can provide crucial support for the management of Mediterranean forest ecosystems. Moreover, the results demonstrate that these novel developed hybrid models can increase the accuracy and performance of forest fire susceptibility studies and the approach can be applied to other areas.
AbstractList •Five new ensemble models were developed for forest fire susceptibility modeling.•10 conditioning factors were considered in this study.•RF-FR ensemble model outperformed SVM-FR, MLP-FR, CART-FR and LR-FR models. Forest fire disaster is currently the subject of intense research worldwide. The development of accurate strategies to prevent potential impacts and minimize the occurrence of disastrous events as much as possible requires modeling and forecasting severe conditions. In this study, we developed five new hybrid machine learning algorithms namely, Frequency Ratio-Multilayer Perceptron (FR-MLP), Frequency Ratio-Logistic Regression (FR-LR), Frequency Ratio-Classification and Regression Tree (FR-CART), Frequency Ratio-Support Vector Machine (FR-SVM), and Frequency Ratio-Random Forest (FR-RF), for mapping forest fire susceptibility in the north of Morocco. To this end, a total of 510 points of historic forest fires as the forest fire inventory map and 10 independent causal factors including elevation, slope, aspect, distance to roads, distance to residential areas, land use, normalized difference vegetation index (NDVI), rainfall, temperature, and wind speed were used. The area under the receiver operating characteristics (ROC) curves (AUC) was computed to assess the effectiveness of the models. The results of conducting proposed models indicated that RF-FR achieved the highest performance (AUC = 0.989), followed by SVM-FR (AUC = 0.959), MLP-FR (AUC = 0.858), CART-FR (AUC = 0.847), LR-FR (AUC = 0.809) in the forecasting of the forest fire. The outcome of this research as a prediction map of forest fire risk areas can provide crucial support for the management of Mediterranean forest ecosystems. Moreover, the results demonstrate that these novel developed hybrid models can increase the accuracy and performance of forest fire susceptibility studies and the approach can be applied to other areas.
Forest fire disaster is currently the subject of intense research worldwide. The development of accurate strategies to prevent potential impacts and minimize the occurrence of disastrous events as much as possible requires modeling and forecasting severe conditions. In this study, we developed five new hybrid machine learning algorithms namely, Frequency Ratio-Multilayer Perceptron (FR-MLP), Frequency Ratio-Logistic Regression (FR-LR), Frequency Ratio-Classification and Regression Tree (FR-CART), Frequency Ratio-Support Vector Machine (FR-SVM), and Frequency Ratio-Random Forest (FR-RF), for mapping forest fire susceptibility in the north of Morocco. To this end, a total of 510 points of historic forest fires as the forest fire inventory map and 10 independent causal factors including elevation, slope, aspect, distance to roads, distance to residential areas, land use, normalized difference vegetation index (NDVI), rainfall, temperature, and wind speed were used. The area under the receiver operating characteristics (ROC) curves (AUC) was computed to assess the effectiveness of the models. The results of conducting proposed models indicated that RF-FR achieved the highest performance (AUC = 0.989), followed by SVM-FR (AUC = 0.959), MLP-FR (AUC = 0.858), CART-FR (AUC = 0.847), LR-FR (AUC = 0.809) in the forecasting of the forest fire. The outcome of this research as a prediction map of forest fire risk areas can provide crucial support for the management of Mediterranean forest ecosystems. Moreover, the results demonstrate that these novel developed hybrid models can increase the accuracy and performance of forest fire susceptibility studies and the approach can be applied to other areas.
Forest fire disaster is currently the subject of intense research worldwide. The development of accurate strategies to prevent potential impacts and minimize the occurrence of disastrous events as much as possible requires modeling and forecasting severe conditions. In this study, we developed five new hybrid machine learning algorithms namely, Frequency Ratio-Multilayer Perceptron (FR-MLP), Frequency Ratio-Logistic Regression (FR-LR), Frequency Ratio-Classification and Regression Tree (FR-CART), Frequency Ratio-Support Vector Machine (FR-SVM), and Frequency Ratio-Random Forest (FR-RF), for mapping forest fire susceptibility in the north of Morocco. To this end, a total of 510 points of historic forest fires as the forest fire inventory map and 10 independent causal factors including elevation, slope, aspect, distance to roads, distance to residential areas, land use, normalized difference vegetation index (NDVI), rainfall, temperature, and wind speed were used. The area under the receiver operating characteristics (ROC) curves (AUC) was computed to assess the effectiveness of the models. The results of conducting proposed models indicated that RF-FR achieved the highest performance (AUC = 0.989), followed by SVM-FR (AUC = 0.959), MLP-FR (AUC = 0.858), CART-FR (AUC = 0.847), LR-FR (AUC = 0.809) in the forecasting of the forest fire. The outcome of this research as a prediction map of forest fire risk areas can provide crucial support for the management of Mediterranean forest ecosystems. Moreover, the results demonstrate that these novel developed hybrid models can increase the accuracy and performance of forest fire susceptibility studies and the approach can be applied to other areas.
ArticleNumber 107869
Author Laneve, Giovanni
Costache, Romulus
Karimi, Firoozeh
Nguyen, Hoang
Mohajane, Meriame
Bao Pham, Quoc
Oudija, Fatiha
Essahlaoui, Ali
Author_xml – sequence: 1
  givenname: Meriame
  surname: Mohajane
  fullname: Mohajane, Meriame
  organization: Soil and Environment Microbiology Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknès BP 11201, Morocco
– sequence: 2
  givenname: Romulus
  orcidid: 0000-0002-6876-8572
  surname: Costache
  fullname: Costache, Romulus
  organization: Department of Civil Engineering, Transilvania University of Brasov, 5, Turnului Str, 500152 Brasov, Romania
– sequence: 3
  givenname: Firoozeh
  orcidid: 0000-0002-3381-812X
  surname: Karimi
  fullname: Karimi, Firoozeh
  organization: Department of Geography, Environment, and Sustainability, University of North Carolina-Greensboro, Greensboro, NC 27402, USA
– sequence: 4
  givenname: Quoc
  surname: Bao Pham
  fullname: Bao Pham, Quoc
  email: phambaoquoc@tdmu.edu.vn
  organization: Institute of Applied Technology, Thu Dau Mot University, Binh Duong Province, Viet Nam
– sequence: 5
  givenname: Ali
  surname: Essahlaoui
  fullname: Essahlaoui, Ali
  organization: Geo-Engineering and Environment Laboratory,Water Sciences and Environment Engineering Team, Department of Geology, Faculty of Sciences, Moulay Ismail University,Zitoune, Meknès BP 11201, Morocco
– sequence: 6
  givenname: Hoang
  orcidid: 0000-0001-6122-8314
  surname: Nguyen
  fullname: Nguyen, Hoang
  organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology, 18 Pho Vien, Duc Thang Ward, Bac Tu Liem District, Hanoi 100000, Viet Nam
– sequence: 7
  givenname: Giovanni
  surname: Laneve
  fullname: Laneve, Giovanni
  organization: University of Rome 'La Sapienza', Scuola di Ingegneria Aerospaziale, Via Salaria 851, 00138 Rome, Italy
– sequence: 8
  givenname: Fatiha
  surname: Oudija
  fullname: Oudija, Fatiha
  organization: Soil and Environment Microbiology Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknès BP 11201, Morocco
BookMark eNqFUU1r3TAQNCGFfLQ_IaBjL36VbEuyyKGE0LSBlF5y6E2s5dWLHrbkSkqh_z7yc-ghlxzEaJeZWXbnojr1wWNVXTG6Y5SJL4cdmjA5P-4a2rDSk71QJ9U562VTS9p2p-XfSVozQX-fVRcpHWjRKSXOq_lmWSZnILvgSbAk4hwykoQ-Ob8n4Ecyg3lyHsmEEP2xOe1DdPlpTsSGuD5MmVgXsXCXZaU4T4D8xNFljBE8Qqkjwsfqg4Up4adXvKwe77493v6oH359v7-9eagNb1iuBzWYjvZghews55a1QyMptyh4AaQWoe8VgBCGd7IA4yOC7UCM4zD27WV1v9mOAQ56iW6G-E8HcPrYCHGvIWZnJtRcUYWGdYoNQyc576WQrS0-vWh6irJ4fd68lhj-PJdF9eySwWkqW4XnpBtVmFy1bB3LN6qJIaWI9v9oRvWalD7o16T0mpTekiq66zc64_IxkRzBTe-qv25qLAf96zDqZBx6U44f0eSysnvH4QU07LXt
CitedBy_id crossref_primary_10_1016_j_ecolind_2024_112653
crossref_primary_10_3390_rs15082023
crossref_primary_10_3390_rs16050878
crossref_primary_10_3390_f15081380
crossref_primary_10_3390_fire6100408
crossref_primary_10_1016_j_ecoinf_2021_101397
crossref_primary_10_1071_WF22016
crossref_primary_10_1007_s11356_024_32615_4
crossref_primary_10_5327_Z2176_94782006
crossref_primary_10_1007_s10973_023_12012_8
crossref_primary_10_3390_f15071221
crossref_primary_10_1016_j_ecolind_2022_109376
crossref_primary_10_3390_app15073699
crossref_primary_10_1007_s40314_023_02344_4
crossref_primary_10_1016_j_ecoinf_2022_101660
crossref_primary_10_3390_fire7020061
crossref_primary_10_1016_j_ecolind_2025_113451
crossref_primary_10_1016_j_jenvman_2025_127097
crossref_primary_10_1016_j_scitotenv_2024_170330
crossref_primary_10_3390_f16010053
crossref_primary_10_3390_f15091523
crossref_primary_10_1038_s41598_023_42367_9
crossref_primary_10_3390_fire8010008
crossref_primary_10_3390_rs15215099
crossref_primary_10_3390_fire6050197
crossref_primary_10_33904_ejfe_1604500
crossref_primary_10_1155_2022_3959150
crossref_primary_10_1016_j_ecolind_2022_109828
crossref_primary_10_3390_fire6010022
crossref_primary_10_1016_j_asoc_2024_111468
crossref_primary_10_1109_TGRS_2025_3529134
crossref_primary_10_1117_1_JRS_18_014513
crossref_primary_10_1016_j_rse_2023_113522
crossref_primary_10_1016_j_foreco_2024_121771
crossref_primary_10_1093_forsci_fxac039
crossref_primary_10_1007_s11356_025_36621_y
crossref_primary_10_1016_j_jenvman_2025_124833
crossref_primary_10_3390_f15050844
crossref_primary_10_1016_j_jsames_2025_105366
crossref_primary_10_1186_s40537_024_00958_x
crossref_primary_10_1016_j_catena_2023_107364
crossref_primary_10_1038_s41598_025_10296_4
crossref_primary_10_1007_s00521_024_10553_z
crossref_primary_10_3390_land11010093
crossref_primary_10_1016_j_ecolind_2024_112577
crossref_primary_10_3390_su152115598
crossref_primary_10_1007_s42398_022_00259_0
crossref_primary_10_3390_f14071325
crossref_primary_10_1016_j_future_2023_04_015
crossref_primary_10_3390_rs15215077
crossref_primary_10_1007_s00477_024_02820_1
crossref_primary_10_1080_10106049_2022_2102231
crossref_primary_10_1016_j_asoc_2023_110362
crossref_primary_10_3390_f14040778
crossref_primary_10_1016_j_ufug_2024_128260
crossref_primary_10_1007_s11069_024_06810_y
crossref_primary_10_1016_j_engappai_2023_106699
crossref_primary_10_3390_rs14174362
crossref_primary_10_3390_rs14215413
crossref_primary_10_1080_19475705_2023_2206512
crossref_primary_10_1007_s10694_023_01497_2
crossref_primary_10_1007_s11676_025_01822_1
crossref_primary_10_1080_19475705_2024_2443465
crossref_primary_10_1016_j_ecolind_2024_112553
crossref_primary_10_3390_fire8030093
crossref_primary_10_1016_j_infgeo_2025_100003
crossref_primary_10_3390_rs16050858
crossref_primary_10_3390_f16040704
crossref_primary_10_5194_nhess_23_2937_2023
crossref_primary_10_1007_s12145_025_01769_1
crossref_primary_10_3390_rs14194899
crossref_primary_10_1002_gj_5080
crossref_primary_10_1088_1755_1315_1357_1_012037
crossref_primary_10_1109_ACCESS_2021_3122112
crossref_primary_10_1080_10106049_2022_2060323
crossref_primary_10_1016_j_ijdrr_2023_104123
crossref_primary_10_3390_ijgi11070401
crossref_primary_10_1016_j_foreco_2024_121729
crossref_primary_10_1080_10106049_2022_2048904
crossref_primary_10_3390_f15112029
crossref_primary_10_3390_su14159446
crossref_primary_10_3390_rs14081918
crossref_primary_10_1002_rse2_422
crossref_primary_10_3390_f15020265
crossref_primary_10_1016_j_jclepro_2025_144800
crossref_primary_10_1016_j_foreco_2025_122619
crossref_primary_10_2478_geosc_2024_0001
crossref_primary_10_3390_f14020170
crossref_primary_10_1016_j_jenvman_2024_120209
crossref_primary_10_3390_rs14143259
crossref_primary_10_3390_rs17071146
crossref_primary_10_1007_s13762_023_05194_z
crossref_primary_10_3390_fire6080314
crossref_primary_10_1016_j_scitotenv_2024_171713
crossref_primary_10_1016_j_knosys_2023_111198
crossref_primary_10_1007_s11069_024_06457_9
crossref_primary_10_3390_rs14102379
crossref_primary_10_1007_s12517_022_10442_6
crossref_primary_10_1080_19475705_2024_2436540
crossref_primary_10_1007_s41207_024_00475_6
crossref_primary_10_3390_rs15122999
crossref_primary_10_1016_j_compag_2023_108173
crossref_primary_10_1080_09640568_2022_2027747
crossref_primary_10_1371_journal_pone_0293190
crossref_primary_10_3390_rs14184592
crossref_primary_10_1007_s11356_022_24246_4
crossref_primary_10_1007_s12517_022_09947_x
crossref_primary_10_1016_j_ecolind_2024_112355
crossref_primary_10_3390_drones7110659
crossref_primary_10_1016_j_asr_2024_04_018
crossref_primary_10_1186_s42408_024_00293_9
crossref_primary_10_1016_j_scitotenv_2023_163004
crossref_primary_10_5194_essd_14_3489_2022
crossref_primary_10_1016_j_foreco_2023_121057
crossref_primary_10_3390_rs15194701
crossref_primary_10_3390_f15091493
crossref_primary_10_1016_j_catena_2024_108367
crossref_primary_10_1007_s10586_023_04003_z
crossref_primary_10_1007_s40808_023_01761_y
crossref_primary_10_1016_j_asr_2023_03_026
crossref_primary_10_1051_e3sconf_202449101027
crossref_primary_10_3390_plants13233347
crossref_primary_10_3390_s23042151
crossref_primary_10_55544_jrasb_4_3_14
crossref_primary_10_1186_s42408_024_00289_5
crossref_primary_10_1080_10106049_2023_2204099
crossref_primary_10_3390_rs17101660
crossref_primary_10_1016_j_ecolind_2025_114042
crossref_primary_10_1016_j_wace_2023_100567
crossref_primary_10_3390_f13030480
crossref_primary_10_3390_fire6080305
crossref_primary_10_3390_drones8090454
crossref_primary_10_1016_j_ecolind_2024_112800
crossref_primary_10_1111_tgis_70014
crossref_primary_10_3390_fire6020043
crossref_primary_10_1038_s41467_024_55240_8
crossref_primary_10_1016_j_foreco_2025_122931
crossref_primary_10_3390_f13060856
crossref_primary_10_1007_s00477_025_03070_5
crossref_primary_10_1088_1748_9326_ad6460
crossref_primary_10_1007_s41207_024_00601_4
crossref_primary_10_1016_j_ecoinf_2021_101471
crossref_primary_10_1109_JSTARS_2025_3564852
crossref_primary_10_3390_rs17020289
crossref_primary_10_29128_geomatik_1603707
crossref_primary_10_1007_s11069_021_05083_z
crossref_primary_10_1007_s11069_024_06813_9
crossref_primary_10_1016_j_gsd_2022_100818
crossref_primary_10_1007_s11069_025_07190_7
crossref_primary_10_5194_essd_14_3273_2022
crossref_primary_10_1016_j_ecoinf_2024_102461
crossref_primary_10_1016_j_ecolind_2024_112067
crossref_primary_10_3390_fire4030057
crossref_primary_10_1016_j_biombioe_2025_107972
crossref_primary_10_3390_fire7060201
crossref_primary_10_1016_j_agrformet_2023_109587
crossref_primary_10_1007_s12145_023_00953_5
crossref_primary_10_3390_app13148275
crossref_primary_10_1007_s11069_025_07384_z
crossref_primary_10_1016_j_scitotenv_2021_151918
crossref_primary_10_1007_s10661_024_12982_8
crossref_primary_10_3390_fire7120437
crossref_primary_10_3390_app14062413
crossref_primary_10_3390_rs14184431
crossref_primary_10_3390_f16020273
crossref_primary_10_1016_j_ecolind_2025_113657
crossref_primary_10_1016_j_ecolind_2024_113006
crossref_primary_10_1038_s43247_024_01987_3
crossref_primary_10_3390_rs16101778
crossref_primary_10_1007_s10661_022_10318_y
crossref_primary_10_1016_j_ecolind_2022_108533
crossref_primary_10_3390_f14071506
crossref_primary_10_3390_su15076292
crossref_primary_10_1007_s11356_024_34664_1
crossref_primary_10_1016_j_eti_2023_103360
crossref_primary_10_1016_j_ejrh_2025_102285
crossref_primary_10_1007_s11356_025_35976_6
crossref_primary_10_1007_s11676_022_01559_1
crossref_primary_10_3390_atmos15030339
crossref_primary_10_3390_land12020349
crossref_primary_10_3390_rs17010007
crossref_primary_10_1038_s41598_023_41496_5
crossref_primary_10_3390_fire7120440
crossref_primary_10_3390_f15091672
crossref_primary_10_3390_pr10030483
crossref_primary_10_1007_s12145_023_01213_2
crossref_primary_10_24057_2071_9388_2023_2910
crossref_primary_10_3390_hydrology11110183
crossref_primary_10_3390_f14010046
crossref_primary_10_1007_s41207_024_00591_3
crossref_primary_10_1080_19475705_2023_2275538
crossref_primary_10_3390_inventions7010015
crossref_primary_10_1016_j_ecoinf_2023_102034
crossref_primary_10_3390_app12136721
crossref_primary_10_59978_ar03020008
crossref_primary_10_3390_app112110379
Cites_doi 10.1016/j.enggeo.2016.02.009
10.1016/j.scitotenv.2018.02.278
10.1016/j.scitotenv.2018.12.248
10.1016/j.ecoleng.2014.07.037
10.1016/j.cageo.2007.08.003
10.5993/AJHB.25.3.15
10.1016/j.foreco.2016.08.035
10.3390/ani10020196
10.1007/s00704-018-2628-9
10.1016/j.catena.2018.12.033
10.1007/978-3-642-01307-2_4
10.1080/19475705.2014.984247
10.1016/j.ecolind.2015.12.030
10.1109/72.788646
10.1007/s00254-005-1228-z
10.1007/s00477-015-1021-9
10.1016/j.ejsobi.2011.10.004
10.1007/s12665-015-4866-9
10.1016/j.catena.2016.11.032
10.3390/w11030451
10.1016/j.scitotenv.2005.02.033
10.1007/s10064-018-1256-z
10.1071/WF05096
10.1145/130385.130401
10.1016/j.ijsrc.2017.09.008
10.1007/s11676-019-00958-1
10.1016/j.catena.2020.104580
10.1016/j.ecoinf.2017.12.006
10.1023/A:1018054314350
10.1007/s11676-018-0669-7
10.1016/j.atmosres.2019.104720
10.1023/A:1026075919710
10.1016/j.eswa.2013.01.012
10.1016/j.scitotenv.2018.10.064
10.1016/j.apgeog.2018.01.002
10.1016/j.actao.2005.08.006
10.1016/j.rse.2006.01.003
10.1016/j.geomorph.2017.12.008
10.1080/13658816.2012.721554
10.1080/01431160110040323
10.1016/j.ecolmodel.2019.108921
10.1007/s11069-018-3256-5
10.1016/j.envres.2020.109321
10.1016/j.jenvman.2019.04.117
10.1016/j.compenvurbsys.2019.01.001
10.1016/j.rse.2010.01.007
10.1016/S1146-609X(00)01083-3
10.1016/j.catena.2014.10.017
10.1016/j.ecolind.2019.105856
10.1016/S0378-1127(00)00383-2
10.1016/j.apgeog.2018.10.006
10.3390/rs12010106
10.3390/rs8040347
10.1007/s00267-012-9961-z
10.1071/WF15108
10.1016/j.agrformet.2016.11.002
10.1016/j.jhydrol.2020.124808
10.1016/j.foreco.2012.03.003
10.1007/s12665-014-3502-4
10.1016/j.agrformet.2016.05.003
10.1071/WF11100
10.1007/s00477-019-01689-9
10.3390/w12020320
10.1016/0034-4257(89)90023-0
10.1016/j.catena.2019.104415
10.1016/S0167-7012(00)00201-3
10.1038/s41597-020-0453-3
10.1080/00031305.2000.10474502
10.1007/s11269-019-02301-z
10.1109/MASSP.1987.1165576
10.1007/s00500-020-05058-5
10.1080/02827581.2015.1052750
10.1007/s12517-017-2905-4
10.1016/j.jenvman.2019.01.108
10.3732/ajb.0900040
10.1016/j.jenvman.2018.03.089
10.1890/05-1021
10.1016/j.foreco.2010.08.013
10.3390/f11080830
10.1016/j.jenvman.2019.109867
10.1016/j.foreco.2019.04.040
10.1016/j.scitotenv.2019.134514
10.1016/j.scitotenv.2017.07.198
10.3390/app8071046
10.1016/j.apgeog.2014.05.015
10.1016/j.scitotenv.2019.07.197
10.1016/j.tplants.2011.04.002
10.1016/S0034-4257(03)00184-6
10.1016/S0034-4257(97)00049-7
10.1007/978-3-642-32618-9_22
10.1111/j.2517-6161.1958.tb00292.x
10.1016/j.isprsjprs.2011.11.002
10.1007/s11356-020-10344-8
10.21236/ADA164453
10.1037/h0042519
10.1007/s13762-017-1371-6
10.1007/978-3-642-60164-4_2
10.1016/S0304-3800(01)00316-7
10.3390/environments5120131
10.1080/00220670209598786
10.1016/j.jenvman.2017.10.003
10.1007/s10346-016-0769-4
10.1016/j.scitotenv.2018.12.397
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.ecolind.2021.107869
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1872-7034
ExternalDocumentID oai_doaj_org_article_5909ec1491bb475587673f6dd86280e7
10_1016_j_ecolind_2021_107869
S1470160X21005343
GeographicLocations Morocco
Mediterranean region
GeographicLocations_xml – name: Mediterranean region
– name: Morocco
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c521t-b9bc408af674f55f13b2705fe65705e0fea889aa66c547a6615deaf4a6ddbd83
IEDL.DBID DOA
ISICitedReferencesCount 208
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681694700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1470-160X
IngestDate Fri Oct 03 12:53:16 EDT 2025
Wed Oct 01 09:30:03 EDT 2025
Sat Nov 29 07:00:40 EST 2025
Tue Nov 18 21:26:03 EST 2025
Fri Feb 23 02:43:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mediterranean area
Forest fire
Remote sensing
Hybrid machine learning algorithm
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-b9bc408af674f55f13b2705fe65705e0fea889aa66c547a6615deaf4a6ddbd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6122-8314
0000-0002-6876-8572
0000-0002-3381-812X
OpenAccessLink https://doaj.org/article/5909ec1491bb475587673f6dd86280e7
PQID 2986259318
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_5909ec1491bb475587673f6dd86280e7
proquest_miscellaneous_2986259318
crossref_primary_10_1016_j_ecolind_2021_107869
crossref_citationtrail_10_1016_j_ecolind_2021_107869
elsevier_sciencedirect_doi_10_1016_j_ecolind_2021_107869
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Ecological indicators
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Costache, Tien Bui (b0130) 2019; 691
Lippmann (b0335) 1987; 4
Jaafari, Panahi, Pham, Shahabi, Bui, Rezaie, Lee (b0275) 2019; 175
Huang, Cao, Guo, Jiang, Li, Guo (b0260) 2020; 191
Pourtaghi, Pourghasemi, Aretano, Semeraro (b0445) 2016; 64
Pham, Shirzadi, Tien Bui, Prakash, Dholakia (b0415) 2018; 33
Zema, Nunes, Lucas-Borja (b0630) 2020; 188
Karimi, Sultana, Babakan, Suthaharan (b0290) 2019
Krawchuk, Cumming, Flannigan, Wein (b0315) 2006; 87
Nami, Jaafari, Fallah, Nabiuni (b0355) 2018; 15
El Motaki, El-Fengour, Aissa, Madureira, Monteiro (b0175) 2019
Nefeslioglu, Sezer, Gokceoglu, Bozkir, Duman (b0360) 2010; 2010
Chen, Yan, Zhao, Hong, Bui, Pradhan (b0095) 2019; 78
Tien Bui, Le, Nguyen, Le, Revhaug (b0575) 2016; 8
Knudby, LeDrew, Brenning (b0310) 2010; 114
Pausas, J.G., Vallejo, V.R., 1999. The role of fire in European Mediterranean ecosystems, in: Chuvieco, E. (Ed.), Remote Sensing of Large Wildfires. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 3–16. https://doi.org/10.1007/978-3-642-60164-4_2.
Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92. Association for Computing Machinery, Pittsburgh, Pennsylvania, USA, pp. 144–152. https://doi.org/10.1145/130385.130401.
Arpaci, Malowerschnig, Sass, Vacik (b0015) 2014; 53
Scarascia-Mugnozza, Oswald, Piussi, Radoglou (b0510) 2000; 132
Li, Shan, Yin, Wang, Sun, Wang (b0330) 2019; 30
Costache, Popa, Tien Bui, Diaconu, Ciubotaru, Minea, Pham (b0145) 2020; 585
Tehrany, Pradhan, Mansor, Ahmad (b0555) 2015; 125
Jaafari, Zenner, Pham (b0280) 2018; 43
Olivella, Ribalta, Defebrer, Mollet, Delasheras (b0390) 2006; 355
Díaz-Avalos, Peterson, Alvarado, Ferguson, Besag (b0160) 2001; 31
Pourtaghi, Pourghasemi, Rossi (b0450) 2015; 73
Peng, Lee, Ingersoll (b0400) 2002; 96
Nsengiyumva, J.B., Luo, G., Amanambu, A.C., Mind’je, R., Habiyaremye, G., Karamage, F., Ochege, F.U., Mupenzi, C., 2019. Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Sci. Total Environ. 659, 1457–1472. https://doi.org/10.1016/j.scitotenv.2018.12.248.
Tehrany, Jones, Shabani, Martínez-Álvarez, Tien Bui (b0545) 2019; 137
Teodoro, Duarte (b0560) 2013; 27
Huebner, Lindo, Lechowicz (b0265) 2012; 48
Chebli, Chentouf, Ozer, Hornick, Cabaraux (b0080) 2018; 101
Holsinger, Parks, Miller (b0230) 2016; 380
Sachdeva, Bhatia, Verma (b0495) 2018; 92
Costache (b0125) 2019; 33
Peng, C.-Y.J., Manz, B.D., Keck, J., 2001. Modeling Categorical Variables by Logistic Regression [WWW Document]. https://doi.org/info:doi/10.5993/AJHB.25.3.15.
Skapura (b0530) 1996
Belinchón, Martínez, Otálora, Aragón, Dimas, Escudero (b0030) 2009; 96
Chapelle, Haffner, Vapnik (b0070) 1999; 10
Pourghasemi, Gayen, Lasaponara, Tiefenbacher (b0430) 2020; 184
Pour, Wahab, Shahid (b0420) 2020; 233
Akay (bib641) 2021
Keeley, Pausas, Rundel, Bond, Bradstock (b0300) 2011; 16
Belousov, Applicational aspects of support vector machines [WWW Document] https://onlinelibrary.wiley.com/doi/abs/10.1002/cem.744 2002 accessed 4.28.20.
Chebli, Otmani, Chentouf, Hornick, Bindelle, Cabaraux (b0085) 2020; 10
Hong, Tsangaratos, Ilia, Liu, Zhu, Xu (b0245) 2018; 630
Fernández-García, Fulé, Marcos, Calvo (b0185) 2019; 444
Pourghasemi, Beheshtirad, Pradhan (b0440) 2016; 7
Chuvieco, Congalton (b0105) 1989; 29
Moayedi, Mehrabi, Bui, Pradhan, Foong (b0345) 2020; 260
Tehrany, Pradhan, Jebur (b0550) 2015; 29
Breiman, Friedman, Olshen, Stone (b0060) 1984
Delen, Kuzey, Uyar (b0155) 2013; 40
Kingma, D.P., Ba, J., 2017. Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs.
Hosmer, Lemeshow (b0250) 2000
Lee, Talib (b0320) 2005; 47
Qin, B., Xia, Y., Li, F., 2009. DTU: A Decision Tree for Uncertain Data, in: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (Eds.), Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 4–15. https://doi.org/10.1007/978-3-642-01307-2_4.
Pham, Yang, Kuo, Tseng, Yu (bib642) 2019; 11
Mohajane, Essahlaoui, Oudija, El Hafyani, Hmaidi, El Ouali, Randazzo, Teodoro (b0350) 2018; 5
Jaafari, Razavi Termeh, Bui (b0270) 2019; 243
Zidane, Lhissou, Bouli, Mabrouki (b0640) 2019; 30
Menard (b0340) 2000; 54
Basheer, Hajmeer (b0020) 2000; 43
Costache, Hong, Pham (b0135) 2020; 711
Vapnik (b0590) 1998
Bonham-Carter (b0040) 2014
HCEFLCD, n.d. HCEFLCD, 2011. Haut-Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification Les incendies de Forêtsau Maroc. Département des Eaux et et Forêts [WWW Document]. URL http://www.eauxetforets.gov.ma/ProtectionForet/Incendies/Pages/Incendies.aspx (accessed 4.29.20).
Verdú, Salas, Vega-García (b0615) 2012; 21
Nhu, V.-H., Mohammadi, A., Shahabi, H., Ahmad, B.B., Al-Ansari, N., Shirzadi, A., Geertsema, M., R. Kress, V., Karimzadeh, S., Valizadeh Kamran, K., Chen, W., Nguyen, H., 2020. Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia): A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms. Forests 11, 830. https://doi.org/10.3390/f11080830.
Santana, Alday, Baeza (b0505) 2014; 71
Escudero, Núñez, Pérez-García (b0180) 2000; 21
Chavez, P.S., 1996. Image-Based Atmospheric Corrections - Revisited and Improved 12. Photogramm. Eng. Remote Sens. 62(9), 1025–1035.
Jiang, Huete, Chen, Chen, Li, Yan, Zhang (b0285) 2006; 101
Hong, Naghibi, Moradi Dashtpagerdi, Pourghasemi, Chen (b0235) 2017; 10
Yang, Li, Shi (b0625) 2008; 34
Ganteaume, Camia, Jappiot, San-Miguel-Ayanz, Long-Fournel, Lampin (b0200) 2013; 51
Harris, I., Osborn, T.J., Jones, P., Lister, D., 2020. CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2016), Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109. https://doi.org/10.1038/s41597-020-0453-3.
Statnikov (b0540) 2011
Chen, Xie, Wang, Pradhan, Hong, Bui, Duan, Ma (b0090) 2017; 151
Choubin, Moradi, Golshan, Adamowski, Sajedi-Hosseini, Mosavi (b0100) 2019; 651
Pham, Mohammadpour, Linh, Mohajane, Pourjasem, Sammen, Anh (bib644) 2021; 28
El Hafyani, Essahlaoui, Van Rompaey, Mohajane, El Hmaidi, El Ouali, Moudden, Serrhini (b0170) 2020; 12
Vecín-Arias, Castedo-Dorado, Ordóñez, Rodríguez-Pérez (b0605) 2016; 225
Pham, Afan, Mohammadi, Ahmed, Linh, Vo (bib643) 2020; 24
Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, Rigol-Sanchez (b0480) 2012; 67
Tien Bui, D., Ho, T.C., Revhaug, I., Pradhan, B., Nguyen, D.B., 2014. Landslide Susceptibility Mapping Along the National Road 32 of Vietnam Using GIS-Based J48 Decision Tree Classifier and Its Ensembles, in: Buchroithner, M., Prechtel, N., Burghardt, D. (Eds.), Cartography from Pole to Pole, Lecture Notes in Geoinformation and Cartography. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 303–317. https://doi.org/10.1007/978-3-642-32618-9_22.
Oliveira, Félix, Nunes, Lourenço, Laneve, Sebastián-López (b0380) 2018; 206
Cox (b0150) 1958; 20
Oliveira, Oehler, San-Miguel-Ayanz, Camia, Pereira (b0385) 2012; 275
Amit Parashar, Sas Biswas, n.d. The Impact of Forest Fire on Forest Biodiversity in the Indian Himalayas, 2003. (Uttaranchal) [WWW Document]. URL http://www.fao.org/3/XII/0358-B1.htm#fnB1 (accessed 4.27.20).
Pham, Prakash, Tien Bui (b0410) 2018; 303
Vapnik (b0595) 1963; 24
Ajbilou, Marañón, Arroyo (b0005) 2006; 29
Lentile, Smith, Shepperd (b0325) 2006; 15
Conedera, Torriani, Neff, Ricotta, Bajocco, Pezzatti (b0110) 2011; 261
Freden, S.C., Mercanti, E.P., Becker, M.A., 1974. Third Earth Resources Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight Center at Washington, D.C. on December 10-14, 1973 : Prepared at Goddard Space Flight Center. Scientific and Technical Information Office, National Aeronautics and Space Administration.
Rosenblatt (b0485) 1958; 65
Huang, C., Davis, .S, Townshend, J.R.G., 2002. An assessment of support vector machines for land cover classification: International Journal of Remote Sensing: Vol 23, No 4 [WWW Document]. URL https://www.tandfonline.com/doi/abs/10.1080/01431160110040323 (accessed 4.28.20).
Pourghasemi, Yousefi, Kornejady, Cerdà (b0435) 2017; 609
Zhou, Yin, Cao, Ahmed (b0635) 2016; 204
Python Release Python 3.8.2 [WWW Document], n.d. Python.org. URL https://www.python.org/downloads/release/python-382/ (accessed 1.17.21).
Costache, Pham, Sharifi, Linh, Abba, Vojtek, Vojteková, Nhi, Khoi (b0140) 2020; 12
L. Breiman Random forests., Kluwer Academic Publishers. Manufactured in The Netherlands. ed. 2001 The Netherlands.
Hantson, Pueyo, Chuvieco (b0210) 2016; 25
Schmidt, Taylor, Skinner (b0515) 2008; 255
Ni (b0370) 2008; 39
Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1985. Learning Internal Representations by Error Propagation (No. ICS-8506). California Univ San Diego La Jolla Inst For Cognitive Science.
Salhi, Benabdelouahab, Bouayad, Benabdelouahab, Larifi, El Mousaoui, Acharrat, Himi, Casas Ponsati (b0500) 2020; 142853
Quinlan (b0470) 1993
Simioni, Marie, Davi, Martin-St Paul, Huc (b0525) 2020; 416
Shafizadeh-Moghadam, Valavi, Shahabi, Chapi, Shirzadi (b0520) 2018; 217
DRATT (Direction Régionale de l’Agriculture de Tanger-Tétouan) (b0165) 2015
Tsangaratos, Ilia, Hong, Chen, Xu (b0585) 2017; 14
Tien Bui, Hoang, Samui (b0570) 2019; 237
Recknagel (b0475) 2001; 146
Breiman (b0055) 1996; 24
Costache (b0115) 2019; 659
Bax, Francesconi (b0025) 2018; 91
HCP, (Haut-Commissariat au Plan), 2014. Monographie régionale de Tanger-Tétouan.
Truong, Mitamura, Kono, Raghavan, Yonezawa, Truong, Do, Tien Bui, Lee (b0580) 2018; 8
Hong, Pradhan, Jebur, Bui, Xu, Akgun (b0240) 2016; 75
Wotton, B.M., Martell, D.L., Logan, K.A., 2003. Climate Change and People-Caused Forest Fire Occurrence in Ontario 21.
Pourghasemi (b0425) 2016; 31
Giglio, Descloitres, Justice, Kaufman (b0205) 2003; 87
Venkatesh, Preethi, Ramesh (b0610) 2020; 110
Costache (b0120) 2019; 33
Pradhan, Lee (b0455) 2009; 4
Stambouli, El Bouri, Bellimam, Bouayoun, El Karni (b0535) 2005; 57
Karimi, Sultan
Statnikov (10.1016/j.ecolind.2021.107869_b0540) 2011
Conedera (10.1016/j.ecolind.2021.107869_b0110) 2011; 261
Cox (10.1016/j.ecolind.2021.107869_b0150) 1958; 20
Stambouli (10.1016/j.ecolind.2021.107869_b0535) 2005; 57
10.1016/j.ecolind.2021.107869_b0565
Skapura (10.1016/j.ecolind.2021.107869_b0530) 1996
Lee (10.1016/j.ecolind.2021.107869_b0320) 2005; 47
Hong (10.1016/j.ecolind.2021.107869_b0235) 2017; 10
Karimi (10.1016/j.ecolind.2021.107869_b0295) 2019; 75
Pourghasemi (10.1016/j.ecolind.2021.107869_b0425) 2016; 31
Lentile (10.1016/j.ecolind.2021.107869_b0325) 2006; 15
Costache (10.1016/j.ecolind.2021.107869_b0135) 2020; 711
10.1016/j.ecolind.2021.107869_b0045
Huebner (10.1016/j.ecolind.2021.107869_b0265) 2012; 48
Simioni (10.1016/j.ecolind.2021.107869_b0525) 2020; 416
Basheer (10.1016/j.ecolind.2021.107869_b0020) 2000; 43
Chuvieco (10.1016/j.ecolind.2021.107869_b0105) 1989; 29
Fernández-García (10.1016/j.ecolind.2021.107869_b0185) 2019; 444
Ajbilou (10.1016/j.ecolind.2021.107869_b0005) 2006; 29
Jiang (10.1016/j.ecolind.2021.107869_b0285) 2006; 101
Akay (10.1016/j.ecolind.2021.107869_bib641) 2021
Li (10.1016/j.ecolind.2021.107869_b0330) 2019; 30
cr-split#-10.1016/j.ecolind.2021.107869_b0215.1
Pham (10.1016/j.ecolind.2021.107869_bib644) 2021; 28
Chen (10.1016/j.ecolind.2021.107869_b0090) 2017; 151
cr-split#-10.1016/j.ecolind.2021.107869_b0215.2
Pourghasemi (10.1016/j.ecolind.2021.107869_b0435) 2017; 609
Rosenblatt (10.1016/j.ecolind.2021.107869_b0485) 1958; 65
10.1016/j.ecolind.2021.107869_b0395
10.1016/j.ecolind.2021.107869_b0035
Pourghasemi (10.1016/j.ecolind.2021.107869_b0440) 2016; 7
Zema (10.1016/j.ecolind.2021.107869_b0630) 2020; 188
Pradhan (10.1016/j.ecolind.2021.107869_b0455) 2009; 4
Rodriguez-Galiano (10.1016/j.ecolind.2021.107869_b0480) 2012; 67
Tehrany (10.1016/j.ecolind.2021.107869_b0555) 2015; 125
Pham (10.1016/j.ecolind.2021.107869_b0415) 2018; 33
Costache (10.1016/j.ecolind.2021.107869_b0145) 2020; 585
Hosmer (10.1016/j.ecolind.2021.107869_b0250) 2000
Chapelle (10.1016/j.ecolind.2021.107869_b0070) 1999; 10
Krawchuk (10.1016/j.ecolind.2021.107869_b0315) 2006; 87
10.1016/j.ecolind.2021.107869_b0305
Santana (10.1016/j.ecolind.2021.107869_b0505) 2014; 71
Zhou (10.1016/j.ecolind.2021.107869_b0635) 2016; 204
Tien Bui (10.1016/j.ecolind.2021.107869_b0575) 2016; 8
Tsangaratos (10.1016/j.ecolind.2021.107869_b0585) 2017; 14
Pour (10.1016/j.ecolind.2021.107869_b0420) 2020; 233
Karimi (10.1016/j.ecolind.2021.107869_b0290) 2019
Nami (10.1016/j.ecolind.2021.107869_b0355) 2018; 15
Yang (10.1016/j.ecolind.2021.107869_b0625) 2008; 34
Scarascia-Mugnozza (10.1016/j.ecolind.2021.107869_b0510) 2000; 132
Breiman (10.1016/j.ecolind.2021.107869_b0055) 1996; 24
Shafizadeh-Moghadam (10.1016/j.ecolind.2021.107869_b0520) 2018; 217
Vapnik (10.1016/j.ecolind.2021.107869_b0590) 1998
Keeley (10.1016/j.ecolind.2021.107869_b0300) 2011; 16
Quinlan (10.1016/j.ecolind.2021.107869_b0470) 1993
10.1016/j.ecolind.2021.107869_b0490
10.1016/j.ecolind.2021.107869_b0010
10.1016/j.ecolind.2021.107869_b0255
Pham (10.1016/j.ecolind.2021.107869_bib642) 2019; 11
10.1016/j.ecolind.2021.107869_b0375
Recknagel (10.1016/j.ecolind.2021.107869_b0475) 2001; 146
Giglio (10.1016/j.ecolind.2021.107869_b0205) 2003; 87
Moayedi (10.1016/j.ecolind.2021.107869_b0345) 2020; 260
Hong (10.1016/j.ecolind.2021.107869_b0245) 2018; 630
Nefeslioglu (10.1016/j.ecolind.2021.107869_b0360) 2010; 2010
Tien Bui (10.1016/j.ecolind.2021.107869_b0570) 2019; 237
Bonham-Carter (10.1016/j.ecolind.2021.107869_b0040) 2014
Schmidt (10.1016/j.ecolind.2021.107869_b0515) 2008; 255
Knudby (10.1016/j.ecolind.2021.107869_b0310) 2010; 114
10.1016/j.ecolind.2021.107869_b0405
Pourtaghi (10.1016/j.ecolind.2021.107869_b0445) 2016; 64
Pham (10.1016/j.ecolind.2021.107869_bib643) 2020; 24
Díaz-Avalos (10.1016/j.ecolind.2021.107869_b0160) 2001; 31
El Motaki (10.1016/j.ecolind.2021.107869_b0175) 2019
Huang (10.1016/j.ecolind.2021.107869_b0260) 2020; 191
Arpaci (10.1016/j.ecolind.2021.107869_b0015) 2014; 53
Chebli (10.1016/j.ecolind.2021.107869_b0085) 2020; 10
10.1016/j.ecolind.2021.107869_b0365
Tehrany (10.1016/j.ecolind.2021.107869_b0545) 2019; 137
Oliveira (10.1016/j.ecolind.2021.107869_b0385) 2012; 275
Jaafari (10.1016/j.ecolind.2021.107869_b0280) 2018; 43
Sachdeva (10.1016/j.ecolind.2021.107869_b0495) 2018; 92
Costache (10.1016/j.ecolind.2021.107869_b0115) 2019; 659
Holsinger (10.1016/j.ecolind.2021.107869_b0230) 2016; 380
Hantson (10.1016/j.ecolind.2021.107869_b0210) 2016; 25
Friedl (10.1016/j.ecolind.2021.107869_b0195) 1997; 61
Costache (10.1016/j.ecolind.2021.107869_b0130) 2019; 691
Vapnik (10.1016/j.ecolind.2021.107869_b0595) 1963; 24
Costache (10.1016/j.ecolind.2021.107869_b0140) 2020; 12
Tehrany (10.1016/j.ecolind.2021.107869_b0550) 2015; 29
Ni (10.1016/j.ecolind.2021.107869_b0370) 2008; 39
Venkatesh (10.1016/j.ecolind.2021.107869_b0610) 2020; 110
Belinchón (10.1016/j.ecolind.2021.107869_b0030) 2009; 96
10.1016/j.ecolind.2021.107869_b0075
Ganteaume (10.1016/j.ecolind.2021.107869_b0200) 2013; 51
Pourtaghi (10.1016/j.ecolind.2021.107869_b0450) 2015; 73
10.1016/j.ecolind.2021.107869_b0190
Costache (10.1016/j.ecolind.2021.107869_b0125) 2019; 33
Vecín-Arias (10.1016/j.ecolind.2021.107869_b0605) 2016; 225
Tien Bui (10.1016/j.ecolind.2021.107869_b0065) 2017; 233
Choubin (10.1016/j.ecolind.2021.107869_b0100) 2019; 651
10.1016/j.ecolind.2021.107869_b0620
Bax (10.1016/j.ecolind.2021.107869_b0025) 2018; 91
Mohajane (10.1016/j.ecolind.2021.107869_b0350) 2018; 5
10.1016/j.ecolind.2021.107869_b0465
10.1016/j.ecolind.2021.107869_b0225
Menard (10.1016/j.ecolind.2021.107869_b0340) 2000; 54
Oliveira (10.1016/j.ecolind.2021.107869_b0380) 2018; 206
Olivella (10.1016/j.ecolind.2021.107869_b0390) 2006; 355
Hong (10.1016/j.ecolind.2021.107869_b0240) 2016; 75
10.1016/j.ecolind.2021.107869_b0460
10.1016/j.ecolind.2021.107869_b0220
Delen (10.1016/j.ecolind.2021.107869_b0155) 2013; 40
Salhi (10.1016/j.ecolind.2021.107869_b0500) 2020; 142853
Zidane (10.1016/j.ecolind.2021.107869_b0640) 2019; 30
Teodoro (10.1016/j.ecolind.2021.107869_b0560) 2013; 27
Truong (10.1016/j.ecolind.2021.107869_b0580) 2018; 8
Pham (10.1016/j.ecolind.2021.107869_b0410) 2018; 303
Chen (10.1016/j.ecolind.2021.107869_b0095) 2019; 78
Peng (10.1016/j.ecolind.2021.107869_b0400) 2002; 96
Vapnik (10.1016/j.ecolind.2021.107869_b0600) 1995
Jaafari (10.1016/j.ecolind.2021.107869_b0275) 2019; 175
Breiman (10.1016/j.ecolind.2021.107869_b0060) 1984
Chebli (10.1016/j.ecolind.2021.107869_b0080) 2018; 101
Costache (10.1016/j.ecolind.2021.107869_b0120) 2019; 33
Lippmann (10.1016/j.ecolind.2021.107869_b0335) 1987; 4
Pourghasemi (10.1016/j.ecolind.2021.107869_b0430) 2020; 184
10.1016/j.ecolind.2021.107869_b0050
El Hafyani (10.1016/j.ecolind.2021.107869_b0170) 2020; 12
Verdú (10.1016/j.ecolind.2021.107869_b0615) 2012; 21
DRATT (Direction Régionale de l’Agriculture de Tanger-Tétouan) (10.1016/j.ecolind.2021.107869_b0165) 2015
Jaafari (10.1016/j.ecolind.2021.107869_b0270) 2019; 243
Escudero (10.1016/j.ecolind.2021.107869_b0180) 2000; 21
References_xml – volume: 25
  start-page: 403
  year: 2016
  ident: b0210
  article-title: Global fire size distribution: from power law to log-normal
  publication-title: Int. J. Wildland Fire
– volume: 142853
  year: 2020
  ident: b0500
  article-title: Impacts and social implications of landuse-environment conflicts in a typical Mediterranean watershed
  publication-title: Sci. Total Environ.
– volume: 110
  year: 2020
  ident: b0610
  article-title: Evaluating the effects of forest fire on water balance using fire susceptibility maps
  publication-title: Ecol. Indic.
– volume: 28
  start-page: 185
  year: 2021
  end-page: 200
  ident: bib644
  article-title: Application of soft computing to predict water quality in wetland
  publication-title: Environ. Sci. Pollut. Res.
– volume: 20
  start-page: 215
  year: 1958
  end-page: 232
  ident: b0150
  article-title: The regression analysis of binary sequences
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 21
  start-page: 498
  year: 2012
  ident: b0615
  article-title: A multivariate analysis of biophysical factors and forest fires in Spain, 1991–2005
  publication-title: Int. J. Wildland Fire
– start-page: 1
  year: 2021
  end-page: 22
  ident: bib641
  article-title: Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods
  publication-title: Soft Comput.
– volume: 29
  start-page: 1149
  year: 2015
  end-page: 1165
  ident: b0550
  article-title: Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 15
  start-page: 373
  year: 2018
  end-page: 384
  ident: b0355
  article-title: Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 29
  start-page: 104
  year: 2006
  end-page: 113
  ident: b0005
  article-title: Ecological and biogeographical analyses of Mediterranean forests of northern Morocco
  publication-title: Acta Oecologica
– volume: 225
  start-page: 36
  year: 2016
  end-page: 47
  ident: b0605
  article-title: Biophysical and lightning characteristics drive lightning-induced fire occurrence in the central plateau of the Iberian Peninsula
  publication-title: Agric. For. Meteorol.
– volume: 355
  start-page: 156
  year: 2006
  end-page: 166
  ident: b0390
  article-title: Distribution of polycyclic aromatic hydrocarbons in riverine waters after Mediterranean forest fires
  publication-title: Sci. Total Environ.
– volume: 4
  start-page: 1
  year: 2009
  end-page: 15
  ident: b0455
  article-title: Landslide risk analysis using artificial neural network model focussing on different training sites
  publication-title: Int. J. Phys. Sci.
– reference: Kingma, D.P., Ba, J., 2017. Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs.
– year: 2014
  ident: b0040
  article-title: Geographic Information Systems for Geoscientists: Modelling with GIS
– reference: Qin, B., Xia, Y., Li, F., 2009. DTU: A Decision Tree for Uncertain Data, in: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (Eds.), Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 4–15. https://doi.org/10.1007/978-3-642-01307-2_4.
– volume: 29
  start-page: 147
  year: 1989
  end-page: 159
  ident: b0105
  article-title: Application of remote sensing and geographic information systems to forest fire hazard mapping
  publication-title: Remote Sens. Environ.
– year: 1984
  ident: b0060
  article-title: Classification and Regression Trees
– volume: 233
  start-page: 32
  year: 2017
  end-page: 44
  ident: b0065
  article-title: A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area
  publication-title: Agric. For. Meteorol.
– volume: 87
  start-page: 458
  year: 2006
  end-page: 468
  ident: b0315
  article-title: Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest
  publication-title: Ecology
– volume: 92
  start-page: 1399
  year: 2018
  end-page: 1418
  ident: b0495
  article-title: GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping
  publication-title: Nat. Hazards
– volume: 21
  start-page: 245
  year: 2000
  end-page: 256
  ident: b0180
  article-title: Is fire a selective force of seed size in pine species?
  publication-title: Acta Oecologica
– volume: 416
  start-page: 108921
  year: 2020
  ident: b0525
  article-title: Natural forest dynamics have more influence than climate change on the net ecosystem production of a mixed Mediterranean forest
  publication-title: Ecol. Model.
– volume: 40
  start-page: 3970
  year: 2013
  end-page: 3983
  ident: b0155
  article-title: Measuring firm performance using financial ratios: a decision tree approach
  publication-title: Expert Syst. Appl.
– volume: 75
  start-page: 61
  year: 2019
  end-page: 75
  ident: b0295
  article-title: An enhanced support vector machine model for urban expansion prediction
  publication-title: Comput. Environ. Urban Syst.
– reference: Amit Parashar, Sas Biswas, n.d. The Impact of Forest Fire on Forest Biodiversity in the Indian Himalayas, 2003. (Uttaranchal) [WWW Document]. URL http://www.fao.org/3/XII/0358-B1.htm#fnB1 (accessed 4.27.20).
– volume: 630
  start-page: 1044
  year: 2018
  end-page: 1056
  ident: b0245
  article-title: Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County
  publication-title: China. Sci. Total Environ.
– reference: Wotton, B.M., Martell, D.L., Logan, K.A., 2003. Climate Change and People-Caused Forest Fire Occurrence in Ontario 21.
– volume: 585
  start-page: 124808
  year: 2020
  ident: b0145
  article-title: Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning
  publication-title: J. Hydrol.
– reference: Peng, C.-Y.J., Manz, B.D., Keck, J., 2001. Modeling Categorical Variables by Logistic Regression [WWW Document]. https://doi.org/info:doi/10.5993/AJHB.25.3.15.
– volume: 8
  start-page: 347
  year: 2016
  ident: b0575
  article-title: Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression
  publication-title: Remote Sens.
– reference: Chavez, P.S., 1996. Image-Based Atmospheric Corrections - Revisited and Improved 12. Photogramm. Eng. Remote Sens. 62(9), 1025–1035.
– volume: 16
  start-page: 406
  year: 2011
  end-page: 411
  ident: b0300
  article-title: Fire as an evolutionary pressure shaping plant traits
  publication-title: Trends Plant Sci.
– reference: HCEFLCD, n.d. HCEFLCD, 2011. Haut-Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification Les incendies de Forêtsau Maroc. Département des Eaux et et Forêts [WWW Document]. URL http://www.eauxetforets.gov.ma/ProtectionForet/Incendies/Pages/Incendies.aspx (accessed 4.29.20).
– volume: 10
  start-page: 196
  year: 2020
  ident: b0085
  article-title: Foraging behavior of goats browsing in Southern Mediterranean Forest Rangeland
  publication-title: Animals
– volume: 114
  start-page: 1230
  year: 2010
  end-page: 1241
  ident: b0310
  article-title: Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 451
  year: 2019
  ident: bib642
  article-title: Combing random forest and least square support vector regression for improving extreme rainfall downscaling
  publication-title: Water
– volume: 711
  start-page: 134514
  year: 2020
  ident: b0135
  article-title: Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models
  publication-title: Sci. Total Environ.
– volume: 91
  start-page: 99
  year: 2018
  end-page: 110
  ident: b0025
  article-title: Environmental predictors of forest change: an analysis of natural predisposition to deforestation in the tropical Andes region, Peru
  publication-title: Appl. Geogr.
– volume: 10
  start-page: 167
  year: 2017
  ident: b0235
  article-title: A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China
  publication-title: Arab. J. Geosci.
– volume: 184
  start-page: 109321
  year: 2020
  ident: b0430
  article-title: Application of learning vector quantization and different machine learning techniques to assessing forest fire influence factors and spatial modelling
  publication-title: Environ. Res.
– volume: 67
  start-page: 93
  year: 2012
  end-page: 104
  ident: b0480
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 1996
  ident: b0530
  article-title: Building Neural Networks
  publication-title: Addison-Wesley Professional
– volume: 125
  start-page: 91
  year: 2015
  end-page: 101
  ident: b0555
  article-title: Flood susceptibility assessment using GIS-based support vector machine model with different kernel types
  publication-title: CATENA
– reference: Nhu, V.-H., Mohammadi, A., Shahabi, H., Ahmad, B.B., Al-Ansari, N., Shirzadi, A., Geertsema, M., R. Kress, V., Karimzadeh, S., Valizadeh Kamran, K., Chen, W., Nguyen, H., 2020. Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia): A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms. Forests 11, 830. https://doi.org/10.3390/f11080830.
– year: 2015
  ident: b0165
  article-title: Monographie de la région du nord du Maroc
– volume: 5
  start-page: 131
  year: 2018
  ident: b0350
  article-title: Land use/land cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco
  publication-title: Environments
– volume: 237
  start-page: 476
  year: 2019
  end-page: 487
  ident: b0570
  article-title: Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: a case study at Lao Cai province (Viet Nam)
  publication-title: J. Environ. Manage.
– volume: 96
  start-page: 3
  year: 2002
  end-page: 14
  ident: b0400
  article-title: An introduction to logistic regression analysis and reporting
  publication-title: J. Educ. Res.
– volume: 78
  start-page: 247
  year: 2019
  end-page: 266
  ident: b0095
  article-title: Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China)
  publication-title: Bull. Eng. Geol. Environ.
– volume: 14
  start-page: 1091
  year: 2017
  end-page: 1111
  ident: b0585
  article-title: Applying Information Theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China
  publication-title: Landslides
– volume: 96
  start-page: 1974
  year: 2009
  end-page: 1982
  ident: b0030
  article-title: Fragment quality and matrix affect epiphytic performance in a Mediterranean forest landscape
  publication-title: Am. J. Bot.
– volume: 303
  start-page: 256
  year: 2018
  end-page: 270
  ident: b0410
  article-title: Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees
  publication-title: Geomorphology
– volume: 31
  start-page: 80
  year: 2016
  end-page: 98
  ident: b0425
  article-title: GIS-based forest fire susceptibility mapping in Iran: a comparison between evidential belief function and binary logistic regression models
  publication-title: Scand. J. For. Res.
– volume: 191
  start-page: 104580
  year: 2020
  ident: b0260
  article-title: Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping
  publication-title: CATENA
– volume: 64
  start-page: 72
  year: 2016
  end-page: 84
  ident: b0445
  article-title: Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques
  publication-title: Ecol. Indic.
– volume: 53
  start-page: 258
  year: 2014
  end-page: 270
  ident: b0015
  article-title: Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests
  publication-title: Appl. Geogr.
– volume: 75
  start-page: 40
  year: 2016
  ident: b0240
  article-title: Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines
  publication-title: Environ. Earth Sci.
– volume: 101
  start-page: 366
  year: 2006
  end-page: 378
  ident: b0285
  article-title: Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction
  publication-title: Remote Sens. Environ.
– reference: Harris, I., Osborn, T.J., Jones, P., Lister, D., 2020. CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2016), Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109. https://doi.org/10.1038/s41597-020-0453-3.
– volume: 4
  start-page: 4
  year: 1987
  end-page: 22
  ident: b0335
  article-title: An introduction to computing with neural nets
  publication-title: IEEE ASSP Mag.
– volume: 33
  start-page: 157
  year: 2018
  end-page: 170
  ident: b0415
  article-title: A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India
  publication-title: Int. J. Sediment Res.
– volume: 61
  start-page: 399
  year: 1997
  end-page: 409
  ident: b0195
  article-title: Decision tree classification of land cover from remotely sensed data
  publication-title: Remote Sens. Environ.
– volume: 31
  start-page: 1579
  year: 2001
  end-page: 1593
  ident: b0160
  article-title: Space–time modelling of lightning-caused ignitions in the Blue Mountains
  publication-title: Oregon. Can. J. For. Res.
– volume: 10
  start-page: 1055
  year: 1999
  end-page: 1064
  ident: b0070
  article-title: Support vector machines for histogram-based image classification
  publication-title: IEEE Trans. Neural Networks
– volume: 691
  start-page: 1098
  year: 2019
  end-page: 1118
  ident: b0130
  article-title: Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: a case study at the Putna river catchment of Romania
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 774
  year: 1963
  end-page: 780
  ident: b0595
  article-title: Pattern recognition using generalized portrait method
  publication-title: Autom. Remote Control
– year: 2000
  ident: b0250
  article-title: Applied Logistic Regression
– year: 1995
  ident: b0600
  article-title: The Nature of Statistical Learning Theory
  publication-title: Springer, New York, New York, NY.
– volume: 34
  start-page: 592
  year: 2008
  end-page: 602
  ident: b0625
  article-title: Cellular automata for simulating land use changes based on support vector machines
  publication-title: Comput. Geosci.
– volume: 146
  start-page: 303
  year: 2001
  end-page: 310
  ident: b0475
  article-title: Applications of machine learning to ecological modelling
  publication-title: Ecol. Model.
– volume: 444
  start-page: 59
  year: 2019
  end-page: 68
  ident: b0185
  article-title: The role of fire frequency and severity on the regeneration of Mediterranean serotinous pines under different environmental conditions
  publication-title: For. Ecol. Manag.
– reference: Tien Bui, D., Ho, T.C., Revhaug, I., Pradhan, B., Nguyen, D.B., 2014. Landslide Susceptibility Mapping Along the National Road 32 of Vietnam Using GIS-Based J48 Decision Tree Classifier and Its Ensembles, in: Buchroithner, M., Prechtel, N., Burghardt, D. (Eds.), Cartography from Pole to Pole, Lecture Notes in Geoinformation and Cartography. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 303–317. https://doi.org/10.1007/978-3-642-32618-9_22.
– volume: 659
  start-page: 1115
  year: 2019
  end-page: 1134
  ident: b0115
  article-title: Flash-Flood Potential assessment in the upper and middle sector of Prahova river catchment (Romania). A comparative approach between four hybrid models
  publication-title: Sci. Total Environ.
– volume: 65
  start-page: 386
  year: 1958
  end-page: 408
  ident: b0485
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
– volume: 43
  start-page: 200
  year: 2018
  end-page: 211
  ident: b0280
  article-title: Wildfire spatial pattern analysis in the Zagros Mountains, Iran: a comparative study of decision tree based classifiers
  publication-title: Ecol. Inform.
– volume: 12
  start-page: 320
  year: 2020
  ident: b0170
  article-title: Assessing regional scale water balances through remote sensing techniques: a case study of Boufakrane River Watershed, Meknes Region, Morocco
  publication-title: Water
– reference: Freden, S.C., Mercanti, E.P., Becker, M.A., 1974. Third Earth Resources Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight Center at Washington, D.C. on December 10-14, 1973 : Prepared at Goddard Space Flight Center. Scientific and Technical Information Office, National Aeronautics and Space Administration.
– volume: 233
  start-page: 104720
  year: 2020
  ident: b0420
  article-title: Physical-empirical models for prediction of seasonal rainfall extremes of Peninsular Malaysia
  publication-title: Atmospheric Res.
– volume: 87
  start-page: 273
  year: 2003
  end-page: 282
  ident: b0205
  article-title: An enhanced contextual fire detection algorithm for MODIS
  publication-title: Remote Sens. Environ.
– volume: 275
  start-page: 117
  year: 2012
  end-page: 129
  ident: b0385
  article-title: Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest
  publication-title: For. Ecol. Manag.
– volume: 8
  start-page: 1046
  year: 2018
  ident: b0580
  article-title: Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree
  publication-title: Appl. Sci.
– volume: 151
  start-page: 147
  year: 2017
  end-page: 160
  ident: b0090
  article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
  publication-title: CATENA
– volume: 47
  start-page: 982
  year: 2005
  end-page: 990
  ident: b0320
  article-title: Probabilistic landslide susceptibility and factor effect analysis
  publication-title: Environ. Geol.
– reference: Belousov, Applicational aspects of support vector machines [WWW Document] https://onlinelibrary.wiley.com/doi/abs/10.1002/cem.744 2002 accessed 4.28.20.
– reference: L. Breiman Random forests., Kluwer Academic Publishers. Manufactured in The Netherlands. ed. 2001 The Netherlands.
– volume: 73
  start-page: 1515
  year: 2015
  end-page: 1533
  ident: b0450
  article-title: Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran
  publication-title: Environ. Earth Sci.
– volume: 12
  start-page: 106
  year: 2020
  ident: b0140
  article-title: Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques
  publication-title: Remote Sens.
– volume: 101
  start-page: 23
  year: 2018
  end-page: 35
  ident: b0080
  article-title: Forest and silvopastoral cover changes and its drivers in northern Morocco
  publication-title: Appl. Geogr.
– volume: 132
  start-page: 97
  year: 2000
  end-page: 109
  ident: b0510
  article-title: Forests of the Mediterranean region: gaps in knowledge and research needs
  publication-title: For. Ecol. Manag.
– volume: 43
  start-page: 3
  year: 2000
  end-page: 31
  ident: b0020
  article-title: Artificial neural networks: fundamentals, computing, design, and application. J
  publication-title: Microbiol. Methods, Neural Comput. Micrbiol.
– start-page: 55
  year: 1998
  end-page: 85
  ident: b0590
  article-title: The support vector method of function estimation
  publication-title: Nonlinear Modeling: Advanced Black-Box Techniques
– reference: Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92. Association for Computing Machinery, Pittsburgh, Pennsylvania, USA, pp. 144–152. https://doi.org/10.1145/130385.130401.
– volume: 30
  start-page: 2185
  year: 2019
  end-page: 2197
  ident: b0330
  article-title: Nonparametric multivariate analysis of variance for affecting factors on the extent of forest fire damage in Jilin Province, China
  publication-title: J. For. Res.
– volume: 27
  start-page: 699
  year: 2013
  end-page: 720
  ident: b0560
  article-title: Forest fire risk maps: a GIS open source application – a case study in Norwest of Portugal
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 217
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0520
  article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping
  publication-title: J. Environ. Manage.
– volume: 33
  start-page: 1375
  year: 2019
  end-page: 1402
  ident: b0120
  article-title: Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0055
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 30
  start-page: 981
  year: 2019
  end-page: 992
  ident: b0640
  article-title: An improved algorithm for mapping burnt areas in the Mediterranean forest landscape of Morocco
  publication-title: J. For. Res.
– start-page: 75
  year: 2019
  end-page: 92
  ident: b0175
  article-title: The global change impacts on forest natural resources in Central Rif Mountains in northern Morocco: extensive exploration and planning perspective
  publication-title: GOT - J. Geogr. Spat. Plan.
– volume: 54
  start-page: 17
  year: 2000
  end-page: 24
  ident: b0340
  article-title: Coefficients of determination for multiple logistic regression analysis
  publication-title: Am. Stat.
– volume: 188
  start-page: 104415
  year: 2020
  ident: b0630
  article-title: Improvement of seasonal runoff and soil loss predictions by the MMF (Morgan-Morgan-Finney) model after wildfire and soil treatment in Mediterranean forest ecosystems
  publication-title: CATENA
– reference: Nsengiyumva, J.B., Luo, G., Amanambu, A.C., Mind’je, R., Habiyaremye, G., Karamage, F., Ochege, F.U., Mupenzi, C., 2019. Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Sci. Total Environ. 659, 1457–1472. https://doi.org/10.1016/j.scitotenv.2018.12.248.
– volume: 7
  start-page: 861
  year: 2016
  end-page: 885
  ident: b0440
  article-title: A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping
  publication-title: Geomat. Nat. Hazards Risk
– volume: 51
  start-page: 651
  year: 2013
  end-page: 662
  ident: b0200
  article-title: A review of the main driving factors of forest fire ignition over Europe
  publication-title: Environ. Manage.
– volume: 137
  start-page: 637
  year: 2019
  end-page: 653
  ident: b0545
  article-title: A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data
  publication-title: Theor. Appl. Climatol.
– year: 2011
  ident: b0540
  article-title: A Gentle Introduction to Support Vector Machines in Biomedicine: Theory and methods
– volume: 261
  start-page: 2179
  year: 2011
  end-page: 2187
  ident: b0110
  article-title: Using Monte Carlo simulations to estimate relative fire ignition danger in a low-to-medium fire-prone region
  publication-title: For. Ecol. Manag.
– volume: 380
  start-page: 59
  year: 2016
  end-page: 69
  ident: b0230
  article-title: Weather, fuels, and topography impede wildland fire spread in western US landscapes
  publication-title: For. Ecol. Manag.
– volume: 609
  start-page: 764
  year: 2017
  end-page: 775
  ident: b0435
  article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling
  publication-title: Sci. Total Environ.
– volume: 255
  start-page: 3170
  year: 2008
  end-page: 3184
  ident: b0515
  article-title: The influence of fuels treatment and landscape arrangement on simulated fire behavior, Southern Cascade range
  publication-title: California. For. Ecol. Manag.
– reference: Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1985. Learning Internal Representations by Error Propagation (No. ICS-8506). California Univ San Diego La Jolla Inst For Cognitive Science.
– volume: 48
  start-page: 59
  year: 2012
  end-page: 65
  ident: b0265
  article-title: Post-fire succession of collembolan communities in a northern hardwood forest
  publication-title: Eur. J. Soil Biol.
– volume: 15
  start-page: 557
  year: 2006
  ident: b0325
  article-title: Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA
  publication-title: Int. J. Wildland Fire
– reference: HCP, (Haut-Commissariat au Plan), 2014. Monographie régionale de Tanger-Tétouan.
– volume: 243
  start-page: 358
  year: 2019
  end-page: 369
  ident: b0270
  article-title: Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability
  publication-title: J. Environ. Manage.
– volume: 260
  start-page: 109867
  year: 2020
  ident: b0345
  article-title: Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility
  publication-title: J. Environ. Manage.
– volume: 206
  start-page: 158
  year: 2018
  end-page: 169
  ident: b0380
  article-title: Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes
  publication-title: J. Environ. Manage.
– volume: 175
  start-page: 430
  year: 2019
  end-page: 445
  ident: b0275
  article-title: Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility
  publication-title: CATENA
– year: 2019
  ident: b0290
  article-title: Urban expansion modeling using an enhanced decision tree algorithm
  publication-title: GeoInformatica
– volume: 39
  start-page: 381
  year: 2008
  end-page: 384
  ident: b0370
  article-title: Research of data mining based on neural networks
  publication-title: World Acad. Sci. Eng. Technol.
– start-page: 302
  year: 1993
  ident: b0470
  article-title: C4.5: programs for machine learning
– reference: Huang, C., Davis, .S, Townshend, J.R.G., 2002. An assessment of support vector machines for land cover classification: International Journal of Remote Sensing: Vol 23, No 4 [WWW Document]. URL https://www.tandfonline.com/doi/abs/10.1080/01431160110040323 (accessed 4.28.20).
– reference: Pausas, J.G., Vallejo, V.R., 1999. The role of fire in European Mediterranean ecosystems, in: Chuvieco, E. (Ed.), Remote Sensing of Large Wildfires. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 3–16. https://doi.org/10.1007/978-3-642-60164-4_2.
– volume: 651
  start-page: 2087
  year: 2019
  end-page: 2096
  ident: b0100
  article-title: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines
  publication-title: Sci. Total Environ.
– volume: 204
  start-page: 108
  year: 2016
  end-page: 120
  ident: b0635
  article-title: Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China
  publication-title: Eng. Geol.
– reference: Python Release Python 3.8.2 [WWW Document], n.d. Python.org. URL https://www.python.org/downloads/release/python-382/ (accessed 1.17.21).
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 15
  ident: b0360
  article-title: Assessment of landslide susceptibility by decision trees in the Metropolitan area of Istanbul
  publication-title: Turkey. Math. Probl. Eng.
– volume: 33
  start-page: 3239
  year: 2019
  end-page: 3256
  ident: b0125
  article-title: Flood susceptibility assessment by using bivariate statistics and machine learning models-a useful tool for flood risk management
  publication-title: Water Resour. Manag.
– volume: 57
  start-page: 79
  year: 2005
  end-page: 118
  ident: b0535
  article-title: Cultivation of Cannabis sativa L. in northern Morocco
  publication-title: Bull. Narc.
– volume: 24
  start-page: 18039
  year: 2020
  end-page: 18056
  ident: bib643
  article-title: Hybrid model to improve the river streamflow forecasting utilizing multi-layer perceptron-based intelligent water drop optimization algorithm
  publication-title: Soft. Comput.
– volume: 71
  start-page: 80
  year: 2014
  end-page: 86
  ident: b0505
  article-title: Mulch application as post-fire rehabilitation treatment does not affect vegetation recovery in ecosystems dominated by obligate seeders
  publication-title: Ecol. Eng.
– year: 2011
  ident: 10.1016/j.ecolind.2021.107869_b0540
– volume: 204
  start-page: 108
  year: 2016
  ident: 10.1016/j.ecolind.2021.107869_b0635
  article-title: Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2016.02.009
– ident: 10.1016/j.ecolind.2021.107869_b0305
– volume: 630
  start-page: 1044
  year: 2018
  ident: 10.1016/j.ecolind.2021.107869_b0245
  article-title: Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County
  publication-title: China. Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.278
– ident: 10.1016/j.ecolind.2021.107869_b0375
  doi: 10.1016/j.scitotenv.2018.12.248
– volume: 71
  start-page: 80
  year: 2014
  ident: 10.1016/j.ecolind.2021.107869_b0505
  article-title: Mulch application as post-fire rehabilitation treatment does not affect vegetation recovery in ecosystems dominated by obligate seeders
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2014.07.037
– volume: 34
  start-page: 592
  year: 2008
  ident: 10.1016/j.ecolind.2021.107869_b0625
  article-title: Cellular automata for simulating land use changes based on support vector machines
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2007.08.003
– ident: 10.1016/j.ecolind.2021.107869_b0225
– ident: 10.1016/j.ecolind.2021.107869_b0405
  doi: 10.5993/AJHB.25.3.15
– volume: 380
  start-page: 59
  year: 2016
  ident: 10.1016/j.ecolind.2021.107869_b0230
  article-title: Weather, fuels, and topography impede wildland fire spread in western US landscapes
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2016.08.035
– volume: 10
  start-page: 196
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0085
  article-title: Foraging behavior of goats browsing in Southern Mediterranean Forest Rangeland
  publication-title: Animals
  doi: 10.3390/ani10020196
– volume: 137
  start-page: 637
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0545
  article-title: A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-018-2628-9
– volume: 175
  start-page: 430
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0275
  article-title: Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility
  publication-title: CATENA
  doi: 10.1016/j.catena.2018.12.033
– ident: 10.1016/j.ecolind.2021.107869_b0465
  doi: 10.1007/978-3-642-01307-2_4
– start-page: 1
  year: 2021
  ident: 10.1016/j.ecolind.2021.107869_bib641
  article-title: Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods
  publication-title: Soft Comput.
– volume: 7
  start-page: 861
  year: 2016
  ident: 10.1016/j.ecolind.2021.107869_b0440
  article-title: A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2014.984247
– volume: 24
  start-page: 774
  year: 1963
  ident: 10.1016/j.ecolind.2021.107869_b0595
  article-title: Pattern recognition using generalized portrait method
  publication-title: Autom. Remote Control
– volume: 64
  start-page: 72
  year: 2016
  ident: 10.1016/j.ecolind.2021.107869_b0445
  article-title: Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.12.030
– volume: 10
  start-page: 1055
  year: 1999
  ident: 10.1016/j.ecolind.2021.107869_b0070
  article-title: Support vector machines for histogram-based image classification
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.788646
– ident: 10.1016/j.ecolind.2021.107869_b0220
– volume: 47
  start-page: 982
  issue: 7
  year: 2005
  ident: 10.1016/j.ecolind.2021.107869_b0320
  article-title: Probabilistic landslide susceptibility and factor effect analysis
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-005-1228-z
– volume: 29
  start-page: 1149
  year: 2015
  ident: 10.1016/j.ecolind.2021.107869_b0550
  article-title: Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-015-1021-9
– volume: 255
  start-page: 3170
  year: 2008
  ident: 10.1016/j.ecolind.2021.107869_b0515
  article-title: The influence of fuels treatment and landscape arrangement on simulated fire behavior, Southern Cascade range
  publication-title: California. For. Ecol. Manag.
– volume: 48
  start-page: 59
  year: 2012
  ident: 10.1016/j.ecolind.2021.107869_b0265
  article-title: Post-fire succession of collembolan communities in a northern hardwood forest
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2011.10.004
– year: 1984
  ident: 10.1016/j.ecolind.2021.107869_b0060
– volume: 75
  start-page: 40
  year: 2016
  ident: 10.1016/j.ecolind.2021.107869_b0240
  article-title: Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4866-9
– volume: 151
  start-page: 147
  year: 2017
  ident: 10.1016/j.ecolind.2021.107869_b0090
  article-title: A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility
  publication-title: CATENA
  doi: 10.1016/j.catena.2016.11.032
– volume: 11
  start-page: 451
  issue: 3
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_bib642
  article-title: Combing random forest and least square support vector regression for improving extreme rainfall downscaling
  publication-title: Water
  doi: 10.3390/w11030451
– volume: 355
  start-page: 156
  year: 2006
  ident: 10.1016/j.ecolind.2021.107869_b0390
  article-title: Distribution of polycyclic aromatic hydrocarbons in riverine waters after Mediterranean forest fires
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.02.033
– volume: 78
  start-page: 247
  issue: 1
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0095
  article-title: Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China)
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-018-1256-z
– volume: 15
  start-page: 557
  year: 2006
  ident: 10.1016/j.ecolind.2021.107869_b0325
  article-title: Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF05096
– ident: 10.1016/j.ecolind.2021.107869_b0045
  doi: 10.1145/130385.130401
– volume: 33
  start-page: 157
  year: 2018
  ident: 10.1016/j.ecolind.2021.107869_b0415
  article-title: A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India
  publication-title: Int. J. Sediment Res.
  doi: 10.1016/j.ijsrc.2017.09.008
– volume: 30
  start-page: 2185
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0330
  article-title: Nonparametric multivariate analysis of variance for affecting factors on the extent of forest fire damage in Jilin Province, China
  publication-title: J. For. Res.
  doi: 10.1007/s11676-019-00958-1
– volume: 191
  start-page: 104580
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0260
  article-title: Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.104580
– volume: 43
  start-page: 200
  year: 2018
  ident: 10.1016/j.ecolind.2021.107869_b0280
  article-title: Wildfire spatial pattern analysis in the Zagros Mountains, Iran: a comparative study of decision tree based classifiers
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2017.12.006
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.ecolind.2021.107869_b0055
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018054314350
– volume: 30
  start-page: 981
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0640
  article-title: An improved algorithm for mapping burnt areas in the Mediterranean forest landscape of Morocco
  publication-title: J. For. Res.
  doi: 10.1007/s11676-018-0669-7
– year: 1996
  ident: 10.1016/j.ecolind.2021.107869_b0530
  article-title: Building Neural Networks
  publication-title: Addison-Wesley Professional
– volume: 233
  start-page: 104720
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0420
  article-title: Physical-empirical models for prediction of seasonal rainfall extremes of Peninsular Malaysia
  publication-title: Atmospheric Res.
  doi: 10.1016/j.atmosres.2019.104720
– ident: 10.1016/j.ecolind.2021.107869_b0620
  doi: 10.1023/A:1026075919710
– volume: 40
  start-page: 3970
  issue: 10
  year: 2013
  ident: 10.1016/j.ecolind.2021.107869_b0155
  article-title: Measuring firm performance using financial ratios: a decision tree approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.01.012
– volume: 651
  start-page: 2087
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0100
  article-title: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.064
– volume: 91
  start-page: 99
  year: 2018
  ident: 10.1016/j.ecolind.2021.107869_b0025
  article-title: Environmental predictors of forest change: an analysis of natural predisposition to deforestation in the tropical Andes region, Peru
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2018.01.002
– volume: 29
  start-page: 104
  year: 2006
  ident: 10.1016/j.ecolind.2021.107869_b0005
  article-title: Ecological and biogeographical analyses of Mediterranean forests of northern Morocco
  publication-title: Acta Oecologica
  doi: 10.1016/j.actao.2005.08.006
– volume: 101
  start-page: 366
  year: 2006
  ident: 10.1016/j.ecolind.2021.107869_b0285
  article-title: Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.01.003
– volume: 303
  start-page: 256
  year: 2018
  ident: 10.1016/j.ecolind.2021.107869_b0410
  article-title: Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.12.008
– volume: 27
  start-page: 699
  year: 2013
  ident: 10.1016/j.ecolind.2021.107869_b0560
  article-title: Forest fire risk maps: a GIS open source application – a case study in Norwest of Portugal
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2012.721554
– ident: 10.1016/j.ecolind.2021.107869_b0255
  doi: 10.1080/01431160110040323
– volume: 416
  start-page: 108921
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0525
  article-title: Natural forest dynamics have more influence than climate change on the net ecosystem production of a mixed Mediterranean forest
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2019.108921
– volume: 92
  start-page: 1399
  year: 2018
  ident: 10.1016/j.ecolind.2021.107869_b0495
  article-title: GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3256-5
– volume: 184
  start-page: 109321
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0430
  article-title: Application of learning vector quantization and different machine learning techniques to assessing forest fire influence factors and spatial modelling
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109321
– volume: 243
  start-page: 358
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0270
  article-title: Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.04.117
– volume: 75
  start-page: 61
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0295
  article-title: An enhanced support vector machine model for urban expansion prediction
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2019.01.001
– volume: 57
  start-page: 79
  year: 2005
  ident: 10.1016/j.ecolind.2021.107869_b0535
  article-title: Cultivation of Cannabis sativa L. in northern Morocco
  publication-title: Bull. Narc.
– volume: 114
  start-page: 1230
  year: 2010
  ident: 10.1016/j.ecolind.2021.107869_b0310
  article-title: Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.01.007
– volume: 21
  start-page: 245
  issue: 4-5
  year: 2000
  ident: 10.1016/j.ecolind.2021.107869_b0180
  article-title: Is fire a selective force of seed size in pine species?
  publication-title: Acta Oecologica
  doi: 10.1016/S1146-609X(00)01083-3
– volume: 125
  start-page: 91
  year: 2015
  ident: 10.1016/j.ecolind.2021.107869_b0555
  article-title: Flood susceptibility assessment using GIS-based support vector machine model with different kernel types
  publication-title: CATENA
  doi: 10.1016/j.catena.2014.10.017
– volume: 110
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0610
  article-title: Evaluating the effects of forest fire on water balance using fire susceptibility maps
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2019.105856
– volume: 132
  start-page: 97
  year: 2000
  ident: 10.1016/j.ecolind.2021.107869_b0510
  article-title: Forests of the Mediterranean region: gaps in knowledge and research needs
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(00)00383-2
– volume: 101
  start-page: 23
  year: 2018
  ident: 10.1016/j.ecolind.2021.107869_b0080
  article-title: Forest and silvopastoral cover changes and its drivers in northern Morocco
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2018.10.006
– volume: 12
  start-page: 106
  issue: 1
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0140
  article-title: Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques
  publication-title: Remote Sens.
  doi: 10.3390/rs12010106
– volume: 8
  start-page: 347
  year: 2016
  ident: 10.1016/j.ecolind.2021.107869_b0575
  article-title: Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression
  publication-title: Remote Sens.
  doi: 10.3390/rs8040347
– volume: 51
  start-page: 651
  issue: 3
  year: 2013
  ident: 10.1016/j.ecolind.2021.107869_b0200
  article-title: A review of the main driving factors of forest fire ignition over Europe
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-012-9961-z
– volume: 25
  start-page: 403
  issue: 4
  year: 2016
  ident: 10.1016/j.ecolind.2021.107869_b0210
  article-title: Global fire size distribution: from power law to log-normal
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF15108
– volume: 233
  start-page: 32
  year: 2017
  ident: 10.1016/j.ecolind.2021.107869_b0065
  article-title: A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.11.002
– volume: 585
  start-page: 124808
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0145
  article-title: Spatial predicting of flood potential areas using novel hybridizations of fuzzy decision-making, bivariate statistics, and machine learning
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124808
– volume: 275
  start-page: 117
  year: 2012
  ident: 10.1016/j.ecolind.2021.107869_b0385
  article-title: Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2012.03.003
– volume: 73
  start-page: 1515
  year: 2015
  ident: 10.1016/j.ecolind.2021.107869_b0450
  article-title: Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-014-3502-4
– volume: 225
  start-page: 36
  year: 2016
  ident: 10.1016/j.ecolind.2021.107869_b0605
  article-title: Biophysical and lightning characteristics drive lightning-induced fire occurrence in the central plateau of the Iberian Peninsula
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.05.003
– volume: 21
  start-page: 498
  year: 2012
  ident: 10.1016/j.ecolind.2021.107869_b0615
  article-title: A multivariate analysis of biophysical factors and forest fires in Spain, 1991–2005
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF11100
– volume: 33
  start-page: 1375
  issue: 7
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0120
  article-title: Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-019-01689-9
– volume: 12
  start-page: 320
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0170
  article-title: Assessing regional scale water balances through remote sensing techniques: a case study of Boufakrane River Watershed, Meknes Region, Morocco
  publication-title: Water
  doi: 10.3390/w12020320
– volume: 29
  start-page: 147
  issue: 2
  year: 1989
  ident: 10.1016/j.ecolind.2021.107869_b0105
  article-title: Application of remote sensing and geographic information systems to forest fire hazard mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(89)90023-0
– volume: 188
  start-page: 104415
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0630
  article-title: Improvement of seasonal runoff and soil loss predictions by the MMF (Morgan-Morgan-Finney) model after wildfire and soil treatment in Mediterranean forest ecosystems
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.104415
– volume: 43
  start-page: 3
  issue: 1
  year: 2000
  ident: 10.1016/j.ecolind.2021.107869_b0020
  article-title: Artificial neural networks: fundamentals, computing, design, and application. J
  publication-title: Microbiol. Methods, Neural Comput. Micrbiol.
  doi: 10.1016/S0167-7012(00)00201-3
– year: 2015
  ident: 10.1016/j.ecolind.2021.107869_b0165
– ident: #cr-split#-10.1016/j.ecolind.2021.107869_b0215.2
  doi: 10.1038/s41597-020-0453-3
– volume: 54
  start-page: 17
  year: 2000
  ident: 10.1016/j.ecolind.2021.107869_b0340
  article-title: Coefficients of determination for multiple logistic regression analysis
  publication-title: Am. Stat.
  doi: 10.1080/00031305.2000.10474502
– ident: 10.1016/j.ecolind.2021.107869_b0050
– ident: 10.1016/j.ecolind.2021.107869_b0190
– volume: 33
  start-page: 3239
  issue: 9
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0125
  article-title: Flood susceptibility assessment by using bivariate statistics and machine learning models-a useful tool for flood risk management
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-019-02301-z
– volume: 4
  start-page: 4
  year: 1987
  ident: 10.1016/j.ecolind.2021.107869_b0335
  article-title: An introduction to computing with neural nets
  publication-title: IEEE ASSP Mag.
  doi: 10.1109/MASSP.1987.1165576
– volume: 24
  start-page: 18039
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_bib643
  article-title: Hybrid model to improve the river streamflow forecasting utilizing multi-layer perceptron-based intelligent water drop optimization algorithm
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-020-05058-5
– volume: 31
  start-page: 80
  year: 2016
  ident: 10.1016/j.ecolind.2021.107869_b0425
  article-title: GIS-based forest fire susceptibility mapping in Iran: a comparison between evidential belief function and binary logistic regression models
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827581.2015.1052750
– start-page: 55
  year: 1998
  ident: 10.1016/j.ecolind.2021.107869_b0590
  article-title: The support vector method of function estimation
– volume: 10
  start-page: 167
  year: 2017
  ident: 10.1016/j.ecolind.2021.107869_b0235
  article-title: A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-017-2905-4
– ident: 10.1016/j.ecolind.2021.107869_b0075
– volume: 237
  start-page: 476
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0570
  article-title: Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: a case study at Lao Cai province (Viet Nam)
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.01.108
– volume: 96
  start-page: 1974
  issue: 11
  year: 2009
  ident: 10.1016/j.ecolind.2021.107869_b0030
  article-title: Fragment quality and matrix affect epiphytic performance in a Mediterranean forest landscape
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.0900040
– volume: 142853
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0500
  article-title: Impacts and social implications of landuse-environment conflicts in a typical Mediterranean watershed
  publication-title: Sci. Total Environ.
– ident: #cr-split#-10.1016/j.ecolind.2021.107869_b0215.1
– volume: 217
  start-page: 1
  year: 2018
  ident: 10.1016/j.ecolind.2021.107869_b0520
  article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2018.03.089
– volume: 87
  start-page: 458
  year: 2006
  ident: 10.1016/j.ecolind.2021.107869_b0315
  article-title: Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest
  publication-title: Ecology
  doi: 10.1890/05-1021
– volume: 261
  start-page: 2179
  issue: 12
  year: 2011
  ident: 10.1016/j.ecolind.2021.107869_b0110
  article-title: Using Monte Carlo simulations to estimate relative fire ignition danger in a low-to-medium fire-prone region
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2010.08.013
– ident: 10.1016/j.ecolind.2021.107869_b0365
  doi: 10.3390/f11080830
– volume: 260
  start-page: 109867
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0345
  article-title: Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.109867
– volume: 444
  start-page: 59
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0185
  article-title: The role of fire frequency and severity on the regeneration of Mediterranean serotinous pines under different environmental conditions
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2019.04.040
– year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0290
  article-title: Urban expansion modeling using an enhanced decision tree algorithm
  publication-title: GeoInformatica
– volume: 711
  start-page: 134514
  year: 2020
  ident: 10.1016/j.ecolind.2021.107869_b0135
  article-title: Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134514
– volume: 609
  start-page: 764
  year: 2017
  ident: 10.1016/j.ecolind.2021.107869_b0435
  article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.198
– volume: 8
  start-page: 1046
  year: 2018
  ident: 10.1016/j.ecolind.2021.107869_b0580
  article-title: Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree
  publication-title: Appl. Sci.
  doi: 10.3390/app8071046
– year: 2000
  ident: 10.1016/j.ecolind.2021.107869_b0250
– volume: 53
  start-page: 258
  year: 2014
  ident: 10.1016/j.ecolind.2021.107869_b0015
  article-title: Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2014.05.015
– volume: 691
  start-page: 1098
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0130
  article-title: Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: a case study at the Putna river catchment of Romania
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.197
– ident: 10.1016/j.ecolind.2021.107869_b0460
– start-page: 302
  year: 1993
  ident: 10.1016/j.ecolind.2021.107869_b0470
– start-page: 75
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0175
  article-title: The global change impacts on forest natural resources in Central Rif Mountains in northern Morocco: extensive exploration and planning perspective
  publication-title: GOT - J. Geogr. Spat. Plan.
– volume: 16
  start-page: 406
  year: 2011
  ident: 10.1016/j.ecolind.2021.107869_b0300
  article-title: Fire as an evolutionary pressure shaping plant traits
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2011.04.002
– volume: 87
  start-page: 273
  issue: 2-3
  year: 2003
  ident: 10.1016/j.ecolind.2021.107869_b0205
  article-title: An enhanced contextual fire detection algorithm for MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00184-6
– volume: 61
  start-page: 399
  issue: 3
  year: 1997
  ident: 10.1016/j.ecolind.2021.107869_b0195
  article-title: Decision tree classification of land cover from remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00049-7
– ident: 10.1016/j.ecolind.2021.107869_b0565
  doi: 10.1007/978-3-642-32618-9_22
– year: 1995
  ident: 10.1016/j.ecolind.2021.107869_b0600
  article-title: The Nature of Statistical Learning Theory
  publication-title: Springer, New York, New York, NY.
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.ecolind.2021.107869_b0360
  article-title: Assessment of landslide susceptibility by decision trees in the Metropolitan area of Istanbul
  publication-title: Turkey. Math. Probl. Eng.
– volume: 20
  start-page: 215
  issue: 2
  year: 1958
  ident: 10.1016/j.ecolind.2021.107869_b0150
  article-title: The regression analysis of binary sequences
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1958.tb00292.x
– volume: 67
  start-page: 93
  year: 2012
  ident: 10.1016/j.ecolind.2021.107869_b0480
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.11.002
– volume: 28
  start-page: 185
  issue: 1
  year: 2021
  ident: 10.1016/j.ecolind.2021.107869_bib644
  article-title: Application of soft computing to predict water quality in wetland
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-10344-8
– ident: 10.1016/j.ecolind.2021.107869_b0490
  doi: 10.21236/ADA164453
– volume: 65
  start-page: 386
  year: 1958
  ident: 10.1016/j.ecolind.2021.107869_b0485
  article-title: The perceptron: a probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 15
  start-page: 373
  year: 2018
  ident: 10.1016/j.ecolind.2021.107869_b0355
  article-title: Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-017-1371-6
– ident: 10.1016/j.ecolind.2021.107869_b0395
  doi: 10.1007/978-3-642-60164-4_2
– ident: 10.1016/j.ecolind.2021.107869_b0035
– volume: 31
  start-page: 1579
  issue: 9
  year: 2001
  ident: 10.1016/j.ecolind.2021.107869_b0160
  article-title: Space–time modelling of lightning-caused ignitions in the Blue Mountains
  publication-title: Oregon. Can. J. For. Res.
– year: 2014
  ident: 10.1016/j.ecolind.2021.107869_b0040
– volume: 146
  start-page: 303
  year: 2001
  ident: 10.1016/j.ecolind.2021.107869_b0475
  article-title: Applications of machine learning to ecological modelling
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(01)00316-7
– volume: 5
  start-page: 131
  year: 2018
  ident: 10.1016/j.ecolind.2021.107869_b0350
  article-title: Land use/land cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco
  publication-title: Environments
  doi: 10.3390/environments5120131
– volume: 96
  start-page: 3
  year: 2002
  ident: 10.1016/j.ecolind.2021.107869_b0400
  article-title: An introduction to logistic regression analysis and reporting
  publication-title: J. Educ. Res.
  doi: 10.1080/00220670209598786
– ident: 10.1016/j.ecolind.2021.107869_b0010
– volume: 206
  start-page: 158
  year: 2018
  ident: 10.1016/j.ecolind.2021.107869_b0380
  article-title: Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2017.10.003
– volume: 14
  start-page: 1091
  year: 2017
  ident: 10.1016/j.ecolind.2021.107869_b0585
  article-title: Applying Information Theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China
  publication-title: Landslides
  doi: 10.1007/s10346-016-0769-4
– volume: 4
  start-page: 1
  year: 2009
  ident: 10.1016/j.ecolind.2021.107869_b0455
  article-title: Landslide risk analysis using artificial neural network model focussing on different training sites
  publication-title: Int. J. Phys. Sci.
– volume: 39
  start-page: 381
  issue: 1
  year: 2008
  ident: 10.1016/j.ecolind.2021.107869_b0370
  article-title: Research of data mining based on neural networks
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 659
  start-page: 1115
  year: 2019
  ident: 10.1016/j.ecolind.2021.107869_b0115
  article-title: Flash-Flood Potential assessment in the upper and middle sector of Prahova river catchment (Romania). A comparative approach between four hybrid models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.397
SSID ssj0016996
Score 2.659137
Snippet •Five new ensemble models were developed for forest fire susceptibility modeling.•10 conditioning factors were considered in this study.•RF-FR ensemble model...
Forest fire disaster is currently the subject of intense research worldwide. The development of accurate strategies to prevent potential impacts and minimize...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107869
SubjectTerms Forest fire
forest fires
forests
Hybrid machine learning algorithm
hybrids
inventories
land use
Mediterranean area
Mediterranean region
Morocco
prediction
rain
regression analysis
Remote sensing
risk
temperature
wind speed
Title Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area
URI https://dx.doi.org/10.1016/j.ecolind.2021.107869
https://www.proquest.com/docview/2986259318
https://doaj.org/article/5909ec1491bb475587673f6dd86280e7
Volume 129
WOSCitedRecordID wos000681694700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1872-7034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016996
  issn: 1470-160X
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-7034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016996
  issn: 1470-160X
  databaseCode: AIEXJ
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECaKoEOXImkb1HkULNBVNmWJrzEJEmQKOnjwRpDS0XUQy4Xl5PfnTqLstIuXDIIgii_w4_HuwHsw9gt5vvBGmkzUtcxKK2RmoCyyShUAQWrk-bFLNqEfHsx8bn-_SfVFNmF9eOB-4SbSCgsVyvF5CKWWEqlXF1HVNYriRkDnR47jDcpUuj9Q1vZ-RVpkuRLzve_O5HGMeh2KcBQmdJpjmTZk7fyGK3XB-_9hTv8d0x3vuTtmn5PQyK_6yZ6wD9B8Yae3ex81_JmItP3KVlf7S2m-jnwDCAfwlkzVmwX3Tc1XnQkl8JQzAgufFuvNcvtn1XKUYunBafCI5yHWpRAOC75suOd0r4NIIIMDj98ocX5js7vb2c19lrIqZBUlL8iCDVUpjI9Kl1HKmBdhqoWMQEYwEkQEb4z1XqlKlhpfuazBx9LjmofaFKfsqFk38J3xvJYURFT5KaCaFiuDnaFyWyBKQQSpRqwcFtVVKeI4Jb54coNp2aNLWDjCwvVYjNh41-xvH3LjUINrQmxXmSJmdwW4j1zaR-7QPhoxM-DtkvDRCxXY1fLQ-D-H_eGQOOnGBVFYP7duag3pl3hunr3HHM_ZJxq2tyW8YEfbzTNcso_Vy3bZbn50FPAKuF0JLw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+remote+sensing+and+machine+learning+algorithms+for+forest+fire+mapping+in+a+Mediterranean+area&rft.jtitle=Ecological+indicators&rft.au=Mohajane%2C+Meriame&rft.au=Costache%2C+Romulus&rft.au=Karimi%2C+Firoozeh&rft.au=Bao+Pham%2C+Quoc&rft.date=2021-10-01&rft.issn=1470-160X&rft.volume=129&rft.spage=107869&rft_id=info:doi/10.1016%2Fj.ecolind.2021.107869&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecolind_2021_107869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon