Modeling Pharmacokinetics in Individual Patients Using Therapeutic Drug Monitoring and Artificial Population Quasi-Models: A Study with Piperacillin
Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual es...
Saved in:
| Published in: | Pharmaceutics Vol. 16; no. 3; p. 358 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
01.03.2024
MDPI |
| Subjects: | |
| ISSN: | 1999-4923, 1999-4923 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual estimates of pharmacokinetic parameters. Based on 72 concentrations obtained in 12 patients, one- and two-compartment pop-PK models with or without creatinine clearance as a covariate were generated for piperacillin using the nonparametric adaptive grid algorithm. Thirty quasi-models were subsequently generated for each model type, and nonparametric maximum a posteriori probability Bayesian estimates were established for each patient. A significant difference in performance was found between one- and two-compartment models. Acceptable agreement was found between predicted and observed piperacillin concentrations, and between the estimates of the random-effect pharmacokinetic variables obtained using the so-called support points of the pop-PK models or the quasi-models as priors. The mean squared errors of the predictions made using the quasi-models were similar to, or even considerably lower than those obtained when employing the pop-PK models. Conclusion: fully artificial nonparametric quasi-models can efficiently augment pop-PK models containing few support points, to make individual pharmacokinetic estimates in the clinical setting. |
|---|---|
| AbstractList | Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual estimates of pharmacokinetic parameters. Based on 72 concentrations obtained in 12 patients, one- and two-compartment pop-PK models with or without creatinine clearance as a covariate were generated for piperacillin using the nonparametric adaptive grid algorithm. Thirty quasi-models were subsequently generated for each model type, and nonparametric maximum a posteriori probability Bayesian estimates were established for each patient. A significant difference in performance was found between one- and two-compartment models. Acceptable agreement was found between predicted and observed piperacillin concentrations, and between the estimates of the random-effect pharmacokinetic variables obtained using the so-called support points of the pop-PK models or the quasi-models as priors. The mean squared errors of the predictions made using the quasi-models were similar to, or even considerably lower than those obtained when employing the pop-PK models. Conclusion: fully artificial nonparametric quasi-models can efficiently augment pop-PK models containing few support points, to make individual pharmacokinetic estimates in the clinical setting.Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual estimates of pharmacokinetic parameters. Based on 72 concentrations obtained in 12 patients, one- and two-compartment pop-PK models with or without creatinine clearance as a covariate were generated for piperacillin using the nonparametric adaptive grid algorithm. Thirty quasi-models were subsequently generated for each model type, and nonparametric maximum a posteriori probability Bayesian estimates were established for each patient. A significant difference in performance was found between one- and two-compartment models. Acceptable agreement was found between predicted and observed piperacillin concentrations, and between the estimates of the random-effect pharmacokinetic variables obtained using the so-called support points of the pop-PK models or the quasi-models as priors. The mean squared errors of the predictions made using the quasi-models were similar to, or even considerably lower than those obtained when employing the pop-PK models. Conclusion: fully artificial nonparametric quasi-models can efficiently augment pop-PK models containing few support points, to make individual pharmacokinetic estimates in the clinical setting. Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual estimates of pharmacokinetic parameters. Based on 72 concentrations obtained in 12 patients, one- and two-compartment pop-PK models with or without creatinine clearance as a covariate were generated for piperacillin using the nonparametric adaptive grid algorithm. Thirty quasi-models were subsequently generated for each model type, and nonparametric maximum a posteriori probability Bayesian estimates were established for each patient. A significant difference in performance was found between one- and two-compartment models. Acceptable agreement was found between predicted and observed piperacillin concentrations, and between the estimates of the random-effect pharmacokinetic variables obtained using the so-called support points of the pop-PK models or the quasi-models as priors. The mean squared errors of the predictions made using the quasi-models were similar to, or even considerably lower than those obtained when employing the pop-PK models. Conclusion: fully artificial nonparametric quasi-models can efficiently augment pop-PK models containing few support points, to make individual pharmacokinetic estimates in the clinical setting. |
| Audience | Academic |
| Author | Karvaly, Gellért Balázs Neely, Michael Noel Nagy, Zsuzsanna Kocsis, Ibolya Kopitkó, Csaba Vincze, István Zátroch, István |
| AuthorAffiliation | 1 Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary; vincze.istvan@pharma.semmelweis-univ.hu (I.V.); kocsis.ibolya@med.semmelweis-univ.hu (I.K.) 3 Central Department of Anaesthesiology and Intensive Care, Uzsoki Teaching Hospital, 1145 Budapest, Hungary; zatroch.istvan@uzsoki.hu (I.Z.); kopitko.csaba@uzsoki.hu (C.K.) 4 Central Laboratory, Uzsoki Teaching Hospital, 1145 Budapest, Hungary; nagy.zsuzsanna@uzsoki.hu 2 Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, University of Southern California, Los Angeles, CA 90027, USA; mneely@chla.usc.edu |
| AuthorAffiliation_xml | – name: 2 Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, University of Southern California, Los Angeles, CA 90027, USA; mneely@chla.usc.edu – name: 1 Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary; vincze.istvan@pharma.semmelweis-univ.hu (I.V.); kocsis.ibolya@med.semmelweis-univ.hu (I.K.) – name: 4 Central Laboratory, Uzsoki Teaching Hospital, 1145 Budapest, Hungary; nagy.zsuzsanna@uzsoki.hu – name: 3 Central Department of Anaesthesiology and Intensive Care, Uzsoki Teaching Hospital, 1145 Budapest, Hungary; zatroch.istvan@uzsoki.hu (I.Z.); kopitko.csaba@uzsoki.hu (C.K.) |
| Author_xml | – sequence: 1 givenname: Gellért Balázs orcidid: 0000-0003-2468-5633 surname: Karvaly fullname: Karvaly, Gellért Balázs – sequence: 2 givenname: István orcidid: 0000-0002-6843-7159 surname: Vincze fullname: Vincze, István – sequence: 3 givenname: Michael Noel orcidid: 0000-0002-1675-8276 surname: Neely fullname: Neely, Michael Noel – sequence: 4 givenname: István orcidid: 0000-0003-4475-9257 surname: Zátroch fullname: Zátroch, István – sequence: 5 givenname: Zsuzsanna surname: Nagy fullname: Nagy, Zsuzsanna – sequence: 6 givenname: Ibolya surname: Kocsis fullname: Kocsis, Ibolya – sequence: 7 givenname: Csaba orcidid: 0000-0002-1922-7294 surname: Kopitkó fullname: Kopitkó, Csaba |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38543252$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkl1v0zAUhiM0xMbYTwBZ4oabDH8mMTeoGl-VNlHEdm05jtO6pHZmJ0P7H_xgTtoxtWj2hS37Oa_POX5fZkc-eJtlrwk-Z0zi9_1Kx402dhycSaTADDNRPctOiJQy55Kyo739cXaW0hrDYIxUTL7IjlklOKOCnmR_rkJjO-eXaLHTDL-ct5Msch7NfePuXDPqDi304KwfErpJE329slH32wTQpzgu0VXwbghxutO-QbM4uNYZN0WGfuwgOnj0Y9TJ5dsn0wc0Qz-HsblHv92wQgvXg6JxHSTzKnve6i7Zs4f1NLv58vn64lt--f3r_GJ2mRtByZDXvNa6LqkhhuJa86bFlPPKtIxWhSCNJbWsi7riRStkxSkmJbSJilJIho0t2Gk23-k2Qa9VH91Gx3sVtFPbgxCXSkMdprOqKAyhpbXCspJbJmVLuDFG14Y31pQStD7utPqx3tjGQK-i7g5ED2-8W6lluFMEy1KQasrm3YNCDLejTYPauGRs12lvw5gUw4RjLCB5QN_-h67DGD30Cij4ZgGG2KOWGipwvg3wsJlE1aysoBGU0RKo8ycomI3dOAO-ax2cHwS82a_0scR_pgJA7AATQ0rRto8IwWryr3rSv-wv-STnkQ |
| Cites_doi | 10.3390/pharmaceutics14122731 10.1146/annurev-pharmtox-033020-113257 10.1002/cpt.2202 10.1007/s40262-022-01138-x 10.3390/pharmaceutics13122170 10.1007/s40262-022-01113-6 10.3389/fphar.2020.00420 10.1007/BF03261932 10.3389/fphar.2022.1016399 10.1097/FTD.0000000000001078 10.3390/pharmaceutics14081530 10.1208/s12248-022-00769-z 10.1007/s00134-021-06506-y 10.1159/000533173 10.1007/s00134-023-07154-0 10.1097/FTD.0000000000000168 10.1177/20420986231181337 10.1007/s11095-023-03507-y 10.1097/FTD.0b013e31825c4ba6 10.1186/s13054-016-1478-z 10.1159/000065221 10.3390/jpm11100949 10.3390/biomedicines11030887 10.1007/s10928-013-9302-8 10.2165/00003088-199121060-00006 10.1186/s12911-022-01970-y 10.1128/AAC.01276-16 10.2215/CJN.06040611 10.3390/jcm11144140 10.1007/s40262-022-01198-z 10.1371/journal.pone.0229873 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.3390/pharmaceutics16030358 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Student Research Library Prep ProQuest Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1999-4923 |
| ExternalDocumentID | oai_doaj_org_article_66c127ee5e374e399f14cccabc4dec79 PMC10975186 A788252327 38543252 10_3390_pharmaceutics16030358 |
| Genre | Journal Article |
| GeographicLocations | Hungary |
| GeographicLocations_xml | – name: Hungary |
| GroupedDBID | --- 53G 5VS 8G5 AADQD AAYXX ABDBF ABUWG ACGFO ACIHN ACUHS AEAQA AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BPHCQ CCPQU CITATION DIK DWQXO EBD ESX F5P FD6 GNUQQ GROUPED_DOAJ GUQSH GX1 HH5 HYE IAO IHR ITC KQ8 M2O M48 MK0 MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 TUS 3V. NPM 7XB 8FK MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c521t-b4baab72c1c20ba4df02448cf328651de1b9b6b846f598420173582575930ce63 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001193021200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4923 |
| IngestDate | Fri Oct 03 12:49:19 EDT 2025 Tue Nov 04 02:05:42 EST 2025 Thu Oct 02 11:08:53 EDT 2025 Mon Jun 30 15:08:13 EDT 2025 Tue Nov 11 11:08:02 EST 2025 Tue Nov 04 18:24:50 EST 2025 Thu Jan 02 22:27:56 EST 2025 Sat Nov 29 07:15:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Bayesian models intensive care model-informed precision dosing tazobactam pharmacokinetics piperacillin nonparametric adaptive grid therapeutic drug monitoring |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c521t-b4baab72c1c20ba4df02448cf328651de1b9b6b846f598420173582575930ce63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1922-7294 0000-0003-4475-9257 0000-0003-2468-5633 0000-0002-1675-8276 0000-0002-6843-7159 |
| OpenAccessLink | https://www.proquest.com/docview/3003353033?pq-origsite=%requestingapplication% |
| PMID | 38543252 |
| PQID | 3003353033 |
| PQPubID | 2032349 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_66c127ee5e374e399f14cccabc4dec79 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10975186 proquest_miscellaneous_3014005593 proquest_journals_3003353033 gale_infotracmisc_A788252327 gale_infotracacademiconefile_A788252327 pubmed_primary_38543252 crossref_primary_10_3390_pharmaceutics16030358 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Pharmaceutics |
| PublicationTitleAlternate | Pharmaceutics |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Neely (ref_12) 2012; 34 Wallenburg (ref_17) 2022; 61 Vincze (ref_16) 2022; 11 ref_14 Jelliffe (ref_35) 2022; 24 ref_34 ref_11 Jelliffe (ref_20) 2002; 22 Jelliffe (ref_36) 2015; 37 Tatarinova (ref_13) 2013; 40 ref_19 ref_18 ref_15 ref_37 Poweleit (ref_10) 2023; 45 Destere (ref_27) 2023; 40 Evans (ref_5) 2021; 47 Mao (ref_8) 2022; 13 Ostermann (ref_32) 2016; 20 ref_25 Alobaid (ref_22) 2017; 61 Tyson (ref_3) 2020; 11 Damnjanovic (ref_7) 2023; 14 Hsu (ref_33) 2011; 6 Greppmair (ref_24) 2023; 49 Jelliffe (ref_21) 1991; 21 ref_2 ref_29 ref_28 Greco (ref_31) 2023; 52 Destere (ref_26) 2022; 61 ref_9 Sherwin (ref_30) 2012; 51 Wicha (ref_4) 2021; 109 Darwich (ref_1) 2021; 61 Balevic (ref_23) 2023; 62 ref_6 |
| References_xml | – ident: ref_2 doi: 10.3390/pharmaceutics14122731 – volume: 61 start-page: 225 year: 2021 ident: ref_1 article-title: Model-informed precision dosing: Background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy publication-title: Ann. Rec. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-033020-113257 – volume: 109 start-page: 928 year: 2021 ident: ref_4 article-title: From therapeutic drug monitoring to model-informed precision dsing for antibiotics publication-title: Clin. Pharm. Ther. doi: 10.1002/cpt.2202 – volume: 61 start-page: 1157 year: 2022 ident: ref_26 article-title: A hybrid model associating population pharmacokinetics with machine learning: A case study with iohexol clearance estimation publication-title: Clin. Pharmacokinet. doi: 10.1007/s40262-022-01138-x – ident: ref_15 doi: 10.3390/pharmaceutics13122170 – ident: ref_11 – volume: 61 start-page: 907 year: 2022 ident: ref_17 article-title: An integral pharmacokinetic analysis of piperacillin and tazobactam in plasma and urine in critically ill patients publication-title: Clin. Pharmacokinet. doi: 10.1007/s40262-022-01113-6 – volume: 11 start-page: 420 year: 2020 ident: ref_3 article-title: Precision dosing priority criteria: Drug, disease, and patient population variables publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.00420 – volume: 51 start-page: 573 year: 2012 ident: ref_30 article-title: Fundamentals of population pharmacokinetic modelling. Validation methods publication-title: Clin. Pharmacokinet. doi: 10.1007/BF03261932 – volume: 13 start-page: 1016399 year: 2022 ident: ref_8 article-title: Applying machine learning to the pharmacokinetic modeling of cyclosporine in adult renal transplant recipients: A multi-method comparison publication-title: Front. Pharmacol. doi: 10.3389/fphar.2022.1016399 – ident: ref_14 – volume: 45 start-page: 143 year: 2023 ident: ref_10 article-title: Artificial intelligence and machine learning approaches to facilitate therapeutic drug management and model-informed precision dosing publication-title: Ther. Drug Monit. doi: 10.1097/FTD.0000000000001078 – ident: ref_18 – ident: ref_28 doi: 10.3390/pharmaceutics14081530 – volume: 24 start-page: 117 year: 2022 ident: ref_35 article-title: Individualized patient care through model-informed precision dosing: Reflections on training futire practitioners publication-title: AAPS J. doi: 10.1208/s12248-022-00769-z – volume: 47 start-page: 1181 year: 2021 ident: ref_5 article-title: Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021 publication-title: Intensiv. Care Med doi: 10.1007/s00134-021-06506-y – volume: 52 start-page: 775 year: 2023 ident: ref_31 article-title: The good, the bad, and the serum creatinine: Exploring the effect of muscle mass and nutrition publication-title: Blood Purif. doi: 10.1159/000533173 – volume: 49 start-page: 966 year: 2023 ident: ref_24 article-title: Towards model-informed precision dosing of piperacillin: Multicenter systematic external evaluation of pharmacokinetic models in critically ill adults with a focus on Bayesian forecasting publication-title: Intensive Care Med. doi: 10.1007/s00134-023-07154-0 – ident: ref_25 – volume: 37 start-page: 389 year: 2015 ident: ref_36 article-title: Describing assay precision—Reciprocal of variance is correct, not CV percent: Its use should significantly improve laboratory performance publication-title: Ther. Drug Monit. doi: 10.1097/FTD.0000000000000168 – volume: 14 start-page: 20420986231181336 year: 2023 ident: ref_7 article-title: Joint use of population pharmacokinetics and machine learning for optimizing antiepileptic treatment in paediatric population publication-title: Ther. Adv. Drug Saf. doi: 10.1177/20420986231181337 – ident: ref_29 – volume: 40 start-page: 951 year: 2023 ident: ref_27 article-title: A hybrid algorithm combining population pharmacokinetic and machine learning for isavuconazole exposure prediction publication-title: Pharm. Res. doi: 10.1007/s11095-023-03507-y – volume: 34 start-page: 467 year: 2012 ident: ref_12 article-title: Accurate detection of outliers and subpopulations with Pmetrics, a non-parametric and parametric pharmacometrics modeling and simulation package for R publication-title: Ther. Drug Monit. doi: 10.1097/FTD.0b013e31825c4ba6 – volume: 20 start-page: 299 year: 2016 ident: ref_32 article-title: Acute kidney injury 2016: Diagnosis and diagnostic workup publication-title: Crit Care doi: 10.1186/s13054-016-1478-z – volume: 22 start-page: 320 year: 2002 ident: ref_20 article-title: Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen publication-title: Am. J. Nephrol. doi: 10.1159/000065221 – ident: ref_34 doi: 10.3390/jpm11100949 – ident: ref_6 doi: 10.3390/biomedicines11030887 – volume: 40 start-page: 189 year: 2013 ident: ref_13 article-title: Two general methods for population pharmacokinetic modeling: Non-parametric adaptive grid and non-parametric Bayesian publication-title: J. Pharmacokinet. Pharmacodyn. doi: 10.1007/s10928-013-9302-8 – volume: 21 start-page: 461 year: 1991 ident: ref_21 article-title: Individualising gentamicin dosage regimens. A comparative review of selected models, data fitting methods and monitoring strategies publication-title: Clin. Pharmacokinet. doi: 10.2165/00003088-199121060-00006 – ident: ref_9 doi: 10.1186/s12911-022-01970-y – volume: 61 start-page: e01276-16 year: 2017 ident: ref_22 article-title: Population pharmacokinetics of piperacillin in nonobese, obese, and morbidly obese critically ill patients publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01276-16 – volume: 6 start-page: 1813 year: 2011 ident: ref_33 article-title: Measured GFR as “Gold Standard”—All that glitters is not gold? publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.06040611 – volume: 11 start-page: 4140 year: 2022 ident: ref_16 article-title: Assessment of antibiotic pharmacokinetics, molecular biomarkers and clinical status in critically ill adults diagnosed with community-acquired pneumonia and receiving intravenous piperacillin/tazobactam and hydrocortisone over the first five days of intensive care: And observational study (STROBE compliant) publication-title: J. Clin. Med. doi: 10.3390/jcm11144140 – ident: ref_19 – volume: 62 start-page: 127 year: 2023 ident: ref_23 article-title: Population pharmacokinetics of piperacillin/tazobactam across the adult lifespan publication-title: Clin. Pharmacokinet. doi: 10.1007/s40262-022-01198-z – ident: ref_37 doi: 10.1371/journal.pone.0229873 |
| SSID | ssj0000331839 |
| Score | 2.299013 |
| Snippet | Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 358 |
| SubjectTerms | Algorithms Analysis Anesthesiology Antibiotics Bayesian models Drug stores Estimates Ethylenediaminetetraacetic acid Health aspects Human subjects Intensive care Laboratories Medical research Medicine, Experimental nonparametric adaptive grid Patient monitoring equipment Patients Pharmacokinetics piperacillin Pneumonia Reagents Tazobactam Teaching hospitals therapeutic drug monitoring |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NBL6btu0zKFkl7ixrZky-5t-wgtlOBCCrkJSdY2JuAs62xh_0d-cGYkx2vTQi-97MGalWTPjGZGzHzD2FupnZC2qVCRNI9FXhWxKVDxDCd0KOnQ4vtC4e_y5KQ8O6vqSasvygkL8MDhwx0VhU0z6VzuuBQOzekyFRaXNVY0zkpfupfIahJM-TOYk6xWoWSHY1x_tDrfXRH31Fs54dTmfWKMPGb_nyfzxDTN0yYnduj4Abs_OJCwCBt_yO647hE7qMO620M43RVU9YdwAPUOm3r7mF1T7zOqQB-fX6CbSbTQdvBtrM6COuCt9uBzCqazwuf15heEs4AuBUF3jd9OwKKAemwJBj82um9jv2T_ARZASYtboKtfqNsVzmjptqd7wn4efzn99DUeGjPElvofxEYYrY3MbGqzxGjRLNHSi9IuOdW5po1LTWUKg67NMq9KgT6GpIJc6gXKE-sK_pTtdZede85Au8ahS5lWJsFQ02n8wYA0R_nmJi9cGbH3txxSq4C_oTBuIZaqv7I0Yh-JjyMxwWf7ByhUahAq9S-hitg7kgJFSo6stnqoVcA9E1yWWkgMTDCEz2TE9meUqJx2PnwrR2o4HHrFSTxz3C2P2JtxmP5JCW-du9wQDUa-CYZ7SPMsiN34SrzMBcf5I1bOBHL2zvORrj330OGUb5CnZfHif3yll-xehowPGXn7bO9qvXGv2F37-6rt16-9Qt4A6slAvQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Modeling Pharmacokinetics in Individual Patients Using Therapeutic Drug Monitoring and Artificial Population Quasi-Models: A Study with Piperacillin |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38543252 https://www.proquest.com/docview/3003353033 https://www.proquest.com/docview/3014005593 https://pubmed.ncbi.nlm.nih.gov/PMC10975186 https://doaj.org/article/66c127ee5e374e399f14cccabc4dec79 |
| Volume | 16 |
| WOSCitedRecordID | wos001193021200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1999-4923 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331839 issn: 1999-4923 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4923 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331839 issn: 1999-4923 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4923 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331839 issn: 1999-4923 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1999-4923 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331839 issn: 1999-4923 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1999-4923 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331839 issn: 1999-4923 databaseCode: M2O dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQdeYHwHtspIaLwsLImdOOFl6sYmJrES0JDKU2Q77hYhpaVZkfp_8Adzl6RpIxAvvOTBvrq28rvz3eU-AF5LZYU0eYKMpLgrwiRydYSMpzlVh5IWb_w6UfijHI3i8ThJW4db1YZVrmRiLajzqSEf-RGnrmMhClx-PPvhUtco-rrattDYgh2qVIY43zk5G6VfOi8LkpMK0KTucLTvj2Y3a1dxRT2WPU7t3jcupbp2_58SeuOK6odPbtxH5w_-9yS7cL_VRNmwgc5DuGPLR3CQNhtfHrKrdWZWdcgOWLoucr18DL-oiRqlsnfj31FfJVpWlOyiS_NiaVO4tWJ1cMLmquz9fHHNGqFC3kWmyrzeTlPUgqVdbzH2eaGqwq3_snrHhoyiH5eMfMgsLWa4oiG3UfkEvp6fXZ1-cNsOD66hRgquFlopLQPjm8DTSuQTVBlEbCacEmb93Po60ZFGHWkSJrFAZUVSZi81FeWesRF_CtvltLTPgSmbW9RN_UR7aLNahQ-0bENkFK7DyMYOvF294mzWFPLI0AAiTGR_xYQDJwSEjpjqcNcD0_l11rJ1FkXGD6S1oeVSWFT2Jr4wyBTaiNwamTjwhmCUkbRArBjVJj3gnqnuVjaUaOGEqNVKB_Z6lMjlpj-9AlPWSpkqWyPJgVfdNP2SIudKO10QDZrQHtqNSPOswW13JB6HguP6DsQ9RPfO3J8pi5u6BjkFLoR-HL34975ewr0AX2kTtLcH27fzhd2Hu-bnbVHNB7Alx_Gg5dlB7Q7B52XwCcfSi8v0228o2lMP |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFIle-KcYCiwSlEtNbe_aayMhFChVo6aRkVKpnIx3vWkjJCfEDSjvwXPwjMzYjhMLxK0HLj54N-v1ev4zMx_AC5kaIXUWISOl3BZ-FNgqQMZTnLpDSYMavywU7svBIDw7i-IN-LWshaG0yqVMLAV1NtEUI9_nhDrmo8Dl76bfbEKNon9XlxAaFVkcm8UPdNmKt70D_L4vPe_w4_DDkV2jCtiamvfbSqg0VdLTrvYclYpshGpKhHrEqUjTzYyrIhUo1MsjPwoFKkhJ1aQEZMkdbQKO616DTUHE3oHNuHcSf26iOrg9MjmqUiHOI2d_erEKTReE6exwgpdfU4IlVsCfGmFNJbbTNdf03-Gt_-3kbsPN2tJm3Yo17sCGye_Cblwd1GKPDVeVZ8Ue22Xxqon34h78JJA4KtVv7n9Fe5zmsnHOek0ZG4urxrQFK5Mv1ldlB7P5OauEJkVPWZpn5Xaqph0sbrDT2Kd5Wozt8pHFG9ZllN25YBQjZ_F4iitqCovl9-H0Sk7sAXTySW4eAktNZtD2diPloE9uUryg5-6jIODKD0xoweslSSXTqlFJgg4e0WDyVxq04D0RXjOZ-oyXNyaz86QWW0kQaNeTxviGS2HQmB25QiPTKy0yo2VkwSsi24SkIdKmTuuiDtwz9RVLuhI9OB-tdmnBTmsmSjHdHl4Sb1JL0SJZUa4Fz5th-iVlBuZmMqc5rqBGchHO2a74pHklHvqC4_oWhC0Oar1zeyQfX5Q91ikxw3fD4NG_9_UMbhwNT_pJvzc4fgxbHn7eKkFxBzqXs7l5Atf198txMXtaSwoGX66axX4DbMyphg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFeeFMMBRYJyqUmtnfttZEQCoSIqCUyUiuVk_GuN22E5IS4AeV_8Gv4dczYjhMLxK0HLj54N-v1euabR-YB8EymRkidRchIKbeFHwW2CpDxFKfqUNKgxC8ThY_kaBSenkbxFvxa5cJQWOUKE0ugzqaafORdTl3HfARc3h3XYRFxf_Bm9s2mDlL0T-uqnUZFIodm-QPNt-L1sI_f-rnnDd4fv_tg1x0GbE2F_G0lVJoq6WlXe45KRTZGkSVCPeaUsOlmxlWRChTK6LEfhQKFpaTMUmpqyR1tAo7rXoFtVMmF14HtePgx_tx4eHCrpH5UaUOcR053dr52UxfU39nh1Gp-QyCWfQP-lA4b4rEdurkhCwc3_udTvAnXaw2c9SqWuQVbJr8N-3F1aMsDdrzOSCsO2D6L18W9l3fgJzWPoxT-5v5X1NNpLpvkbNikt7G4KlhbsDIoY3NV1p8vzlgFpuRVZWmeldupinmwuOmpxj4t0mJil48sXrEeo6jPJSPfOYsnM1xRk7ssvwsnl3Ji96CTT3NzH1hqMoM6uRspB211k-IFLXofAYIrPzChBS9X5JXMqgImCRp-RI_JX-nRgrdEhM1kqj9e3pjOz5IazpIg0K4njfENl8Kgkjt2hUYwUFpkRsvIghdEwgmhJNKpTutkD9wz1RtLehItOx-1eWnBXmsmoptuD68IOanRtUjWVGzB02aYfkkRg7mZLmiOK6jAXIRzdiueaV6Jh77guL4FYYubWu_cHskn52XtdQrY8N0wePDvfT2Ba8hXydFwdPgQdjz8ulXc4h50LuYL8wiu6u8Xk2L-uAYNBl8um8N-A-lEskY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Pharmacokinetics+in+Individual+Patients+Using+Therapeutic+Drug+Monitoring+and+Artificial+Population+Quasi-Models%3A+A+Study+with+Piperacillin&rft.jtitle=Pharmaceutics&rft.au=Karvaly%2C+Gell%C3%A9rt+Bal%C3%A1zs&rft.au=Vincze%2C+Istv%C3%A1n&rft.au=Neely%2C+Michael+Noel&rft.au=Z%C3%A1troch%2C+Istv%C3%A1n&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.issn=1999-4923&rft.eissn=1999-4923&rft.volume=16&rft.issue=3&rft_id=info:doi/10.3390%2Fpharmaceutics16030358&rft.externalDocID=A788252327 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4923&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4923&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4923&client=summon |