Modeling Pharmacokinetics in Individual Patients Using Therapeutic Drug Monitoring and Artificial Population Quasi-Models: A Study with Piperacillin

Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual es...

Full description

Saved in:
Bibliographic Details
Published in:Pharmaceutics Vol. 16; no. 3; p. 358
Main Authors: Karvaly, Gellért Balázs, Vincze, István, Neely, Michael Noel, Zátroch, István, Nagy, Zsuzsanna, Kocsis, Ibolya, Kopitkó, Csaba
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01.03.2024
MDPI
Subjects:
ISSN:1999-4923, 1999-4923
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual estimates of pharmacokinetic parameters. Based on 72 concentrations obtained in 12 patients, one- and two-compartment pop-PK models with or without creatinine clearance as a covariate were generated for piperacillin using the nonparametric adaptive grid algorithm. Thirty quasi-models were subsequently generated for each model type, and nonparametric maximum a posteriori probability Bayesian estimates were established for each patient. A significant difference in performance was found between one- and two-compartment models. Acceptable agreement was found between predicted and observed piperacillin concentrations, and between the estimates of the random-effect pharmacokinetic variables obtained using the so-called support points of the pop-PK models or the quasi-models as priors. The mean squared errors of the predictions made using the quasi-models were similar to, or even considerably lower than those obtained when employing the pop-PK models. Conclusion: fully artificial nonparametric quasi-models can efficiently augment pop-PK models containing few support points, to make individual pharmacokinetic estimates in the clinical setting.
AbstractList Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual estimates of pharmacokinetic parameters. Based on 72 concentrations obtained in 12 patients, one- and two-compartment pop-PK models with or without creatinine clearance as a covariate were generated for piperacillin using the nonparametric adaptive grid algorithm. Thirty quasi-models were subsequently generated for each model type, and nonparametric maximum a posteriori probability Bayesian estimates were established for each patient. A significant difference in performance was found between one- and two-compartment models. Acceptable agreement was found between predicted and observed piperacillin concentrations, and between the estimates of the random-effect pharmacokinetic variables obtained using the so-called support points of the pop-PK models or the quasi-models as priors. The mean squared errors of the predictions made using the quasi-models were similar to, or even considerably lower than those obtained when employing the pop-PK models. Conclusion: fully artificial nonparametric quasi-models can efficiently augment pop-PK models containing few support points, to make individual pharmacokinetic estimates in the clinical setting.Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual estimates of pharmacokinetic parameters. Based on 72 concentrations obtained in 12 patients, one- and two-compartment pop-PK models with or without creatinine clearance as a covariate were generated for piperacillin using the nonparametric adaptive grid algorithm. Thirty quasi-models were subsequently generated for each model type, and nonparametric maximum a posteriori probability Bayesian estimates were established for each patient. A significant difference in performance was found between one- and two-compartment models. Acceptable agreement was found between predicted and observed piperacillin concentrations, and between the estimates of the random-effect pharmacokinetic variables obtained using the so-called support points of the pop-PK models or the quasi-models as priors. The mean squared errors of the predictions made using the quasi-models were similar to, or even considerably lower than those obtained when employing the pop-PK models. Conclusion: fully artificial nonparametric quasi-models can efficiently augment pop-PK models containing few support points, to make individual pharmacokinetic estimates in the clinical setting.
Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual estimates of pharmacokinetic parameters. Based on 72 concentrations obtained in 12 patients, one- and two-compartment pop-PK models with or without creatinine clearance as a covariate were generated for piperacillin using the nonparametric adaptive grid algorithm. Thirty quasi-models were subsequently generated for each model type, and nonparametric maximum a posteriori probability Bayesian estimates were established for each patient. A significant difference in performance was found between one- and two-compartment models. Acceptable agreement was found between predicted and observed piperacillin concentrations, and between the estimates of the random-effect pharmacokinetic variables obtained using the so-called support points of the pop-PK models or the quasi-models as priors. The mean squared errors of the predictions made using the quasi-models were similar to, or even considerably lower than those obtained when employing the pop-PK models. Conclusion: fully artificial nonparametric quasi-models can efficiently augment pop-PK models containing few support points, to make individual pharmacokinetic estimates in the clinical setting.
Audience Academic
Author Karvaly, Gellért Balázs
Neely, Michael Noel
Nagy, Zsuzsanna
Kocsis, Ibolya
Kopitkó, Csaba
Vincze, István
Zátroch, István
AuthorAffiliation 1 Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary; vincze.istvan@pharma.semmelweis-univ.hu (I.V.); kocsis.ibolya@med.semmelweis-univ.hu (I.K.)
3 Central Department of Anaesthesiology and Intensive Care, Uzsoki Teaching Hospital, 1145 Budapest, Hungary; zatroch.istvan@uzsoki.hu (I.Z.); kopitko.csaba@uzsoki.hu (C.K.)
4 Central Laboratory, Uzsoki Teaching Hospital, 1145 Budapest, Hungary; nagy.zsuzsanna@uzsoki.hu
2 Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, University of Southern California, Los Angeles, CA 90027, USA; mneely@chla.usc.edu
AuthorAffiliation_xml – name: 2 Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, University of Southern California, Los Angeles, CA 90027, USA; mneely@chla.usc.edu
– name: 1 Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary; vincze.istvan@pharma.semmelweis-univ.hu (I.V.); kocsis.ibolya@med.semmelweis-univ.hu (I.K.)
– name: 4 Central Laboratory, Uzsoki Teaching Hospital, 1145 Budapest, Hungary; nagy.zsuzsanna@uzsoki.hu
– name: 3 Central Department of Anaesthesiology and Intensive Care, Uzsoki Teaching Hospital, 1145 Budapest, Hungary; zatroch.istvan@uzsoki.hu (I.Z.); kopitko.csaba@uzsoki.hu (C.K.)
Author_xml – sequence: 1
  givenname: Gellért Balázs
  orcidid: 0000-0003-2468-5633
  surname: Karvaly
  fullname: Karvaly, Gellért Balázs
– sequence: 2
  givenname: István
  orcidid: 0000-0002-6843-7159
  surname: Vincze
  fullname: Vincze, István
– sequence: 3
  givenname: Michael Noel
  orcidid: 0000-0002-1675-8276
  surname: Neely
  fullname: Neely, Michael Noel
– sequence: 4
  givenname: István
  orcidid: 0000-0003-4475-9257
  surname: Zátroch
  fullname: Zátroch, István
– sequence: 5
  givenname: Zsuzsanna
  surname: Nagy
  fullname: Nagy, Zsuzsanna
– sequence: 6
  givenname: Ibolya
  surname: Kocsis
  fullname: Kocsis, Ibolya
– sequence: 7
  givenname: Csaba
  orcidid: 0000-0002-1922-7294
  surname: Kopitkó
  fullname: Kopitkó, Csaba
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38543252$$D View this record in MEDLINE/PubMed
BookMark eNptkl1v0zAUhiM0xMbYTwBZ4oabDH8mMTeoGl-VNlHEdm05jtO6pHZmJ0P7H_xgTtoxtWj2hS37Oa_POX5fZkc-eJtlrwk-Z0zi9_1Kx402dhycSaTADDNRPctOiJQy55Kyo739cXaW0hrDYIxUTL7IjlklOKOCnmR_rkJjO-eXaLHTDL-ct5Msch7NfePuXDPqDi304KwfErpJE329slH32wTQpzgu0VXwbghxutO-QbM4uNYZN0WGfuwgOnj0Y9TJ5dsn0wc0Qz-HsblHv92wQgvXg6JxHSTzKnve6i7Zs4f1NLv58vn64lt--f3r_GJ2mRtByZDXvNa6LqkhhuJa86bFlPPKtIxWhSCNJbWsi7riRStkxSkmJbSJilJIho0t2Gk23-k2Qa9VH91Gx3sVtFPbgxCXSkMdprOqKAyhpbXCspJbJmVLuDFG14Y31pQStD7utPqx3tjGQK-i7g5ED2-8W6lluFMEy1KQasrm3YNCDLejTYPauGRs12lvw5gUw4RjLCB5QN_-h67DGD30Cij4ZgGG2KOWGipwvg3wsJlE1aysoBGU0RKo8ycomI3dOAO-ax2cHwS82a_0scR_pgJA7AATQ0rRto8IwWryr3rSv-wv-STnkQ
Cites_doi 10.3390/pharmaceutics14122731
10.1146/annurev-pharmtox-033020-113257
10.1002/cpt.2202
10.1007/s40262-022-01138-x
10.3390/pharmaceutics13122170
10.1007/s40262-022-01113-6
10.3389/fphar.2020.00420
10.1007/BF03261932
10.3389/fphar.2022.1016399
10.1097/FTD.0000000000001078
10.3390/pharmaceutics14081530
10.1208/s12248-022-00769-z
10.1007/s00134-021-06506-y
10.1159/000533173
10.1007/s00134-023-07154-0
10.1097/FTD.0000000000000168
10.1177/20420986231181337
10.1007/s11095-023-03507-y
10.1097/FTD.0b013e31825c4ba6
10.1186/s13054-016-1478-z
10.1159/000065221
10.3390/jpm11100949
10.3390/biomedicines11030887
10.1007/s10928-013-9302-8
10.2165/00003088-199121060-00006
10.1186/s12911-022-01970-y
10.1128/AAC.01276-16
10.2215/CJN.06040611
10.3390/jcm11144140
10.1007/s40262-022-01198-z
10.1371/journal.pone.0229873
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.3390/pharmaceutics16030358
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Student
Research Library Prep
ProQuest Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1999-4923
ExternalDocumentID oai_doaj_org_article_66c127ee5e374e399f14cccabc4dec79
PMC10975186
A788252327
38543252
10_3390_pharmaceutics16030358
Genre Journal Article
GeographicLocations Hungary
GeographicLocations_xml – name: Hungary
GroupedDBID ---
53G
5VS
8G5
AADQD
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACUHS
AEAQA
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
EBD
ESX
F5P
FD6
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HH5
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MK0
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
TUS
3V.
NPM
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c521t-b4baab72c1c20ba4df02448cf328651de1b9b6b846f598420173582575930ce63
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001193021200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4923
IngestDate Fri Oct 03 12:49:19 EDT 2025
Tue Nov 04 02:05:42 EST 2025
Thu Oct 02 11:08:53 EDT 2025
Mon Jun 30 15:08:13 EDT 2025
Tue Nov 11 11:08:02 EST 2025
Tue Nov 04 18:24:50 EST 2025
Thu Jan 02 22:27:56 EST 2025
Sat Nov 29 07:15:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Bayesian models
intensive care
model-informed precision dosing
tazobactam
pharmacokinetics
piperacillin
nonparametric adaptive grid
therapeutic drug monitoring
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-b4baab72c1c20ba4df02448cf328651de1b9b6b846f598420173582575930ce63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1922-7294
0000-0003-4475-9257
0000-0003-2468-5633
0000-0002-1675-8276
0000-0002-6843-7159
OpenAccessLink https://www.proquest.com/docview/3003353033?pq-origsite=%requestingapplication%
PMID 38543252
PQID 3003353033
PQPubID 2032349
ParticipantIDs doaj_primary_oai_doaj_org_article_66c127ee5e374e399f14cccabc4dec79
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10975186
proquest_miscellaneous_3014005593
proquest_journals_3003353033
gale_infotracmisc_A788252327
gale_infotracacademiconefile_A788252327
pubmed_primary_38543252
crossref_primary_10_3390_pharmaceutics16030358
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Pharmaceutics
PublicationTitleAlternate Pharmaceutics
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Neely (ref_12) 2012; 34
Wallenburg (ref_17) 2022; 61
Vincze (ref_16) 2022; 11
ref_14
Jelliffe (ref_35) 2022; 24
ref_34
ref_11
Jelliffe (ref_20) 2002; 22
Jelliffe (ref_36) 2015; 37
Tatarinova (ref_13) 2013; 40
ref_19
ref_18
ref_15
ref_37
Poweleit (ref_10) 2023; 45
Destere (ref_27) 2023; 40
Evans (ref_5) 2021; 47
Mao (ref_8) 2022; 13
Ostermann (ref_32) 2016; 20
ref_25
Alobaid (ref_22) 2017; 61
Tyson (ref_3) 2020; 11
Damnjanovic (ref_7) 2023; 14
Hsu (ref_33) 2011; 6
Greppmair (ref_24) 2023; 49
Jelliffe (ref_21) 1991; 21
ref_2
ref_29
ref_28
Greco (ref_31) 2023; 52
Destere (ref_26) 2022; 61
ref_9
Sherwin (ref_30) 2012; 51
Wicha (ref_4) 2021; 109
Darwich (ref_1) 2021; 61
Balevic (ref_23) 2023; 62
ref_6
References_xml – ident: ref_2
  doi: 10.3390/pharmaceutics14122731
– volume: 61
  start-page: 225
  year: 2021
  ident: ref_1
  article-title: Model-informed precision dosing: Background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy
  publication-title: Ann. Rec. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-033020-113257
– volume: 109
  start-page: 928
  year: 2021
  ident: ref_4
  article-title: From therapeutic drug monitoring to model-informed precision dsing for antibiotics
  publication-title: Clin. Pharm. Ther.
  doi: 10.1002/cpt.2202
– volume: 61
  start-page: 1157
  year: 2022
  ident: ref_26
  article-title: A hybrid model associating population pharmacokinetics with machine learning: A case study with iohexol clearance estimation
  publication-title: Clin. Pharmacokinet.
  doi: 10.1007/s40262-022-01138-x
– ident: ref_15
  doi: 10.3390/pharmaceutics13122170
– ident: ref_11
– volume: 61
  start-page: 907
  year: 2022
  ident: ref_17
  article-title: An integral pharmacokinetic analysis of piperacillin and tazobactam in plasma and urine in critically ill patients
  publication-title: Clin. Pharmacokinet.
  doi: 10.1007/s40262-022-01113-6
– volume: 11
  start-page: 420
  year: 2020
  ident: ref_3
  article-title: Precision dosing priority criteria: Drug, disease, and patient population variables
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.00420
– volume: 51
  start-page: 573
  year: 2012
  ident: ref_30
  article-title: Fundamentals of population pharmacokinetic modelling. Validation methods
  publication-title: Clin. Pharmacokinet.
  doi: 10.1007/BF03261932
– volume: 13
  start-page: 1016399
  year: 2022
  ident: ref_8
  article-title: Applying machine learning to the pharmacokinetic modeling of cyclosporine in adult renal transplant recipients: A multi-method comparison
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2022.1016399
– ident: ref_14
– volume: 45
  start-page: 143
  year: 2023
  ident: ref_10
  article-title: Artificial intelligence and machine learning approaches to facilitate therapeutic drug management and model-informed precision dosing
  publication-title: Ther. Drug Monit.
  doi: 10.1097/FTD.0000000000001078
– ident: ref_18
– ident: ref_28
  doi: 10.3390/pharmaceutics14081530
– volume: 24
  start-page: 117
  year: 2022
  ident: ref_35
  article-title: Individualized patient care through model-informed precision dosing: Reflections on training futire practitioners
  publication-title: AAPS J.
  doi: 10.1208/s12248-022-00769-z
– volume: 47
  start-page: 1181
  year: 2021
  ident: ref_5
  article-title: Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021
  publication-title: Intensiv. Care Med
  doi: 10.1007/s00134-021-06506-y
– volume: 52
  start-page: 775
  year: 2023
  ident: ref_31
  article-title: The good, the bad, and the serum creatinine: Exploring the effect of muscle mass and nutrition
  publication-title: Blood Purif.
  doi: 10.1159/000533173
– volume: 49
  start-page: 966
  year: 2023
  ident: ref_24
  article-title: Towards model-informed precision dosing of piperacillin: Multicenter systematic external evaluation of pharmacokinetic models in critically ill adults with a focus on Bayesian forecasting
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-023-07154-0
– ident: ref_25
– volume: 37
  start-page: 389
  year: 2015
  ident: ref_36
  article-title: Describing assay precision—Reciprocal of variance is correct, not CV percent: Its use should significantly improve laboratory performance
  publication-title: Ther. Drug Monit.
  doi: 10.1097/FTD.0000000000000168
– volume: 14
  start-page: 20420986231181336
  year: 2023
  ident: ref_7
  article-title: Joint use of population pharmacokinetics and machine learning for optimizing antiepileptic treatment in paediatric population
  publication-title: Ther. Adv. Drug Saf.
  doi: 10.1177/20420986231181337
– ident: ref_29
– volume: 40
  start-page: 951
  year: 2023
  ident: ref_27
  article-title: A hybrid algorithm combining population pharmacokinetic and machine learning for isavuconazole exposure prediction
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-023-03507-y
– volume: 34
  start-page: 467
  year: 2012
  ident: ref_12
  article-title: Accurate detection of outliers and subpopulations with Pmetrics, a non-parametric and parametric pharmacometrics modeling and simulation package for R
  publication-title: Ther. Drug Monit.
  doi: 10.1097/FTD.0b013e31825c4ba6
– volume: 20
  start-page: 299
  year: 2016
  ident: ref_32
  article-title: Acute kidney injury 2016: Diagnosis and diagnostic workup
  publication-title: Crit Care
  doi: 10.1186/s13054-016-1478-z
– volume: 22
  start-page: 320
  year: 2002
  ident: ref_20
  article-title: Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen
  publication-title: Am. J. Nephrol.
  doi: 10.1159/000065221
– ident: ref_34
  doi: 10.3390/jpm11100949
– ident: ref_6
  doi: 10.3390/biomedicines11030887
– volume: 40
  start-page: 189
  year: 2013
  ident: ref_13
  article-title: Two general methods for population pharmacokinetic modeling: Non-parametric adaptive grid and non-parametric Bayesian
  publication-title: J. Pharmacokinet. Pharmacodyn.
  doi: 10.1007/s10928-013-9302-8
– volume: 21
  start-page: 461
  year: 1991
  ident: ref_21
  article-title: Individualising gentamicin dosage regimens. A comparative review of selected models, data fitting methods and monitoring strategies
  publication-title: Clin. Pharmacokinet.
  doi: 10.2165/00003088-199121060-00006
– ident: ref_9
  doi: 10.1186/s12911-022-01970-y
– volume: 61
  start-page: e01276-16
  year: 2017
  ident: ref_22
  article-title: Population pharmacokinetics of piperacillin in nonobese, obese, and morbidly obese critically ill patients
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01276-16
– volume: 6
  start-page: 1813
  year: 2011
  ident: ref_33
  article-title: Measured GFR as “Gold Standard”—All that glitters is not gold?
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.06040611
– volume: 11
  start-page: 4140
  year: 2022
  ident: ref_16
  article-title: Assessment of antibiotic pharmacokinetics, molecular biomarkers and clinical status in critically ill adults diagnosed with community-acquired pneumonia and receiving intravenous piperacillin/tazobactam and hydrocortisone over the first five days of intensive care: And observational study (STROBE compliant)
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm11144140
– ident: ref_19
– volume: 62
  start-page: 127
  year: 2023
  ident: ref_23
  article-title: Population pharmacokinetics of piperacillin/tazobactam across the adult lifespan
  publication-title: Clin. Pharmacokinet.
  doi: 10.1007/s40262-022-01198-z
– ident: ref_37
  doi: 10.1371/journal.pone.0229873
SSID ssj0000331839
Score 2.299013
Snippet Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 358
SubjectTerms Algorithms
Analysis
Anesthesiology
Antibiotics
Bayesian models
Drug stores
Estimates
Ethylenediaminetetraacetic acid
Health aspects
Human subjects
Intensive care
Laboratories
Medical research
Medicine, Experimental
nonparametric adaptive grid
Patient monitoring equipment
Patients
Pharmacokinetics
piperacillin
Pneumonia
Reagents
Tazobactam
Teaching hospitals
therapeutic drug monitoring
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NBL6btu0zKFkl7ixrZky-5t-wgtlOBCCrkJSdY2JuAs62xh_0d-cGYkx2vTQi-97MGalWTPjGZGzHzD2FupnZC2qVCRNI9FXhWxKVDxDCd0KOnQ4vtC4e_y5KQ8O6vqSasvygkL8MDhwx0VhU0z6VzuuBQOzekyFRaXNVY0zkpfupfIahJM-TOYk6xWoWSHY1x_tDrfXRH31Fs54dTmfWKMPGb_nyfzxDTN0yYnduj4Abs_OJCwCBt_yO647hE7qMO620M43RVU9YdwAPUOm3r7mF1T7zOqQB-fX6CbSbTQdvBtrM6COuCt9uBzCqazwuf15heEs4AuBUF3jd9OwKKAemwJBj82um9jv2T_ARZASYtboKtfqNsVzmjptqd7wn4efzn99DUeGjPElvofxEYYrY3MbGqzxGjRLNHSi9IuOdW5po1LTWUKg67NMq9KgT6GpIJc6gXKE-sK_pTtdZede85Au8ahS5lWJsFQ02n8wYA0R_nmJi9cGbH3txxSq4C_oTBuIZaqv7I0Yh-JjyMxwWf7ByhUahAq9S-hitg7kgJFSo6stnqoVcA9E1yWWkgMTDCEz2TE9meUqJx2PnwrR2o4HHrFSTxz3C2P2JtxmP5JCW-du9wQDUa-CYZ7SPMsiN34SrzMBcf5I1bOBHL2zvORrj330OGUb5CnZfHif3yll-xehowPGXn7bO9qvXGv2F37-6rt16-9Qt4A6slAvQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Modeling Pharmacokinetics in Individual Patients Using Therapeutic Drug Monitoring and Artificial Population Quasi-Models: A Study with Piperacillin
URI https://www.ncbi.nlm.nih.gov/pubmed/38543252
https://www.proquest.com/docview/3003353033
https://www.proquest.com/docview/3014005593
https://pubmed.ncbi.nlm.nih.gov/PMC10975186
https://doaj.org/article/66c127ee5e374e399f14cccabc4dec79
Volume 16
WOSCitedRecordID wos001193021200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1999-4923
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331839
  issn: 1999-4923
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQdeYHwHtspIaLwsLImdOOFl6sYmJrES0JDKU2Q77hYhpaVZkfp_8Adzl6RpIxAvvOTBvrq28rvz3eU-AF5LZYU0eYKMpLgrwiRydYSMpzlVh5IWb_w6UfijHI3i8ThJW4db1YZVrmRiLajzqSEf-RGnrmMhClx-PPvhUtco-rrattDYgh2qVIY43zk5G6VfOi8LkpMK0KTucLTvj2Y3a1dxRT2WPU7t3jcupbp2_58SeuOK6odPbtxH5w_-9yS7cL_VRNmwgc5DuGPLR3CQNhtfHrKrdWZWdcgOWLoucr18DL-oiRqlsnfj31FfJVpWlOyiS_NiaVO4tWJ1cMLmquz9fHHNGqFC3kWmyrzeTlPUgqVdbzH2eaGqwq3_snrHhoyiH5eMfMgsLWa4oiG3UfkEvp6fXZ1-cNsOD66hRgquFlopLQPjm8DTSuQTVBlEbCacEmb93Po60ZFGHWkSJrFAZUVSZi81FeWesRF_CtvltLTPgSmbW9RN_UR7aLNahQ-0bENkFK7DyMYOvF294mzWFPLI0AAiTGR_xYQDJwSEjpjqcNcD0_l11rJ1FkXGD6S1oeVSWFT2Jr4wyBTaiNwamTjwhmCUkbRArBjVJj3gnqnuVjaUaOGEqNVKB_Z6lMjlpj-9AlPWSpkqWyPJgVfdNP2SIudKO10QDZrQHtqNSPOswW13JB6HguP6DsQ9RPfO3J8pi5u6BjkFLoR-HL34975ewr0AX2kTtLcH27fzhd2Hu-bnbVHNB7Alx_Gg5dlB7Q7B52XwCcfSi8v0228o2lMP
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFIle-KcYCiwSlEtNbe_aayMhFChVo6aRkVKpnIx3vWkjJCfEDSjvwXPwjMzYjhMLxK0HLj54N-v1ev4zMx_AC5kaIXUWISOl3BZ-FNgqQMZTnLpDSYMavywU7svBIDw7i-IN-LWshaG0yqVMLAV1NtEUI9_nhDrmo8Dl76bfbEKNon9XlxAaFVkcm8UPdNmKt70D_L4vPe_w4_DDkV2jCtiamvfbSqg0VdLTrvYclYpshGpKhHrEqUjTzYyrIhUo1MsjPwoFKkhJ1aQEZMkdbQKO616DTUHE3oHNuHcSf26iOrg9MjmqUiHOI2d_erEKTReE6exwgpdfU4IlVsCfGmFNJbbTNdf03-Gt_-3kbsPN2tJm3Yo17sCGye_Cblwd1GKPDVeVZ8Ue22Xxqon34h78JJA4KtVv7n9Fe5zmsnHOek0ZG4urxrQFK5Mv1ldlB7P5OauEJkVPWZpn5Xaqph0sbrDT2Kd5Wozt8pHFG9ZllN25YBQjZ_F4iitqCovl9-H0Sk7sAXTySW4eAktNZtD2diPloE9uUryg5-6jIODKD0xoweslSSXTqlFJgg4e0WDyVxq04D0RXjOZ-oyXNyaz86QWW0kQaNeTxviGS2HQmB25QiPTKy0yo2VkwSsi24SkIdKmTuuiDtwz9RVLuhI9OB-tdmnBTmsmSjHdHl4Sb1JL0SJZUa4Fz5th-iVlBuZmMqc5rqBGchHO2a74pHklHvqC4_oWhC0Oar1zeyQfX5Q91ikxw3fD4NG_9_UMbhwNT_pJvzc4fgxbHn7eKkFxBzqXs7l5Atf198txMXtaSwoGX66axX4DbMyphg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFeeFMMBRYJyqUmtnfttZEQCoSIqCUyUiuVk_GuN22E5IS4AeV_8Gv4dczYjhMLxK0HLj54N-v1euabR-YB8EymRkidRchIKbeFHwW2CpDxFKfqUNKgxC8ThY_kaBSenkbxFvxa5cJQWOUKE0ugzqaafORdTl3HfARc3h3XYRFxf_Bm9s2mDlL0T-uqnUZFIodm-QPNt-L1sI_f-rnnDd4fv_tg1x0GbE2F_G0lVJoq6WlXe45KRTZGkSVCPeaUsOlmxlWRChTK6LEfhQKFpaTMUmpqyR1tAo7rXoFtVMmF14HtePgx_tx4eHCrpH5UaUOcR053dr52UxfU39nh1Gp-QyCWfQP-lA4b4rEdurkhCwc3_udTvAnXaw2c9SqWuQVbJr8N-3F1aMsDdrzOSCsO2D6L18W9l3fgJzWPoxT-5v5X1NNpLpvkbNikt7G4KlhbsDIoY3NV1p8vzlgFpuRVZWmeldupinmwuOmpxj4t0mJil48sXrEeo6jPJSPfOYsnM1xRk7ssvwsnl3Ji96CTT3NzH1hqMoM6uRspB211k-IFLXofAYIrPzChBS9X5JXMqgImCRp-RI_JX-nRgrdEhM1kqj9e3pjOz5IazpIg0K4njfENl8Kgkjt2hUYwUFpkRsvIghdEwgmhJNKpTutkD9wz1RtLehItOx-1eWnBXmsmoptuD68IOanRtUjWVGzB02aYfkkRg7mZLmiOK6jAXIRzdiueaV6Jh77guL4FYYubWu_cHskn52XtdQrY8N0wePDvfT2Ba8hXydFwdPgQdjz8ulXc4h50LuYL8wiu6u8Xk2L-uAYNBl8um8N-A-lEskY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Pharmacokinetics+in+Individual+Patients+Using+Therapeutic+Drug+Monitoring+and+Artificial+Population+Quasi-Models%3A+A+Study+with+Piperacillin&rft.jtitle=Pharmaceutics&rft.au=Karvaly%2C+Gell%C3%A9rt+Bal%C3%A1zs&rft.au=Vincze%2C+Istv%C3%A1n&rft.au=Neely%2C+Michael+Noel&rft.au=Z%C3%A1troch%2C+Istv%C3%A1n&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.issn=1999-4923&rft.eissn=1999-4923&rft.volume=16&rft.issue=3&rft_id=info:doi/10.3390%2Fpharmaceutics16030358&rft.externalDocID=A788252327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4923&client=summon