Current status and pillars of direct air capture technologies

Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new polic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:iScience Ročník 25; číslo 4; s. 103990
Hlavní autori: Ozkan, Mihrimah, Nayak, Saswat Priyadarshi, Ruiz, Anthony D., Jiang, Wenmei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 15.04.2022
Elsevier
Predmet:
ISSN:2589-0042, 2589-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2–6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5–2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%). [Display omitted] Chemical engineering; Energy sustainability; Environmental technology; Mechanical engineering
AbstractList Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2–6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5–2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%). Chemical engineering; Energy sustainability; Environmental technology; Mechanical engineering
Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO ) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO /year. DAC active plants capturing in average 10,000 tons of CO annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO which makes DAC economically viable. Current DAC cost is about 2-6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO /year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5-2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%).
Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2–6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5–2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%).
Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2-6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5-2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%).Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2-6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5-2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%).
Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2–6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5–2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%). [Display omitted] Chemical engineering; Energy sustainability; Environmental technology; Mechanical engineering
ArticleNumber 103990
Author Nayak, Saswat Priyadarshi
Ozkan, Mihrimah
Ruiz, Anthony D.
Jiang, Wenmei
Author_xml – sequence: 1
  givenname: Mihrimah
  surname: Ozkan
  fullname: Ozkan, Mihrimah
  email: mihri@ece.ucr.edu
  organization: Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA
– sequence: 2
  givenname: Saswat Priyadarshi
  orcidid: 0000-0003-2210-0021
  surname: Nayak
  fullname: Nayak, Saswat Priyadarshi
  organization: Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA
– sequence: 3
  givenname: Anthony D.
  surname: Ruiz
  fullname: Ruiz, Anthony D.
  organization: Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA
– sequence: 4
  givenname: Wenmei
  surname: Jiang
  fullname: Jiang, Wenmei
  organization: Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35310937$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r3DAQxUVJaJJtvkAPxcdediuN5D-CtlCWNg0EcknPYiSPN1q81layA_n21cZpSHIIDEhI7z2N5nfGjoYwEGMfBV8JLqov25VPzq-AA-QDqTV_x06hbPSScwVHz_Yn7DylLecccildvWcnspSCa1mfsm_rKUYaxiKNOE6pwKEt9r7vMaYidEXrI7mxQB8Lh_txilSM5G6H0IeNp_SBHXfYJzp_XBfsz6-fN-vfy6vri8v1j6ulK0GMS1SIjXKlsxUpVwNKaWshBMi6s0pjqRG6VlLdCEElb62AFlQrnIWalLJywS7n3Dbg1uyj32G8NwG9eTgIcWMwjt71ZKzQXCprkWpQKEVTQueU7nKRkA9Z3-es_WR31Lr8-Yj9i9CXN4O_NZtwZxoNtc49L9jnx4AY_k6URrPLKCjPbKAwJQOVEqWoOJdZ-un5W0-P_J9_FsAscDGkFKl7kghuDpzN1hw4mwNnM3POpuaVyflMz4dDv75_2_p1tlKmdecpmqygwdEMOo_Tv2X_ByhCwtA
CitedBy_id crossref_primary_10_1016_j_device_2024_100510
crossref_primary_10_1016_j_psep_2024_04_107
crossref_primary_10_3389_fenrg_2024_1443974
crossref_primary_10_1002_chem_202500865
crossref_primary_10_1016_j_chemosphere_2024_142478
crossref_primary_10_1557_s43581_024_00091_5
crossref_primary_10_1016_j_enconman_2023_117687
crossref_primary_10_1038_s41560_024_01492_z
crossref_primary_10_1080_17583004_2023_2235577
crossref_primary_10_1039_D3SE00978E
crossref_primary_10_1016_j_desal_2023_116958
crossref_primary_10_1039_D5SE00231A
crossref_primary_10_1039_D5TA01836F
crossref_primary_10_1016_j_cej_2024_154421
crossref_primary_10_1007_s11625_023_01382_5
crossref_primary_10_1039_D3EE01471A
crossref_primary_10_1140_epjd_s10053_024_00927_2
crossref_primary_10_1016_j_isci_2024_109154
crossref_primary_10_47385_cadunifoa_v19_n54_5066
crossref_primary_10_1016_j_esd_2024_101401
crossref_primary_10_1039_D3EE03024E
crossref_primary_10_1016_j_enconman_2023_117280
crossref_primary_10_1016_j_cej_2023_143630
crossref_primary_10_1016_j_cie_2023_109553
crossref_primary_10_1016_j_rser_2024_114552
crossref_primary_10_1029_2025EF005924
crossref_primary_10_1016_j_enconman_2024_119119
crossref_primary_10_1016_j_rser_2025_115782
crossref_primary_10_1016_j_ijhydene_2025_06_128
crossref_primary_10_1088_1748_9326_ad4376
crossref_primary_10_1186_s42834_022_00155_6
crossref_primary_10_3390_atmos15020238
crossref_primary_10_1088_1748_9326_ad4a8f
crossref_primary_10_1016_j_ces_2024_120423
crossref_primary_10_1002_aic_18429
crossref_primary_10_1016_j_algal_2024_103875
crossref_primary_10_35534_ecolciviliz_2023_10004
crossref_primary_10_1002_adfm_202410356
crossref_primary_10_1016_j_jclepro_2023_139839
crossref_primary_10_1007_s40518_025_00255_y
crossref_primary_10_1016_j_seppur_2023_124356
crossref_primary_10_1002_ange_202412697
crossref_primary_10_1016_j_energy_2024_133285
crossref_primary_10_1016_j_ces_2023_119416
crossref_primary_10_3390_en16031482
crossref_primary_10_3390_en17194769
crossref_primary_10_1186_s13021_025_00309_0
crossref_primary_10_1016_j_chempr_2023_09_001
crossref_primary_10_1016_j_ijggc_2025_104438
crossref_primary_10_1016_j_ccst_2025_100441
crossref_primary_10_1016_j_cej_2025_165535
crossref_primary_10_1038_s41467_025_59277_1
crossref_primary_10_2139_ssrn_5036530
crossref_primary_10_3389_fclim_2024_1353939
crossref_primary_10_3390_su151914486
crossref_primary_10_1021_acsami_5c14534
crossref_primary_10_1021_acsami_5c12231
crossref_primary_10_3390_en16176385
crossref_primary_10_3390_en17163995
crossref_primary_10_3390_gases4040021
crossref_primary_10_1039_D4EE00933A
crossref_primary_10_1039_D2RA07940B
crossref_primary_10_1007_s11356_023_27749_w
crossref_primary_10_1016_j_ecmx_2025_100959
crossref_primary_10_1016_j_micromeso_2023_112714
crossref_primary_10_1016_j_cej_2025_160401
crossref_primary_10_1016_j_rsurfi_2024_100381
crossref_primary_10_3389_fclim_2024_1331901
crossref_primary_10_1016_j_energy_2025_135450
crossref_primary_10_1007_s10098_025_03147_3
crossref_primary_10_3389_frsus_2023_1167713
crossref_primary_10_3390_cleantechnol7020044
crossref_primary_10_3390_app12168321
crossref_primary_10_1016_j_ccst_2023_100098
crossref_primary_10_1016_j_jece_2025_116601
crossref_primary_10_1038_s41467_025_58756_9
crossref_primary_10_1088_1748_9326_adbb81
crossref_primary_10_1016_j_egycc_2022_100092
crossref_primary_10_1021_jacs_3c11503
crossref_primary_10_1016_j_ces_2024_119809
crossref_primary_10_1016_j_enss_2025_06_001
crossref_primary_10_1016_j_scitotenv_2024_174302
crossref_primary_10_1002_smll_202300150
crossref_primary_10_1016_j_jclepro_2025_145962
crossref_primary_10_31897_PMI_2023_10
crossref_primary_10_1126_sciadv_adp9112
crossref_primary_10_1088_1748_9326_ad5dd0
crossref_primary_10_3390_catal15030273
crossref_primary_10_1016_j_scitotenv_2023_163628
crossref_primary_10_1039_D2RE00211F
crossref_primary_10_1016_j_jcou_2024_102791
crossref_primary_10_1016_j_apenergy_2023_121485
crossref_primary_10_1021_acsenergylett_4c01662
crossref_primary_10_1007_s10450_024_00526_y
crossref_primary_10_1007_s12209_025_00429_1
crossref_primary_10_3390_eng5030069
crossref_primary_10_1002_wcc_849
crossref_primary_10_3390_en17020320
crossref_primary_10_1016_j_cej_2024_148764
crossref_primary_10_1002_tcr_202500026
crossref_primary_10_1016_j_ijggc_2023_104012
crossref_primary_10_1038_s44296_025_00056_w
crossref_primary_10_3390_separations10120581
crossref_primary_10_1016_j_egyr_2024_06_031
crossref_primary_10_3390_en18030496
crossref_primary_10_2139_ssrn_5019579
crossref_primary_10_3390_polym17081115
crossref_primary_10_1016_j_seppur_2024_130026
crossref_primary_10_1016_j_rser_2025_116270
crossref_primary_10_1039_D4NR01744G
crossref_primary_10_3389_fclim_2023_1207668
crossref_primary_10_3389_fenrg_2024_1450991
crossref_primary_10_3390_land11122153
crossref_primary_10_1016_j_joule_2024_02_005
crossref_primary_10_1016_j_seppur_2024_131077
crossref_primary_10_3389_fclim_2023_1276606
crossref_primary_10_3390_pr13092824
crossref_primary_10_1557_s43581_025_00129_2
crossref_primary_10_1002_smll_202503023
crossref_primary_10_3390_en16093881
crossref_primary_10_1016_j_enconman_2025_120125
crossref_primary_10_1016_j_fuel_2025_136525
crossref_primary_10_1016_j_jclepro_2023_137185
crossref_primary_10_1088_1748_9326_ad3b1f
crossref_primary_10_1080_13675567_2024_2367534
crossref_primary_10_2139_ssrn_5069569
crossref_primary_10_1016_j_energy_2025_137733
crossref_primary_10_1557_s43581_024_00082_6
crossref_primary_10_59717_j_xinn_energy_2024_100010
crossref_primary_10_1016_j_cej_2023_145733
crossref_primary_10_1039_D3EE01803B
crossref_primary_10_1016_j_cej_2023_146308
crossref_primary_10_1016_j_seppur_2025_133895
crossref_primary_10_1016_j_scca_2023_100029
crossref_primary_10_3390_cli13040077
crossref_primary_10_1016_j_applthermaleng_2025_127554
crossref_primary_10_1016_j_apenergy_2024_124999
crossref_primary_10_3390_e26110972
crossref_primary_10_1016_j_apenergy_2024_125206
crossref_primary_10_1016_j_jcou_2024_102975
crossref_primary_10_1016_j_seppur_2023_124398
crossref_primary_10_1016_j_ijhydene_2025_151241
crossref_primary_10_1016_j_cej_2025_167384
crossref_primary_10_1080_19392699_2022_2119559
crossref_primary_10_1016_j_jcou_2024_102973
crossref_primary_10_1016_j_ccst_2025_100369
crossref_primary_10_1016_j_energy_2024_133864
crossref_primary_10_3389_fenrg_2025_1632179
crossref_primary_10_1002_asia_202401822
crossref_primary_10_1039_D5SU00162E
crossref_primary_10_1016_j_fluid_2022_113614
crossref_primary_10_1016_j_ces_2023_119202
crossref_primary_10_1039_D3RE00329A
crossref_primary_10_1016_j_spc_2024_01_004
crossref_primary_10_1016_j_fuel_2023_127969
crossref_primary_10_1021_acs_est_4c13659
crossref_primary_10_1016_j_jiec_2024_10_049
crossref_primary_10_1021_acsami_5c04491
crossref_primary_10_1016_j_jcou_2023_102587
crossref_primary_10_1016_j_micromeso_2024_112998
crossref_primary_10_1016_j_jgsce_2024_205481
crossref_primary_10_3390_membranes13040410
crossref_primary_10_3390_atmos14071099
crossref_primary_10_1002_anie_202412697
crossref_primary_10_1039_D1EE03804D
crossref_primary_10_1016_j_apenergy_2025_125960
crossref_primary_10_62823_IJEMMASSS_6_4_I__6949
crossref_primary_10_1016_j_ynexs_2025_100054
crossref_primary_10_1016_j_buildenv_2025_112817
crossref_primary_10_1016_j_ijhydene_2024_12_163
crossref_primary_10_1016_j_jcou_2025_103184
crossref_primary_10_1016_j_apenergy_2024_123524
crossref_primary_10_1016_j_cej_2024_149411
crossref_primary_10_1007_s10311_024_01737_z
crossref_primary_10_1039_D4CS00574K
crossref_primary_10_3390_separations11060160
crossref_primary_10_1021_acssusresmgt_5c00074
crossref_primary_10_3390_fuels5030028
Cites_doi 10.1016/j.joule.2019.06.025
10.1021/acs.iecr.0c04839
10.1039/C8CC08574A
10.1038/s41558-020-0797-x
10.1016/j.apenergy.2018.02.144
10.1038/s41558-020-0823-z
10.1038/nclimate3231
10.1016/j.enpol.2015.10.004
10.1038/s41558-018-0119-8
10.1016/j.jclepro.2019.03.086
10.1002/anie.201906756
10.1016/S1471-0846(05)70452-2
10.1038/s41558-017-0064-y
10.1016/j.joule.2018.04.018
10.30598/vol1iss1pp84-100
10.1038/s41598-020-65165-z
10.1186/1752-153X-6-S1-S6
10.1016/j.isci.2021.102813
10.1088/2516-1083/abf1ce
10.1073/pnas.1012253108
10.1016/j.joule.2020.07.005
10.1557/s43581-021-00005-9
10.1016/j.chempr.2021.12.013
10.1016/j.apenergy.2019.04.012
10.1038/s41467-020-17203-7
10.1021/acsami.8b01044
10.3390/cleantechnol1010015
10.1016/j.eist.2016.04.004
10.1038/s41558-020-0876-z
10.3389/fenrg.2020.00092
10.1016/j.oneear.2019.11.006
10.1021/acs.chemrev.6b00173
10.1021/acs.chemrev.7b00072
10.1038/s41560-020-00771-9
10.1007/s11027-019-9847-y
10.1073/pnas.1517656112
10.1093/oxfclm/kgab004
10.1039/C8EE03682A
10.1038/s41467-020-17204-6
10.1109/MSPEC.2021.9311453
10.1021/acs.est.6b05028
10.1016/j.desal.2015.08.004
10.1016/j.cej.2011.02.011
10.1007/s10584-017-2051-8
10.1088/1748-9326/aabf9f
10.1016/j.joule.2018.05.006
10.1021/acs.est.0c00476
10.1002/cssc.201802978
10.1038/s41560-021-00922-6
10.1088/1748-9326/aabff4
10.1038/s41467-021-22347-1
10.1038/s41467-020-20437-0
10.3389/fclim.2020.618644
10.1038/s41467-019-10842-5
10.1002/2017WR021402
10.1039/C9EE02709B
ContentType Journal Article
Copyright 2022 The Author(s)
2022 The Author(s).
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: 2022 The Author(s).
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2022.103990
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_b19034bbae724a31852fc49f49fe134b
PMC8927912
35310937
10_1016_j_isci_2022_103990
S2589004222002607
Genre Journal Article
Review
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-a4aa84c5cb6e4c72a33b7111237fb49a59a2fd3e7811e50db12d24d1cb27e44b3
IEDL.DBID DOA
ISICitedReferencesCount 203
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819870000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-0042
IngestDate Fri Oct 03 12:41:23 EDT 2025
Tue Sep 30 16:47:05 EDT 2025
Thu Oct 02 10:05:39 EDT 2025
Mon Jul 21 06:05:04 EDT 2025
Tue Nov 18 22:45:16 EST 2025
Thu Nov 13 04:35:54 EST 2025
Tue Jul 25 20:59:22 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Energy sustainability
Chemical engineering
Mechanical engineering
Environmental technology
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-a4aa84c5cb6e4c72a33b7111237fb49a59a2fd3e7811e50db12d24d1cb27e44b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2210-0021
OpenAccessLink https://doaj.org/article/b19034bbae724a31852fc49f49fe134b
PMID 35310937
PQID 2641516003
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b19034bbae724a31852fc49f49fe134b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8927912
proquest_miscellaneous_2641516003
pubmed_primary_35310937
crossref_primary_10_1016_j_isci_2022_103990
crossref_citationtrail_10_1016_j_isci_2022_103990
elsevier_sciencedirect_doi_10_1016_j_isci_2022_103990
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Jacobson (bib55) 2019; 12
(bib14) 2021
Shi, Xiao, Kanamori, Yonezu, Lackner, Chen (bib102) 2020; 4
Azarabadi, Lackner (bib3) 2019; 250
Maycock (bib73) 2005; 6
accessed 1.27.22
Point of View: Boosting Oklahoma’s economy through investments in CO2 removal [WWW Document], 2020. Oklahoman.com. URL
Majumdar, Deutch (bib69) 2018; 2
Nemet, Callaghan, Creutzig, Fuss, Hartmann, Hilaire, Lamb, Minx, Rogers, Smith (bib85) 2018; 13
(bib77) 2021
Baker, J., 2015. Market Outlook: Out of Thin Air [WWW Document]. ICIS Explore.
Clim. Home News. South Africa Aims to Reach Net Zero Emissions in 2050 - While Still Burning Coal [WWW Document], (2020). Clim. Home News. URL
The GT Solution, (2022). Glob. Thermostat. URL
Meckling, Biber (bib78) 2021; 12
accessed 6.2.21
Affordable carbon capture with a soda on the side. Affordable carbon capture with a soda on the side [WWW Document], 2018. Grist. URL
Shi, Xiao, Azarabadi, Song, Wu, Chen, Lackner (bib101) 2020; 59
(accessed 6.3.21).
Zhang, Qi, Zhang (bib122) 2015
(bib71) 2021
The commercial case for direct air capture of carbon dioxide | Bipartisan Policy Center [WWW Document], (2021). URL
Gambhir, Tavoni (bib41) 2019; 1
Cortes, Laska, Advisor, Johnson (bib24) 2022
Direct Air Capture (DAC), 2021. Geoengin. Monit., geoengineering technology briefing 6.
Sutherland (bib109) 2019; 3
van Vuuren, Stehfest, Gernaat, van den Berg, Bijl, de Boer, Daioglou, Doelman, Edelenbosch, Harmsen (bib120) 2018; 8
Sanz-Pérez, Murdock, Didas, Jones (bib100) 2016; 116
Mac Dowell, Fennell, Shah, Maitland (bib66) 2017; 7
Climeworks offers a technology to reverse climate change. [WWW Document], (2022). URL
Mission Zero Technologies – Closing the carbon cycle., (2022). URL
n.d. Sustaera [WWW Document], n.d. . Sustaera. URL
McQueen, Gomes, McCormick, Blumanthal, Pisciotta, Wilcox (bib75) 2021; 3
Kusmer, A., (2020). Can Direct Air Capture Make a Real Impact on Climate Change? [WWW Document]. World PRX. URL
McQueen, Desmond, Socolow, Psarras, Wilcox (bib74) 2021; 2
(bib44) 2018
Caldera, Breyer (bib12) 2017; 53
(bib19) 2021
Gallucci (bib40) 2021; 58
Bento, Wilson (bib6) 2016; 21
(bib25) 2018
Kiani, Jiang, Feron (bib58) 2020; 8
McQueen, Psarras, Pilorgé, Liguori, He, Yuan, Woodall, Kian, Pierpoint, Jurewicz (bib76) 2020; 54
Madhu, Pauliuk, Dhathri, Creutzig (bib67) 2021; 6
Bipartisan Policy Center. Investing in Climate Innovation: The environmental Case for Direct Air Capture of Carbon dioxide | Bipartisan Policy Center [WWW Document], (2022). URL
Nielsen (bib87) 2019
Climeworks’ new large-scale carbon dioxide removal plant orca [WWW Document], (2022). URL
CO2.Earth. Earth’s CO2 home page [WWW Document], (2022). CO2.Earth. URL
Ica (bib53) 2020
(accessed 1.27.22).
Deutz, Bardow (bib29) 2021; 6
Socolow, Desmond, Aines, Blackstock, Bolland, Kaarsberg, Lewis, Mazzotti, Pfeffer, Sawyer (bib104) 2011
Carbon Engineering | Direct Air Capture of CO2 | Home [WWW Document], (2022). Carbon Eng. URL
Keith, Holmes, St. Angelo, Heidel (bib57) 2018; 2
Goeppert, Zhang, Sen, Dang, Prakash (bib46) 2019; 12
Fuhrman, McJeon, Patel, Doney, Shobe, Clarens (bib37) 2020; 10
Heck, Gerten, Lucht, Popp (bib49) 2018; 8
(bib13) 2020
Jones, Sherlock (bib56) 2021
United Nations Environment Programme (bib117) 2019
2021. Glob. Thermostat. URL
The Story Behind Carbon Engineering [WWW Document], (2022). Carbon Eng. URL
Main [WWW Document], (2022). Verdox. URL
Gebald, Piatkowski, Rüesch, Wurzbacher (bib42) 2014
Climeworks. Climeworks - a climate-positive world enabled by direct air capture [WWW Document], (2022). URL
Arizona State Press. The world’s first mechanical tree prototype is to be built at ASU next year [WWW Document], (2020). Arizona State Press. URL
(accessed 6.12.21).
Modular direct air capture technology for net-zero [WWW Document], (2022). URL
Marcucci, Kypreos, Panos (bib70) 2017; 144
Direct Air Capture – Analysis [WWW Document], (2021). IEA. URL
accessed 5.16.21
Realmonte, Drouet, Gambhir, Glynn, Hawkes, Köberle, Tavoni (bib96) 2020; 11
Direct Air Capture, Greenhouse Gas Removal Programme, UK. Department for Business (bib31) 2020
Hanusch, Kerschgens, Huber, Neuburger, Gademann (bib48) 2019; 55
Mokarram, Mokarram, Khosravi, Saber, Rahideh (bib82) 2020; 10
Creutzig, Breyer, Hilaire, Minx, Peters, Socolow (bib28) 2019; 12
(bib43) 2018
Fasihi, Efimova, Breyer (bib35) 2019; 224
Banoni, Arnone, Fondeur, Hodge, Offner, Phillips (bib5) 2012; 6
Black & Veatch Awarded DOE Funding to Build Global Thermostat DAC Project to Capture 100,000 Tons of CO
Materials And Chemical Sciences Research for Direct Air Capture of Carbond Dioxide, 2021. (DOE)
Ozkan, Akhavi, Coley, Shang, Ma (bib90) 2022; 8
Broehm, Strefler, Bauer (bib9) 2015
About, 2022. Carbon capture.
Energy.gov DOE invests $24 million to advance transformational air pollution capture [WWW Document], (2022). Energy.gov. URL
to use – analysis [WWW Document], (2019). IEA. URL
Ozkan (bib89) 2021; 8
Perea, Honeyman, Kann, Mond, Shiao, Jones, Moskowitz, Smith, Gallaghe, Rumery (bib91) 2016
Luo, Chen, Hong, He, Wang, Ding, Wang, Sun (bib65) 2018; 10
(bib83) 2018
Nemet (bib84) 2019
Sixth carbon Budget, (2020). Clim. Change Comm. URL
Zeng, Zhang, Bai, Zhang, Wang, Wang, Bao, Li, Liu, Zhang (bib121) 2017; 117
Cairns (bib11) 2020
Climeworks begins operations of Orca, the world’s largest direct air capture and CO₂ storage plant [WWW Document], (2022). URL
(accessed 5.31.21).
Breyer, Fasihi, Aghahosseini (bib8) 2020; 25
Luis (bib64) 2016; 380
Krekel, Samsun, Peters, Stolten (bib59) 2018; 218
n.d. Technology [WWW Document], n.d. Infin. LLC. URL
Chand, Prasad, Mamun, Sharma, Chand (bib16) 2019; 1
(bib39) 2019
U.S. Energy Information Administration U.S. energy facts explained - consumption and production - U.S. energy information administration (EIA) [WWW Document], (2021). URL
(accessed 1.26.22).
Hernandez, Hoffacker, Murphy-Mariscal, Wu, Allen (bib51) 2015; 112
Merchant (bib79) 2022
Perpiña Castillo, Batista e Silva, Lavalle (bib92) 2016; 88
Stolaroff (bib107) 2006
(bib98) 2021
Cabuzel (bib10) 2019
Realmonte, Drouet, Gambhir, Glynn, Hawkes, Köberle, Tavoni (bib97) 2019; 10
House, Baclig, Ranjan, van Nierop, Wilcox, Herzog (bib52) 2011; 108
News, C.H., E&E, (2021). Direct Air Capture Of CO
is Suddenly a Carbon Offset Option [WWW Document]. Sci. Am. URL
(accessed 6.13.21).
Cox, Spence, Pidgeon (bib26) 2020; 10
Lebling, McQueen, Pisciotta, Wilcox (bib63) 2021
Rochelle, Chen, Freeman, Van Wagener, Xu, Voice (bib99) 2011; 171
Credit for Carbon Oxide Sequestration [WWW Document], 2021. Fed. Regist. URL
Le Quéré, Jackson, Jones, Smith, Abernethy, Andrew, De-Gol, Willis, Shan, Canadell (bib62) 2020; 10
Van der Giesen, Meinrenken, Kleijn, Sprecher, Lackner, Kramer (bib119) 2016; 51
Fuss, Lamb, Callaghan, Hilaire, Creutzig, Amann, Beringer, Garcia, Hartmann, Khanna (bib38) 2018; 13
Heirloom [WWW Document], (2020). URL
Thompson (bib115) 2021
Fuhrman, Clarens, McJeon, Patel, Ou, Doney, Shobe, Pradhan (bib36) 2021; 1
Hanna, Abdulla, Xu, Victor (bib47) 2021; 12
Somoza-Tornos, Guerra, Crow, Smith, Hodge (bib105) 2021; 24
Understanding CCS [WWW Document], (2022). Glob. CCS Inst. URL
Noya | Capture CO₂ [WWW Document], (2022). URL
Chatterjee, Huang (bib17) 2020; 11
(bib45) 2021
Putting CO
Lackner, Azarabadi (bib61) 2021; 60
Britannica. China - Minerals | Britannica [WWW Document], 2022.
(accessed 5.24.21).
PM: A New Deal for Britain [WWW Document], (2020). GOV.UK. URL
10.1016/j.isci.2022.103990_bib34
van Vuuren (10.1016/j.isci.2022.103990_bib120) 2018; 8
10.1016/j.isci.2022.103990_bib33
10.1016/j.isci.2022.103990_bib32
McQueen (10.1016/j.isci.2022.103990_bib75) 2021; 3
10.1016/j.isci.2022.103990_bib30
Van der Giesen (10.1016/j.isci.2022.103990_bib119) 2016; 51
Hanusch (10.1016/j.isci.2022.103990_bib48) 2019; 55
(10.1016/j.isci.2022.103990_bib45) 2021
Cortes (10.1016/j.isci.2022.103990_bib24) 2022
Majumdar (10.1016/j.isci.2022.103990_bib69) 2018; 2
Banoni (10.1016/j.isci.2022.103990_bib5) 2012; 6
10.1016/j.isci.2022.103990_bib23
10.1016/j.isci.2022.103990_bib22
10.1016/j.isci.2022.103990_bib21
10.1016/j.isci.2022.103990_bib20
Madhu (10.1016/j.isci.2022.103990_bib67) 2021; 6
10.1016/j.isci.2022.103990_bib27
Cairns (10.1016/j.isci.2022.103990_bib11) 2020
(10.1016/j.isci.2022.103990_bib83) 2018
Lackner (10.1016/j.isci.2022.103990_bib61) 2021; 60
Realmonte (10.1016/j.isci.2022.103990_bib96) 2020; 11
Broehm (10.1016/j.isci.2022.103990_bib9) 2015
Merchant (10.1016/j.isci.2022.103990_bib79)
Fuhrman (10.1016/j.isci.2022.103990_bib36) 2021; 1
(10.1016/j.isci.2022.103990_bib13) 2020
10.1016/j.isci.2022.103990_bib15
Bento (10.1016/j.isci.2022.103990_bib6) 2016; 21
Breyer (10.1016/j.isci.2022.103990_bib8) 2020; 25
Fasihi (10.1016/j.isci.2022.103990_bib35) 2019; 224
10.1016/j.isci.2022.103990_bib95
10.1016/j.isci.2022.103990_bib94
Thompson (10.1016/j.isci.2022.103990_bib115)
Le Quéré (10.1016/j.isci.2022.103990_bib62) 2020; 10
10.1016/j.isci.2022.103990_bib93
Mokarram (10.1016/j.isci.2022.103990_bib82) 2020; 10
Keith (10.1016/j.isci.2022.103990_bib57) 2018; 2
10.1016/j.isci.2022.103990_bib18
House (10.1016/j.isci.2022.103990_bib52) 2011; 108
Luis (10.1016/j.isci.2022.103990_bib64) 2016; 380
McQueen (10.1016/j.isci.2022.103990_bib76) 2020; 54
10.1016/j.isci.2022.103990_bib88
10.1016/j.isci.2022.103990_bib86
Fuhrman (10.1016/j.isci.2022.103990_bib37) 2020; 10
Gambhir (10.1016/j.isci.2022.103990_bib41) 2019; 1
Sutherland (10.1016/j.isci.2022.103990_bib109) 2019; 3
(10.1016/j.isci.2022.103990_bib19) 2021
(10.1016/j.isci.2022.103990_bib25) 2018
Realmonte (10.1016/j.isci.2022.103990_bib97) 2019; 10
10.1016/j.isci.2022.103990_bib81
10.1016/j.isci.2022.103990_bib80
Ozkan (10.1016/j.isci.2022.103990_bib89) 2021; 8
Caldera (10.1016/j.isci.2022.103990_bib12) 2017; 53
Maycock (10.1016/j.isci.2022.103990_bib73) 2005; 6
Somoza-Tornos (10.1016/j.isci.2022.103990_bib105) 2021; 24
Creutzig (10.1016/j.isci.2022.103990_bib28) 2019; 12
McQueen (10.1016/j.isci.2022.103990_bib74) 2021; 2
Marcucci (10.1016/j.isci.2022.103990_bib70) 2017; 144
(10.1016/j.isci.2022.103990_bib71) 2021
Jones (10.1016/j.isci.2022.103990_bib56) 2021
10.1016/j.isci.2022.103990_bib72
Fuss (10.1016/j.isci.2022.103990_bib38) 2018; 13
Nemet (10.1016/j.isci.2022.103990_bib85) 2018; 13
Perea (10.1016/j.isci.2022.103990_bib91) 2016
(10.1016/j.isci.2022.103990_bib44) 2018
Nemet (10.1016/j.isci.2022.103990_bib84) 2019
Cabuzel (10.1016/j.isci.2022.103990_bib10) 2019
(10.1016/j.isci.2022.103990_bib14) 2021
Gallucci (10.1016/j.isci.2022.103990_bib40) 2021; 58
10.1016/j.isci.2022.103990_bib68
Direct Air Capture (10.1016/j.isci.2022.103990_bib31) 2020
Hernandez (10.1016/j.isci.2022.103990_bib51) 2015; 112
10.1016/j.isci.2022.103990_bib60
10.1016/j.isci.2022.103990_bib112
10.1016/j.isci.2022.103990_bib113
10.1016/j.isci.2022.103990_bib114
Chatterjee (10.1016/j.isci.2022.103990_bib17) 2020; 11
10.1016/j.isci.2022.103990_bib116
Krekel (10.1016/j.isci.2022.103990_bib59) 2018; 218
Meckling (10.1016/j.isci.2022.103990_bib78) 2021; 12
10.1016/j.isci.2022.103990_bib118
Gebald (10.1016/j.isci.2022.103990_bib42) 2014
Perpiña Castillo (10.1016/j.isci.2022.103990_bib92) 2016; 88
Zeng (10.1016/j.isci.2022.103990_bib121) 2017; 117
Cox (10.1016/j.isci.2022.103990_bib26) 2020; 10
10.1016/j.isci.2022.103990_bib110
10.1016/j.isci.2022.103990_bib111
Jacobson (10.1016/j.isci.2022.103990_bib55) 2019; 12
10.1016/j.isci.2022.103990_bib7
10.1016/j.isci.2022.103990_bib54
Luo (10.1016/j.isci.2022.103990_bib65) 2018; 10
10.1016/j.isci.2022.103990_bib2
10.1016/j.isci.2022.103990_bib4
Hanna (10.1016/j.isci.2022.103990_bib47) 2021; 12
Lebling (10.1016/j.isci.2022.103990_bib63) 2021
Rochelle (10.1016/j.isci.2022.103990_bib99) 2011; 171
Stolaroff (10.1016/j.isci.2022.103990_bib107) 2006
Zhang (10.1016/j.isci.2022.103990_bib122) 2015
10.1016/j.isci.2022.103990_bib1
10.1016/j.isci.2022.103990_bib50
Mac Dowell (10.1016/j.isci.2022.103990_bib66) 2017; 7
Ica (10.1016/j.isci.2022.103990_bib53) 2020
10.1016/j.isci.2022.103990_bib103
10.1016/j.isci.2022.103990_bib106
10.1016/j.isci.2022.103990_bib108
Kiani (10.1016/j.isci.2022.103990_bib58) 2020; 8
Nielsen (10.1016/j.isci.2022.103990_bib87)
(10.1016/j.isci.2022.103990_bib39) 2019
Goeppert (10.1016/j.isci.2022.103990_bib46) 2019; 12
Sanz-Pérez (10.1016/j.isci.2022.103990_bib100) 2016; 116
Socolow (10.1016/j.isci.2022.103990_bib104) 2011
Shi (10.1016/j.isci.2022.103990_bib102) 2020; 4
Deutz (10.1016/j.isci.2022.103990_bib29) 2021; 6
Ozkan (10.1016/j.isci.2022.103990_bib90) 2022; 8
Shi (10.1016/j.isci.2022.103990_bib101) 2020; 59
Azarabadi (10.1016/j.isci.2022.103990_bib3) 2019; 250
United Nations Environment Programme (10.1016/j.isci.2022.103990_bib117) 2019
Chand (10.1016/j.isci.2022.103990_bib16) 2019; 1
Heck (10.1016/j.isci.2022.103990_bib49) 2018; 8
References_xml – volume: 21
  start-page: 95
  year: 2016
  end-page: 112
  ident: bib6
  article-title: Measuring the duration of formative phases for energy technologies
  publication-title: Environ. Innov. Soc. Transit.
– volume: 7
  start-page: 243
  year: 2017
  end-page: 249
  ident: bib66
  article-title: The role of CO
  publication-title: Nat. Clim. Change
– volume: 8
  start-page: 92
  year: 2020
  ident: bib58
  article-title: Techno-economic assessment for CO
  publication-title: Front. Energy Res.
– reference: (accessed 5.31.21).
– year: 2014
  ident: bib42
  article-title: Low-Pressure Drop Structure of Particle Adsorbent Bed for Adsorption Gas Separation Process
– year: 2021
  ident: bib77
  article-title: Mechanical trees that suck CO
– reference: Modular direct air capture technology for net-zero [WWW Document], (2022). URL
– volume: 380
  start-page: 93
  year: 2016
  end-page: 99
  ident: bib64
  article-title: Use of monoethanolamine (MEA) for CO
  publication-title: Desalination
– reference: Noya | Capture CO₂ [WWW Document], (2022). URL
– volume: 13
  start-page: 063002
  year: 2018
  ident: bib38
  article-title: Negative emissions—Part 2: costs, potentials and side effects
  publication-title: Environ. Res. Lett.
– volume: 12
  start-page: 3567
  year: 2019
  end-page: 3574
  ident: bib55
  article-title: The health and climate impacts of carbon capture and direct air capture
  publication-title: Energy Environ. Sci.
– volume: 144
  start-page: 181
  year: 2017
  end-page: 193
  ident: bib70
  article-title: The road to achieving the long-term Paris targets: energy transition and the role of direct air capture
  publication-title: Clim. Change
– volume: 58
  start-page: 48
  year: 2021
  end-page: 49
  ident: bib40
  article-title: The carbon-sucking fans of West Texas: it’s not enough to slash greenhouse gas emissions. experts say we need direct-air capture
  publication-title: IEEE Spectr.
– volume: 12
  start-page: 1712
  year: 2019
  end-page: 1723
  ident: bib46
  article-title: Oxidation-resistant, cost-effective epoxide-modified polyamine adsorbents for CO
  publication-title: ChemSusChem.
– reference: Affordable carbon capture with a soda on the side. Affordable carbon capture with a soda on the side [WWW Document], 2018. Grist. URL
– volume: 10
  start-page: 3277
  year: 2019
  ident: bib97
  article-title: An inter-model assessment of the role of direct air capture in deep mitigation pathways
  publication-title: Nat. Commun.
– reference: n.d. Technology [WWW Document], n.d. Infin. LLC. URL
– year: 2015
  ident: bib9
  article-title: Techno-Economic Review of Direct Air Capture Systems for Large Scale Mitigation of Atmospheric CO
– reference: is Suddenly a Carbon Offset Option [WWW Document]. Sci. Am. URL
– volume: 11
  start-page: 3287
  year: 2020
  ident: bib17
  article-title: Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways
  publication-title: Nat. Commun.
– year: 2022
  ident: bib79
  article-title: 8 Unique direct air capture companies to watch in 2022
– reference: Britannica. China - Minerals | Britannica [WWW Document], 2022.
– volume: 4
  start-page: 1823
  year: 2020
  end-page: 1837
  ident: bib102
  article-title: Moisture-driven CO
  publication-title: Joule
– reference: About, 2022. Carbon capture.
– volume: 10
  start-page: 647
  year: 2020
  end-page: 653
  ident: bib62
  article-title: Temporary reduction in daily global CO
  publication-title: Nat. Clim. Change
– volume: 12
  start-page: 368
  year: 2021
  ident: bib47
  article-title: Emergency deployment of direct air capture as a response to the climate crisis
  publication-title: Nat. Commun.
– volume: 24
  start-page: 102813
  year: 2021
  ident: bib105
  article-title: Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO
  publication-title: iScience
– reference: (accessed 6.13.21).
– volume: 8
  start-page: 141
  year: 2022
  end-page: 173
  ident: bib90
  article-title: Progress in carbon dioxide capture materials for deep decarbonization
  publication-title: Chem
– reference: Climeworks offers a technology to reverse climate change. [WWW Document], (2022). URL
– volume: 1
  start-page: 405
  year: 2019
  end-page: 409
  ident: bib41
  article-title: Direct air carbon capture and sequestration: how it works and how it could contribute to climate-change mitigation
  publication-title: One Earth
– volume: 1
  start-page: 224
  year: 2019
  end-page: 231
  ident: bib16
  article-title: Adoption of grid-tie solar system at residential scale
  publication-title: Clean. Technol.
– volume: 1
  start-page: kgab004
  year: 2021
  ident: bib36
  article-title: The role of negative emissions in meeting China’s 2060 carbon neutrality goal
  publication-title: Oxf. Open Clim. Change
– volume: 6
  start-page: 18
  year: 2005
  end-page: 22
  ident: bib73
  article-title: PV review: World Solar PV market continues explosive growth
  publication-title: Refocus
– year: 2011
  ident: bib104
  article-title: Direct Air Capture of CO
– volume: 171
  start-page: 725
  year: 2011
  end-page: 733
  ident: bib99
  article-title: Aqueous piperazine as the new standard for CO
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 151
  year: 2018
  end-page: 155
  ident: bib49
  article-title: Biomass-based negative emissions difficult to reconcile with planetary boundaries
  publication-title: Nat. Clim. Change
– reference: (accessed 5.24.21).
– reference: Climeworks. Climeworks - a climate-positive world enabled by direct air capture [WWW Document], (2022). URL
– year: 2021
  ident: bib63
  article-title: Direct Air Capture: Resource Considerations and Costs for Carbon Removal
– volume: 2
  start-page: 805
  year: 2018
  end-page: 809
  ident: bib69
  article-title: Research opportunities for CO
  publication-title: Joule
– volume: 112
  start-page: 13579
  year: 2015
  end-page: 13584
  ident: bib51
  article-title: Solar energy development impacts on land cover change and protected areas
  publication-title: Proc. Natl. Acad. Sci.
– reference: (accessed 6.3.21).
– reference: (accessed 1.27.22).
– reference: (accessed 6.3.21).
– reference: Putting CO
– reference: to use – analysis [WWW Document], (2019). IEA. URL
– year: 2022
  ident: bib24
  article-title: Economics of Direct Air Capture of Carbon Dioxide 22
– volume: 10
  start-page: 8200
  year: 2020
  ident: bib82
  article-title: Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster–Shafer theory
  publication-title: Sci. Rep.
– reference: (accessed 6.2.21)
– reference: The Story Behind Carbon Engineering [WWW Document], (2022). Carbon Eng. URL
– reference: CO2.Earth. Earth’s CO2 home page [WWW Document], (2022). CO2.Earth. URL
– volume: 59
  start-page: 6984
  year: 2020
  end-page: 7006
  ident: bib101
  article-title: Sorbents for the direct capture of CO
  publication-title: Angew. Chem. Int. Ed.
– reference: Climeworks’ new large-scale carbon dioxide removal plant orca [WWW Document], (2022). URL
– year: 2021
  ident: bib98
  article-title: Renewable power for carbon dioxide mitigation
– reference: Heirloom [WWW Document], (2020). URL
– reference: , 2021. Glob. Thermostat. URL
– reference: (accessed 6.12.21).
– year: 2016
  ident: bib91
  article-title: U.S Solar Market Insight 2016 Year in Review
– reference: U.S. Energy Information Administration U.S. energy facts explained - consumption and production - U.S. energy information administration (EIA) [WWW Document], (2021). URL
– reference: Energy.gov DOE invests $24 million to advance transformational air pollution capture [WWW Document], (2022). Energy.gov. URL
– volume: 10
  start-page: 744
  year: 2020
  end-page: 749
  ident: bib26
  article-title: Public perceptions of carbon dioxide removal in the United States and the United Kingdom
  publication-title: Nat. Clim. Change
– year: 2019
  ident: bib87
  article-title: The impact of direct air carbon capture on climate change
– reference: Kusmer, A., (2020). Can Direct Air Capture Make a Real Impact on Climate Change? [WWW Document]. World PRX. URL
– reference: Clim. Home News. South Africa Aims to Reach Net Zero Emissions in 2050 - While Still Burning Coal [WWW Document], (2020). Clim. Home News. URL
– year: 2018
  ident: bib83
  article-title: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda
– year: 2006
  ident: bib107
  article-title: Capturing CO
– reference: Credit for Carbon Oxide Sequestration [WWW Document], 2021. Fed. Regist. URL
– year: 2019
  ident: bib39
  article-title: Future of solar photovoltaic
  publication-title: Publ. Sol. Photovolt.
– volume: 218
  start-page: 361
  year: 2018
  end-page: 381
  ident: bib59
  article-title: The separation of CO2 from ambient air – a techno-economic assessment
  publication-title: Appl. Energy
– reference: News, C.H., E&E, (2021). Direct Air Capture Of CO
– reference: (accessed 6.13.21).
– volume: 10
  start-page: 9495
  year: 2018
  end-page: 9502
  ident: bib65
  article-title: Binding CO
  publication-title: ACS Appl. Mater. Inter.
– volume: 54
  start-page: 7542
  year: 2020
  end-page: 7551
  ident: bib76
  article-title: Cost analysis of direct air capture and sequestration coupled to low-carbon thermal energy in the United States
  publication-title: Environ. Sci. Technol.
– reference: Climeworks begins operations of Orca, the world’s largest direct air capture and CO₂ storage plant [WWW Document], (2022). URL
– volume: 8
  start-page: 391
  year: 2018
  end-page: 397
  ident: bib120
  article-title: Alternative pathways to the 1.5°C target reduce the need for negative emission technologies
  publication-title: Nat. Clim. Change
– reference: PM: A New Deal for Britain [WWW Document], (2020). GOV.UK. URL
– reference: Bipartisan Policy Center. Investing in Climate Innovation: The environmental Case for Direct Air Capture of Carbon dioxide | Bipartisan Policy Center [WWW Document], (2022). URL
– year: 2015
  ident: bib122
  article-title: The Impact of Climate Policy on Carbon Capture and Storage Deployment in China 22
– reference: (accessed 1.27.22).
– year: 2020
  ident: bib31
  publication-title: Energy & Industrial Strategy)
– year: 2021
  ident: bib19
  article-title: China and US Pledge Climate Change Commitment
– reference: (accessed 1.27.22)
– year: 2018
  ident: bib43
  article-title: Global market outlook 2018-2022
– year: 2019
  ident: bib117
  article-title: Emissions Gap Report 2019
– volume: 224
  start-page: 957
  year: 2019
  end-page: 980
  ident: bib35
  article-title: Techno-economic assessment of CO2 direct air capture plants
  publication-title: J. Clean. Prod.
– volume: 2
  start-page: 618644
  year: 2021
  ident: bib74
  article-title: Natural gas vs. electricity for solvent-based direct air capture
  publication-title: Front. Clim.
– year: 2021
  ident: bib14
  article-title: Carbon Engineering
– volume: 6
  start-page: 1035
  year: 2021
  end-page: 1044
  ident: bib67
  article-title: Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment
  publication-title: Nat. Energy
– volume: 117
  start-page: 9625
  year: 2017
  end-page: 9673
  ident: bib121
  article-title: Ionic-liquid-based CO
  publication-title: Chem. Rev.
– volume: 12
  start-page: 2051
  year: 2021
  ident: bib78
  article-title: A policy roadmap for negative emissions using direct air capture
  publication-title: Nat. Commun.
– volume: 60
  start-page: 8196
  year: 2021
  end-page: 8208
  ident: bib61
  article-title: Buying down the cost of direct air capture
  publication-title: Ind. Eng. Chem. Res.
– year: 2021
  ident: bib115
  article-title: Is sucking carbon out of the air the solution to our climate crisis? Mother Jones
– reference: Baker, J., 2015. Market Outlook: Out of Thin Air [WWW Document]. ICIS Explore.
– volume: 53
  start-page: 10523
  year: 2017
  end-page: 10538
  ident: bib12
  article-title: Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future
  publication-title: Water Resour. Res.
– reference: (accessed 1.26.22).
– volume: 250
  start-page: 959
  year: 2019
  end-page: 975
  ident: bib3
  article-title: A sorbent-focused techno-economic analysis of direct air capture
  publication-title: Appl. Energy
– year: 2019
  ident: bib10
  article-title: Innovation Fund
– volume: 13
  start-page: 063003
  year: 2018
  ident: bib85
  article-title: Negative emissions—Part 3: Innovation and upscaling
  publication-title: Environ. Res. Lett.
– reference: (accessed 5.16.21)
– reference: n.d. Sustaera [WWW Document], n.d. . Sustaera. URL
– reference: Arizona State Press. The world’s first mechanical tree prototype is to be built at ASU next year [WWW Document], (2020). Arizona State Press. URL
– reference: Direct Air Capture – Analysis [WWW Document], (2021). IEA. URL
– reference: Understanding CCS [WWW Document], (2022). Glob. CCS Inst. URL
– volume: 88
  start-page: 86
  year: 2016
  end-page: 99
  ident: bib92
  article-title: An assessment of the regional potential for solar power generation in EU-28
  publication-title: Energy Policy
– volume: 55
  start-page: 949
  year: 2019
  end-page: 952
  ident: bib48
  article-title: Pyrrolizidines for direct air capture and CO
  publication-title: Chem. Commun.
– reference: Main [WWW Document], (2022). Verdox. URL
– volume: 3
  start-page: 032001
  year: 2021
  ident: bib75
  article-title: A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future
  publication-title: Prog. Energy
– year: 2019
  ident: bib84
  article-title: How Solar Energy Became Cheap: A Model for Low-Carbon Innovation
– reference: Sixth carbon Budget, (2020). Clim. Change Comm. URL
– volume: 10
  start-page: 920
  year: 2020
  end-page: 927
  ident: bib37
  article-title: Food–energy–water implications of negative emissions technologies in a +1.5°C future
  publication-title: Nat. Clim. Change
– year: 2021
  ident: bib71
  article-title: Summary for policymakers
  publication-title: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
– year: 2020
  ident: bib11
  article-title: Direct Air Capture
– volume: 108
  start-page: 20428
  year: 2011
  end-page: 20433
  ident: bib52
  article-title: Economic and energetic analysis of capturing CO
  publication-title: Proc. Natl. Acad. Sci.
– volume: 2
  start-page: 1573
  year: 2018
  end-page: 1594
  ident: bib57
  article-title: A process for capturing CO
  publication-title: Joule
– year: 2018
  ident: bib44
  article-title: Global Status Report
– reference: Black & Veatch Awarded DOE Funding to Build Global Thermostat DAC Project to Capture 100,000 Tons of CO
– volume: 25
  start-page: 43
  year: 2020
  end-page: 65
  ident: bib8
  article-title: Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
– reference: Point of View: Boosting Oklahoma’s economy through investments in CO2 removal [WWW Document], 2020. Oklahoman.com. URL
– volume: 12
  start-page: 1805
  year: 2019
  end-page: 1817
  ident: bib28
  article-title: The mutual dependence of negative emission technologies and energy systems
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1571
  year: 2019
  end-page: 1573
  ident: bib109
  article-title: Pricing CO
  publication-title: Joule
– reference: Materials And Chemical Sciences Research for Direct Air Capture of Carbond Dioxide, 2021. (DOE)
– reference: The commercial case for direct air capture of carbon dioxide | Bipartisan Policy Center [WWW Document], (2021). URL
– volume: 6
  start-page: S6
  year: 2012
  ident: bib5
  article-title: The place of solar power: an economic analysis of concentrated and distributed solar power
  publication-title: Chem. Cent. J.
– volume: 8
  start-page: 51
  year: 2021
  end-page: 56
  ident: bib89
  article-title: Direct air capture of CO
  publication-title: MRS Energy Sustain.
– volume: 116
  start-page: 11840
  year: 2016
  end-page: 11876
  ident: bib100
  article-title: Direct capture of CO
  publication-title: Chem. Rev.
– reference: Mission Zero Technologies – Closing the carbon cycle., (2022). URL
– year: 2020
  ident: bib53
  article-title: South Africa’s Low-Emission Development Strategy 2050
– reference: Carbon Engineering | Direct Air Capture of CO2 | Home [WWW Document], (2022). Carbon Eng. URL
– start-page: 11
  year: 2018
  end-page: 14
  ident: bib25
  article-title: negative emission technologies: what role in meeting Paris agreement targets?
  publication-title: EASAC Policy Report
– year: 2021
  ident: bib56
  article-title: The Tax Credit for Carbon Sequestration (Section 45Q) 3
– reference: The GT Solution, (2022). Glob. Thermostat. URL
– volume: 51
  start-page: 1024
  year: 2016
  end-page: 1034
  ident: bib119
  article-title: A life cycle assessment case study of coal-fired electricity generation with humidity swing direct air capture of CO
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 203
  year: 2021
  end-page: 213
  ident: bib29
  article-title: Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption
  publication-title: Nat. Energy
– year: 2021
  ident: bib45
  article-title: Global Thermostat to Supply Equipment Needed to Remove Atmospheric CO
– reference: Direct Air Capture (DAC), 2021. Geoengin. Monit., geoengineering technology briefing 6.
– volume: 11
  start-page: 3286
  year: 2020
  ident: bib96
  article-title: Reply to “High energy and materials requirement for direct air capture calls for further analysis and R&D.”
  publication-title: Nat. Commun.
– year: 2020
  ident: bib13
  article-title: Carbon Capture Solutions | Negative Emissions
– year: 2021
  ident: 10.1016/j.isci.2022.103990_bib19
– ident: 10.1016/j.isci.2022.103990_bib23
– volume: 3
  start-page: 1571
  year: 2019
  ident: 10.1016/j.isci.2022.103990_bib109
  article-title: Pricing CO2 direct air capture
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.025
– ident: 10.1016/j.isci.2022.103990_bib106
– year: 2016
  ident: 10.1016/j.isci.2022.103990_bib91
– volume: 60
  start-page: 8196
  year: 2021
  ident: 10.1016/j.isci.2022.103990_bib61
  article-title: Buying down the cost of direct air capture
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c04839
– year: 2020
  ident: 10.1016/j.isci.2022.103990_bib11
– year: 2021
  ident: 10.1016/j.isci.2022.103990_bib63
– year: 2019
  ident: 10.1016/j.isci.2022.103990_bib39
  article-title: Future of solar photovoltaic
  publication-title: Publ. Sol. Photovolt.
– volume: 55
  start-page: 949
  year: 2019
  ident: 10.1016/j.isci.2022.103990_bib48
  article-title: Pyrrolizidines for direct air capture and CO2 conversion
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08574A
– volume: 10
  start-page: 647
  year: 2020
  ident: 10.1016/j.isci.2022.103990_bib62
  article-title: Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-020-0797-x
– year: 2015
  ident: 10.1016/j.isci.2022.103990_bib9
– volume: 218
  start-page: 361
  year: 2018
  ident: 10.1016/j.isci.2022.103990_bib59
  article-title: The separation of CO2 from ambient air – a techno-economic assessment
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.144
– volume: 10
  start-page: 744
  year: 2020
  ident: 10.1016/j.isci.2022.103990_bib26
  article-title: Public perceptions of carbon dioxide removal in the United States and the United Kingdom
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-020-0823-z
– ident: 10.1016/j.isci.2022.103990_bib1
– ident: 10.1016/j.isci.2022.103990_bib112
– ident: 10.1016/j.isci.2022.103990_bib81
– ident: 10.1016/j.isci.2022.103990_bib20
– volume: 7
  start-page: 243
  year: 2017
  ident: 10.1016/j.isci.2022.103990_bib66
  article-title: The role of CO2 capture and utilization in mitigating climate change
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3231
– volume: 88
  start-page: 86
  year: 2016
  ident: 10.1016/j.isci.2022.103990_bib92
  article-title: An assessment of the regional potential for solar power generation in EU-28
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.10.004
– ident: 10.1016/j.isci.2022.103990_bib95
– ident: 10.1016/j.isci.2022.103990_bib103
– ident: 10.1016/j.isci.2022.103990_bib32
– year: 2006
  ident: 10.1016/j.isci.2022.103990_bib107
– volume: 8
  start-page: 391
  year: 2018
  ident: 10.1016/j.isci.2022.103990_bib120
  article-title: Alternative pathways to the 1.5°C target reduce the need for negative emission technologies
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0119-8
– volume: 224
  start-page: 957
  year: 2019
  ident: 10.1016/j.isci.2022.103990_bib35
  article-title: Techno-economic assessment of CO2 direct air capture plants
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.03.086
– volume: 59
  start-page: 6984
  year: 2020
  ident: 10.1016/j.isci.2022.103990_bib101
  article-title: Sorbents for the direct capture of CO2 from ambient air
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201906756
– volume: 6
  start-page: 18
  year: 2005
  ident: 10.1016/j.isci.2022.103990_bib73
  article-title: PV review: World Solar PV market continues explosive growth
  publication-title: Refocus
  doi: 10.1016/S1471-0846(05)70452-2
– volume: 8
  start-page: 151
  year: 2018
  ident: 10.1016/j.isci.2022.103990_bib49
  article-title: Biomass-based negative emissions difficult to reconcile with planetary boundaries
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-017-0064-y
– year: 2020
  ident: 10.1016/j.isci.2022.103990_bib13
– volume: 2
  start-page: 805
  year: 2018
  ident: 10.1016/j.isci.2022.103990_bib69
  article-title: Research opportunities for CO2 utilization and negative emissions at the gigatonne scale
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.018
– ident: 10.1016/j.isci.2022.103990_bib88
  doi: 10.30598/vol1iss1pp84-100
– volume: 10
  start-page: 8200
  year: 2020
  ident: 10.1016/j.isci.2022.103990_bib82
  article-title: Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster–Shafer theory
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65165-z
– volume: 6
  start-page: S6
  year: 2012
  ident: 10.1016/j.isci.2022.103990_bib5
  article-title: The place of solar power: an economic analysis of concentrated and distributed solar power
  publication-title: Chem. Cent. J.
  doi: 10.1186/1752-153X-6-S1-S6
– ident: 10.1016/j.isci.2022.103990_bib50
– year: 2019
  ident: 10.1016/j.isci.2022.103990_bib10
– ident: 10.1016/j.isci.2022.103990_bib7
– ident: 10.1016/j.isci.2022.103990_bib110
– volume: 24
  start-page: 102813
  year: 2021
  ident: 10.1016/j.isci.2022.103990_bib105
  article-title: Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102813
– volume: 3
  start-page: 032001
  year: 2021
  ident: 10.1016/j.isci.2022.103990_bib75
  article-title: A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future
  publication-title: Prog. Energy
  doi: 10.1088/2516-1083/abf1ce
– volume: 108
  start-page: 20428
  year: 2011
  ident: 10.1016/j.isci.2022.103990_bib52
  article-title: Economic and energetic analysis of capturing CO2 from ambient air
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1012253108
– ident: 10.1016/j.isci.2022.103990_bib118
– ident: 10.1016/j.isci.2022.103990_bib22
– volume: 4
  start-page: 1823
  year: 2020
  ident: 10.1016/j.isci.2022.103990_bib102
  article-title: Moisture-driven CO2 sorbents
  publication-title: Joule
  doi: 10.1016/j.joule.2020.07.005
– volume: 8
  start-page: 51
  year: 2021
  ident: 10.1016/j.isci.2022.103990_bib89
  article-title: Direct air capture of CO2: a response to meet the global climate targets
  publication-title: MRS Energy Sustain.
  doi: 10.1557/s43581-021-00005-9
– year: 2011
  ident: 10.1016/j.isci.2022.103990_bib104
– year: 2018
  ident: 10.1016/j.isci.2022.103990_bib44
– start-page: 11
  year: 2018
  ident: 10.1016/j.isci.2022.103990_bib25
  article-title: negative emission technologies: what role in meeting Paris agreement targets?
– volume: 8
  start-page: 141
  year: 2022
  ident: 10.1016/j.isci.2022.103990_bib90
  article-title: Progress in carbon dioxide capture materials for deep decarbonization
  publication-title: Chem
  doi: 10.1016/j.chempr.2021.12.013
– ident: 10.1016/j.isci.2022.103990_bib30
– ident: 10.1016/j.isci.2022.103990_bib115
– volume: 250
  start-page: 959
  year: 2019
  ident: 10.1016/j.isci.2022.103990_bib3
  article-title: A sorbent-focused techno-economic analysis of direct air capture
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.04.012
– year: 2020
  ident: 10.1016/j.isci.2022.103990_bib31
  publication-title: Energy & Industrial Strategy)
– ident: 10.1016/j.isci.2022.103990_bib72
– ident: 10.1016/j.isci.2022.103990_bib4
– ident: 10.1016/j.isci.2022.103990_bib86
– volume: 11
  start-page: 3287
  year: 2020
  ident: 10.1016/j.isci.2022.103990_bib17
  article-title: Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17203-7
– volume: 10
  start-page: 9495
  year: 2018
  ident: 10.1016/j.isci.2022.103990_bib65
  article-title: Binding CO2 from air by a bulky organometallic cation containing primary amines
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.8b01044
– volume: 1
  start-page: 224
  year: 2019
  ident: 10.1016/j.isci.2022.103990_bib16
  article-title: Adoption of grid-tie solar system at residential scale
  publication-title: Clean. Technol.
  doi: 10.3390/cleantechnol1010015
– volume: 21
  start-page: 95
  year: 2016
  ident: 10.1016/j.isci.2022.103990_bib6
  article-title: Measuring the duration of formative phases for energy technologies
  publication-title: Environ. Innov. Soc. Transit.
  doi: 10.1016/j.eist.2016.04.004
– ident: 10.1016/j.isci.2022.103990_bib27
– volume: 10
  start-page: 920
  year: 2020
  ident: 10.1016/j.isci.2022.103990_bib37
  article-title: Food–energy–water implications of negative emissions technologies in a +1.5°C future
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-020-0876-z
– volume: 8
  start-page: 92
  year: 2020
  ident: 10.1016/j.isci.2022.103990_bib58
  article-title: Techno-economic assessment for CO2 capture from air using a conventional liquid-based absorption process
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2020.00092
– volume: 1
  start-page: 405
  year: 2019
  ident: 10.1016/j.isci.2022.103990_bib41
  article-title: Direct air carbon capture and sequestration: how it works and how it could contribute to climate-change mitigation
  publication-title: One Earth
  doi: 10.1016/j.oneear.2019.11.006
– year: 2021
  ident: 10.1016/j.isci.2022.103990_bib14
– volume: 116
  start-page: 11840
  year: 2016
  ident: 10.1016/j.isci.2022.103990_bib100
  article-title: Direct capture of CO2 from ambient air
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00173
– volume: 117
  start-page: 9625
  year: 2017
  ident: 10.1016/j.isci.2022.103990_bib121
  article-title: Ionic-liquid-based CO2 capture systems: structure, interaction and process
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00072
– volume: 6
  start-page: 203
  year: 2021
  ident: 10.1016/j.isci.2022.103990_bib29
  article-title: Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00771-9
– ident: 10.1016/j.isci.2022.103990_bib94
– ident: 10.1016/j.isci.2022.103990_bib33
– year: 2015
  ident: 10.1016/j.isci.2022.103990_bib122
– ident: 10.1016/j.isci.2022.103990_bib116
– volume: 25
  start-page: 43
  year: 2020
  ident: 10.1016/j.isci.2022.103990_bib8
  article-title: Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
  doi: 10.1007/s11027-019-9847-y
– volume: 112
  start-page: 13579
  year: 2015
  ident: 10.1016/j.isci.2022.103990_bib51
  article-title: Solar energy development impacts on land cover change and protected areas
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517656112
– year: 2019
  ident: 10.1016/j.isci.2022.103990_bib84
– volume: 1
  start-page: kgab004
  year: 2021
  ident: 10.1016/j.isci.2022.103990_bib36
  article-title: The role of negative emissions in meeting China’s 2060 carbon neutrality goal
  publication-title: Oxf. Open Clim. Change
  doi: 10.1093/oxfclm/kgab004
– year: 2020
  ident: 10.1016/j.isci.2022.103990_bib53
– volume: 12
  start-page: 1805
  year: 2019
  ident: 10.1016/j.isci.2022.103990_bib28
  article-title: The mutual dependence of negative emission technologies and energy systems
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03682A
– ident: 10.1016/j.isci.2022.103990_bib18
– volume: 11
  start-page: 3286
  year: 2020
  ident: 10.1016/j.isci.2022.103990_bib96
  article-title: Reply to “High energy and materials requirement for direct air capture calls for further analysis and R&D.”
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17204-6
– volume: 58
  start-page: 48
  year: 2021
  ident: 10.1016/j.isci.2022.103990_bib40
  article-title: The carbon-sucking fans of West Texas: it’s not enough to slash greenhouse gas emissions. experts say we need direct-air capture
  publication-title: IEEE Spectr.
  doi: 10.1109/MSPEC.2021.9311453
– volume: 51
  start-page: 1024
  year: 2016
  ident: 10.1016/j.isci.2022.103990_bib119
  article-title: A life cycle assessment case study of coal-fired electricity generation with humidity swing direct air capture of CO2 versus MEA-based postcombustion capture
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05028
– ident: 10.1016/j.isci.2022.103990_bib2
– volume: 380
  start-page: 93
  year: 2016
  ident: 10.1016/j.isci.2022.103990_bib64
  article-title: Use of monoethanolamine (MEA) for CO2 capture in a global scenario: consequences and alternatives
  publication-title: Desalination
  doi: 10.1016/j.desal.2015.08.004
– volume: 171
  start-page: 725
  year: 2011
  ident: 10.1016/j.isci.2022.103990_bib99
  article-title: Aqueous piperazine as the new standard for CO2 capture technology
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.02.011
– volume: 144
  start-page: 181
  year: 2017
  ident: 10.1016/j.isci.2022.103990_bib70
  article-title: The road to achieving the long-term Paris targets: energy transition and the role of direct air capture
  publication-title: Clim. Change
  doi: 10.1007/s10584-017-2051-8
– year: 2021
  ident: 10.1016/j.isci.2022.103990_bib56
– ident: 10.1016/j.isci.2022.103990_bib113
– ident: 10.1016/j.isci.2022.103990_bib80
– ident: 10.1016/j.isci.2022.103990_bib21
– volume: 13
  start-page: 063002
  year: 2018
  ident: 10.1016/j.isci.2022.103990_bib38
  article-title: Negative emissions—Part 2: costs, potentials and side effects
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aabf9f
– year: 2014
  ident: 10.1016/j.isci.2022.103990_bib42
– volume: 2
  start-page: 1573
  year: 2018
  ident: 10.1016/j.isci.2022.103990_bib57
  article-title: A process for capturing CO2 from the atmosphere
  publication-title: Joule
  doi: 10.1016/j.joule.2018.05.006
– volume: 54
  start-page: 7542
  year: 2020
  ident: 10.1016/j.isci.2022.103990_bib76
  article-title: Cost analysis of direct air capture and sequestration coupled to low-carbon thermal energy in the United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c00476
– ident: 10.1016/j.isci.2022.103990_bib108
– volume: 12
  start-page: 1712
  year: 2019
  ident: 10.1016/j.isci.2022.103990_bib46
  article-title: Oxidation-resistant, cost-effective epoxide-modified polyamine adsorbents for CO2 capture from various sources including air
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.201802978
– ident: 10.1016/j.isci.2022.103990_bib87
– ident: 10.1016/j.isci.2022.103990_bib15
– year: 2018
  ident: 10.1016/j.isci.2022.103990_bib83
– ident: 10.1016/j.isci.2022.103990_bib54
– ident: 10.1016/j.isci.2022.103990_bib114
– volume: 6
  start-page: 1035
  year: 2021
  ident: 10.1016/j.isci.2022.103990_bib67
  article-title: Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00922-6
– volume: 13
  start-page: 063003
  year: 2018
  ident: 10.1016/j.isci.2022.103990_bib85
  article-title: Negative emissions—Part 3: Innovation and upscaling
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aabff4
– volume: 12
  start-page: 2051
  year: 2021
  ident: 10.1016/j.isci.2022.103990_bib78
  article-title: A policy roadmap for negative emissions using direct air capture
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22347-1
– volume: 12
  start-page: 368
  year: 2021
  ident: 10.1016/j.isci.2022.103990_bib47
  article-title: Emergency deployment of direct air capture as a response to the climate crisis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20437-0
– ident: 10.1016/j.isci.2022.103990_bib68
– ident: 10.1016/j.isci.2022.103990_bib60
– year: 2022
  ident: 10.1016/j.isci.2022.103990_bib24
– volume: 2
  start-page: 618644
  year: 2021
  ident: 10.1016/j.isci.2022.103990_bib74
  article-title: Natural gas vs. electricity for solvent-based direct air capture
  publication-title: Front. Clim.
  doi: 10.3389/fclim.2020.618644
– ident: 10.1016/j.isci.2022.103990_bib79
– ident: 10.1016/j.isci.2022.103990_bib93
– ident: 10.1016/j.isci.2022.103990_bib34
– volume: 10
  start-page: 3277
  year: 2019
  ident: 10.1016/j.isci.2022.103990_bib97
  article-title: An inter-model assessment of the role of direct air capture in deep mitigation pathways
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10842-5
– year: 2021
  ident: 10.1016/j.isci.2022.103990_bib45
– volume: 53
  start-page: 10523
  year: 2017
  ident: 10.1016/j.isci.2022.103990_bib12
  article-title: Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR021402
– year: 2019
  ident: 10.1016/j.isci.2022.103990_bib117
– ident: 10.1016/j.isci.2022.103990_bib111
– volume: 12
  start-page: 3567
  year: 2019
  ident: 10.1016/j.isci.2022.103990_bib55
  article-title: The health and climate impacts of carbon capture and direct air capture
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02709B
– year: 2021
  ident: 10.1016/j.isci.2022.103990_bib71
  article-title: Summary for policymakers
SSID ssj0002002496
Score 2.6027794
SecondaryResourceType review_article
Snippet Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming...
Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO ) to lower the global warming...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103990
SubjectTerms Chemical engineering
Energy sustainability
Environmental technology
Mechanical engineering
Review
Title Current status and pillars of direct air capture technologies
URI https://dx.doi.org/10.1016/j.isci.2022.103990
https://www.ncbi.nlm.nih.gov/pubmed/35310937
https://www.proquest.com/docview/2641516003
https://pubmed.ncbi.nlm.nih.gov/PMC8927912
https://doaj.org/article/b19034bbae724a31852fc49f49fe134b
Volume 25
WOSCitedRecordID wos000819870000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9xADB4V1AMXRNUWtsBqKvVWRWzmsZMcARVxqFAPrbS3kecRsQhlV_vg99eeSVa7IMEFKadk8rDHM7Zj-zNjP1QDIzBKFajNfaFcGBcgQBQ-SIk-EaALkAqFf5u7u2oyqf9stfqinLAMD5wZd-FQY0nlHEQjFKRa38arusEjlniBdl-0eracqYcUXiMovNRZTlNOEIpmVzGTk7uo4hWdQyGo6DxtyFtaKYH37yinl8bn8xzKLaV0c8QOO2uSX2YqPrEPsf3MeiRRTsVC6yWHNvA5NRdaLPms4VmJcZguuIc5BRD4qv-_jm7zF_bv5tff69ui65JQeGpGUIACqJTX3o2j8kaAlM7gDiakaZyqQdcgmiAjlZRGPQquFEGoUHonTFTKya9sv5218YTxWvtmVDoNcYyOQxjX6F0F7cJIeXS0KjNgZc8l6zsIcepk8Wj7XLEHS5y1xFmbOTtgPzf3zDOAxqujr4j5m5EEfp1OoEjYTiTsWyIxYLqfOtvZEZm1-Kjpqy__3s-zxUVGkRNo42y9tGg1omWEtqEcsOM875tPlJrAVSUyx-xIxA4Nu1fa6X0C8q5qYepSfHsPok_ZAZFCga5Sn7H91WIdz9lH_7SaLhdDtmcm1TCtkf84YBMZ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+status+and+pillars+of+direct+air+capture+technologies&rft.jtitle=iScience&rft.au=Ozkan%2C+Mihrimah&rft.au=Nayak%2C+Saswat+Priyadarshi&rft.au=Ruiz%2C+Anthony+D&rft.au=Jiang%2C+Wenmei&rft.date=2022-04-15&rft.eissn=2589-0042&rft.volume=25&rft.issue=4&rft.spage=103990&rft_id=info:doi/10.1016%2Fj.isci.2022.103990&rft_id=info%3Apmid%2F35310937&rft.externalDocID=35310937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon