Current status and pillars of direct air capture technologies
Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new polic...
Uložené v:
| Vydané v: | iScience Ročník 25; číslo 4; s. 103990 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
15.04.2022
Elsevier |
| Predmet: | |
| ISSN: | 2589-0042, 2589-0042 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2–6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5–2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%).
[Display omitted]
Chemical engineering; Energy sustainability; Environmental technology; Mechanical engineering |
|---|---|
| AbstractList | Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2–6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5–2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%). Chemical engineering; Energy sustainability; Environmental technology; Mechanical engineering Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO ) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO /year. DAC active plants capturing in average 10,000 tons of CO annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO which makes DAC economically viable. Current DAC cost is about 2-6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO /year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5-2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%). Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2–6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5–2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%). Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2-6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5-2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%).Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2-6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5-2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%). Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2–6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5–2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%). [Display omitted] Chemical engineering; Energy sustainability; Environmental technology; Mechanical engineering |
| ArticleNumber | 103990 |
| Author | Nayak, Saswat Priyadarshi Ozkan, Mihrimah Ruiz, Anthony D. Jiang, Wenmei |
| Author_xml | – sequence: 1 givenname: Mihrimah surname: Ozkan fullname: Ozkan, Mihrimah email: mihri@ece.ucr.edu organization: Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA – sequence: 2 givenname: Saswat Priyadarshi orcidid: 0000-0003-2210-0021 surname: Nayak fullname: Nayak, Saswat Priyadarshi organization: Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA – sequence: 3 givenname: Anthony D. surname: Ruiz fullname: Ruiz, Anthony D. organization: Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA – sequence: 4 givenname: Wenmei surname: Jiang fullname: Jiang, Wenmei organization: Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35310937$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9r3DAQxUVJaJJtvkAPxcdediuN5D-CtlCWNg0EcknPYiSPN1q81layA_n21cZpSHIIDEhI7z2N5nfGjoYwEGMfBV8JLqov25VPzq-AA-QDqTV_x06hbPSScwVHz_Yn7DylLecccildvWcnspSCa1mfsm_rKUYaxiKNOE6pwKEt9r7vMaYidEXrI7mxQB8Lh_txilSM5G6H0IeNp_SBHXfYJzp_XBfsz6-fN-vfy6vri8v1j6ulK0GMS1SIjXKlsxUpVwNKaWshBMi6s0pjqRG6VlLdCEElb62AFlQrnIWalLJywS7n3Dbg1uyj32G8NwG9eTgIcWMwjt71ZKzQXCprkWpQKEVTQueU7nKRkA9Z3-es_WR31Lr8-Yj9i9CXN4O_NZtwZxoNtc49L9jnx4AY_k6URrPLKCjPbKAwJQOVEqWoOJdZ-un5W0-P_J9_FsAscDGkFKl7kghuDpzN1hw4mwNnM3POpuaVyflMz4dDv75_2_p1tlKmdecpmqygwdEMOo_Tv2X_ByhCwtA |
| CitedBy_id | crossref_primary_10_1016_j_device_2024_100510 crossref_primary_10_1016_j_psep_2024_04_107 crossref_primary_10_3389_fenrg_2024_1443974 crossref_primary_10_1002_chem_202500865 crossref_primary_10_1016_j_chemosphere_2024_142478 crossref_primary_10_1557_s43581_024_00091_5 crossref_primary_10_1016_j_enconman_2023_117687 crossref_primary_10_1038_s41560_024_01492_z crossref_primary_10_1080_17583004_2023_2235577 crossref_primary_10_1039_D3SE00978E crossref_primary_10_1016_j_desal_2023_116958 crossref_primary_10_1039_D5SE00231A crossref_primary_10_1039_D5TA01836F crossref_primary_10_1016_j_cej_2024_154421 crossref_primary_10_1007_s11625_023_01382_5 crossref_primary_10_1039_D3EE01471A crossref_primary_10_1140_epjd_s10053_024_00927_2 crossref_primary_10_1016_j_isci_2024_109154 crossref_primary_10_47385_cadunifoa_v19_n54_5066 crossref_primary_10_1016_j_esd_2024_101401 crossref_primary_10_1039_D3EE03024E crossref_primary_10_1016_j_enconman_2023_117280 crossref_primary_10_1016_j_cej_2023_143630 crossref_primary_10_1016_j_cie_2023_109553 crossref_primary_10_1016_j_rser_2024_114552 crossref_primary_10_1029_2025EF005924 crossref_primary_10_1016_j_enconman_2024_119119 crossref_primary_10_1016_j_rser_2025_115782 crossref_primary_10_1016_j_ijhydene_2025_06_128 crossref_primary_10_1088_1748_9326_ad4376 crossref_primary_10_1186_s42834_022_00155_6 crossref_primary_10_3390_atmos15020238 crossref_primary_10_1088_1748_9326_ad4a8f crossref_primary_10_1016_j_ces_2024_120423 crossref_primary_10_1002_aic_18429 crossref_primary_10_1016_j_algal_2024_103875 crossref_primary_10_35534_ecolciviliz_2023_10004 crossref_primary_10_1002_adfm_202410356 crossref_primary_10_1016_j_jclepro_2023_139839 crossref_primary_10_1007_s40518_025_00255_y crossref_primary_10_1016_j_seppur_2023_124356 crossref_primary_10_1002_ange_202412697 crossref_primary_10_1016_j_energy_2024_133285 crossref_primary_10_1016_j_ces_2023_119416 crossref_primary_10_3390_en16031482 crossref_primary_10_3390_en17194769 crossref_primary_10_1186_s13021_025_00309_0 crossref_primary_10_1016_j_chempr_2023_09_001 crossref_primary_10_1016_j_ijggc_2025_104438 crossref_primary_10_1016_j_ccst_2025_100441 crossref_primary_10_1016_j_cej_2025_165535 crossref_primary_10_1038_s41467_025_59277_1 crossref_primary_10_2139_ssrn_5036530 crossref_primary_10_3389_fclim_2024_1353939 crossref_primary_10_3390_su151914486 crossref_primary_10_1021_acsami_5c14534 crossref_primary_10_1021_acsami_5c12231 crossref_primary_10_3390_en16176385 crossref_primary_10_3390_en17163995 crossref_primary_10_3390_gases4040021 crossref_primary_10_1039_D4EE00933A crossref_primary_10_1039_D2RA07940B crossref_primary_10_1007_s11356_023_27749_w crossref_primary_10_1016_j_ecmx_2025_100959 crossref_primary_10_1016_j_micromeso_2023_112714 crossref_primary_10_1016_j_cej_2025_160401 crossref_primary_10_1016_j_rsurfi_2024_100381 crossref_primary_10_3389_fclim_2024_1331901 crossref_primary_10_1016_j_energy_2025_135450 crossref_primary_10_1007_s10098_025_03147_3 crossref_primary_10_3389_frsus_2023_1167713 crossref_primary_10_3390_cleantechnol7020044 crossref_primary_10_3390_app12168321 crossref_primary_10_1016_j_ccst_2023_100098 crossref_primary_10_1016_j_jece_2025_116601 crossref_primary_10_1038_s41467_025_58756_9 crossref_primary_10_1088_1748_9326_adbb81 crossref_primary_10_1016_j_egycc_2022_100092 crossref_primary_10_1021_jacs_3c11503 crossref_primary_10_1016_j_ces_2024_119809 crossref_primary_10_1016_j_enss_2025_06_001 crossref_primary_10_1016_j_scitotenv_2024_174302 crossref_primary_10_1002_smll_202300150 crossref_primary_10_1016_j_jclepro_2025_145962 crossref_primary_10_31897_PMI_2023_10 crossref_primary_10_1126_sciadv_adp9112 crossref_primary_10_1088_1748_9326_ad5dd0 crossref_primary_10_3390_catal15030273 crossref_primary_10_1016_j_scitotenv_2023_163628 crossref_primary_10_1039_D2RE00211F crossref_primary_10_1016_j_jcou_2024_102791 crossref_primary_10_1016_j_apenergy_2023_121485 crossref_primary_10_1021_acsenergylett_4c01662 crossref_primary_10_1007_s10450_024_00526_y crossref_primary_10_1007_s12209_025_00429_1 crossref_primary_10_3390_eng5030069 crossref_primary_10_1002_wcc_849 crossref_primary_10_3390_en17020320 crossref_primary_10_1016_j_cej_2024_148764 crossref_primary_10_1002_tcr_202500026 crossref_primary_10_1016_j_ijggc_2023_104012 crossref_primary_10_1038_s44296_025_00056_w crossref_primary_10_3390_separations10120581 crossref_primary_10_1016_j_egyr_2024_06_031 crossref_primary_10_3390_en18030496 crossref_primary_10_2139_ssrn_5019579 crossref_primary_10_3390_polym17081115 crossref_primary_10_1016_j_seppur_2024_130026 crossref_primary_10_1016_j_rser_2025_116270 crossref_primary_10_1039_D4NR01744G crossref_primary_10_3389_fclim_2023_1207668 crossref_primary_10_3389_fenrg_2024_1450991 crossref_primary_10_3390_land11122153 crossref_primary_10_1016_j_joule_2024_02_005 crossref_primary_10_1016_j_seppur_2024_131077 crossref_primary_10_3389_fclim_2023_1276606 crossref_primary_10_3390_pr13092824 crossref_primary_10_1557_s43581_025_00129_2 crossref_primary_10_1002_smll_202503023 crossref_primary_10_3390_en16093881 crossref_primary_10_1016_j_enconman_2025_120125 crossref_primary_10_1016_j_fuel_2025_136525 crossref_primary_10_1016_j_jclepro_2023_137185 crossref_primary_10_1088_1748_9326_ad3b1f crossref_primary_10_1080_13675567_2024_2367534 crossref_primary_10_2139_ssrn_5069569 crossref_primary_10_1016_j_energy_2025_137733 crossref_primary_10_1557_s43581_024_00082_6 crossref_primary_10_59717_j_xinn_energy_2024_100010 crossref_primary_10_1016_j_cej_2023_145733 crossref_primary_10_1039_D3EE01803B crossref_primary_10_1016_j_cej_2023_146308 crossref_primary_10_1016_j_seppur_2025_133895 crossref_primary_10_1016_j_scca_2023_100029 crossref_primary_10_3390_cli13040077 crossref_primary_10_1016_j_applthermaleng_2025_127554 crossref_primary_10_1016_j_apenergy_2024_124999 crossref_primary_10_3390_e26110972 crossref_primary_10_1016_j_apenergy_2024_125206 crossref_primary_10_1016_j_jcou_2024_102975 crossref_primary_10_1016_j_seppur_2023_124398 crossref_primary_10_1016_j_ijhydene_2025_151241 crossref_primary_10_1016_j_cej_2025_167384 crossref_primary_10_1080_19392699_2022_2119559 crossref_primary_10_1016_j_jcou_2024_102973 crossref_primary_10_1016_j_ccst_2025_100369 crossref_primary_10_1016_j_energy_2024_133864 crossref_primary_10_3389_fenrg_2025_1632179 crossref_primary_10_1002_asia_202401822 crossref_primary_10_1039_D5SU00162E crossref_primary_10_1016_j_fluid_2022_113614 crossref_primary_10_1016_j_ces_2023_119202 crossref_primary_10_1039_D3RE00329A crossref_primary_10_1016_j_spc_2024_01_004 crossref_primary_10_1016_j_fuel_2023_127969 crossref_primary_10_1021_acs_est_4c13659 crossref_primary_10_1016_j_jiec_2024_10_049 crossref_primary_10_1021_acsami_5c04491 crossref_primary_10_1016_j_jcou_2023_102587 crossref_primary_10_1016_j_micromeso_2024_112998 crossref_primary_10_1016_j_jgsce_2024_205481 crossref_primary_10_3390_membranes13040410 crossref_primary_10_3390_atmos14071099 crossref_primary_10_1002_anie_202412697 crossref_primary_10_1039_D1EE03804D crossref_primary_10_1016_j_apenergy_2025_125960 crossref_primary_10_62823_IJEMMASSS_6_4_I__6949 crossref_primary_10_1016_j_ynexs_2025_100054 crossref_primary_10_1016_j_buildenv_2025_112817 crossref_primary_10_1016_j_ijhydene_2024_12_163 crossref_primary_10_1016_j_jcou_2025_103184 crossref_primary_10_1016_j_apenergy_2024_123524 crossref_primary_10_1016_j_cej_2024_149411 crossref_primary_10_1007_s10311_024_01737_z crossref_primary_10_1039_D4CS00574K crossref_primary_10_3390_separations11060160 crossref_primary_10_1021_acssusresmgt_5c00074 crossref_primary_10_3390_fuels5030028 |
| Cites_doi | 10.1016/j.joule.2019.06.025 10.1021/acs.iecr.0c04839 10.1039/C8CC08574A 10.1038/s41558-020-0797-x 10.1016/j.apenergy.2018.02.144 10.1038/s41558-020-0823-z 10.1038/nclimate3231 10.1016/j.enpol.2015.10.004 10.1038/s41558-018-0119-8 10.1016/j.jclepro.2019.03.086 10.1002/anie.201906756 10.1016/S1471-0846(05)70452-2 10.1038/s41558-017-0064-y 10.1016/j.joule.2018.04.018 10.30598/vol1iss1pp84-100 10.1038/s41598-020-65165-z 10.1186/1752-153X-6-S1-S6 10.1016/j.isci.2021.102813 10.1088/2516-1083/abf1ce 10.1073/pnas.1012253108 10.1016/j.joule.2020.07.005 10.1557/s43581-021-00005-9 10.1016/j.chempr.2021.12.013 10.1016/j.apenergy.2019.04.012 10.1038/s41467-020-17203-7 10.1021/acsami.8b01044 10.3390/cleantechnol1010015 10.1016/j.eist.2016.04.004 10.1038/s41558-020-0876-z 10.3389/fenrg.2020.00092 10.1016/j.oneear.2019.11.006 10.1021/acs.chemrev.6b00173 10.1021/acs.chemrev.7b00072 10.1038/s41560-020-00771-9 10.1007/s11027-019-9847-y 10.1073/pnas.1517656112 10.1093/oxfclm/kgab004 10.1039/C8EE03682A 10.1038/s41467-020-17204-6 10.1109/MSPEC.2021.9311453 10.1021/acs.est.6b05028 10.1016/j.desal.2015.08.004 10.1016/j.cej.2011.02.011 10.1007/s10584-017-2051-8 10.1088/1748-9326/aabf9f 10.1016/j.joule.2018.05.006 10.1021/acs.est.0c00476 10.1002/cssc.201802978 10.1038/s41560-021-00922-6 10.1088/1748-9326/aabff4 10.1038/s41467-021-22347-1 10.1038/s41467-020-20437-0 10.3389/fclim.2020.618644 10.1038/s41467-019-10842-5 10.1002/2017WR021402 10.1039/C9EE02709B |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) 2022 The Author(s). 2022 The Author(s) 2022 |
| Copyright_xml | – notice: 2022 The Author(s) – notice: 2022 The Author(s). – notice: 2022 The Author(s) 2022 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.isci.2022.103990 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2589-0042 |
| ExternalDocumentID | oai_doaj_org_article_b19034bbae724a31852fc49f49fe134b PMC8927912 35310937 10_1016_j_isci_2022_103990 S2589004222002607 |
| Genre | Journal Article Review |
| GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c521t-a4aa84c5cb6e4c72a33b7111237fb49a59a2fd3e7811e50db12d24d1cb27e44b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 203 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819870000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2589-0042 |
| IngestDate | Fri Oct 03 12:41:23 EDT 2025 Tue Sep 30 16:47:05 EDT 2025 Thu Oct 02 10:05:39 EDT 2025 Mon Jul 21 06:05:04 EDT 2025 Tue Nov 18 22:45:16 EST 2025 Thu Nov 13 04:35:54 EST 2025 Tue Jul 25 20:59:22 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Energy sustainability Chemical engineering Mechanical engineering Environmental technology |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2022 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c521t-a4aa84c5cb6e4c72a33b7111237fb49a59a2fd3e7811e50db12d24d1cb27e44b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-2210-0021 |
| OpenAccessLink | https://doaj.org/article/b19034bbae724a31852fc49f49fe134b |
| PMID | 35310937 |
| PQID | 2641516003 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b19034bbae724a31852fc49f49fe134b pubmedcentral_primary_oai_pubmedcentral_nih_gov_8927912 proquest_miscellaneous_2641516003 pubmed_primary_35310937 crossref_primary_10_1016_j_isci_2022_103990 crossref_citationtrail_10_1016_j_isci_2022_103990 elsevier_sciencedirect_doi_10_1016_j_isci_2022_103990 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-15 |
| PublicationDateYYYYMMDD | 2022-04-15 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | iScience |
| PublicationTitleAlternate | iScience |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Jacobson (bib55) 2019; 12 (bib14) 2021 Shi, Xiao, Kanamori, Yonezu, Lackner, Chen (bib102) 2020; 4 Azarabadi, Lackner (bib3) 2019; 250 Maycock (bib73) 2005; 6 accessed 1.27.22 Point of View: Boosting Oklahoma’s economy through investments in CO2 removal [WWW Document], 2020. Oklahoman.com. URL Majumdar, Deutch (bib69) 2018; 2 Nemet, Callaghan, Creutzig, Fuss, Hartmann, Hilaire, Lamb, Minx, Rogers, Smith (bib85) 2018; 13 (bib77) 2021 Baker, J., 2015. Market Outlook: Out of Thin Air [WWW Document]. ICIS Explore. Clim. Home News. South Africa Aims to Reach Net Zero Emissions in 2050 - While Still Burning Coal [WWW Document], (2020). Clim. Home News. URL The GT Solution, (2022). Glob. Thermostat. URL Meckling, Biber (bib78) 2021; 12 accessed 6.2.21 Affordable carbon capture with a soda on the side. Affordable carbon capture with a soda on the side [WWW Document], 2018. Grist. URL Shi, Xiao, Azarabadi, Song, Wu, Chen, Lackner (bib101) 2020; 59 (accessed 6.3.21). Zhang, Qi, Zhang (bib122) 2015 (bib71) 2021 The commercial case for direct air capture of carbon dioxide | Bipartisan Policy Center [WWW Document], (2021). URL Gambhir, Tavoni (bib41) 2019; 1 Cortes, Laska, Advisor, Johnson (bib24) 2022 Direct Air Capture (DAC), 2021. Geoengin. Monit., geoengineering technology briefing 6. Sutherland (bib109) 2019; 3 van Vuuren, Stehfest, Gernaat, van den Berg, Bijl, de Boer, Daioglou, Doelman, Edelenbosch, Harmsen (bib120) 2018; 8 Sanz-Pérez, Murdock, Didas, Jones (bib100) 2016; 116 Mac Dowell, Fennell, Shah, Maitland (bib66) 2017; 7 Climeworks offers a technology to reverse climate change. [WWW Document], (2022). URL Mission Zero Technologies – Closing the carbon cycle., (2022). URL n.d. Sustaera [WWW Document], n.d. . Sustaera. URL McQueen, Gomes, McCormick, Blumanthal, Pisciotta, Wilcox (bib75) 2021; 3 Kusmer, A., (2020). Can Direct Air Capture Make a Real Impact on Climate Change? [WWW Document]. World PRX. URL McQueen, Desmond, Socolow, Psarras, Wilcox (bib74) 2021; 2 (bib44) 2018 Caldera, Breyer (bib12) 2017; 53 (bib19) 2021 Gallucci (bib40) 2021; 58 Bento, Wilson (bib6) 2016; 21 (bib25) 2018 Kiani, Jiang, Feron (bib58) 2020; 8 McQueen, Psarras, Pilorgé, Liguori, He, Yuan, Woodall, Kian, Pierpoint, Jurewicz (bib76) 2020; 54 Madhu, Pauliuk, Dhathri, Creutzig (bib67) 2021; 6 Bipartisan Policy Center. Investing in Climate Innovation: The environmental Case for Direct Air Capture of Carbon dioxide | Bipartisan Policy Center [WWW Document], (2022). URL Nielsen (bib87) 2019 Climeworks’ new large-scale carbon dioxide removal plant orca [WWW Document], (2022). URL CO2.Earth. Earth’s CO2 home page [WWW Document], (2022). CO2.Earth. URL Ica (bib53) 2020 (accessed 1.27.22). Deutz, Bardow (bib29) 2021; 6 Socolow, Desmond, Aines, Blackstock, Bolland, Kaarsberg, Lewis, Mazzotti, Pfeffer, Sawyer (bib104) 2011 Carbon Engineering | Direct Air Capture of CO2 | Home [WWW Document], (2022). Carbon Eng. URL Keith, Holmes, St. Angelo, Heidel (bib57) 2018; 2 Goeppert, Zhang, Sen, Dang, Prakash (bib46) 2019; 12 Fuhrman, McJeon, Patel, Doney, Shobe, Clarens (bib37) 2020; 10 Heck, Gerten, Lucht, Popp (bib49) 2018; 8 (bib13) 2020 Jones, Sherlock (bib56) 2021 United Nations Environment Programme (bib117) 2019 2021. Glob. Thermostat. URL The Story Behind Carbon Engineering [WWW Document], (2022). Carbon Eng. URL Main [WWW Document], (2022). Verdox. URL Gebald, Piatkowski, Rüesch, Wurzbacher (bib42) 2014 Climeworks. Climeworks - a climate-positive world enabled by direct air capture [WWW Document], (2022). URL Arizona State Press. The world’s first mechanical tree prototype is to be built at ASU next year [WWW Document], (2020). Arizona State Press. URL (accessed 6.12.21). Modular direct air capture technology for net-zero [WWW Document], (2022). URL Marcucci, Kypreos, Panos (bib70) 2017; 144 Direct Air Capture – Analysis [WWW Document], (2021). IEA. URL accessed 5.16.21 Realmonte, Drouet, Gambhir, Glynn, Hawkes, Köberle, Tavoni (bib96) 2020; 11 Direct Air Capture, Greenhouse Gas Removal Programme, UK. Department for Business (bib31) 2020 Hanusch, Kerschgens, Huber, Neuburger, Gademann (bib48) 2019; 55 Mokarram, Mokarram, Khosravi, Saber, Rahideh (bib82) 2020; 10 Creutzig, Breyer, Hilaire, Minx, Peters, Socolow (bib28) 2019; 12 (bib43) 2018 Fasihi, Efimova, Breyer (bib35) 2019; 224 Banoni, Arnone, Fondeur, Hodge, Offner, Phillips (bib5) 2012; 6 Black & Veatch Awarded DOE Funding to Build Global Thermostat DAC Project to Capture 100,000 Tons of CO Materials And Chemical Sciences Research for Direct Air Capture of Carbond Dioxide, 2021. (DOE) Ozkan, Akhavi, Coley, Shang, Ma (bib90) 2022; 8 Broehm, Strefler, Bauer (bib9) 2015 About, 2022. Carbon capture. Energy.gov DOE invests $24 million to advance transformational air pollution capture [WWW Document], (2022). Energy.gov. URL to use – analysis [WWW Document], (2019). IEA. URL Ozkan (bib89) 2021; 8 Perea, Honeyman, Kann, Mond, Shiao, Jones, Moskowitz, Smith, Gallaghe, Rumery (bib91) 2016 Luo, Chen, Hong, He, Wang, Ding, Wang, Sun (bib65) 2018; 10 (bib83) 2018 Nemet (bib84) 2019 Sixth carbon Budget, (2020). Clim. Change Comm. URL Zeng, Zhang, Bai, Zhang, Wang, Wang, Bao, Li, Liu, Zhang (bib121) 2017; 117 Cairns (bib11) 2020 Climeworks begins operations of Orca, the world’s largest direct air capture and CO₂ storage plant [WWW Document], (2022). URL (accessed 5.31.21). Breyer, Fasihi, Aghahosseini (bib8) 2020; 25 Luis (bib64) 2016; 380 Krekel, Samsun, Peters, Stolten (bib59) 2018; 218 n.d. Technology [WWW Document], n.d. Infin. LLC. URL Chand, Prasad, Mamun, Sharma, Chand (bib16) 2019; 1 (bib39) 2019 U.S. Energy Information Administration U.S. energy facts explained - consumption and production - U.S. energy information administration (EIA) [WWW Document], (2021). URL (accessed 1.26.22). Hernandez, Hoffacker, Murphy-Mariscal, Wu, Allen (bib51) 2015; 112 Merchant (bib79) 2022 Perpiña Castillo, Batista e Silva, Lavalle (bib92) 2016; 88 Stolaroff (bib107) 2006 (bib98) 2021 Cabuzel (bib10) 2019 Realmonte, Drouet, Gambhir, Glynn, Hawkes, Köberle, Tavoni (bib97) 2019; 10 House, Baclig, Ranjan, van Nierop, Wilcox, Herzog (bib52) 2011; 108 News, C.H., E&E, (2021). Direct Air Capture Of CO is Suddenly a Carbon Offset Option [WWW Document]. Sci. Am. URL (accessed 6.13.21). Cox, Spence, Pidgeon (bib26) 2020; 10 Lebling, McQueen, Pisciotta, Wilcox (bib63) 2021 Rochelle, Chen, Freeman, Van Wagener, Xu, Voice (bib99) 2011; 171 Credit for Carbon Oxide Sequestration [WWW Document], 2021. Fed. Regist. URL Le Quéré, Jackson, Jones, Smith, Abernethy, Andrew, De-Gol, Willis, Shan, Canadell (bib62) 2020; 10 Van der Giesen, Meinrenken, Kleijn, Sprecher, Lackner, Kramer (bib119) 2016; 51 Fuss, Lamb, Callaghan, Hilaire, Creutzig, Amann, Beringer, Garcia, Hartmann, Khanna (bib38) 2018; 13 Heirloom [WWW Document], (2020). URL Thompson (bib115) 2021 Fuhrman, Clarens, McJeon, Patel, Ou, Doney, Shobe, Pradhan (bib36) 2021; 1 Hanna, Abdulla, Xu, Victor (bib47) 2021; 12 Somoza-Tornos, Guerra, Crow, Smith, Hodge (bib105) 2021; 24 Understanding CCS [WWW Document], (2022). Glob. CCS Inst. URL Noya | Capture CO₂ [WWW Document], (2022). URL Chatterjee, Huang (bib17) 2020; 11 (bib45) 2021 Putting CO Lackner, Azarabadi (bib61) 2021; 60 Britannica. China - Minerals | Britannica [WWW Document], 2022. (accessed 5.24.21). PM: A New Deal for Britain [WWW Document], (2020). GOV.UK. URL 10.1016/j.isci.2022.103990_bib34 van Vuuren (10.1016/j.isci.2022.103990_bib120) 2018; 8 10.1016/j.isci.2022.103990_bib33 10.1016/j.isci.2022.103990_bib32 McQueen (10.1016/j.isci.2022.103990_bib75) 2021; 3 10.1016/j.isci.2022.103990_bib30 Van der Giesen (10.1016/j.isci.2022.103990_bib119) 2016; 51 Hanusch (10.1016/j.isci.2022.103990_bib48) 2019; 55 (10.1016/j.isci.2022.103990_bib45) 2021 Cortes (10.1016/j.isci.2022.103990_bib24) 2022 Majumdar (10.1016/j.isci.2022.103990_bib69) 2018; 2 Banoni (10.1016/j.isci.2022.103990_bib5) 2012; 6 10.1016/j.isci.2022.103990_bib23 10.1016/j.isci.2022.103990_bib22 10.1016/j.isci.2022.103990_bib21 10.1016/j.isci.2022.103990_bib20 Madhu (10.1016/j.isci.2022.103990_bib67) 2021; 6 10.1016/j.isci.2022.103990_bib27 Cairns (10.1016/j.isci.2022.103990_bib11) 2020 (10.1016/j.isci.2022.103990_bib83) 2018 Lackner (10.1016/j.isci.2022.103990_bib61) 2021; 60 Realmonte (10.1016/j.isci.2022.103990_bib96) 2020; 11 Broehm (10.1016/j.isci.2022.103990_bib9) 2015 Merchant (10.1016/j.isci.2022.103990_bib79) Fuhrman (10.1016/j.isci.2022.103990_bib36) 2021; 1 (10.1016/j.isci.2022.103990_bib13) 2020 10.1016/j.isci.2022.103990_bib15 Bento (10.1016/j.isci.2022.103990_bib6) 2016; 21 Breyer (10.1016/j.isci.2022.103990_bib8) 2020; 25 Fasihi (10.1016/j.isci.2022.103990_bib35) 2019; 224 10.1016/j.isci.2022.103990_bib95 10.1016/j.isci.2022.103990_bib94 Thompson (10.1016/j.isci.2022.103990_bib115) Le Quéré (10.1016/j.isci.2022.103990_bib62) 2020; 10 10.1016/j.isci.2022.103990_bib93 Mokarram (10.1016/j.isci.2022.103990_bib82) 2020; 10 Keith (10.1016/j.isci.2022.103990_bib57) 2018; 2 10.1016/j.isci.2022.103990_bib18 House (10.1016/j.isci.2022.103990_bib52) 2011; 108 Luis (10.1016/j.isci.2022.103990_bib64) 2016; 380 McQueen (10.1016/j.isci.2022.103990_bib76) 2020; 54 10.1016/j.isci.2022.103990_bib88 10.1016/j.isci.2022.103990_bib86 Fuhrman (10.1016/j.isci.2022.103990_bib37) 2020; 10 Gambhir (10.1016/j.isci.2022.103990_bib41) 2019; 1 Sutherland (10.1016/j.isci.2022.103990_bib109) 2019; 3 (10.1016/j.isci.2022.103990_bib19) 2021 (10.1016/j.isci.2022.103990_bib25) 2018 Realmonte (10.1016/j.isci.2022.103990_bib97) 2019; 10 10.1016/j.isci.2022.103990_bib81 10.1016/j.isci.2022.103990_bib80 Ozkan (10.1016/j.isci.2022.103990_bib89) 2021; 8 Caldera (10.1016/j.isci.2022.103990_bib12) 2017; 53 Maycock (10.1016/j.isci.2022.103990_bib73) 2005; 6 Somoza-Tornos (10.1016/j.isci.2022.103990_bib105) 2021; 24 Creutzig (10.1016/j.isci.2022.103990_bib28) 2019; 12 McQueen (10.1016/j.isci.2022.103990_bib74) 2021; 2 Marcucci (10.1016/j.isci.2022.103990_bib70) 2017; 144 (10.1016/j.isci.2022.103990_bib71) 2021 Jones (10.1016/j.isci.2022.103990_bib56) 2021 10.1016/j.isci.2022.103990_bib72 Fuss (10.1016/j.isci.2022.103990_bib38) 2018; 13 Nemet (10.1016/j.isci.2022.103990_bib85) 2018; 13 Perea (10.1016/j.isci.2022.103990_bib91) 2016 (10.1016/j.isci.2022.103990_bib44) 2018 Nemet (10.1016/j.isci.2022.103990_bib84) 2019 Cabuzel (10.1016/j.isci.2022.103990_bib10) 2019 (10.1016/j.isci.2022.103990_bib14) 2021 Gallucci (10.1016/j.isci.2022.103990_bib40) 2021; 58 10.1016/j.isci.2022.103990_bib68 Direct Air Capture (10.1016/j.isci.2022.103990_bib31) 2020 Hernandez (10.1016/j.isci.2022.103990_bib51) 2015; 112 10.1016/j.isci.2022.103990_bib60 10.1016/j.isci.2022.103990_bib112 10.1016/j.isci.2022.103990_bib113 10.1016/j.isci.2022.103990_bib114 Chatterjee (10.1016/j.isci.2022.103990_bib17) 2020; 11 10.1016/j.isci.2022.103990_bib116 Krekel (10.1016/j.isci.2022.103990_bib59) 2018; 218 Meckling (10.1016/j.isci.2022.103990_bib78) 2021; 12 10.1016/j.isci.2022.103990_bib118 Gebald (10.1016/j.isci.2022.103990_bib42) 2014 Perpiña Castillo (10.1016/j.isci.2022.103990_bib92) 2016; 88 Zeng (10.1016/j.isci.2022.103990_bib121) 2017; 117 Cox (10.1016/j.isci.2022.103990_bib26) 2020; 10 10.1016/j.isci.2022.103990_bib110 10.1016/j.isci.2022.103990_bib111 Jacobson (10.1016/j.isci.2022.103990_bib55) 2019; 12 10.1016/j.isci.2022.103990_bib7 10.1016/j.isci.2022.103990_bib54 Luo (10.1016/j.isci.2022.103990_bib65) 2018; 10 10.1016/j.isci.2022.103990_bib2 10.1016/j.isci.2022.103990_bib4 Hanna (10.1016/j.isci.2022.103990_bib47) 2021; 12 Lebling (10.1016/j.isci.2022.103990_bib63) 2021 Rochelle (10.1016/j.isci.2022.103990_bib99) 2011; 171 Stolaroff (10.1016/j.isci.2022.103990_bib107) 2006 Zhang (10.1016/j.isci.2022.103990_bib122) 2015 10.1016/j.isci.2022.103990_bib1 10.1016/j.isci.2022.103990_bib50 Mac Dowell (10.1016/j.isci.2022.103990_bib66) 2017; 7 Ica (10.1016/j.isci.2022.103990_bib53) 2020 10.1016/j.isci.2022.103990_bib103 10.1016/j.isci.2022.103990_bib106 10.1016/j.isci.2022.103990_bib108 Kiani (10.1016/j.isci.2022.103990_bib58) 2020; 8 Nielsen (10.1016/j.isci.2022.103990_bib87) (10.1016/j.isci.2022.103990_bib39) 2019 Goeppert (10.1016/j.isci.2022.103990_bib46) 2019; 12 Sanz-Pérez (10.1016/j.isci.2022.103990_bib100) 2016; 116 Socolow (10.1016/j.isci.2022.103990_bib104) 2011 Shi (10.1016/j.isci.2022.103990_bib102) 2020; 4 Deutz (10.1016/j.isci.2022.103990_bib29) 2021; 6 Ozkan (10.1016/j.isci.2022.103990_bib90) 2022; 8 Shi (10.1016/j.isci.2022.103990_bib101) 2020; 59 Azarabadi (10.1016/j.isci.2022.103990_bib3) 2019; 250 United Nations Environment Programme (10.1016/j.isci.2022.103990_bib117) 2019 Chand (10.1016/j.isci.2022.103990_bib16) 2019; 1 Heck (10.1016/j.isci.2022.103990_bib49) 2018; 8 |
| References_xml | – volume: 21 start-page: 95 year: 2016 end-page: 112 ident: bib6 article-title: Measuring the duration of formative phases for energy technologies publication-title: Environ. Innov. Soc. Transit. – volume: 7 start-page: 243 year: 2017 end-page: 249 ident: bib66 article-title: The role of CO publication-title: Nat. Clim. Change – volume: 8 start-page: 92 year: 2020 ident: bib58 article-title: Techno-economic assessment for CO publication-title: Front. Energy Res. – reference: (accessed 5.31.21). – year: 2014 ident: bib42 article-title: Low-Pressure Drop Structure of Particle Adsorbent Bed for Adsorption Gas Separation Process – year: 2021 ident: bib77 article-title: Mechanical trees that suck CO – reference: Modular direct air capture technology for net-zero [WWW Document], (2022). URL – volume: 380 start-page: 93 year: 2016 end-page: 99 ident: bib64 article-title: Use of monoethanolamine (MEA) for CO publication-title: Desalination – reference: Noya | Capture CO₂ [WWW Document], (2022). URL – volume: 13 start-page: 063002 year: 2018 ident: bib38 article-title: Negative emissions—Part 2: costs, potentials and side effects publication-title: Environ. Res. Lett. – volume: 12 start-page: 3567 year: 2019 end-page: 3574 ident: bib55 article-title: The health and climate impacts of carbon capture and direct air capture publication-title: Energy Environ. Sci. – volume: 144 start-page: 181 year: 2017 end-page: 193 ident: bib70 article-title: The road to achieving the long-term Paris targets: energy transition and the role of direct air capture publication-title: Clim. Change – volume: 58 start-page: 48 year: 2021 end-page: 49 ident: bib40 article-title: The carbon-sucking fans of West Texas: it’s not enough to slash greenhouse gas emissions. experts say we need direct-air capture publication-title: IEEE Spectr. – volume: 12 start-page: 1712 year: 2019 end-page: 1723 ident: bib46 article-title: Oxidation-resistant, cost-effective epoxide-modified polyamine adsorbents for CO publication-title: ChemSusChem. – reference: Affordable carbon capture with a soda on the side. Affordable carbon capture with a soda on the side [WWW Document], 2018. Grist. URL – volume: 10 start-page: 3277 year: 2019 ident: bib97 article-title: An inter-model assessment of the role of direct air capture in deep mitigation pathways publication-title: Nat. Commun. – reference: n.d. Technology [WWW Document], n.d. Infin. LLC. URL – year: 2015 ident: bib9 article-title: Techno-Economic Review of Direct Air Capture Systems for Large Scale Mitigation of Atmospheric CO – reference: is Suddenly a Carbon Offset Option [WWW Document]. Sci. Am. URL – volume: 11 start-page: 3287 year: 2020 ident: bib17 article-title: Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways publication-title: Nat. Commun. – year: 2022 ident: bib79 article-title: 8 Unique direct air capture companies to watch in 2022 – reference: Britannica. China - Minerals | Britannica [WWW Document], 2022. – volume: 4 start-page: 1823 year: 2020 end-page: 1837 ident: bib102 article-title: Moisture-driven CO publication-title: Joule – reference: About, 2022. Carbon capture. – volume: 10 start-page: 647 year: 2020 end-page: 653 ident: bib62 article-title: Temporary reduction in daily global CO publication-title: Nat. Clim. Change – volume: 12 start-page: 368 year: 2021 ident: bib47 article-title: Emergency deployment of direct air capture as a response to the climate crisis publication-title: Nat. Commun. – volume: 24 start-page: 102813 year: 2021 ident: bib105 article-title: Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO publication-title: iScience – reference: (accessed 6.13.21). – volume: 8 start-page: 141 year: 2022 end-page: 173 ident: bib90 article-title: Progress in carbon dioxide capture materials for deep decarbonization publication-title: Chem – reference: Climeworks offers a technology to reverse climate change. [WWW Document], (2022). URL – volume: 1 start-page: 405 year: 2019 end-page: 409 ident: bib41 article-title: Direct air carbon capture and sequestration: how it works and how it could contribute to climate-change mitigation publication-title: One Earth – volume: 1 start-page: 224 year: 2019 end-page: 231 ident: bib16 article-title: Adoption of grid-tie solar system at residential scale publication-title: Clean. Technol. – volume: 1 start-page: kgab004 year: 2021 ident: bib36 article-title: The role of negative emissions in meeting China’s 2060 carbon neutrality goal publication-title: Oxf. Open Clim. Change – volume: 6 start-page: 18 year: 2005 end-page: 22 ident: bib73 article-title: PV review: World Solar PV market continues explosive growth publication-title: Refocus – year: 2011 ident: bib104 article-title: Direct Air Capture of CO – volume: 171 start-page: 725 year: 2011 end-page: 733 ident: bib99 article-title: Aqueous piperazine as the new standard for CO publication-title: Chem. Eng. J. – volume: 8 start-page: 151 year: 2018 end-page: 155 ident: bib49 article-title: Biomass-based negative emissions difficult to reconcile with planetary boundaries publication-title: Nat. Clim. Change – reference: (accessed 5.24.21). – reference: Climeworks. Climeworks - a climate-positive world enabled by direct air capture [WWW Document], (2022). URL – year: 2021 ident: bib63 article-title: Direct Air Capture: Resource Considerations and Costs for Carbon Removal – volume: 2 start-page: 805 year: 2018 end-page: 809 ident: bib69 article-title: Research opportunities for CO publication-title: Joule – volume: 112 start-page: 13579 year: 2015 end-page: 13584 ident: bib51 article-title: Solar energy development impacts on land cover change and protected areas publication-title: Proc. Natl. Acad. Sci. – reference: (accessed 6.3.21). – reference: (accessed 1.27.22). – reference: (accessed 6.3.21). – reference: Putting CO – reference: to use – analysis [WWW Document], (2019). IEA. URL – year: 2022 ident: bib24 article-title: Economics of Direct Air Capture of Carbon Dioxide 22 – volume: 10 start-page: 8200 year: 2020 ident: bib82 article-title: Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster–Shafer theory publication-title: Sci. Rep. – reference: (accessed 6.2.21) – reference: The Story Behind Carbon Engineering [WWW Document], (2022). Carbon Eng. URL – reference: CO2.Earth. Earth’s CO2 home page [WWW Document], (2022). CO2.Earth. URL – volume: 59 start-page: 6984 year: 2020 end-page: 7006 ident: bib101 article-title: Sorbents for the direct capture of CO publication-title: Angew. Chem. Int. Ed. – reference: Climeworks’ new large-scale carbon dioxide removal plant orca [WWW Document], (2022). URL – year: 2021 ident: bib98 article-title: Renewable power for carbon dioxide mitigation – reference: Heirloom [WWW Document], (2020). URL – reference: , 2021. Glob. Thermostat. URL – reference: (accessed 6.12.21). – year: 2016 ident: bib91 article-title: U.S Solar Market Insight 2016 Year in Review – reference: U.S. Energy Information Administration U.S. energy facts explained - consumption and production - U.S. energy information administration (EIA) [WWW Document], (2021). URL – reference: Energy.gov DOE invests $24 million to advance transformational air pollution capture [WWW Document], (2022). Energy.gov. URL – volume: 10 start-page: 744 year: 2020 end-page: 749 ident: bib26 article-title: Public perceptions of carbon dioxide removal in the United States and the United Kingdom publication-title: Nat. Clim. Change – year: 2019 ident: bib87 article-title: The impact of direct air carbon capture on climate change – reference: Kusmer, A., (2020). Can Direct Air Capture Make a Real Impact on Climate Change? [WWW Document]. World PRX. URL – reference: Clim. Home News. South Africa Aims to Reach Net Zero Emissions in 2050 - While Still Burning Coal [WWW Document], (2020). Clim. Home News. URL – year: 2018 ident: bib83 article-title: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda – year: 2006 ident: bib107 article-title: Capturing CO – reference: Credit for Carbon Oxide Sequestration [WWW Document], 2021. Fed. Regist. URL – year: 2019 ident: bib39 article-title: Future of solar photovoltaic publication-title: Publ. Sol. Photovolt. – volume: 218 start-page: 361 year: 2018 end-page: 381 ident: bib59 article-title: The separation of CO2 from ambient air – a techno-economic assessment publication-title: Appl. Energy – reference: News, C.H., E&E, (2021). Direct Air Capture Of CO – reference: (accessed 6.13.21). – volume: 10 start-page: 9495 year: 2018 end-page: 9502 ident: bib65 article-title: Binding CO publication-title: ACS Appl. Mater. Inter. – volume: 54 start-page: 7542 year: 2020 end-page: 7551 ident: bib76 article-title: Cost analysis of direct air capture and sequestration coupled to low-carbon thermal energy in the United States publication-title: Environ. Sci. Technol. – reference: Climeworks begins operations of Orca, the world’s largest direct air capture and CO₂ storage plant [WWW Document], (2022). URL – volume: 8 start-page: 391 year: 2018 end-page: 397 ident: bib120 article-title: Alternative pathways to the 1.5°C target reduce the need for negative emission technologies publication-title: Nat. Clim. Change – reference: PM: A New Deal for Britain [WWW Document], (2020). GOV.UK. URL – reference: Bipartisan Policy Center. Investing in Climate Innovation: The environmental Case for Direct Air Capture of Carbon dioxide | Bipartisan Policy Center [WWW Document], (2022). URL – year: 2015 ident: bib122 article-title: The Impact of Climate Policy on Carbon Capture and Storage Deployment in China 22 – reference: (accessed 1.27.22). – year: 2020 ident: bib31 publication-title: Energy & Industrial Strategy) – year: 2021 ident: bib19 article-title: China and US Pledge Climate Change Commitment – reference: (accessed 1.27.22) – year: 2018 ident: bib43 article-title: Global market outlook 2018-2022 – year: 2019 ident: bib117 article-title: Emissions Gap Report 2019 – volume: 224 start-page: 957 year: 2019 end-page: 980 ident: bib35 article-title: Techno-economic assessment of CO2 direct air capture plants publication-title: J. Clean. Prod. – volume: 2 start-page: 618644 year: 2021 ident: bib74 article-title: Natural gas vs. electricity for solvent-based direct air capture publication-title: Front. Clim. – year: 2021 ident: bib14 article-title: Carbon Engineering – volume: 6 start-page: 1035 year: 2021 end-page: 1044 ident: bib67 article-title: Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment publication-title: Nat. Energy – volume: 117 start-page: 9625 year: 2017 end-page: 9673 ident: bib121 article-title: Ionic-liquid-based CO publication-title: Chem. Rev. – volume: 12 start-page: 2051 year: 2021 ident: bib78 article-title: A policy roadmap for negative emissions using direct air capture publication-title: Nat. Commun. – volume: 60 start-page: 8196 year: 2021 end-page: 8208 ident: bib61 article-title: Buying down the cost of direct air capture publication-title: Ind. Eng. Chem. Res. – year: 2021 ident: bib115 article-title: Is sucking carbon out of the air the solution to our climate crisis? Mother Jones – reference: Baker, J., 2015. Market Outlook: Out of Thin Air [WWW Document]. ICIS Explore. – volume: 53 start-page: 10523 year: 2017 end-page: 10538 ident: bib12 article-title: Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future publication-title: Water Resour. Res. – reference: (accessed 1.26.22). – volume: 250 start-page: 959 year: 2019 end-page: 975 ident: bib3 article-title: A sorbent-focused techno-economic analysis of direct air capture publication-title: Appl. Energy – year: 2019 ident: bib10 article-title: Innovation Fund – volume: 13 start-page: 063003 year: 2018 ident: bib85 article-title: Negative emissions—Part 3: Innovation and upscaling publication-title: Environ. Res. Lett. – reference: (accessed 5.16.21) – reference: n.d. Sustaera [WWW Document], n.d. . Sustaera. URL – reference: Arizona State Press. The world’s first mechanical tree prototype is to be built at ASU next year [WWW Document], (2020). Arizona State Press. URL – reference: Direct Air Capture – Analysis [WWW Document], (2021). IEA. URL – reference: Understanding CCS [WWW Document], (2022). Glob. CCS Inst. URL – volume: 88 start-page: 86 year: 2016 end-page: 99 ident: bib92 article-title: An assessment of the regional potential for solar power generation in EU-28 publication-title: Energy Policy – volume: 55 start-page: 949 year: 2019 end-page: 952 ident: bib48 article-title: Pyrrolizidines for direct air capture and CO publication-title: Chem. Commun. – reference: Main [WWW Document], (2022). Verdox. URL – volume: 3 start-page: 032001 year: 2021 ident: bib75 article-title: A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future publication-title: Prog. Energy – year: 2019 ident: bib84 article-title: How Solar Energy Became Cheap: A Model for Low-Carbon Innovation – reference: Sixth carbon Budget, (2020). Clim. Change Comm. URL – volume: 10 start-page: 920 year: 2020 end-page: 927 ident: bib37 article-title: Food–energy–water implications of negative emissions technologies in a +1.5°C future publication-title: Nat. Clim. Change – year: 2021 ident: bib71 article-title: Summary for policymakers publication-title: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change – year: 2020 ident: bib11 article-title: Direct Air Capture – volume: 108 start-page: 20428 year: 2011 end-page: 20433 ident: bib52 article-title: Economic and energetic analysis of capturing CO publication-title: Proc. Natl. Acad. Sci. – volume: 2 start-page: 1573 year: 2018 end-page: 1594 ident: bib57 article-title: A process for capturing CO publication-title: Joule – year: 2018 ident: bib44 article-title: Global Status Report – reference: Black & Veatch Awarded DOE Funding to Build Global Thermostat DAC Project to Capture 100,000 Tons of CO – volume: 25 start-page: 43 year: 2020 end-page: 65 ident: bib8 article-title: Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling publication-title: Mitig. Adapt. Strateg. Glob. Chang. – reference: Point of View: Boosting Oklahoma’s economy through investments in CO2 removal [WWW Document], 2020. Oklahoman.com. URL – volume: 12 start-page: 1805 year: 2019 end-page: 1817 ident: bib28 article-title: The mutual dependence of negative emission technologies and energy systems publication-title: Energy Environ. Sci. – volume: 3 start-page: 1571 year: 2019 end-page: 1573 ident: bib109 article-title: Pricing CO publication-title: Joule – reference: Materials And Chemical Sciences Research for Direct Air Capture of Carbond Dioxide, 2021. (DOE) – reference: The commercial case for direct air capture of carbon dioxide | Bipartisan Policy Center [WWW Document], (2021). URL – volume: 6 start-page: S6 year: 2012 ident: bib5 article-title: The place of solar power: an economic analysis of concentrated and distributed solar power publication-title: Chem. Cent. J. – volume: 8 start-page: 51 year: 2021 end-page: 56 ident: bib89 article-title: Direct air capture of CO publication-title: MRS Energy Sustain. – volume: 116 start-page: 11840 year: 2016 end-page: 11876 ident: bib100 article-title: Direct capture of CO publication-title: Chem. Rev. – reference: Mission Zero Technologies – Closing the carbon cycle., (2022). URL – year: 2020 ident: bib53 article-title: South Africa’s Low-Emission Development Strategy 2050 – reference: Carbon Engineering | Direct Air Capture of CO2 | Home [WWW Document], (2022). Carbon Eng. URL – start-page: 11 year: 2018 end-page: 14 ident: bib25 article-title: negative emission technologies: what role in meeting Paris agreement targets? publication-title: EASAC Policy Report – year: 2021 ident: bib56 article-title: The Tax Credit for Carbon Sequestration (Section 45Q) 3 – reference: The GT Solution, (2022). Glob. Thermostat. URL – volume: 51 start-page: 1024 year: 2016 end-page: 1034 ident: bib119 article-title: A life cycle assessment case study of coal-fired electricity generation with humidity swing direct air capture of CO publication-title: Environ. Sci. Technol. – volume: 6 start-page: 203 year: 2021 end-page: 213 ident: bib29 article-title: Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption publication-title: Nat. Energy – year: 2021 ident: bib45 article-title: Global Thermostat to Supply Equipment Needed to Remove Atmospheric CO – reference: Direct Air Capture (DAC), 2021. Geoengin. Monit., geoengineering technology briefing 6. – volume: 11 start-page: 3286 year: 2020 ident: bib96 article-title: Reply to “High energy and materials requirement for direct air capture calls for further analysis and R&D.” publication-title: Nat. Commun. – year: 2020 ident: bib13 article-title: Carbon Capture Solutions | Negative Emissions – year: 2021 ident: 10.1016/j.isci.2022.103990_bib19 – ident: 10.1016/j.isci.2022.103990_bib23 – volume: 3 start-page: 1571 year: 2019 ident: 10.1016/j.isci.2022.103990_bib109 article-title: Pricing CO2 direct air capture publication-title: Joule doi: 10.1016/j.joule.2019.06.025 – ident: 10.1016/j.isci.2022.103990_bib106 – year: 2016 ident: 10.1016/j.isci.2022.103990_bib91 – volume: 60 start-page: 8196 year: 2021 ident: 10.1016/j.isci.2022.103990_bib61 article-title: Buying down the cost of direct air capture publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c04839 – year: 2020 ident: 10.1016/j.isci.2022.103990_bib11 – year: 2021 ident: 10.1016/j.isci.2022.103990_bib63 – year: 2019 ident: 10.1016/j.isci.2022.103990_bib39 article-title: Future of solar photovoltaic publication-title: Publ. Sol. Photovolt. – volume: 55 start-page: 949 year: 2019 ident: 10.1016/j.isci.2022.103990_bib48 article-title: Pyrrolizidines for direct air capture and CO2 conversion publication-title: Chem. Commun. doi: 10.1039/C8CC08574A – volume: 10 start-page: 647 year: 2020 ident: 10.1016/j.isci.2022.103990_bib62 article-title: Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement publication-title: Nat. Clim. Change doi: 10.1038/s41558-020-0797-x – year: 2015 ident: 10.1016/j.isci.2022.103990_bib9 – volume: 218 start-page: 361 year: 2018 ident: 10.1016/j.isci.2022.103990_bib59 article-title: The separation of CO2 from ambient air – a techno-economic assessment publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.144 – volume: 10 start-page: 744 year: 2020 ident: 10.1016/j.isci.2022.103990_bib26 article-title: Public perceptions of carbon dioxide removal in the United States and the United Kingdom publication-title: Nat. Clim. Change doi: 10.1038/s41558-020-0823-z – ident: 10.1016/j.isci.2022.103990_bib1 – ident: 10.1016/j.isci.2022.103990_bib112 – ident: 10.1016/j.isci.2022.103990_bib81 – ident: 10.1016/j.isci.2022.103990_bib20 – volume: 7 start-page: 243 year: 2017 ident: 10.1016/j.isci.2022.103990_bib66 article-title: The role of CO2 capture and utilization in mitigating climate change publication-title: Nat. Clim. Change doi: 10.1038/nclimate3231 – volume: 88 start-page: 86 year: 2016 ident: 10.1016/j.isci.2022.103990_bib92 article-title: An assessment of the regional potential for solar power generation in EU-28 publication-title: Energy Policy doi: 10.1016/j.enpol.2015.10.004 – ident: 10.1016/j.isci.2022.103990_bib95 – ident: 10.1016/j.isci.2022.103990_bib103 – ident: 10.1016/j.isci.2022.103990_bib32 – year: 2006 ident: 10.1016/j.isci.2022.103990_bib107 – volume: 8 start-page: 391 year: 2018 ident: 10.1016/j.isci.2022.103990_bib120 article-title: Alternative pathways to the 1.5°C target reduce the need for negative emission technologies publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0119-8 – volume: 224 start-page: 957 year: 2019 ident: 10.1016/j.isci.2022.103990_bib35 article-title: Techno-economic assessment of CO2 direct air capture plants publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.03.086 – volume: 59 start-page: 6984 year: 2020 ident: 10.1016/j.isci.2022.103990_bib101 article-title: Sorbents for the direct capture of CO2 from ambient air publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906756 – volume: 6 start-page: 18 year: 2005 ident: 10.1016/j.isci.2022.103990_bib73 article-title: PV review: World Solar PV market continues explosive growth publication-title: Refocus doi: 10.1016/S1471-0846(05)70452-2 – volume: 8 start-page: 151 year: 2018 ident: 10.1016/j.isci.2022.103990_bib49 article-title: Biomass-based negative emissions difficult to reconcile with planetary boundaries publication-title: Nat. Clim. Change doi: 10.1038/s41558-017-0064-y – year: 2020 ident: 10.1016/j.isci.2022.103990_bib13 – volume: 2 start-page: 805 year: 2018 ident: 10.1016/j.isci.2022.103990_bib69 article-title: Research opportunities for CO2 utilization and negative emissions at the gigatonne scale publication-title: Joule doi: 10.1016/j.joule.2018.04.018 – ident: 10.1016/j.isci.2022.103990_bib88 doi: 10.30598/vol1iss1pp84-100 – volume: 10 start-page: 8200 year: 2020 ident: 10.1016/j.isci.2022.103990_bib82 article-title: Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster–Shafer theory publication-title: Sci. Rep. doi: 10.1038/s41598-020-65165-z – volume: 6 start-page: S6 year: 2012 ident: 10.1016/j.isci.2022.103990_bib5 article-title: The place of solar power: an economic analysis of concentrated and distributed solar power publication-title: Chem. Cent. J. doi: 10.1186/1752-153X-6-S1-S6 – ident: 10.1016/j.isci.2022.103990_bib50 – year: 2019 ident: 10.1016/j.isci.2022.103990_bib10 – ident: 10.1016/j.isci.2022.103990_bib7 – ident: 10.1016/j.isci.2022.103990_bib110 – volume: 24 start-page: 102813 year: 2021 ident: 10.1016/j.isci.2022.103990_bib105 article-title: Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review publication-title: iScience doi: 10.1016/j.isci.2021.102813 – volume: 3 start-page: 032001 year: 2021 ident: 10.1016/j.isci.2022.103990_bib75 article-title: A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future publication-title: Prog. Energy doi: 10.1088/2516-1083/abf1ce – volume: 108 start-page: 20428 year: 2011 ident: 10.1016/j.isci.2022.103990_bib52 article-title: Economic and energetic analysis of capturing CO2 from ambient air publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1012253108 – ident: 10.1016/j.isci.2022.103990_bib118 – ident: 10.1016/j.isci.2022.103990_bib22 – volume: 4 start-page: 1823 year: 2020 ident: 10.1016/j.isci.2022.103990_bib102 article-title: Moisture-driven CO2 sorbents publication-title: Joule doi: 10.1016/j.joule.2020.07.005 – volume: 8 start-page: 51 year: 2021 ident: 10.1016/j.isci.2022.103990_bib89 article-title: Direct air capture of CO2: a response to meet the global climate targets publication-title: MRS Energy Sustain. doi: 10.1557/s43581-021-00005-9 – year: 2011 ident: 10.1016/j.isci.2022.103990_bib104 – year: 2018 ident: 10.1016/j.isci.2022.103990_bib44 – start-page: 11 year: 2018 ident: 10.1016/j.isci.2022.103990_bib25 article-title: negative emission technologies: what role in meeting Paris agreement targets? – volume: 8 start-page: 141 year: 2022 ident: 10.1016/j.isci.2022.103990_bib90 article-title: Progress in carbon dioxide capture materials for deep decarbonization publication-title: Chem doi: 10.1016/j.chempr.2021.12.013 – ident: 10.1016/j.isci.2022.103990_bib30 – ident: 10.1016/j.isci.2022.103990_bib115 – volume: 250 start-page: 959 year: 2019 ident: 10.1016/j.isci.2022.103990_bib3 article-title: A sorbent-focused techno-economic analysis of direct air capture publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.04.012 – year: 2020 ident: 10.1016/j.isci.2022.103990_bib31 publication-title: Energy & Industrial Strategy) – ident: 10.1016/j.isci.2022.103990_bib72 – ident: 10.1016/j.isci.2022.103990_bib4 – ident: 10.1016/j.isci.2022.103990_bib86 – volume: 11 start-page: 3287 year: 2020 ident: 10.1016/j.isci.2022.103990_bib17 article-title: Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways publication-title: Nat. Commun. doi: 10.1038/s41467-020-17203-7 – volume: 10 start-page: 9495 year: 2018 ident: 10.1016/j.isci.2022.103990_bib65 article-title: Binding CO2 from air by a bulky organometallic cation containing primary amines publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.8b01044 – volume: 1 start-page: 224 year: 2019 ident: 10.1016/j.isci.2022.103990_bib16 article-title: Adoption of grid-tie solar system at residential scale publication-title: Clean. Technol. doi: 10.3390/cleantechnol1010015 – volume: 21 start-page: 95 year: 2016 ident: 10.1016/j.isci.2022.103990_bib6 article-title: Measuring the duration of formative phases for energy technologies publication-title: Environ. Innov. Soc. Transit. doi: 10.1016/j.eist.2016.04.004 – ident: 10.1016/j.isci.2022.103990_bib27 – volume: 10 start-page: 920 year: 2020 ident: 10.1016/j.isci.2022.103990_bib37 article-title: Food–energy–water implications of negative emissions technologies in a +1.5°C future publication-title: Nat. Clim. Change doi: 10.1038/s41558-020-0876-z – volume: 8 start-page: 92 year: 2020 ident: 10.1016/j.isci.2022.103990_bib58 article-title: Techno-economic assessment for CO2 capture from air using a conventional liquid-based absorption process publication-title: Front. Energy Res. doi: 10.3389/fenrg.2020.00092 – volume: 1 start-page: 405 year: 2019 ident: 10.1016/j.isci.2022.103990_bib41 article-title: Direct air carbon capture and sequestration: how it works and how it could contribute to climate-change mitigation publication-title: One Earth doi: 10.1016/j.oneear.2019.11.006 – year: 2021 ident: 10.1016/j.isci.2022.103990_bib14 – volume: 116 start-page: 11840 year: 2016 ident: 10.1016/j.isci.2022.103990_bib100 article-title: Direct capture of CO2 from ambient air publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00173 – volume: 117 start-page: 9625 year: 2017 ident: 10.1016/j.isci.2022.103990_bib121 article-title: Ionic-liquid-based CO2 capture systems: structure, interaction and process publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00072 – volume: 6 start-page: 203 year: 2021 ident: 10.1016/j.isci.2022.103990_bib29 article-title: Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption publication-title: Nat. Energy doi: 10.1038/s41560-020-00771-9 – ident: 10.1016/j.isci.2022.103990_bib94 – ident: 10.1016/j.isci.2022.103990_bib33 – year: 2015 ident: 10.1016/j.isci.2022.103990_bib122 – ident: 10.1016/j.isci.2022.103990_bib116 – volume: 25 start-page: 43 year: 2020 ident: 10.1016/j.isci.2022.103990_bib8 article-title: Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling publication-title: Mitig. Adapt. Strateg. Glob. Chang. doi: 10.1007/s11027-019-9847-y – volume: 112 start-page: 13579 year: 2015 ident: 10.1016/j.isci.2022.103990_bib51 article-title: Solar energy development impacts on land cover change and protected areas publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1517656112 – year: 2019 ident: 10.1016/j.isci.2022.103990_bib84 – volume: 1 start-page: kgab004 year: 2021 ident: 10.1016/j.isci.2022.103990_bib36 article-title: The role of negative emissions in meeting China’s 2060 carbon neutrality goal publication-title: Oxf. Open Clim. Change doi: 10.1093/oxfclm/kgab004 – year: 2020 ident: 10.1016/j.isci.2022.103990_bib53 – volume: 12 start-page: 1805 year: 2019 ident: 10.1016/j.isci.2022.103990_bib28 article-title: The mutual dependence of negative emission technologies and energy systems publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03682A – ident: 10.1016/j.isci.2022.103990_bib18 – volume: 11 start-page: 3286 year: 2020 ident: 10.1016/j.isci.2022.103990_bib96 article-title: Reply to “High energy and materials requirement for direct air capture calls for further analysis and R&D.” publication-title: Nat. Commun. doi: 10.1038/s41467-020-17204-6 – volume: 58 start-page: 48 year: 2021 ident: 10.1016/j.isci.2022.103990_bib40 article-title: The carbon-sucking fans of West Texas: it’s not enough to slash greenhouse gas emissions. experts say we need direct-air capture publication-title: IEEE Spectr. doi: 10.1109/MSPEC.2021.9311453 – volume: 51 start-page: 1024 year: 2016 ident: 10.1016/j.isci.2022.103990_bib119 article-title: A life cycle assessment case study of coal-fired electricity generation with humidity swing direct air capture of CO2 versus MEA-based postcombustion capture publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05028 – ident: 10.1016/j.isci.2022.103990_bib2 – volume: 380 start-page: 93 year: 2016 ident: 10.1016/j.isci.2022.103990_bib64 article-title: Use of monoethanolamine (MEA) for CO2 capture in a global scenario: consequences and alternatives publication-title: Desalination doi: 10.1016/j.desal.2015.08.004 – volume: 171 start-page: 725 year: 2011 ident: 10.1016/j.isci.2022.103990_bib99 article-title: Aqueous piperazine as the new standard for CO2 capture technology publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.02.011 – volume: 144 start-page: 181 year: 2017 ident: 10.1016/j.isci.2022.103990_bib70 article-title: The road to achieving the long-term Paris targets: energy transition and the role of direct air capture publication-title: Clim. Change doi: 10.1007/s10584-017-2051-8 – year: 2021 ident: 10.1016/j.isci.2022.103990_bib56 – ident: 10.1016/j.isci.2022.103990_bib113 – ident: 10.1016/j.isci.2022.103990_bib80 – ident: 10.1016/j.isci.2022.103990_bib21 – volume: 13 start-page: 063002 year: 2018 ident: 10.1016/j.isci.2022.103990_bib38 article-title: Negative emissions—Part 2: costs, potentials and side effects publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aabf9f – year: 2014 ident: 10.1016/j.isci.2022.103990_bib42 – volume: 2 start-page: 1573 year: 2018 ident: 10.1016/j.isci.2022.103990_bib57 article-title: A process for capturing CO2 from the atmosphere publication-title: Joule doi: 10.1016/j.joule.2018.05.006 – volume: 54 start-page: 7542 year: 2020 ident: 10.1016/j.isci.2022.103990_bib76 article-title: Cost analysis of direct air capture and sequestration coupled to low-carbon thermal energy in the United States publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c00476 – ident: 10.1016/j.isci.2022.103990_bib108 – volume: 12 start-page: 1712 year: 2019 ident: 10.1016/j.isci.2022.103990_bib46 article-title: Oxidation-resistant, cost-effective epoxide-modified polyamine adsorbents for CO2 capture from various sources including air publication-title: ChemSusChem. doi: 10.1002/cssc.201802978 – ident: 10.1016/j.isci.2022.103990_bib87 – ident: 10.1016/j.isci.2022.103990_bib15 – year: 2018 ident: 10.1016/j.isci.2022.103990_bib83 – ident: 10.1016/j.isci.2022.103990_bib54 – ident: 10.1016/j.isci.2022.103990_bib114 – volume: 6 start-page: 1035 year: 2021 ident: 10.1016/j.isci.2022.103990_bib67 article-title: Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment publication-title: Nat. Energy doi: 10.1038/s41560-021-00922-6 – volume: 13 start-page: 063003 year: 2018 ident: 10.1016/j.isci.2022.103990_bib85 article-title: Negative emissions—Part 3: Innovation and upscaling publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aabff4 – volume: 12 start-page: 2051 year: 2021 ident: 10.1016/j.isci.2022.103990_bib78 article-title: A policy roadmap for negative emissions using direct air capture publication-title: Nat. Commun. doi: 10.1038/s41467-021-22347-1 – volume: 12 start-page: 368 year: 2021 ident: 10.1016/j.isci.2022.103990_bib47 article-title: Emergency deployment of direct air capture as a response to the climate crisis publication-title: Nat. Commun. doi: 10.1038/s41467-020-20437-0 – ident: 10.1016/j.isci.2022.103990_bib68 – ident: 10.1016/j.isci.2022.103990_bib60 – year: 2022 ident: 10.1016/j.isci.2022.103990_bib24 – volume: 2 start-page: 618644 year: 2021 ident: 10.1016/j.isci.2022.103990_bib74 article-title: Natural gas vs. electricity for solvent-based direct air capture publication-title: Front. Clim. doi: 10.3389/fclim.2020.618644 – ident: 10.1016/j.isci.2022.103990_bib79 – ident: 10.1016/j.isci.2022.103990_bib93 – ident: 10.1016/j.isci.2022.103990_bib34 – volume: 10 start-page: 3277 year: 2019 ident: 10.1016/j.isci.2022.103990_bib97 article-title: An inter-model assessment of the role of direct air capture in deep mitigation pathways publication-title: Nat. Commun. doi: 10.1038/s41467-019-10842-5 – year: 2021 ident: 10.1016/j.isci.2022.103990_bib45 – volume: 53 start-page: 10523 year: 2017 ident: 10.1016/j.isci.2022.103990_bib12 article-title: Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future publication-title: Water Resour. Res. doi: 10.1002/2017WR021402 – year: 2019 ident: 10.1016/j.isci.2022.103990_bib117 – ident: 10.1016/j.isci.2022.103990_bib111 – volume: 12 start-page: 3567 year: 2019 ident: 10.1016/j.isci.2022.103990_bib55 article-title: The health and climate impacts of carbon capture and direct air capture publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02709B – year: 2021 ident: 10.1016/j.isci.2022.103990_bib71 article-title: Summary for policymakers |
| SSID | ssj0002002496 |
| Score | 2.6027794 |
| SecondaryResourceType | review_article |
| Snippet | Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming... Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO ) to lower the global warming... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 103990 |
| SubjectTerms | Chemical engineering Energy sustainability Environmental technology Mechanical engineering Review |
| Title | Current status and pillars of direct air capture technologies |
| URI | https://dx.doi.org/10.1016/j.isci.2022.103990 https://www.ncbi.nlm.nih.gov/pubmed/35310937 https://www.proquest.com/docview/2641516003 https://pubmed.ncbi.nlm.nih.gov/PMC8927912 https://doaj.org/article/b19034bbae724a31852fc49f49fe134b |
| Volume | 25 |
| WOSCitedRecordID | wos000819870000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9xADB4V1AMXRNUWtsBqKvVWRWzmsZMcARVxqFAPrbS3kecRsQhlV_vg99eeSVa7IMEFKadk8rDHM7Zj-zNjP1QDIzBKFajNfaFcGBcgQBQ-SIk-EaALkAqFf5u7u2oyqf9stfqinLAMD5wZd-FQY0nlHEQjFKRa38arusEjlniBdl-0eracqYcUXiMovNRZTlNOEIpmVzGTk7uo4hWdQyGo6DxtyFtaKYH37yinl8bn8xzKLaV0c8QOO2uSX2YqPrEPsf3MeiRRTsVC6yWHNvA5NRdaLPms4VmJcZguuIc5BRD4qv-_jm7zF_bv5tff69ui65JQeGpGUIACqJTX3o2j8kaAlM7gDiakaZyqQdcgmiAjlZRGPQquFEGoUHonTFTKya9sv5218YTxWvtmVDoNcYyOQxjX6F0F7cJIeXS0KjNgZc8l6zsIcepk8Wj7XLEHS5y1xFmbOTtgPzf3zDOAxqujr4j5m5EEfp1OoEjYTiTsWyIxYLqfOtvZEZm1-Kjpqy__3s-zxUVGkRNo42y9tGg1omWEtqEcsOM875tPlJrAVSUyx-xIxA4Nu1fa6X0C8q5qYepSfHsPok_ZAZFCga5Sn7H91WIdz9lH_7SaLhdDtmcm1TCtkf84YBMZ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+status+and+pillars+of+direct+air+capture+technologies&rft.jtitle=iScience&rft.au=Ozkan%2C+Mihrimah&rft.au=Nayak%2C+Saswat+Priyadarshi&rft.au=Ruiz%2C+Anthony+D&rft.au=Jiang%2C+Wenmei&rft.date=2022-04-15&rft.eissn=2589-0042&rft.volume=25&rft.issue=4&rft.spage=103990&rft_id=info:doi/10.1016%2Fj.isci.2022.103990&rft_id=info%3Apmid%2F35310937&rft.externalDocID=35310937 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |