Current and future lithium-ion battery manufacturing

Lithium-ion batteries (LIBs) have become one of the main energy storage solutions in modern society. The application fields and market share of LIBs have increased rapidly and continue to show a steady rising trend. The research on LIB materials has scored tremendous achievements. Many innovative ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience Jg. 24; H. 4; S. 102332
Hauptverfasser: Liu, Yangtao, Zhang, Ruihan, Wang, Jun, Wang, Yan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 23.04.2021
Elsevier
Schlagworte:
ISSN:2589-0042, 2589-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Lithium-ion batteries (LIBs) have become one of the main energy storage solutions in modern society. The application fields and market share of LIBs have increased rapidly and continue to show a steady rising trend. The research on LIB materials has scored tremendous achievements. Many innovative materials have been adopted and commercialized by the industry. However, the research on LIB manufacturing falls behind. Many battery researchers may not know exactly how LIBs are being manufactured and how different steps impact the cost, energy consumption, and throughput, which prevents innovations in battery manufacturing. Here in this perspective paper, we introduce state-of-the-art manufacturing technology and analyze the cost, throughput, and energy consumption based on the production processes. We then review the research progress focusing on the high-cost, energy, and time-demand steps of LIB manufacturing. Finally, we share our views of challenges in LIB manufacturing and propose future development directions for manufacturing research in LIBs. [Display omitted] Electrochemical Energy Storage ; Industrial Chemistry ; Energy Storage ; Industrial Processing of Material ; Energy Materials
AbstractList Lithium-ion batteries (LIBs) have become one of the main energy storage solutions in modern society. The application fields and market share of LIBs have increased rapidly and continue to show a steady rising trend. The research on LIB materials has scored tremendous achievements. Many innovative materials have been adopted and commercialized by the industry. However, the research on LIB manufacturing falls behind. Many battery researchers may not know exactly how LIBs are being manufactured and how different steps impact the cost, energy consumption, and throughput, which prevents innovations in battery manufacturing. Here in this perspective paper, we introduce state-of-the-art manufacturing technology and analyze the cost, throughput, and energy consumption based on the production processes. We then review the research progress focusing on the high-cost, energy, and time-demand steps of LIB manufacturing. Finally, we share our views of challenges in LIB manufacturing and propose future development directions for manufacturing research in LIBs.Lithium-ion batteries (LIBs) have become one of the main energy storage solutions in modern society. The application fields and market share of LIBs have increased rapidly and continue to show a steady rising trend. The research on LIB materials has scored tremendous achievements. Many innovative materials have been adopted and commercialized by the industry. However, the research on LIB manufacturing falls behind. Many battery researchers may not know exactly how LIBs are being manufactured and how different steps impact the cost, energy consumption, and throughput, which prevents innovations in battery manufacturing. Here in this perspective paper, we introduce state-of-the-art manufacturing technology and analyze the cost, throughput, and energy consumption based on the production processes. We then review the research progress focusing on the high-cost, energy, and time-demand steps of LIB manufacturing. Finally, we share our views of challenges in LIB manufacturing and propose future development directions for manufacturing research in LIBs.
Lithium-ion batteries (LIBs) have become one of the main energy storage solutions in modern society. The application fields and market share of LIBs have increased rapidly and continue to show a steady rising trend. The research on LIB materials has scored tremendous achievements. Many innovative materials have been adopted and commercialized by the industry. However, the research on LIB manufacturing falls behind. Many battery researchers may not know exactly how LIBs are being manufactured and how different steps impact the cost, energy consumption, and throughput, which prevents innovations in battery manufacturing. Here in this perspective paper, we introduce state-of-the-art manufacturing technology and analyze the cost, throughput, and energy consumption based on the production processes. We then review the research progress focusing on the high-cost, energy, and time-demand steps of LIB manufacturing. Finally, we share our views of challenges in LIB manufacturing and propose future development directions for manufacturing research in LIBs.
Lithium-ion batteries (LIBs) have become one of the main energy storage solutions in modern society. The application fields and market share of LIBs have increased rapidly and continue to show a steady rising trend. The research on LIB materials has scored tremendous achievements. Many innovative materials have been adopted and commercialized by the industry. However, the research on LIB manufacturing falls behind. Many battery researchers may not know exactly how LIBs are being manufactured and how different steps impact the cost, energy consumption, and throughput, which prevents innovations in battery manufacturing. Here in this perspective paper, we introduce state-of-the-art manufacturing technology and analyze the cost, throughput, and energy consumption based on the production processes. We then review the research progress focusing on the high-cost, energy, and time-demand steps of LIB manufacturing. Finally, we share our views of challenges in LIB manufacturing and propose future development directions for manufacturing research in LIBs. Electrochemical Energy Storage ; Industrial Chemistry ; Energy Storage ; Industrial Processing of Material ; Energy Materials
Lithium-ion batteries (LIBs) have become one of the main energy storage solutions in modern society. The application fields and market share of LIBs have increased rapidly and continue to show a steady rising trend. The research on LIB materials has scored tremendous achievements. Many innovative materials have been adopted and commercialized by the industry. However, the research on LIB manufacturing falls behind. Many battery researchers may not know exactly how LIBs are being manufactured and how different steps impact the cost, energy consumption, and throughput, which prevents innovations in battery manufacturing. Here in this perspective paper, we introduce state-of-the-art manufacturing technology and analyze the cost, throughput, and energy consumption based on the production processes. We then review the research progress focusing on the high-cost, energy, and time-demand steps of LIB manufacturing. Finally, we share our views of challenges in LIB manufacturing and propose future development directions for manufacturing research in LIBs. [Display omitted] Electrochemical Energy Storage ; Industrial Chemistry ; Energy Storage ; Industrial Processing of Material ; Energy Materials
ArticleNumber 102332
Author Zhang, Ruihan
Wang, Jun
Liu, Yangtao
Wang, Yan
Author_xml – sequence: 1
  givenname: Yangtao
  surname: Liu
  fullname: Liu, Yangtao
  organization: Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
– sequence: 2
  givenname: Ruihan
  orcidid: 0000-0002-6902-4508
  surname: Zhang
  fullname: Zhang, Ruihan
  organization: Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
– sequence: 3
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: A123 Systems LLC Advanced and Applied Research Center, 200 West St, Waltham, MA 02451, USA
– sequence: 4
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  email: yanwang@wpi.edu
  organization: Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33889825$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r3DAQxUVJadI0X6CH4mMv3kojyZagFMrSP4FAL-1ZaKXRRostp7IcyLevtk5K0kNAIDF67zfMvNfkJE0JCXnL6IZR1n04bOLs4gYosFoAzuEFOQOpdEupgJNH71NyMc8HSinUI3T3ipxyrpRWIM-I2C45YyqNTb4JS1kyNkMs13EZ2zilZmdLwXzXjDYtwbr6H9P-DXkZ7DDjxf19Tn59_fJz-729-vHtcvv5qnUSWGl16FnYWQpeUd7RTvc6aMe95l4IhYwJrTvhAnOcOo-cSg0cdhK87q2Unp-Ty5XrJ3swNzmONt-ZyUbztzDlvbG5RDegYYrK4FgPFp0I2OtOijolWGeZkjxU1qeVdbPsRvSuzpzt8AT69CfFa7Ofbk0F0551FfD-HpCn3wvOxYw1ARwGm3BaZgOSKai6Dqr03eNe_5o8rL0K1CpweZrnjMG4WGypC6-t42AYNceQzcEcQzbHkM0acrXCf9YH-rOmj6sJa1q3EbOpCkwOfczoSl1nfM7-B0eLvpc
CitedBy_id crossref_primary_10_1039_D3NR00289F
crossref_primary_10_1007_s40684_023_00519_2
crossref_primary_10_1002_adma_202410974
crossref_primary_10_1039_D3MH01565C
crossref_primary_10_1016_j_jelechem_2023_117709
crossref_primary_10_1039_D3RA00549F
crossref_primary_10_2351_7_0001417
crossref_primary_10_3390_batteries10010039
crossref_primary_10_1002_celc_202400288
crossref_primary_10_1016_j_procir_2025_02_213
crossref_primary_10_1002_ente_202401338
crossref_primary_10_1016_j_est_2023_108691
crossref_primary_10_1002_batt_202400539
crossref_primary_10_1007_s11581_024_05941_3
crossref_primary_10_1016_j_est_2023_108694
crossref_primary_10_1007_s40820_024_01596_x
crossref_primary_10_1016_j_jclepro_2022_133342
crossref_primary_10_3389_fenrg_2023_1336344
crossref_primary_10_1002_bte2_20240022
crossref_primary_10_1016_j_est_2025_118397
crossref_primary_10_1021_acs_chemrev_4c00980
crossref_primary_10_1007_s42452_024_06021_x
crossref_primary_10_1002_aenm_202502829
crossref_primary_10_1002_celc_202400051
crossref_primary_10_1016_j_mtener_2023_101254
crossref_primary_10_1051_e3sconf_202346900005
crossref_primary_10_1002_admt_202501420
crossref_primary_10_1016_j_cscee_2024_101038
crossref_primary_10_1016_j_jpowsour_2023_234027
crossref_primary_10_1016_j_memsci_2021_119891
crossref_primary_10_1016_j_jenvman_2025_127095
crossref_primary_10_1002_smll_202202651
crossref_primary_10_1002_aenm_202406011
crossref_primary_10_1002_batt_202300396
crossref_primary_10_1149_1945_7111_ad47d5
crossref_primary_10_1002_adfm_202301341
crossref_primary_10_1016_j_procir_2025_02_234
crossref_primary_10_1149_1945_7111_adf9cf
crossref_primary_10_1039_D3NR02652C
crossref_primary_10_1149_1945_7111_ad3eb9
crossref_primary_10_3390_pr12091943
crossref_primary_10_1016_j_cej_2022_140678
crossref_primary_10_1007_s42823_024_00812_3
crossref_primary_10_1016_j_mfglet_2025_06_141
crossref_primary_10_1016_j_mattod_2022_07_004
crossref_primary_10_3390_batteries11040119
crossref_primary_10_1093_jcde_qwad024
crossref_primary_10_1002_aenm_202300973
crossref_primary_10_3390_batteries10070252
crossref_primary_10_1002_adma_202403073
crossref_primary_10_1002_aenm_202301886
crossref_primary_10_1007_s10800_024_02142_8
crossref_primary_10_1016_j_est_2024_110605
crossref_primary_10_1016_j_cej_2024_158271
crossref_primary_10_1109_TSMC_2024_3468010
crossref_primary_10_1007_s10854_024_12099_1
crossref_primary_10_1016_j_oneear_2022_03_012
crossref_primary_10_1016_j_jclepro_2024_141064
crossref_primary_10_1002_chem_202501487
crossref_primary_10_3390_pr13030756
crossref_primary_10_1002_batt_202300383
crossref_primary_10_1016_j_ensm_2025_104094
crossref_primary_10_1002_ente_202201092
crossref_primary_10_1016_j_energy_2025_134923
crossref_primary_10_1111_jmi_13417
crossref_primary_10_1002_adma_202206797
crossref_primary_10_1039_D5EE03240G
crossref_primary_10_1016_j_ceramint_2024_02_357
crossref_primary_10_1016_j_egyr_2025_02_001
crossref_primary_10_1002_ente_202200681
crossref_primary_10_1007_s42154_021_00169_7
crossref_primary_10_1039_D5CS00358J
crossref_primary_10_1109_TASE_2024_3486919
crossref_primary_10_3390_ma17102349
crossref_primary_10_1016_j_jpowsour_2022_232124
crossref_primary_10_3390_recycling8030048
crossref_primary_10_3390_su14159525
crossref_primary_10_1016_j_jallcom_2025_179735
crossref_primary_10_1002_ente_202200689
crossref_primary_10_1002_anie_202415491
crossref_primary_10_1016_j_fuel_2024_132163
crossref_primary_10_1002_adfm_202518619
crossref_primary_10_1002_aenm_202403164
crossref_primary_10_1016_j_procir_2023_08_031
crossref_primary_10_1080_09537287_2024_2414334
crossref_primary_10_1007_s00397_023_01404_0
crossref_primary_10_1016_j_jpowsour_2025_238149
crossref_primary_10_1002_aenm_202203307
crossref_primary_10_3390_batteries10060183
crossref_primary_10_1002_aenm_202102696
crossref_primary_10_1016_j_surfin_2023_102756
crossref_primary_10_1002_batt_202100324
crossref_primary_10_3390_batteries9120579
crossref_primary_10_3390_en16176360
crossref_primary_10_3390_batteries9010009
crossref_primary_10_1016_j_est_2024_111540
crossref_primary_10_1016_j_procir_2024_10_121
crossref_primary_10_1002_smll_202404063
crossref_primary_10_3390_electrochem5040028
crossref_primary_10_1088_2515_7655_ac8e30
crossref_primary_10_3390_batteries9120581
crossref_primary_10_1021_acsomega_5c04952
crossref_primary_10_1002_aenm_202303048
crossref_primary_10_1007_s11740_024_01281_3
crossref_primary_10_1002_batt_202500356
crossref_primary_10_1093_nsr_nwad238
crossref_primary_10_3390_wevj12030145
crossref_primary_10_1016_j_elecom_2025_107941
crossref_primary_10_3390_ma16176063
crossref_primary_10_1002_ange_202415491
crossref_primary_10_3390_en15124379
crossref_primary_10_1016_j_jestch_2023_101495
crossref_primary_10_1016_j_pnsc_2023_11_011
crossref_primary_10_1002_batt_202300161
crossref_primary_10_1016_j_procir_2024_10_118
crossref_primary_10_1080_09506608_2022_2086388
crossref_primary_10_3390_batteries8070070
crossref_primary_10_3390_en17071566
crossref_primary_10_1080_00207543_2025_2535518
crossref_primary_10_1016_j_jeurceramsoc_2023_09_030
crossref_primary_10_1063_5_0235864
crossref_primary_10_3390_en15217997
crossref_primary_10_1007_s10661_024_13297_4
crossref_primary_10_1016_j_cej_2024_155544
crossref_primary_10_1016_j_procir_2024_10_115
crossref_primary_10_1016_j_procir_2024_10_116
crossref_primary_10_3390_ma16227232
crossref_primary_10_1016_j_egyr_2022_05_075
crossref_primary_10_1021_acsaem_4c03163
crossref_primary_10_1002_ente_202100132
crossref_primary_10_3390_en16227530
crossref_primary_10_1007_s11367_025_02505_z
crossref_primary_10_1002_anie_202202744
crossref_primary_10_1002_cssc_202500300
crossref_primary_10_1002_smll_202400728
crossref_primary_10_3390_batteries8080083
crossref_primary_10_3389_fenrg_2022_1059154
crossref_primary_10_3389_fenrg_2021_754317
crossref_primary_10_1016_j_joule_2021_09_015
crossref_primary_10_1038_s44359_025_00067_9
crossref_primary_10_1109_TDEI_2025_3577146
crossref_primary_10_3390_batteries10030076
crossref_primary_10_1002_ente_202401759
crossref_primary_10_1002_adsu_202100308
crossref_primary_10_1002_adfm_202312550
crossref_primary_10_1016_j_jpowsour_2024_234717
crossref_primary_10_1016_j_procir_2024_12_076
crossref_primary_10_1039_D3EE03559J
crossref_primary_10_1016_j_jcis_2023_11_021
crossref_primary_10_1080_21681015_2023_2262467
crossref_primary_10_1016_j_hydromet_2022_105941
crossref_primary_10_1002_pen_70031
crossref_primary_10_1002_aesr_202200079
crossref_primary_10_1007_s11581_022_04647_8
crossref_primary_10_1002_aenm_202404028
crossref_primary_10_1016_j_apenergy_2024_124171
crossref_primary_10_1016_j_est_2025_116511
crossref_primary_10_1016_j_partic_2023_06_015
crossref_primary_10_1002_eom2_12321
crossref_primary_10_1016_j_cirp_2025_05_001
crossref_primary_10_1149_1945_7111_adba90
crossref_primary_10_1016_j_apenergy_2023_122132
crossref_primary_10_1021_acsenergylett_5c00762
crossref_primary_10_3390_ma17205114
crossref_primary_10_1016_j_jpowsour_2022_231632
crossref_primary_10_1016_j_jpowsour_2023_233674
crossref_primary_10_1016_j_procir_2024_10_138
crossref_primary_10_1016_j_engfracmech_2025_111120
crossref_primary_10_1002_ente_202500649
crossref_primary_10_1039_D1SE01161H
crossref_primary_10_3390_batteries9110555
crossref_primary_10_1002_smsc_202500198
crossref_primary_10_1016_j_est_2025_116000
crossref_primary_10_1016_j_jcis_2022_06_006
crossref_primary_10_1016_j_joule_2023_11_012
crossref_primary_10_1080_00207543_2025_2516764
crossref_primary_10_1002_batt_202400023
crossref_primary_10_1016_j_est_2025_116368
crossref_primary_10_1002_smtd_202401912
crossref_primary_10_1016_j_jallcom_2023_173325
crossref_primary_10_3390_wevj15050219
crossref_primary_10_1002_adma_202206625
crossref_primary_10_1016_j_est_2023_109143
crossref_primary_10_3390_batteries8110236
crossref_primary_10_3390_en15176196
crossref_primary_10_1016_j_jmsy_2024_05_013
crossref_primary_10_1016_j_apenergy_2022_119120
crossref_primary_10_1038_s41467_022_32794_z
crossref_primary_10_1039_D4SC08105F
crossref_primary_10_1002_batt_202500433
crossref_primary_10_1016_j_eurpolymj_2023_112298
crossref_primary_10_1016_j_cej_2024_151957
crossref_primary_10_1002_solr_202300619
crossref_primary_10_1007_s11431_025_3005_9
crossref_primary_10_1002_batt_202400132
crossref_primary_10_1039_D5EB00037H
crossref_primary_10_1039_D5TA01950H
crossref_primary_10_1038_s41467_025_58153_2
crossref_primary_10_1007_s11837_023_06104_x
crossref_primary_10_3390_wevj14100281
crossref_primary_10_1002_ange_202202744
crossref_primary_10_1016_j_ensm_2025_104153
crossref_primary_10_1016_j_ces_2024_120777
crossref_primary_10_3390_en15239168
crossref_primary_10_1016_j_est_2024_110783
crossref_primary_10_1016_j_jclepro_2022_133512
crossref_primary_10_1038_s41467_023_35933_2
crossref_primary_10_1063_5_0213136
crossref_primary_10_1002_ente_202200861
crossref_primary_10_1016_j_cej_2025_160159
crossref_primary_10_1002_cssc_202301154
crossref_primary_10_3390_en17174295
crossref_primary_10_1109_JAS_2024_124539
crossref_primary_10_1007_s11367_022_02026_z
crossref_primary_10_1007_s11581_025_06642_1
crossref_primary_10_1016_j_susmat_2023_e00726
crossref_primary_10_1016_j_cej_2025_165044
crossref_primary_10_1021_acsami_5c04026
crossref_primary_10_7736_JKSPE_025_064
crossref_primary_10_1002_ente_202200868
crossref_primary_10_1016_j_apenergy_2021_117693
crossref_primary_10_1016_j_matt_2022_01_011
crossref_primary_10_1002_batt_202300556
crossref_primary_10_1002_batt_202400361
crossref_primary_10_3390_batteries10100340
crossref_primary_10_1002_ente_202301221
crossref_primary_10_3390_pr11061800
crossref_primary_10_1039_D5CC02197A
crossref_primary_10_3390_pr12040685
crossref_primary_10_1007_s11590_023_02071_z
crossref_primary_10_1002_batt_202400127
crossref_primary_10_1016_j_geits_2025_100294
crossref_primary_10_3390_cryst11080895
crossref_primary_10_1002_aenm_202102785
crossref_primary_10_1007_s11708_024_0911_2
crossref_primary_10_1016_j_jpowsour_2023_233466
crossref_primary_10_1016_j_joule_2023_06_007
crossref_primary_10_1038_s41467_024_51905_6
crossref_primary_10_1557_s43581_024_00106_1
crossref_primary_10_1002_batt_202500211
crossref_primary_10_1016_j_cej_2023_146299
crossref_primary_10_3390_en15239152
crossref_primary_10_1002_cphc_202100860
crossref_primary_10_1002_aenm_202402163
crossref_primary_10_1002_wene_544
crossref_primary_10_1016_j_cej_2023_144300
crossref_primary_10_3390_ma16052049
crossref_primary_10_1002_smll_202500107
crossref_primary_10_1002_batt_202400113
crossref_primary_10_3390_en15238848
crossref_primary_10_3390_systems13060464
crossref_primary_10_1002_batt_202400358
crossref_primary_10_1016_j_powtec_2022_117828
crossref_primary_10_1002_smll_202404456
crossref_primary_10_3390_molecules26134054
crossref_primary_10_1002_ente_202500042
crossref_primary_10_1016_j_jclepro_2022_134503
crossref_primary_10_1016_j_jpowsour_2025_237919
crossref_primary_10_1002_aenm_202501444
crossref_primary_10_1109_TEM_2023_3264294
crossref_primary_10_1002_ente_202400638
crossref_primary_10_1016_j_ndteint_2025_103322
crossref_primary_10_3390_batteries8030027
crossref_primary_10_1080_00207543_2025_2518262
crossref_primary_10_1016_j_spc_2025_02_013
crossref_primary_10_3389_fenrg_2023_1087269
crossref_primary_10_11648_j_ajqcms_20250901_12
crossref_primary_10_1016_j_ifacol_2024_09_202
crossref_primary_10_1149_1945_7111_ad6936
crossref_primary_10_1016_j_coelec_2021_100877
crossref_primary_10_1021_acsenergylett_5c02422
crossref_primary_10_1149_1945_7111_ae0076
crossref_primary_10_1080_15567036_2024_2401118
crossref_primary_10_3389_ftox_2025_1629813
crossref_primary_10_1007_s40684_022_00425_z
crossref_primary_10_3389_fmtec_2024_1360076
crossref_primary_10_1002_elan_12053
crossref_primary_10_3390_wevj14040096
crossref_primary_10_1080_00207543_2024_2381224
crossref_primary_10_1109_TASE_2021_3118226
crossref_primary_10_1002_ente_202402221
crossref_primary_10_1002_smll_202503037
crossref_primary_10_1007_s12274_024_6764_5
crossref_primary_10_1016_j_est_2023_108803
crossref_primary_10_1016_j_jpowsour_2025_236494
crossref_primary_10_1007_s41918_025_00240_5
crossref_primary_10_1016_j_est_2023_108929
crossref_primary_10_1021_acsaem_5c00630
crossref_primary_10_35848_1347_4065_ad3f5d
crossref_primary_10_1109_TMECH_2021_3115997
crossref_primary_10_1016_j_est_2025_116213
crossref_primary_10_1016_j_est_2025_117786
crossref_primary_10_1108_LHT_08_2021_0252
crossref_primary_10_1007_s10098_023_02616_x
crossref_primary_10_3390_batteries10120444
crossref_primary_10_1016_j_apsusc_2022_155093
crossref_primary_10_1360_TB_2025_0134
crossref_primary_10_3390_encyclopedia5010020
crossref_primary_10_1016_j_fuel_2022_126862
crossref_primary_10_1149_1945_7111_adb33d
crossref_primary_10_1149_1945_7111_ae04a6
crossref_primary_10_3390_nano12234271
crossref_primary_10_1016_j_jpowsour_2023_233499
crossref_primary_10_3390_wevj14040087
crossref_primary_10_1002_batt_202200224
crossref_primary_10_1002_slct_202202857
crossref_primary_10_1039_D5EE02287H
crossref_primary_10_1038_s41598_023_48909_5
crossref_primary_10_1002_adfm_202504272
crossref_primary_10_1002_admt_202301765
crossref_primary_10_1002_slct_202402489
crossref_primary_10_1039_D2NJ02498E
crossref_primary_10_1080_14686996_2024_2448418
crossref_primary_10_3390_batteries10120424
crossref_primary_10_1039_D2EE03840D
crossref_primary_10_1038_s41467_024_50723_0
crossref_primary_10_3389_fenrg_2023_1285044
crossref_primary_10_1016_j_jechem_2023_10_052
crossref_primary_10_3390_batteries9040236
crossref_primary_10_1016_j_est_2023_108951
crossref_primary_10_1016_j_jclepro_2023_138415
crossref_primary_10_3390_math12162472
crossref_primary_10_37394_232016_2025_20_16
crossref_primary_10_1016_j_est_2023_109801
crossref_primary_10_1016_j_est_2024_115083
crossref_primary_10_1002_ente_202200657
crossref_primary_10_1002_ente_202200899
crossref_primary_10_1016_j_est_2023_109800
crossref_primary_10_1002_aenm_202103718
crossref_primary_10_1007_s11581_024_05965_9
crossref_primary_10_1021_acsenergylett_4c01690
crossref_primary_10_1007_s40843_023_2673_6
crossref_primary_10_3390_polym15183690
crossref_primary_10_1002_batt_202300346
crossref_primary_10_1002_est2_628
crossref_primary_10_1007_s10008_023_05707_3
crossref_primary_10_1016_j_apenergy_2025_126370
crossref_primary_10_1007_s13367_023_00079_6
crossref_primary_10_1002_batt_202200239
crossref_primary_10_1016_j_fuel_2025_134327
crossref_primary_10_1002_adfm_202500481
crossref_primary_10_1016_j_ceramint_2025_08_426
crossref_primary_10_3390_recycling9050076
crossref_primary_10_1007_s10098_025_03231_8
crossref_primary_10_1016_j_optlastec_2024_110730
crossref_primary_10_1038_s44359_024_00018_w
crossref_primary_10_1016_j_apenergy_2025_126494
crossref_primary_10_1016_j_apenergy_2024_124452
crossref_primary_10_1007_s11771_023_5250_7
crossref_primary_10_1016_j_cej_2024_157788
crossref_primary_10_1016_j_jpowsour_2023_232742
crossref_primary_10_1007_s40831_024_00870_x
crossref_primary_10_1016_j_cej_2025_161789
crossref_primary_10_1088_2515_7655_ac4ac3
crossref_primary_10_1088_2515_7655_ad6bc0
crossref_primary_10_1149_1945_7111_adf050
crossref_primary_10_1016_j_jmapro_2025_03_117
crossref_primary_10_1038_s41467_023_39685_x
Cites_doi 10.1149/1.1837571
10.1038/s41560-019-0336-z
10.1149/2.1211609jes
10.1039/C6RA27210J
10.1002/ente.201801049
10.1016/j.joule.2019.11.002
10.1016/j.jiec.2018.11.035
10.3390/wevj11040077
10.1021/acsami.9b00999
10.1088/1742-6596/817/1/012008
10.1016/j.jpowsour.2017.01.118
10.1016/j.ensm.2019.06.011
10.1016/0025-5408(80)90012-4
10.1002/ente.201801136
10.1007/s11581-019-03404-8
10.1016/0025-5408(83)90138-1
10.1016/j.jpowsour.2015.04.081
10.1126/science.192.4244.1126
10.1002/ente.201801162
10.1016/j.carbon.2012.07.009
10.1016/j.cep.2012.04.004
10.1016/j.jajp.2020.100017
10.1016/j.powtec.2019.03.020
10.1016/j.jpowsour.2020.229103
10.1002/bkcs.10679
10.1016/j.jmapro.2012.10.002
10.1016/j.ultsonch.2013.07.015
10.1002/ente.201900519
10.1016/j.jpowsour.2017.08.009
10.1002/ente.201801169
10.1021/acs.chemmater.8b03272
10.1016/j.cirp.2020.04.090
10.1002/aenm.201600655
10.3390/wevj6030572
10.1038/s41560-019-0356-8
10.1016/j.carbon.2016.04.008
10.1016/j.cirp.2017.04.109
10.1016/j.jpowsour.2017.01.011
10.1016/j.joule.2019.09.014
10.1002/ente.201900175
10.1016/j.joule.2020.03.016
10.1016/j.est.2015.04.001
10.1021/acssuschemeng.9b05003
10.1007/s00170-014-6231-7
10.1155/2014/360347
10.3390/wevj9020022
10.1016/j.energy.2018.06.220
10.1016/j.jpowsour.2016.04.102
10.4028/www.scientific.net/AMR.907.391
10.1002/ente.201900245
10.1002/ente.201900161
10.1016/j.joule.2020.07.014
10.1038/s41560-018-0130-3
10.1038/s41586-020-1994-5
10.1039/C8QM00660A
10.1080/07373937.2016.1248975
10.1002/ente.201900026
10.1016/j.joule.2019.09.022
10.1155/2016/7395060
10.1016/j.jpowsour.2004.03.020
10.1016/j.jpowsour.2016.05.127
10.1016/j.jpowsour.2009.12.101
10.1016/j.ijbiomac.2017.05.155
10.1038/srep23150
10.1002/anie.202011482
10.1021/acsenergylett.8b00833
10.1016/j.jpowsour.2013.01.134
10.1149/2.0401507jes
10.1149/1945-7111/ab95c6
10.3390/app8020266
10.1016/j.est.2020.101564
10.1016/S0009-2509(98)00335-2
10.1002/ente.201900309
10.1016/j.progsolidstchem.2014.04.009
10.1016/j.matt.2019.09.020
10.1016/0032-5910(94)02852-4
10.1016/j.elecom.2016.04.014
10.1149/07301.0153ecst
10.1021/acscentsci.8b00229
10.1002/ente.201900180
10.1016/S0378-7753(01)00820-5
10.3390/app7090914
10.1038/s41578-020-0216-y
10.1016/j.jpowsour.2015.12.079
10.1038/s41586-019-1481-z
10.4236/aces.2014.44053
10.1016/j.procir.2015.02.051
10.1002/ente.201900136
10.1002/ente.201801108
10.1016/j.jpowsour.2018.09.019
10.1002/admi.201700570
10.1002/ente.201900118
10.1515/nanoph-2017-0044
10.1021/acsami.9b03020
10.1002/ente.201900244
ContentType Journal Article
Copyright 2021 The Author(s)
2021 The Author(s).
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: 2021 The Author(s).
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2021.102332
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_1805fc172aec4fe796543382aca1853f
PMC8050716
33889825
10_1016_j_isci_2021_102332
S258900422100300X
Genre Journal Article
Review
GroupedDBID 0R~
53G
6I.
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
AACTN
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-9f71fba02d803606979f9c3d93d448e1149964cf1c30cde3059232b52d97a55d3
IEDL.DBID DOA
ISICitedReferencesCount 576
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000642261700078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-0042
IngestDate Fri Oct 03 12:43:38 EDT 2025
Tue Sep 30 16:58:37 EDT 2025
Wed Oct 01 13:15:28 EDT 2025
Mon Apr 28 11:38:26 EDT 2025
Sat Nov 29 07:36:47 EST 2025
Tue Nov 18 22:09:45 EST 2025
Sat Aug 30 17:17:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Industrial Processing of Material
Energy Materials
Industrial Chemistry
Energy Storage
Electrochemical Energy Storage
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-9f71fba02d803606979f9c3d93d448e1149964cf1c30cde3059232b52d97a55d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6902-4508
OpenAccessLink https://doaj.org/article/1805fc172aec4fe796543382aca1853f
PMID 33889825
PQID 2518216362
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1805fc172aec4fe796543382aca1853f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8050716
proquest_miscellaneous_2518216362
pubmed_primary_33889825
crossref_citationtrail_10_1016_j_isci_2021_102332
crossref_primary_10_1016_j_isci_2021_102332
elsevier_sciencedirect_doi_10_1016_j_isci_2021_102332
PublicationCentury 2000
PublicationDate 2021-04-23
PublicationDateYYYYMMDD 2021-04-23
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kohngene, Berdichevskybrian, Hewett (bib42) 2011
Singh, Kaiser, Hahn (bib88) 2015; 162
Chen, Ma, Chen, Arsenault, Karlson, Simon, Wang (bib18) 2019; 3
Duong, H., Shin, J. & Yudi, Y. 2018. Dry electrode coating technology. 48th Power Sources Conference.
Langklotz, Schneider, Michaelis (bib46) 2013; 4
(bib97) 2020
Kustersa, Pratsinisa, Thomab, Smith (bib44) 1994; 80
Günter, Rössler, Schulz, Braunwarth, Gilles, Reinhart (bib28) 2019; 8
Yuan, Deng, Li, Yang (bib107) 2017; 66
Eser, Wirsching, Weidler, Altvater, Börnhorst, Kumberg, Schöne, Müller, Scharfer, Schabel (bib26) 2019; 8
Ma, Chen, Chen, Meng, Wang (bib61) 2019; 7
Huttner, Haselrieder, Kwade (bib37) 2019; 8
Ludwig, Liu, Chen, Liu, Shou, Wang, Pan (bib59) 2017; 4
Sangrós Giménez, Finke, Schilde, Froböse, Kwade (bib81) 2019; 349
Huang, Wang, Braun, Zhang, Li, Boyle, Mcintyre, Cui (bib36) 2019; 1
Wegener, Chen, Dietrich, Dröder, Kara (bib101) 2015; 29
Ahmad, Xie, Maheshwari, Grossman, Viswanathan (bib1) 2018; 4
Yamada, Wang, Ko, Watanabe, Yamada (bib104) 2019; 4
Lv, Huang, Liu (bib60) 2020; 26
Bhowmik, Vegge (bib9) 2020; 4
.
Nelson, Ahmed, Gallagher, Dees (bib71) 2019
Wang, Dang, Meyer, Arsenault, Cheng (bib100) 2020; 167
Lee (bib48) 2018; 8
Jansen, Trask, Polzin, Lu, Feridun, Krumdick, Hellring, Stewart, Kornish (bib40) 2016
Park, Myeong, Shin, Cho, Kim, Song (bib79) 2019; 71
Thackeray, David, Bruce, Goodenough (bib92) 1983; 18
Yang, Zhang, Shang, Li (bib105) 2016; 306
Bockholt, Indrikova, Netz, Golks, Kwade (bib13) 2016; 325
(bib19) 2020
Oladimeji, Moss, Weatherspoon (bib74) 2016; 2016
Duquesnoy, Lombardo, Chouchane, Primo, Franco (bib24) 2020; 480
Meyer, Weyhe, Haselrieder, Kwade (bib66) 2019; 8
Padhi, Nanjundaswamy, Goodenough (bib76) 1997; 144
Monnier, Wilhelm, Delmas (bib69) 1999; 54
Ahmed, Nelson, Gallagher, Dees (bib2) 2016; 322
Attia, Grover, Jin, Severson, Markov, Liao, Chen, Cheong, Perkins, Yang (bib5) 2020; 578
Günther, Schreiner, Metkar, Meyer, Kwade, Reinhart (bib29) 2019; 8
Brand, Gläser, Geder, Menacher, Obpacher, Jossen, Quinger (bib14) 2013; 6
Yao, Chen, Yan, Zhang, Cai, Huang, Zhang (bib106) 2020; 60
Lee, Ryu, Han, Ahn, Oh (bib51) 2010; 195
Li, Zhang, Song, Song, Zhang (bib53) 2017; 345
Liu, Chen, Liu, Fan, Tsou, Tiu (bib55) 2014; 04
Ludwig, Zheng, Shou, Wang, Pan (bib58) 2016; 6
Li, Murphy, Winnick, Kohl (bib52) 2001; 102
Majid, Hafiz, Arianto, Yuono, Astuti, Prihandoko (bib62) 2017; 817
Billot, Günther, Schreiner, Stahl, Kranner, Beyer, Reinhart (bib12) 2019; 8
Zhao, Zhao, Xu, Chen, Wen, Zhang (bib110) 2014; 2014
Shi, Chen, Liu, Yue, Chen (bib87) 2018; 3
Liu, Ludwig, Liu, Pan, Wang (bib56) 2019; 11
Heimes, Kampker, Lienemann, Locke, Offermanns (bib32) 2019
Bhattacharya, Alpas (bib8) 2012; 50
Bauer, Nötzel, Wenzel, Nirschl (bib7) 2015; 288
(bib25) 2020
Wood, Li, An (bib103) 2019; 3
Stich, Pandey, Bund (bib90) 2017; 364
(bib70) 2020
Jaiser, Friske, Baunach, Scharfer, Schabel (bib39) 2017; 35
Turetskyy, Thiede, Thomitzek, Von Drachenfels, Pape, Herrmann (bib96) 2019; 8
Schälicke, Landwehr, Dinter, Pettinger, Haselrieder, Kwade (bib83) 2019; 8
Haarmann, Haselrieder, Kwade (bib30) 2019; 8
Heimes, Offermanns, Mohsseni, Laufen, Westerhoff, Hoffmann, Niehoff, Kurrat, Winter, Kampker (bib33) 2019; 8
Bichon, Sotta, Dupre, De Vito, Boulineau, Porcher, Lestriez (bib11) 2019; 11
Whittingham (bib102) 1976; 192
Jafari, Torabian, Bazargan (bib38) 2020; 31
Deng, Huang, Shen, Huang, Ding, Luscombe, Johnson, Harlow, Gauthier, Dahn (bib22) 2020; 4
Zhang, Xu, Li (bib108) 2012; 57-58
Mckinley, J.P., Sellers, S.A. & Colclazier, K.R. 2010. Battery formation and charging system and method. 12/604,234. US patent number: US20100164437A1
(bib93) 2019
Mao, An, Meyer, Li, Wood, Ruther, Wood (bib63) 2018; 402
Demir, Previtali (bib21) 2014; 75
Waldmann, Iturrondobeitia, Kasper, Ghanbari, Aguesse, Bekaert, Daniel, Genies, Gordon, Löble (bib98) 2016; 163
An, Li, Daniel, Mohanty, Nagpure, Wood (bib3) 2016; 105
Sendek, Cubuk, Antoniuk, Cheon, Cui, Reed (bib85) 2018; 31
Tsuruta, Dermer, Dhiman (bib95) 2020
Sangrós Giménez, Schilde, Froböse, Ivanov, Kwade (bib82) 2019; 8
Mizushima, Jones, Wiseman, Goodenough (bib68) 1980; 15
Nguyen, Rouxel, Vincent (bib72) 2014; 21
Bhowmik, Castelli, Garcia-Lastra, Jørgensen, Winther, Vegge (bib10) 2019; 21
Zhao, Li, Choi, Cai, Abell, Li (bib109) 2013; 15
An, Li, Du, Daniel, Wood (bib4) 2017; 342
Lee, Ahn (bib49) 2017; 7
Jansen, Kandula, Blass, Hartwig, Haselrieder, Dilger (bib41) 2019; 8
Schünemann, Dreger, Bockholt, Kwade (bib84) 2016; 73
Chartrel, Ndour, Bonnet, Cavalaglio, Aymard, Dolhem, Monconduit, Bonnet (bib17) 2019; 3
Fang, Li, Zhang, Zhang, Yang, Lee, Lee, Alvarado, Schroeder, Yang (bib27) 2019; 572
Park, Park, Lee (bib78) 2016; 37
Meyer, Weihs, Mähr, Tran, Kirchhof, Schnackenberg, Neuhaus-Stern, Rößler, Braunwarth (bib67) 2019; 8
Kwade, Haselrieder, Leithoff, Modlinger, Dietrich, Droeder (bib45) 2018; 3
Pfleging (bib80) 2018; 7
Thiede, Turetskyy, Loellhoeffel, Kwade, Kara, Herrmann (bib94) 2020; 69
Lee, Wang, Wan, Yang, Wu, Shieh (bib50) 2004; 134
Oltean, Renault, Brandell (bib75) 2016; 68
Zwicker, Moghadam, Zhang, Nielsen (bib111) 2020; 1
Aykol, Herring, Anapolsky (bib6) 2020; 5
Song, Hu, Liang, Long, Zhou, Song, You, Wu, Liu (bib89) 2017; 7
Löbberding, Wessel, Offermanns, Kehrer, Rother, Heimes, Kampker (bib57) 2020; 11
Herrmann, Raatz, Andrew, Schmitt (bib35) 2014; 907
(bib91) 2019
Wang, Wang (bib99) 2013; 233
(bib16) 2020
Laue, Wolff, Röder, Krewer (bib47) 2019; 8
Mayer, Almar, Asylbekov, Haselrieder, Kwade, Weber, Nirschl (bib64) 2019; 8
Pan, Lü, Wang, Wei, Chen (bib77) 2018; 160
Li, Zhang, Shi, Zhang (bib54) 2019; 3
Nirmale, Kale, Varma (bib73) 2017; 103
Severson, Attia, Jin, Perkins, Jiang, Yang, Chen, Aykol, Herring, Fraggedakis (bib86) 2019; 4
Das, Li, Williams, Greenwood (bib20) 2018; 9
Brand, Schmidt, Zaeh, Jossen (bib15) 2015; 1
Heinemann, Kaierle, Dold, Faisst, Kirchhoff, Hesse, Kaiser, Gabzdyl, Pantsar (bib34) 2018; 10525
Kraytsberg, Ein-Eli (bib43) 2016; 6
Haselrieder, Ivanov, Tran, Theil, Froböse, Westphal, Wohlfahrt-Mehrens, Kwade (bib31) 2014; 42
An (10.1016/j.isci.2021.102332_bib3) 2016; 105
Lee (10.1016/j.isci.2021.102332_bib49) 2017; 7
Herrmann (10.1016/j.isci.2021.102332_bib35) 2014; 907
Majid (10.1016/j.isci.2021.102332_bib62) 2017; 817
Bauer (10.1016/j.isci.2021.102332_bib7) 2015; 288
Zwicker (10.1016/j.isci.2021.102332_bib111) 2020; 1
Thiede (10.1016/j.isci.2021.102332_bib94) 2020; 69
Yuan (10.1016/j.isci.2021.102332_bib107) 2017; 66
Thackeray (10.1016/j.isci.2021.102332_bib92) 1983; 18
Eser (10.1016/j.isci.2021.102332_bib26) 2019; 8
Jansen (10.1016/j.isci.2021.102332_bib40) 2016
Günther (10.1016/j.isci.2021.102332_bib29) 2019; 8
Zhao (10.1016/j.isci.2021.102332_bib109) 2013; 15
Whittingham (10.1016/j.isci.2021.102332_bib102) 1976; 192
Huang (10.1016/j.isci.2021.102332_bib36) 2019; 1
Kohngene (10.1016/j.isci.2021.102332_bib42) 2011
Ahmed (10.1016/j.isci.2021.102332_bib2) 2016; 322
Zhang (10.1016/j.isci.2021.102332_bib108) 2012; 57-58
Waldmann (10.1016/j.isci.2021.102332_bib98) 2016; 163
Langklotz (10.1016/j.isci.2021.102332_bib46) 2013; 4
Yamada (10.1016/j.isci.2021.102332_bib104) 2019; 4
Ludwig (10.1016/j.isci.2021.102332_bib58) 2016; 6
Huttner (10.1016/j.isci.2021.102332_bib37) 2019; 8
Song (10.1016/j.isci.2021.102332_bib89) 2017; 7
Li (10.1016/j.isci.2021.102332_bib52) 2001; 102
Stich (10.1016/j.isci.2021.102332_bib90) 2017; 364
Jansen (10.1016/j.isci.2021.102332_bib41) 2019; 8
Kwade (10.1016/j.isci.2021.102332_bib45) 2018; 3
Padhi (10.1016/j.isci.2021.102332_bib76) 1997; 144
Sendek (10.1016/j.isci.2021.102332_bib85) 2018; 31
Bichon (10.1016/j.isci.2021.102332_bib11) 2019; 11
Jaiser (10.1016/j.isci.2021.102332_bib39) 2017; 35
Laue (10.1016/j.isci.2021.102332_bib47) 2019; 8
Brand (10.1016/j.isci.2021.102332_bib15) 2015; 1
Meyer (10.1016/j.isci.2021.102332_bib66) 2019; 8
Severson (10.1016/j.isci.2021.102332_bib86) 2019; 4
Heimes (10.1016/j.isci.2021.102332_bib32) 2019
Günter (10.1016/j.isci.2021.102332_bib28) 2019; 8
Deng (10.1016/j.isci.2021.102332_bib22) 2020; 4
Chen (10.1016/j.isci.2021.102332_bib18) 2019; 3
10.1016/j.isci.2021.102332_bib65
Shi (10.1016/j.isci.2021.102332_bib87) 2018; 3
Park (10.1016/j.isci.2021.102332_bib78) 2016; 37
Das (10.1016/j.isci.2021.102332_bib20) 2018; 9
Mao (10.1016/j.isci.2021.102332_bib63) 2018; 402
Haarmann (10.1016/j.isci.2021.102332_bib30) 2019; 8
Oladimeji (10.1016/j.isci.2021.102332_bib74) 2016; 2016
Fang (10.1016/j.isci.2021.102332_bib27) 2019; 572
Ludwig (10.1016/j.isci.2021.102332_bib59) 2017; 4
Kustersa (10.1016/j.isci.2021.102332_bib44) 1994; 80
Brand (10.1016/j.isci.2021.102332_bib14) 2013; 6
Heimes (10.1016/j.isci.2021.102332_bib33) 2019; 8
Nguyen (10.1016/j.isci.2021.102332_bib72) 2014; 21
Wegener (10.1016/j.isci.2021.102332_bib101) 2015; 29
Mayer (10.1016/j.isci.2021.102332_bib64) 2019; 8
Park (10.1016/j.isci.2021.102332_bib79) 2019; 71
Jafari (10.1016/j.isci.2021.102332_bib38) 2020; 31
Bhowmik (10.1016/j.isci.2021.102332_bib10) 2019; 21
Attia (10.1016/j.isci.2021.102332_bib5) 2020; 578
Demir (10.1016/j.isci.2021.102332_bib21) 2014; 75
Pfleging (10.1016/j.isci.2021.102332_bib80) 2018; 7
Yang (10.1016/j.isci.2021.102332_bib105) 2016; 306
Sangrós Giménez (10.1016/j.isci.2021.102332_bib81) 2019; 349
Li (10.1016/j.isci.2021.102332_bib54) 2019; 3
Turetskyy (10.1016/j.isci.2021.102332_bib96) 2019; 8
Singh (10.1016/j.isci.2021.102332_bib88) 2015; 162
Kraytsberg (10.1016/j.isci.2021.102332_bib43) 2016; 6
Schälicke (10.1016/j.isci.2021.102332_bib83) 2019; 8
Liu (10.1016/j.isci.2021.102332_bib56) 2019; 11
Lee (10.1016/j.isci.2021.102332_bib48) 2018; 8
Löbberding (10.1016/j.isci.2021.102332_bib57) 2020; 11
Bockholt (10.1016/j.isci.2021.102332_bib13) 2016; 325
(10.1016/j.isci.2021.102332_bib97) 2020
Zhao (10.1016/j.isci.2021.102332_bib110) 2014; 2014
Nirmale (10.1016/j.isci.2021.102332_bib73) 2017; 103
An (10.1016/j.isci.2021.102332_bib4) 2017; 342
Chartrel (10.1016/j.isci.2021.102332_bib17) 2019; 3
Mizushima (10.1016/j.isci.2021.102332_bib68) 1980; 15
Bhowmik (10.1016/j.isci.2021.102332_bib9) 2020; 4
Wang (10.1016/j.isci.2021.102332_bib100) 2020; 167
Lv (10.1016/j.isci.2021.102332_bib60) 2020; 26
Yao (10.1016/j.isci.2021.102332_bib106) 2020; 60
Lee (10.1016/j.isci.2021.102332_bib50) 2004; 134
Wang (10.1016/j.isci.2021.102332_bib99) 2013; 233
Haselrieder (10.1016/j.isci.2021.102332_bib31) 2014; 42
Heinemann (10.1016/j.isci.2021.102332_bib34) 2018; 10525
Ma (10.1016/j.isci.2021.102332_bib61) 2019; 7
Monnier (10.1016/j.isci.2021.102332_bib69) 1999; 54
Lee (10.1016/j.isci.2021.102332_bib51) 2010; 195
Billot (10.1016/j.isci.2021.102332_bib12) 2019; 8
Sangrós Giménez (10.1016/j.isci.2021.102332_bib82) 2019; 8
Wood (10.1016/j.isci.2021.102332_bib103) 2019; 3
Oltean (10.1016/j.isci.2021.102332_bib75) 2016; 68
Bhattacharya (10.1016/j.isci.2021.102332_bib8) 2012; 50
Tsuruta (10.1016/j.isci.2021.102332_bib95) 2020
Schünemann (10.1016/j.isci.2021.102332_bib84) 2016; 73
10.1016/j.isci.2021.102332_bib23
Nelson (10.1016/j.isci.2021.102332_bib71) 2019
Aykol (10.1016/j.isci.2021.102332_bib6) 2020; 5
Meyer (10.1016/j.isci.2021.102332_bib67) 2019; 8
Ahmad (10.1016/j.isci.2021.102332_bib1) 2018; 4
Pan (10.1016/j.isci.2021.102332_bib77) 2018; 160
Li (10.1016/j.isci.2021.102332_bib53) 2017; 345
Liu (10.1016/j.isci.2021.102332_bib55) 2014; 04
Duquesnoy (10.1016/j.isci.2021.102332_bib24) 2020; 480
References_xml – volume: 6
  start-page: 572
  year: 2013
  end-page: 580
  ident: bib14
  article-title: Electrical safety of commercial Li-ion cells based on NMC and NCA technology compared to LFP technology
  publication-title: World Electric Vehicle J.
– volume: 37
  start-page: 344
  year: 2016
  end-page: 348
  ident: bib78
  article-title: Stability of LiNi0.6Mn0.2Co0.2O2as a cathode material for lithium-ion batteries against air and moisture
  publication-title: Bull. Korean Chem. Soc.
– volume: 8
  start-page: 1900180
  year: 2019
  ident: bib82
  article-title: Mechanical, electrical, and ionic behavior of lithium-ion battery electrodes via discrete element method simulations
  publication-title: Energy Technol.
– volume: 572
  start-page: 511
  year: 2019
  end-page: 515
  ident: bib27
  article-title: Quantifying inactive lithium in lithium metal batteries
  publication-title: Nature
– volume: 349
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib81
  article-title: Numerical simulation of the behavior of lithium-ion battery electrodes during the calendaring process via the discrete element method
  publication-title: Powder Technol.
– reference: Duong, H., Shin, J. & Yudi, Y. 2018. Dry electrode coating technology. 48th Power Sources Conference.
– volume: 817
  start-page: 012008
  year: 2017
  ident: bib62
  article-title: Analysis of effective pulse current charging method for lithium ion battery
  publication-title: J. Phys. Conf. Ser.
– volume: 50
  start-page: 5359
  year: 2012
  end-page: 5371
  ident: bib8
  article-title: Micromechanisms of solid electrolyte interphase formation on electrochemically cycled graphite electrodes in lithium-ion cells
  publication-title: Carbon
– volume: 192
  start-page: 1126
  year: 1976
  end-page: 1127
  ident: bib102
  article-title: Electrical energy storage and intercalation chemistry
  publication-title: Science
– volume: 480
  start-page: 229103
  year: 2020
  ident: bib24
  article-title: Data-driven assessment of electrode calendering process by combining experimental results, in silico mesostructures generation and machine learning
  publication-title: J. Power Sources
– volume: 3
  start-page: 290
  year: 2018
  end-page: 300
  ident: bib45
  article-title: Current status and challenges for automotive battery production technologies
  publication-title: Nat. Energy
– volume: 7
  start-page: 4783
  year: 2017
  end-page: 4790
  ident: bib89
  article-title: Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method
  publication-title: RSC Adv.
– year: 2020
  ident: bib16
  article-title: Byd's new blade battery set to redefine ev safety standards
– volume: 195
  start-page: 6049
  year: 2010
  end-page: 6054
  ident: bib51
  article-title: Effect of slurry preparation process on electrochemical performances of LiCoO2 composite electrode
  publication-title: J. Power Sourc.
– start-page: 82
  year: 2019
  end-page: 110
  ident: bib71
  article-title: Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles
  publication-title: Energy
– volume: 8
  start-page: 1801108
  year: 2019
  ident: bib28
  article-title: Influence of the cell format on the electrolyte filling process of lithium-ion cells
  publication-title: Energy Technol.
– volume: 160
  start-page: 466
  year: 2018
  end-page: 477
  ident: bib77
  article-title: Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine
  publication-title: Energy
– volume: 167
  start-page: 100518
  year: 2020
  ident: bib100
  article-title: Effects of the mixing sequence on making lithium ion battery electrodes
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 2884
  year: 2019
  end-page: 2888
  ident: bib103
  article-title: Formation challenges of lithium-ion battery manufacturing
  publication-title: Joule
– volume: 80
  start-page: 253
  year: 1994
  end-page: 263
  ident: bib44
  article-title: Energy—size reduction laws for ultrasonic fragmentation
  publication-title: Powder Technol.
– year: 2019
  ident: bib91
  article-title: Tesla completes acquisition of Maxwell technologies
– volume: 04
  start-page: 515
  year: 2014
  end-page: 528
  ident: bib55
  article-title: An effective mixing for lithium ion battery slurries
  publication-title: Adv. Chem. Eng. Sci.
– volume: 11
  start-page: 77
  year: 2020
  ident: bib57
  article-title: From cell to battery system in BEVs: analysis of system packing efficiency and cell types
  publication-title: World Electric Vehicle J.
– volume: 4
  start-page: 1700570
  year: 2017
  ident: bib59
  article-title: Understanding interfacial-energy-driven dry powder mixing for solvent-free additive manufacturing of li-ion battery electrodes
  publication-title: Adv. Mater. Interfaces
– volume: 66
  start-page: 53
  year: 2017
  end-page: 56
  ident: bib107
  article-title: Manufacturing energy analysis of lithium ion battery pack for electric vehicles
  publication-title: CIRP Ann.
– volume: 57-58
  start-page: 25
  year: 2012
  end-page: 41
  ident: bib108
  article-title: High shear mixers: a review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties
  publication-title: Chem. Eng. Process. Process Intensification
– year: 2011
  ident: bib42
  article-title: Tunable Frangible Battery Pack System
– year: 2020
  ident: bib97
  article-title: Energy Storage Grand Challenge Roadmap
– volume: 288
  start-page: 359
  year: 2015
  end-page: 367
  ident: bib7
  article-title: Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries
  publication-title: J. Power Sources
– volume: 11
  start-page: 18331
  year: 2019
  end-page: 18341
  ident: bib11
  article-title: Study of immersion of LiNi0.5Mn0.3Co0.2O2 material in water for aqueous processing of positive electrode for Li-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 35
  start-page: 1266
  year: 2017
  end-page: 1275
  ident: bib39
  article-title: Development of a three-stage drying profile based on characteristic drying stages for lithium-ion battery anodes
  publication-title: Drying Technol.
– volume: 10525
  year: 2018
  ident: bib34
  article-title: New welding techniques and laser sources for battery welding
  publication-title: High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VII
– volume: 345
  start-page: 78
  year: 2017
  end-page: 84
  ident: bib53
  article-title: Direct regeneration of recycled cathode material mixture from scrapped LiFePO 4 batteries
  publication-title: J. Power Sourc.
– volume: 8
  start-page: 1900026
  year: 2019
  ident: bib29
  article-title: Classification of calendering-induced electrode defects and their influence on subsequent processes of lithium-ion battery production
  publication-title: Energy Technol.
– volume: 3
  start-page: 2622
  year: 2019
  end-page: 2646
  ident: bib18
  article-title: Recycling end-of-life electric vehicle lithium-ion batteries
  publication-title: Joule
– year: 2020
  ident: bib95
  article-title: Cell with a Tabless Electrode
– volume: 322
  start-page: 169
  year: 2016
  end-page: 178
  ident: bib2
  article-title: Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing
  publication-title: J. Power Sources
– volume: 75
  start-page: 1557
  year: 2014
  end-page: 1568
  ident: bib21
  article-title: Remote cutting of Li-ion battery electrodes with infrared and green ns-pulsed fibre lasers
  publication-title: Int. J. Adv. Manufacturing Technol.
– volume: 6
  start-page: 23150
  year: 2016
  ident: bib58
  article-title: Solvent-free manufacturing of electrodes for lithium-ion batteries
  publication-title: Sci. Rep.
– volume: 4
  start-page: 269
  year: 2019
  end-page: 280
  ident: bib104
  article-title: Advances and issues in developing salt-concentrated battery electrolytes
  publication-title: Nat. Energy
– volume: 306
  start-page: 733
  year: 2016
  end-page: 741
  ident: bib105
  article-title: Unbalanced discharging and aging due to temperature differences among the cells in a lithium-ion battery pack with parallel combination
  publication-title: J. Power Sourc.
– volume: 68
  start-page: 45
  year: 2016
  end-page: 48
  ident: bib75
  article-title: Enhanced performance of organic materials for lithium-ion batteries using facile electrode calendaring techniques
  publication-title: Electrochem. Commun.
– volume: 102
  start-page: 302
  year: 2001
  end-page: 309
  ident: bib52
  article-title: The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries
  publication-title: J. Power Sourc.
– volume: 144
  start-page: 1188
  year: 1997
  end-page: 1194
  ident: bib76
  article-title: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 100017
  year: 2020
  ident: bib111
  article-title: Automotive battery pack manufacturing – a review of battery to tab joining
  publication-title: J. Adv. Joining Process.
– volume: 5
  start-page: 725
  year: 2020
  end-page: 727
  ident: bib6
  article-title: Machine learning for continuous innovation in battery technologies
  publication-title: Nat. Rev. Mater.
– year: 2020
  ident: bib70
  article-title: Electrode cutting machine for lithium-ion secondary batteries
– volume: 103
  start-page: 1032
  year: 2017
  end-page: 1043
  ident: bib73
  article-title: A review on cellulose and lignin based binders and electrodes: small steps towards a sustainable lithium ion battery
  publication-title: Int. J. Biol. Macromol.
– volume: 21
  start-page: 446
  year: 2019
  end-page: 456
  ident: bib10
  article-title: A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 1900118
  year: 2019
  ident: bib33
  article-title: The effects of mechanical and thermal loads during lithium-ion pouch cell formation and their impacts on process time
  publication-title: Energy Technol.
– volume: 8
  start-page: 1900175
  year: 2019
  ident: bib66
  article-title: Heated calendering of cathodes for lithium-ion batteries with varied carbon black and binder contents
  publication-title: Energy Technol.
– volume: 7
  start-page: 914
  year: 2017
  ident: bib49
  article-title: Investigation of laser cutting width of LiCoO2 coated aluminum for lithium-ion batteries
  publication-title: Appl. Sci.
– volume: 8
  start-page: 1801049
  year: 2019
  ident: bib47
  article-title: Modeling the influence of mixing strategies on microstructural properties of all-solid-state electrodes
  publication-title: Energy Technol.
– year: 2020
  ident: bib19
  article-title: CTP Module-free
– volume: 8
  start-page: 1900161
  year: 2019
  ident: bib64
  article-title: Influence of the carbon black dispersing process on the microstructure and performance of Li-ion battery cathodes
  publication-title: Energy Technol.
– volume: 8
  start-page: 1900136
  year: 2019
  ident: bib96
  article-title: Toward data-driven applications in lithium-ion battery cell manufacturing
  publication-title: Energy Technol.
– volume: 325
  start-page: 140
  year: 2016
  end-page: 151
  ident: bib13
  article-title: The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties
  publication-title: J. Power Sources
– year: 2020
  ident: bib25
  article-title: Factory worker salary
– volume: 342
  start-page: 846
  year: 2017
  end-page: 852
  ident: bib4
  article-title: Fast formation cycling for lithium ion batteries
  publication-title: J. Power Sources
– volume: 9
  start-page: 22
  year: 2018
  ident: bib20
  article-title: Joining technologies for automotive battery systems manufacturing
  publication-title: World Electric Vehicle J.
– volume: 31
  start-page: 342
  year: 2018
  end-page: 352
  ident: bib85
  article-title: Machine learning-assisted discovery of solid Li-ion conducting materials
  publication-title: Chem. Mater.
– volume: 578
  start-page: 397
  year: 2020
  end-page: 402
  ident: bib5
  article-title: Closed-loop optimization of fast-charging protocols for batteries with machine learning
  publication-title: Nature
– volume: 29
  start-page: 716
  year: 2015
  end-page: 721
  ident: bib101
  article-title: Robot assisted disassembly for the recycling of electric vehicle batteries
  publication-title: Proced. CIRP
– volume: 4
  start-page: 2017
  year: 2020
  end-page: 2029
  ident: bib22
  article-title: Ultrasonic scanning to observe wetting and “Unwetting” in Li-ion pouch cells
  publication-title: Joule
– volume: 54
  start-page: 2953
  year: 1999
  end-page: 2961
  ident: bib69
  article-title: The influence of ultrasound on micromixing in a semi-batch reactor
  publication-title: Chem. Eng. Sci.
– volume: 18
  start-page: 461
  year: 1983
  end-page: 472
  ident: bib92
  article-title: Lithium insertion into manganese spinels
  publication-title: Mater. Res. Bull.
– volume: 3
  start-page: 881
  year: 2019
  end-page: 891
  ident: bib17
  article-title: Revisiting and improving the preparation of silicon-based electrodes for lithium-ion batteries: ball milling impact on poly(acrylic acid) polymer binders
  publication-title: Mater. Chem. Front.
– volume: 21
  start-page: 149
  year: 2014
  end-page: 153
  ident: bib72
  article-title: Dispersion of nanoparticles: from organic solvents to polymer solutions
  publication-title: Ultrason. Sonochem.
– volume: 42
  start-page: 157
  year: 2014
  end-page: 174
  ident: bib31
  article-title: Influence of formulation method and related processes on structural, electrical and electrochemical properties of LMS/NCA-blend electrodes
  publication-title: Prog. Solid State Chem.
– volume: 402
  start-page: 107
  year: 2018
  end-page: 115
  ident: bib63
  article-title: Balancing formation time and electrochemical performance of high energy lithium-ion batteries
  publication-title: J. Power Sourc.
– volume: 4
  start-page: 383
  year: 2019
  end-page: 391
  ident: bib86
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat. Energy
– volume: 6
  start-page: 1600655
  year: 2016
  ident: bib43
  article-title: Conveying advanced Li-ion battery materials into practice the impact of electrode slurry preparation skills
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 783
  year: 1980
  end-page: 789
  ident: bib68
  article-title: Li
  publication-title: Mater. Res. Bull.
– volume: 73
  start-page: 153
  year: 2016
  ident: bib84
  article-title: Smart electrode processing for battery cost reduction
  publication-title: ECS Trans.
– volume: 8
  start-page: 1801162
  year: 2019
  ident: bib26
  article-title: Moisture adsorption behavior in anodes for Li-ion batteries
  publication-title: Energy Technol.
– volume: 3
  start-page: 1683
  year: 2018
  end-page: 1692
  ident: bib87
  article-title: Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes
  publication-title: ACS Energy Lett.
– volume: 134
  start-page: 118
  year: 2004
  end-page: 123
  ident: bib50
  article-title: A fast formation process for lithium batteries
  publication-title: J. Power Sourc.
– volume: 69
  start-page: 21
  year: 2020
  end-page: 24
  ident: bib94
  article-title: Machine learning approach for systematic analysis of energy efficiency potentials in manufacturing processes: a case of battery production
  publication-title: CIRP Ann.
– volume: 8
  start-page: 1900245
  year: 2019
  ident: bib37
  article-title: The influence of different post-drying procedures on remaining water content and physical and electrochemical properties of lithium-ion batteries
  publication-title: Energy Technol.
– volume: 8
  start-page: 1900244
  year: 2019
  ident: bib67
  article-title: Development and implementation of statistical methods for quality optimization in the large-format lithium-ion cells production
  publication-title: Energy Technol.
– start-page: 7
  year: 2016
  end-page: 20
  ident: bib40
  article-title: New aqueous binders for lithium-ion batteries
  publication-title: DOE
– volume: 60
  start-page: 4090
  year: 2020
  end-page: 4097
  ident: bib106
  article-title: Regulating interfacial chemistry in lithium-ion batteries by a weakly-solvating electrolyte
  publication-title: Angew. Chem. Int. Ed.
– volume: 364
  start-page: 84
  year: 2017
  end-page: 91
  ident: bib90
  article-title: Drying and moisture resorption behaviour of various electrode materials and separators for lithium-ion batteries
  publication-title: J. Power Sources
– volume: 11
  start-page: 25081
  year: 2019
  end-page: 25089
  ident: bib56
  article-title: Strengthening the electrodes for Li-ion batteries with a porous adhesive interlayer through dry-spraying manufacturing
  publication-title: ACS Appl. Mater. Interfaces
– reference: Mckinley, J.P., Sellers, S.A. & Colclazier, K.R. 2010. Battery formation and charging system and method. 12/604,234. US patent number: US20100164437A1,
– year: 2019
  ident: bib32
  article-title: Lithium-ion Battery Cell Production Process
– volume: 105
  start-page: 52
  year: 2016
  end-page: 76
  ident: bib3
  article-title: The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling
  publication-title: Carbon
– volume: 8
  start-page: 1801169
  year: 2019
  ident: bib30
  article-title: Extrusion-based processing of cathodes: influence of solid content on suspension and electrode properties
  publication-title: Energy Technol.
– volume: 7
  start-page: 549
  year: 2018
  end-page: 573
  ident: bib80
  article-title: A review of laser electrode processing for development and manufacturing of lithium-ion batteries
  publication-title: Nanophotonics
– volume: 8
  start-page: 1801136
  year: 2019
  ident: bib12
  article-title: Investigation of the adhesion strength along the electrode manufacturing process for improved lithium-ion anodes
  publication-title: Energy Technol.
– volume: 233
  start-page: 1
  year: 2013
  end-page: 5
  ident: bib99
  article-title: Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode
  publication-title: J. Power Sources
– volume: 8
  start-page: 1900519
  year: 2019
  ident: bib41
  article-title: Evaluation of the separation process for the production of electrode sheets
  publication-title: Energy Technol.
– volume: 8
  start-page: 266
  year: 2018
  ident: bib48
  article-title: Investigation of physical phenomena and cutting efficiency for laser cutting on anode for Li-ion batteries
  publication-title: Appl. Sci.
– volume: 163
  start-page: A2149
  year: 2016
  end-page: A2164
  ident: bib98
  article-title: Review—post-mortem analysis of aged lithium-ion batteries: disassembly methodology and physico-chemical analysis techniques
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 717
  year: 2020
  end-page: 719
  ident: bib9
  article-title: AI fast track to battery fast charge
  publication-title: Joule
– volume: 71
  start-page: 270
  year: 2019
  end-page: 276
  ident: bib79
  article-title: Improved swelling behavior of Li ion batteries by microstructural engineering of anode
  publication-title: J. Ind. Eng. Chem.
– volume: 162
  start-page: A1196
  year: 2015
  end-page: A1201
  ident: bib88
  article-title: Thick electrodes for high energy lithium ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 7
  year: 2015
  end-page: 14
  ident: bib15
  article-title: Welding techniques for battery cells and resulting electrical contact resistances
  publication-title: J. Energy Storage
– volume: 8
  start-page: 1900309
  year: 2019
  ident: bib83
  article-title: Solvent-free manufacturing of electrodes for lithium-ion batteries via electrostatic coating
  publication-title: Energy Technol.
– volume: 7
  start-page: 19732
  year: 2019
  end-page: 19738
  ident: bib61
  article-title: High-performance graphite recovered from spent lithium-ion batteries
  publication-title: ACS Sustain. Chem. Eng.
– volume: 4
  start-page: 69
  year: 2013
  end-page: 76
  ident: bib46
  article-title: Water uptake of tape-cast cathodes for lithium ion batteries
  publication-title: J. Ceram. Sci. Technol.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 7
  ident: bib74
  article-title: Analyses of the calendaring process for performance optimization of Li-ion battery cathode
  publication-title: Adv. Chem.
– reference: .
– volume: 4
  start-page: 996
  year: 2018
  end-page: 1006
  ident: bib1
  article-title: Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes
  publication-title: ACS Cent. Sci.
– volume: 15
  start-page: 136
  year: 2013
  end-page: 140
  ident: bib109
  article-title: Insertable thin film thermocouples for in situ transient temperature monitoring in ultrasonic metal welding of battery tabs
  publication-title: J. Manufacturing Process.
– volume: 31
  start-page: 101564
  year: 2020
  ident: bib38
  article-title: A facile chemical-free cathode powder separation method for lithium ion battery resource recovery
  publication-title: J. Energy Storage
– volume: 3
  start-page: 2647
  year: 2019
  end-page: 2661
  ident: bib54
  article-title: Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries
  publication-title: Joule
– volume: 1
  start-page: 1232
  year: 2019
  end-page: 1245
  ident: bib36
  article-title: Dynamic structure and chemistry of the silicon solid-electrolyte interphase visualized by cryogenic electron microscopy
  publication-title: Matter
– volume: 907
  start-page: 391
  year: 2014
  end-page: 401
  ident: bib35
  article-title: Scenario-based development of disassembly systems for automotive lithium ion battery systems
  publication-title: Adv. Mater. Res.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib110
  article-title: A multimode responsive aptasensor for adenosine detection
  publication-title: J. Nanomater.
– volume: 26
  start-page: 1749
  year: 2020
  end-page: 1770
  ident: bib60
  article-title: Analysis on pulse charging–discharging strategies for improving capacity retention rates of lithium-ion batteries
  publication-title: Ionics
– year: 2019
  ident: bib93
  article-title: Introducing V3 supercharging
– volume: 144
  start-page: 1188
  year: 1997
  ident: 10.1016/j.isci.2021.102332_bib76
  article-title: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837571
– volume: 4
  start-page: 269
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib104
  article-title: Advances and issues in developing salt-concentrated battery electrolytes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0336-z
– volume: 163
  start-page: A2149
  year: 2016
  ident: 10.1016/j.isci.2021.102332_bib98
  article-title: Review—post-mortem analysis of aged lithium-ion batteries: disassembly methodology and physico-chemical analysis techniques
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1211609jes
– volume: 7
  start-page: 4783
  year: 2017
  ident: 10.1016/j.isci.2021.102332_bib89
  article-title: Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method
  publication-title: RSC Adv.
  doi: 10.1039/C6RA27210J
– volume: 8
  start-page: 1801049
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib47
  article-title: Modeling the influence of mixing strategies on microstructural properties of all-solid-state electrodes
  publication-title: Energy Technol.
  doi: 10.1002/ente.201801049
– volume: 3
  start-page: 2884
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib103
  article-title: Formation challenges of lithium-ion battery manufacturing
  publication-title: Joule
  doi: 10.1016/j.joule.2019.11.002
– volume: 71
  start-page: 270
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib79
  article-title: Improved swelling behavior of Li ion batteries by microstructural engineering of anode
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2018.11.035
– volume: 11
  start-page: 77
  year: 2020
  ident: 10.1016/j.isci.2021.102332_bib57
  article-title: From cell to battery system in BEVs: analysis of system packing efficiency and cell types
  publication-title: World Electric Vehicle J.
  doi: 10.3390/wevj11040077
– volume: 11
  start-page: 18331
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib11
  article-title: Study of immersion of LiNi0.5Mn0.3Co0.2O2 material in water for aqueous processing of positive electrode for Li-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00999
– volume: 817
  start-page: 012008
  year: 2017
  ident: 10.1016/j.isci.2021.102332_bib62
  article-title: Analysis of effective pulse current charging method for lithium ion battery
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/817/1/012008
– volume: 345
  start-page: 78
  year: 2017
  ident: 10.1016/j.isci.2021.102332_bib53
  article-title: Direct regeneration of recycled cathode material mixture from scrapped LiFePO 4 batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2017.01.118
– volume: 21
  start-page: 446
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib10
  article-title: A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.06.011
– ident: 10.1016/j.isci.2021.102332_bib23
– volume: 15
  start-page: 783
  year: 1980
  ident: 10.1016/j.isci.2021.102332_bib68
  article-title: LixCoO2 (0<x<-1): a new cathode material for batteries of high energy density
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(80)90012-4
– volume: 8
  start-page: 1801136
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib12
  article-title: Investigation of the adhesion strength along the electrode manufacturing process for improved lithium-ion anodes
  publication-title: Energy Technol.
  doi: 10.1002/ente.201801136
– volume: 26
  start-page: 1749
  year: 2020
  ident: 10.1016/j.isci.2021.102332_bib60
  article-title: Analysis on pulse charging–discharging strategies for improving capacity retention rates of lithium-ion batteries
  publication-title: Ionics
  doi: 10.1007/s11581-019-03404-8
– volume: 18
  start-page: 461
  year: 1983
  ident: 10.1016/j.isci.2021.102332_bib92
  article-title: Lithium insertion into manganese spinels
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(83)90138-1
– volume: 288
  start-page: 359
  year: 2015
  ident: 10.1016/j.isci.2021.102332_bib7
  article-title: Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.081
– volume: 192
  start-page: 1126
  year: 1976
  ident: 10.1016/j.isci.2021.102332_bib102
  article-title: Electrical energy storage and intercalation chemistry
  publication-title: Science
  doi: 10.1126/science.192.4244.1126
– volume: 8
  start-page: 1801162
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib26
  article-title: Moisture adsorption behavior in anodes for Li-ion batteries
  publication-title: Energy Technol.
  doi: 10.1002/ente.201801162
– volume: 50
  start-page: 5359
  year: 2012
  ident: 10.1016/j.isci.2021.102332_bib8
  article-title: Micromechanisms of solid electrolyte interphase formation on electrochemically cycled graphite electrodes in lithium-ion cells
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.07.009
– volume: 57-58
  start-page: 25
  year: 2012
  ident: 10.1016/j.isci.2021.102332_bib108
  article-title: High shear mixers: a review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties
  publication-title: Chem. Eng. Process. Process Intensification
  doi: 10.1016/j.cep.2012.04.004
– volume: 1
  start-page: 100017
  year: 2020
  ident: 10.1016/j.isci.2021.102332_bib111
  article-title: Automotive battery pack manufacturing – a review of battery to tab joining
  publication-title: J. Adv. Joining Process.
  doi: 10.1016/j.jajp.2020.100017
– volume: 349
  start-page: 1
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib81
  article-title: Numerical simulation of the behavior of lithium-ion battery electrodes during the calendaring process via the discrete element method
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.03.020
– year: 2011
  ident: 10.1016/j.isci.2021.102332_bib42
– volume: 480
  start-page: 229103
  year: 2020
  ident: 10.1016/j.isci.2021.102332_bib24
  article-title: Data-driven assessment of electrode calendering process by combining experimental results, in silico mesostructures generation and machine learning
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229103
– volume: 37
  start-page: 344
  year: 2016
  ident: 10.1016/j.isci.2021.102332_bib78
  article-title: Stability of LiNi0.6Mn0.2Co0.2O2as a cathode material for lithium-ion batteries against air and moisture
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.1002/bkcs.10679
– volume: 15
  start-page: 136
  year: 2013
  ident: 10.1016/j.isci.2021.102332_bib109
  article-title: Insertable thin film thermocouples for in situ transient temperature monitoring in ultrasonic metal welding of battery tabs
  publication-title: J. Manufacturing Process.
  doi: 10.1016/j.jmapro.2012.10.002
– volume: 21
  start-page: 149
  year: 2014
  ident: 10.1016/j.isci.2021.102332_bib72
  article-title: Dispersion of nanoparticles: from organic solvents to polymer solutions
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.07.015
– volume: 8
  start-page: 1900519
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib41
  article-title: Evaluation of the separation process for the production of electrode sheets
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900519
– volume: 364
  start-page: 84
  year: 2017
  ident: 10.1016/j.isci.2021.102332_bib90
  article-title: Drying and moisture resorption behaviour of various electrode materials and separators for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.08.009
– volume: 8
  start-page: 1801169
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib30
  article-title: Extrusion-based processing of cathodes: influence of solid content on suspension and electrode properties
  publication-title: Energy Technol.
  doi: 10.1002/ente.201801169
– volume: 31
  start-page: 342
  year: 2018
  ident: 10.1016/j.isci.2021.102332_bib85
  article-title: Machine learning-assisted discovery of solid Li-ion conducting materials
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03272
– volume: 4
  start-page: 69
  year: 2013
  ident: 10.1016/j.isci.2021.102332_bib46
  article-title: Water uptake of tape-cast cathodes for lithium ion batteries
  publication-title: J. Ceram. Sci. Technol.
– volume: 69
  start-page: 21
  year: 2020
  ident: 10.1016/j.isci.2021.102332_bib94
  article-title: Machine learning approach for systematic analysis of energy efficiency potentials in manufacturing processes: a case of battery production
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2020.04.090
– volume: 6
  start-page: 1600655
  year: 2016
  ident: 10.1016/j.isci.2021.102332_bib43
  article-title: Conveying advanced Li-ion battery materials into practice the impact of electrode slurry preparation skills
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600655
– volume: 6
  start-page: 572
  year: 2013
  ident: 10.1016/j.isci.2021.102332_bib14
  article-title: Electrical safety of commercial Li-ion cells based on NMC and NCA technology compared to LFP technology
  publication-title: World Electric Vehicle J.
  doi: 10.3390/wevj6030572
– volume: 4
  start-page: 383
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib86
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0356-8
– volume: 105
  start-page: 52
  year: 2016
  ident: 10.1016/j.isci.2021.102332_bib3
  article-title: The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.04.008
– volume: 66
  start-page: 53
  year: 2017
  ident: 10.1016/j.isci.2021.102332_bib107
  article-title: Manufacturing energy analysis of lithium ion battery pack for electric vehicles
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2017.04.109
– volume: 342
  start-page: 846
  year: 2017
  ident: 10.1016/j.isci.2021.102332_bib4
  article-title: Fast formation cycling for lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.011
– volume: 3
  start-page: 2622
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib18
  article-title: Recycling end-of-life electric vehicle lithium-ion batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.014
– volume: 8
  start-page: 1900175
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib66
  article-title: Heated calendering of cathodes for lithium-ion batteries with varied carbon black and binder contents
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900175
– volume: 4
  start-page: 717
  year: 2020
  ident: 10.1016/j.isci.2021.102332_bib9
  article-title: AI fast track to battery fast charge
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.016
– volume: 1
  start-page: 7
  year: 2015
  ident: 10.1016/j.isci.2021.102332_bib15
  article-title: Welding techniques for battery cells and resulting electrical contact resistances
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2015.04.001
– volume: 7
  start-page: 19732
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib61
  article-title: High-performance graphite recovered from spent lithium-ion batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05003
– year: 2020
  ident: 10.1016/j.isci.2021.102332_bib95
– volume: 75
  start-page: 1557
  year: 2014
  ident: 10.1016/j.isci.2021.102332_bib21
  article-title: Remote cutting of Li-ion battery electrodes with infrared and green ns-pulsed fibre lasers
  publication-title: Int. J. Adv. Manufacturing Technol.
  doi: 10.1007/s00170-014-6231-7
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.isci.2021.102332_bib110
  article-title: A multimode responsive aptasensor for adenosine detection
  publication-title: J. Nanomater.
  doi: 10.1155/2014/360347
– volume: 9
  start-page: 22
  year: 2018
  ident: 10.1016/j.isci.2021.102332_bib20
  article-title: Joining technologies for automotive battery systems manufacturing
  publication-title: World Electric Vehicle J.
  doi: 10.3390/wevj9020022
– volume: 160
  start-page: 466
  year: 2018
  ident: 10.1016/j.isci.2021.102332_bib77
  article-title: Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.220
– volume: 322
  start-page: 169
  year: 2016
  ident: 10.1016/j.isci.2021.102332_bib2
  article-title: Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.102
– volume: 907
  start-page: 391
  year: 2014
  ident: 10.1016/j.isci.2021.102332_bib35
  article-title: Scenario-based development of disassembly systems for automotive lithium ion battery systems
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.907.391
– volume: 8
  start-page: 1900245
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib37
  article-title: The influence of different post-drying procedures on remaining water content and physical and electrochemical properties of lithium-ion batteries
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900245
– volume: 8
  start-page: 1900161
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib64
  article-title: Influence of the carbon black dispersing process on the microstructure and performance of Li-ion battery cathodes
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900161
– volume: 4
  start-page: 2017
  year: 2020
  ident: 10.1016/j.isci.2021.102332_bib22
  article-title: Ultrasonic scanning to observe wetting and “Unwetting” in Li-ion pouch cells
  publication-title: Joule
  doi: 10.1016/j.joule.2020.07.014
– volume: 3
  start-page: 290
  year: 2018
  ident: 10.1016/j.isci.2021.102332_bib45
  article-title: Current status and challenges for automotive battery production technologies
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0130-3
– volume: 578
  start-page: 397
  year: 2020
  ident: 10.1016/j.isci.2021.102332_bib5
  article-title: Closed-loop optimization of fast-charging protocols for batteries with machine learning
  publication-title: Nature
  doi: 10.1038/s41586-020-1994-5
– start-page: 7
  year: 2016
  ident: 10.1016/j.isci.2021.102332_bib40
  article-title: New aqueous binders for lithium-ion batteries
– volume: 3
  start-page: 881
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib17
  article-title: Revisiting and improving the preparation of silicon-based electrodes for lithium-ion batteries: ball milling impact on poly(acrylic acid) polymer binders
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00660A
– volume: 35
  start-page: 1266
  year: 2017
  ident: 10.1016/j.isci.2021.102332_bib39
  article-title: Development of a three-stage drying profile based on characteristic drying stages for lithium-ion battery anodes
  publication-title: Drying Technol.
  doi: 10.1080/07373937.2016.1248975
– volume: 8
  start-page: 1900026
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib29
  article-title: Classification of calendering-induced electrode defects and their influence on subsequent processes of lithium-ion battery production
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900026
– volume: 3
  start-page: 2647
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib54
  article-title: Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.022
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.isci.2021.102332_bib74
  article-title: Analyses of the calendaring process for performance optimization of Li-ion battery cathode
  publication-title: Adv. Chem.
  doi: 10.1155/2016/7395060
– volume: 134
  start-page: 118
  year: 2004
  ident: 10.1016/j.isci.2021.102332_bib50
  article-title: A fast formation process for lithium batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2004.03.020
– volume: 325
  start-page: 140
  year: 2016
  ident: 10.1016/j.isci.2021.102332_bib13
  article-title: The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.05.127
– volume: 195
  start-page: 6049
  year: 2010
  ident: 10.1016/j.isci.2021.102332_bib51
  article-title: Effect of slurry preparation process on electrochemical performances of LiCoO2 composite electrode
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2009.12.101
– volume: 103
  start-page: 1032
  year: 2017
  ident: 10.1016/j.isci.2021.102332_bib73
  article-title: A review on cellulose and lignin based binders and electrodes: small steps towards a sustainable lithium ion battery
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.05.155
– year: 2020
  ident: 10.1016/j.isci.2021.102332_bib97
– volume: 6
  start-page: 23150
  year: 2016
  ident: 10.1016/j.isci.2021.102332_bib58
  article-title: Solvent-free manufacturing of electrodes for lithium-ion batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep23150
– start-page: 82
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib71
  article-title: Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles
– volume: 60
  start-page: 4090
  year: 2020
  ident: 10.1016/j.isci.2021.102332_bib106
  article-title: Regulating interfacial chemistry in lithium-ion batteries by a weakly-solvating electrolyte
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202011482
– volume: 3
  start-page: 1683
  year: 2018
  ident: 10.1016/j.isci.2021.102332_bib87
  article-title: Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00833
– volume: 233
  start-page: 1
  year: 2013
  ident: 10.1016/j.isci.2021.102332_bib99
  article-title: Electrochemical investigation of an artificial solid electrolyte interface for improving the cycle-ability of lithium ion batteries using an atomic layer deposition on a graphite electrode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.134
– volume: 10525
  year: 2018
  ident: 10.1016/j.isci.2021.102332_bib34
  article-title: New welding techniques and laser sources for battery welding
– volume: 162
  start-page: A1196
  year: 2015
  ident: 10.1016/j.isci.2021.102332_bib88
  article-title: Thick electrodes for high energy lithium ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0401507jes
– volume: 167
  start-page: 100518
  year: 2020
  ident: 10.1016/j.isci.2021.102332_bib100
  article-title: Effects of the mixing sequence on making lithium ion battery electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab95c6
– volume: 8
  start-page: 266
  year: 2018
  ident: 10.1016/j.isci.2021.102332_bib48
  article-title: Investigation of physical phenomena and cutting efficiency for laser cutting on anode for Li-ion batteries
  publication-title: Appl. Sci.
  doi: 10.3390/app8020266
– volume: 31
  start-page: 101564
  year: 2020
  ident: 10.1016/j.isci.2021.102332_bib38
  article-title: A facile chemical-free cathode powder separation method for lithium ion battery resource recovery
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101564
– volume: 54
  start-page: 2953
  year: 1999
  ident: 10.1016/j.isci.2021.102332_bib69
  article-title: The influence of ultrasound on micromixing in a semi-batch reactor
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(98)00335-2
– volume: 8
  start-page: 1900309
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib83
  article-title: Solvent-free manufacturing of electrodes for lithium-ion batteries via electrostatic coating
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900309
– volume: 42
  start-page: 157
  year: 2014
  ident: 10.1016/j.isci.2021.102332_bib31
  article-title: Influence of formulation method and related processes on structural, electrical and electrochemical properties of LMS/NCA-blend electrodes
  publication-title: Prog. Solid State Chem.
  doi: 10.1016/j.progsolidstchem.2014.04.009
– volume: 1
  start-page: 1232
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib36
  article-title: Dynamic structure and chemistry of the silicon solid-electrolyte interphase visualized by cryogenic electron microscopy
  publication-title: Matter
  doi: 10.1016/j.matt.2019.09.020
– volume: 80
  start-page: 253
  year: 1994
  ident: 10.1016/j.isci.2021.102332_bib44
  article-title: Energy—size reduction laws for ultrasonic fragmentation
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(94)02852-4
– volume: 68
  start-page: 45
  year: 2016
  ident: 10.1016/j.isci.2021.102332_bib75
  article-title: Enhanced performance of organic materials for lithium-ion batteries using facile electrode calendaring techniques
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2016.04.014
– volume: 73
  start-page: 153
  year: 2016
  ident: 10.1016/j.isci.2021.102332_bib84
  article-title: Smart electrode processing for battery cost reduction
  publication-title: ECS Trans.
  doi: 10.1149/07301.0153ecst
– volume: 4
  start-page: 996
  year: 2018
  ident: 10.1016/j.isci.2021.102332_bib1
  article-title: Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00229
– volume: 8
  start-page: 1900180
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib82
  article-title: Mechanical, electrical, and ionic behavior of lithium-ion battery electrodes via discrete element method simulations
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900180
– volume: 102
  start-page: 302
  year: 2001
  ident: 10.1016/j.isci.2021.102332_bib52
  article-title: The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/S0378-7753(01)00820-5
– volume: 7
  start-page: 914
  year: 2017
  ident: 10.1016/j.isci.2021.102332_bib49
  article-title: Investigation of laser cutting width of LiCoO2 coated aluminum for lithium-ion batteries
  publication-title: Appl. Sci.
  doi: 10.3390/app7090914
– ident: 10.1016/j.isci.2021.102332_bib65
– volume: 5
  start-page: 725
  year: 2020
  ident: 10.1016/j.isci.2021.102332_bib6
  article-title: Machine learning for continuous innovation in battery technologies
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0216-y
– volume: 306
  start-page: 733
  year: 2016
  ident: 10.1016/j.isci.2021.102332_bib105
  article-title: Unbalanced discharging and aging due to temperature differences among the cells in a lithium-ion battery pack with parallel combination
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2015.12.079
– volume: 572
  start-page: 511
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib27
  article-title: Quantifying inactive lithium in lithium metal batteries
  publication-title: Nature
  doi: 10.1038/s41586-019-1481-z
– volume: 04
  start-page: 515
  year: 2014
  ident: 10.1016/j.isci.2021.102332_bib55
  article-title: An effective mixing for lithium ion battery slurries
  publication-title: Adv. Chem. Eng. Sci.
  doi: 10.4236/aces.2014.44053
– volume: 29
  start-page: 716
  year: 2015
  ident: 10.1016/j.isci.2021.102332_bib101
  article-title: Robot assisted disassembly for the recycling of electric vehicle batteries
  publication-title: Proced. CIRP
  doi: 10.1016/j.procir.2015.02.051
– volume: 8
  start-page: 1900136
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib96
  article-title: Toward data-driven applications in lithium-ion battery cell manufacturing
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900136
– volume: 8
  start-page: 1801108
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib28
  article-title: Influence of the cell format on the electrolyte filling process of lithium-ion cells
  publication-title: Energy Technol.
  doi: 10.1002/ente.201801108
– year: 2019
  ident: 10.1016/j.isci.2021.102332_bib32
– volume: 402
  start-page: 107
  year: 2018
  ident: 10.1016/j.isci.2021.102332_bib63
  article-title: Balancing formation time and electrochemical performance of high energy lithium-ion batteries
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.09.019
– volume: 4
  start-page: 1700570
  year: 2017
  ident: 10.1016/j.isci.2021.102332_bib59
  article-title: Understanding interfacial-energy-driven dry powder mixing for solvent-free additive manufacturing of li-ion battery electrodes
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201700570
– volume: 8
  start-page: 1900118
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib33
  article-title: The effects of mechanical and thermal loads during lithium-ion pouch cell formation and their impacts on process time
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900118
– volume: 7
  start-page: 549
  year: 2018
  ident: 10.1016/j.isci.2021.102332_bib80
  article-title: A review of laser electrode processing for development and manufacturing of lithium-ion batteries
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2017-0044
– volume: 11
  start-page: 25081
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib56
  article-title: Strengthening the electrodes for Li-ion batteries with a porous adhesive interlayer through dry-spraying manufacturing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b03020
– volume: 8
  start-page: 1900244
  year: 2019
  ident: 10.1016/j.isci.2021.102332_bib67
  article-title: Development and implementation of statistical methods for quality optimization in the large-format lithium-ion cells production
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900244
SSID ssj0002002496
Score 2.6485589
SecondaryResourceType review_article
Snippet Lithium-ion batteries (LIBs) have become one of the main energy storage solutions in modern society. The application fields and market share of LIBs have...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102332
SubjectTerms Electrochemical Energy Storage
Energy Materials
Energy Storage
Industrial Chemistry
Industrial Processing of Material
Title Current and future lithium-ion battery manufacturing
URI https://dx.doi.org/10.1016/j.isci.2021.102332
https://www.ncbi.nlm.nih.gov/pubmed/33889825
https://www.proquest.com/docview/2518216362
https://pubmed.ncbi.nlm.nih.gov/PMC8050716
https://doaj.org/article/1805fc172aec4fe796543382aca1853f
Volume 24
WOSCitedRecordID wos000642261700078&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5g4sAFgXiNl4rEDVW06SPJERATp4kDSLtFaZpom1iHthWJf4-ddNMK0rhwbdOmdpz6s2J_JuQmQxiSa4V82nmYWgt7jgsTxpoqw1XBrbGu2QTr9_lgIF7WWn1hTpinB_aKu4t5lFkNblYZnVrDBBZDJpwqrdDVWPz7wnRrwdTYHa8hFZ7rLJdhThCYZlMx45O7sOIVgkMaO-qChLa8kiPvbzmn3-DzZw7lmlPq7ZO9Bk0G916KA7JlqkOSNpxLgarKwHOGBAC2h6N6EsIqBIWj1PwKJqqqsa7BFSoekbfe0-vjc9g0Rwg19iAIhWWxLVRESw5OKMoFE1bopBRJCRGXgTAHIplU21gnkS4NbGuAcrTIaCmYyrIyOSadalqZUxIUOoLLBWKRIk1YVAhjqWKMA7hSuaFdEi-VI3XDHI4NLN7lMkVsLFGhEhUqvUK75Hb1zIfnzdg4-gF1vhqJnNfuAliCbCxB_mUJXZItV0w28MHDAnjVaOPk18vllbC38MBEVWZazyVgP04BsOYw5sQv9-oTYWYuILzuEtYyhJYM7TvVaOj4u0EOAHb52X8IfU52URQ836LJBeksZrW5JDv6czGaz67INhvwK7c1vgGJ8g8E
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+and+future+lithium-ion+battery+manufacturing&rft.jtitle=iScience&rft.au=Liu%2C+Yangtao&rft.au=Zhang%2C+Ruihan&rft.au=Wang%2C+Jun&rft.au=Wang%2C+Yan&rft.date=2021-04-23&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1016%2Fj.isci.2021.102332&rft.externalDocID=S258900422100300X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon