Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications

Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 11; číslo 23; s. 11301
Hlavní autori: Nguyen, Minh Dang, Tran, Hung-Vu, Xu, Shoujun, Lee, T. Randall
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.12.2021
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and nanoarchitectures have been synthesized, and the related properties have been studied with targets in multiple fields of applications, including biomedical devices, electronic devices, environmental solutions, and energy applications. Tailoring the sizes, geometries, magnetic properties, and functionalities is an important task that determines the performance of Fe3O4 NPs in many applications. Therefore, this review focuses on the crucial aspects of Fe3O4 NPs, including structures, synthesis, magnetic properties, and strategies for functionalization, which jointly determine the application performance of various Fe3O4 NP-based systems. We first summarize the recent advances in the synthesis of magnetite NPs with different sizes, morphologies, and magnetic properties. We also highlight the importance of synthetic factors in controlling the structures and properties of NPs, such as the uniformity of sizes, morphology, surfaces, and magnetic properties. Moreover, emerging applications using Fe3O4 NPs and their functionalized nanostructures are also highlighted with a focus on applications in biomedical technologies, biosensing, environmental remedies for water treatment, and energy storage and conversion devices.
AbstractList Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and nanoarchitectures have been synthesized, and the related properties have been studied with targets in multiple fields of applications, including biomedical devices, electronic devices, environmental solutions, and energy applications. Tailoring the sizes, geometries, magnetic properties, and functionalities is an important task that determines the performance of Fe3O4 NPs in many applications. Therefore, this review focuses on the crucial aspects of Fe3O4 NPs, including structures, synthesis, magnetic properties, and strategies for functionalization, which jointly determine the application performance of various Fe3O4 NP-based systems. We first summarize the recent advances in the synthesis of magnetite NPs with different sizes, morphologies, and magnetic properties. We also highlight the importance of synthetic factors in controlling the structures and properties of NPs, such as the uniformity of sizes, morphology, surfaces, and magnetic properties. Moreover, emerging applications using Fe3O4 NPs and their functionalized nanostructures are also highlighted with a focus on applications in biomedical technologies, biosensing, environmental remedies for water treatment, and energy storage and conversion devices.
Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and nanoarchitectures have been synthesized, and the related properties have been studied with targets in multiple fields of applications, including biomedical devices, electronic devices, environmental solutions, and energy applications. Tailoring the sizes, geometries, magnetic properties, and functionalities is an important task that determines the performance of Fe3O4 NPs in many applications. Therefore, this review focuses on the crucial aspects of Fe3O4 NPs, including structures, synthesis, magnetic properties, and strategies for functionalization, which jointly determine the application performance of various Fe3O4 NP-based systems. We first summarize the recent advances in the synthesis of magnetite NPs with different sizes, morphologies, and magnetic properties. We also highlight the importance of synthetic factors in controlling the structures and properties of NPs, such as the uniformity of sizes, morphology, surfaces, and magnetic properties. Moreover, emerging applications using Fe3O4 NPs and their functionalized nanostructures are also highlighted with a focus on applications in biomedical technologies, biosensing, environmental remedies for water treatment, and energy storage and conversion devices.Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and nanoarchitectures have been synthesized, and the related properties have been studied with targets in multiple fields of applications, including biomedical devices, electronic devices, environmental solutions, and energy applications. Tailoring the sizes, geometries, magnetic properties, and functionalities is an important task that determines the performance of Fe3O4 NPs in many applications. Therefore, this review focuses on the crucial aspects of Fe3O4 NPs, including structures, synthesis, magnetic properties, and strategies for functionalization, which jointly determine the application performance of various Fe3O4 NP-based systems. We first summarize the recent advances in the synthesis of magnetite NPs with different sizes, morphologies, and magnetic properties. We also highlight the importance of synthetic factors in controlling the structures and properties of NPs, such as the uniformity of sizes, morphology, surfaces, and magnetic properties. Moreover, emerging applications using Fe3O4 NPs and their functionalized nanostructures are also highlighted with a focus on applications in biomedical technologies, biosensing, environmental remedies for water treatment, and energy storage and conversion devices.
Author Xu, Shoujun
Tran, Hung-Vu
Nguyen, Minh Dang
Lee, T. Randall
Author_xml – sequence: 1
  givenname: Minh Dang
  orcidid: 0000-0002-2569-8279
  surname: Nguyen
  fullname: Nguyen, Minh Dang
– sequence: 2
  givenname: Hung-Vu
  orcidid: 0000-0001-8536-2737
  surname: Tran
  fullname: Tran, Hung-Vu
– sequence: 3
  givenname: Shoujun
  surname: Xu
  fullname: Xu, Shoujun
– sequence: 4
  givenname: T. Randall
  orcidid: 0000-0001-9584-8861
  surname: Lee
  fullname: Lee, T. Randall
BookMark eNptkk1v1DAQhiNUREvpjR8QiQuHXfBX7JgDUlV1oVKhSIWzNXEmqVdZO9hJpfLr8X4ItRW-eDTz-NU7nnldHPngsSjeUvKBc00-wjhSyjilnNAXxQkjSi65oOroUXxcnKW0JvloymtKXhXHvKqFYLI-KeYV8htRfgcfRoiTswOmT-XtFGc7zRHTorx98NMdJpfDb9B7zEz5I4YRM72rz7EDi-Vq9nZywcPg_sA2WJTg2_Jyg7F3vi_Px3FwdldJb4qXHQwJzw73afFrdfnz4uvy-ubL1cX59dJWjE5LjVYxKzRURNRaS0VUI3XLAHitO4ui63I_skNQLW1UxZGIRjeUaK6FFcBPi6u9bhtgbcboNhAfTABndokQe3No2nTQWoZSYANCcIVNjQ0hkiqrpAbNstbnvdY4NxtsLfopwvBE9GnFuzvTh3ujWV3VUmWB9weBGH7PmCazccniMIDHMCfDpKZC5qnojL57hq7DHPPXbilSk1oSsnW02FM2hpQidv_MUGK262Eer0fG2TPcumk3j2zXDf9_9BfZA78j
CitedBy_id crossref_primary_10_1002_pc_27937
crossref_primary_10_1016_j_colsurfa_2023_132689
crossref_primary_10_1080_14786419_2024_2443488
crossref_primary_10_1007_s43440_023_00467_3
crossref_primary_10_1016_j_matchemphys_2024_128882
crossref_primary_10_1016_j_sna_2025_116807
crossref_primary_10_3390_magnetochemistry9060157
crossref_primary_10_1002_mawe_202200291
crossref_primary_10_1016_j_electacta_2025_147049
crossref_primary_10_32628_IJSRST2512126
crossref_primary_10_3390_bios13090851
crossref_primary_10_1016_j_apsusc_2025_163528
crossref_primary_10_1016_j_apcato_2025_207049
crossref_primary_10_1016_j_cap_2025_03_013
crossref_primary_10_1007_s11270_025_08364_6
crossref_primary_10_1016_j_molstruc_2024_141017
crossref_primary_10_3390_molecules30030676
crossref_primary_10_1016_j_nxmate_2025_100927
crossref_primary_10_1016_j_pmatsci_2024_101267
crossref_primary_10_1021_acs_inorgchem_5c03293
crossref_primary_10_1002_slct_202502387
crossref_primary_10_1007_s10854_025_14422_w
crossref_primary_10_1016_j_ceramint_2024_08_421
crossref_primary_10_1007_s42823_024_00808_z
crossref_primary_10_1016_j_eurpolymj_2024_112870
crossref_primary_10_1186_s12870_025_06423_y
crossref_primary_10_1002_advs_202404254
crossref_primary_10_1016_j_jmmm_2024_171847
crossref_primary_10_1039_D3NH00412K
crossref_primary_10_1007_s42247_024_00849_0
crossref_primary_10_1016_j_apsusc_2024_161873
crossref_primary_10_1007_s10948_025_07003_9
crossref_primary_10_3390_en18112767
crossref_primary_10_3390_foods12091882
crossref_primary_10_18321_cpc21_3_147_157
crossref_primary_10_1039_D3NR05737B
crossref_primary_10_1016_j_colsurfa_2024_133144
crossref_primary_10_1016_j_ijhydene_2025_150114
crossref_primary_10_1016_j_jallcom_2025_179956
crossref_primary_10_1002_adom_202401002
crossref_primary_10_1016_j_inoche_2024_112466
crossref_primary_10_1021_acsanm_5c03013
crossref_primary_10_1016_j_colsurfa_2024_134912
crossref_primary_10_1016_j_inoche_2023_111999
crossref_primary_10_3390_app14156750
crossref_primary_10_1088_1361_6463_ace373
crossref_primary_10_1007_s42250_025_01333_w
crossref_primary_10_3390_magnetochemistry9030087
crossref_primary_10_1016_j_inoche_2025_114452
crossref_primary_10_1016_j_mtla_2024_102135
crossref_primary_10_1002_eem2_12880
crossref_primary_10_1007_s12596_025_02870_w
crossref_primary_10_1007_s00289_023_05072_1
crossref_primary_10_1007_s10924_024_03190_z
crossref_primary_10_1038_s41598_025_03867_y
crossref_primary_10_1016_j_eurpolymj_2024_113135
crossref_primary_10_1016_j_mseb_2025_118497
crossref_primary_10_1016_j_carbpol_2025_123834
crossref_primary_10_1016_j_ijbiomac_2024_138694
crossref_primary_10_1039_D5RA02609A
crossref_primary_10_1007_s11164_024_05295_5
crossref_primary_10_3390_polym15132836
crossref_primary_10_3390_ijms24054480
crossref_primary_10_1002_cphc_202500065
crossref_primary_10_1002_open_202500214
crossref_primary_10_1007_s11468_023_02167_3
crossref_primary_10_3390_magnetochemistry10010002
crossref_primary_10_1016_j_bsecv_2025_100448
crossref_primary_10_1016_j_inoche_2024_112357
crossref_primary_10_3390_pharmaceutics16121578
crossref_primary_10_1016_j_rechem_2025_102066
crossref_primary_10_1007_s40033_025_00896_9
crossref_primary_10_1016_j_nanoen_2024_110169
crossref_primary_10_1063_5_0245200
crossref_primary_10_1016_j_solidstatesciences_2024_107699
crossref_primary_10_3390_catal12111425
crossref_primary_10_1007_s10098_023_02578_0
crossref_primary_10_3390_s24217042
crossref_primary_10_1002_jobm_202400153
crossref_primary_10_1016_j_ceramint_2025_03_207
crossref_primary_10_1134_S003602442304012X
crossref_primary_10_1002_slct_202400959
crossref_primary_10_1002_jbm_a_37817
crossref_primary_10_1002_slct_202303580
crossref_primary_10_3390_nano12234171
crossref_primary_10_1002_adhm_202303103
crossref_primary_10_1038_s41598_024_70896_4
crossref_primary_10_3390_ma18122841
crossref_primary_10_3390_bios15020116
crossref_primary_10_1007_s11696_025_04310_2
crossref_primary_10_1016_j_ceramint_2024_09_007
crossref_primary_10_1080_10934529_2024_2424084
crossref_primary_10_1016_j_jcis_2025_02_007
crossref_primary_10_3390_magnetochemistry8100129
crossref_primary_10_1007_s10924_022_02663_3
crossref_primary_10_1002_slct_202303305
crossref_primary_10_1016_j_matchemphys_2024_129136
crossref_primary_10_1016_j_jece_2025_117145
crossref_primary_10_1016_j_seppur_2025_134754
crossref_primary_10_1002_pc_70404
crossref_primary_10_1002_slct_202402628
crossref_primary_10_1080_1023666X_2025_2506744
crossref_primary_10_3390_mi16010068
crossref_primary_10_4028_p_Qz5qTs
crossref_primary_10_1016_j_physb_2024_416820
crossref_primary_10_3390_nano12111786
crossref_primary_10_1007_s13369_024_09273_2
crossref_primary_10_1016_j_jallcom_2024_176755
crossref_primary_10_1016_j_bioactmat_2024_11_035
crossref_primary_10_1080_10408347_2023_2298328
crossref_primary_10_1007_s10876_024_02712_y
crossref_primary_10_3390_catal15040376
crossref_primary_10_1016_j_ceramint_2024_11_006
crossref_primary_10_1016_j_cdc_2024_101175
crossref_primary_10_3390_pharmaceutics14051000
crossref_primary_10_1088_1742_6596_2518_1_012003
crossref_primary_10_1155_2023_5447693
crossref_primary_10_1039_D3RA03509C
crossref_primary_10_1007_s41127_024_00087_5
crossref_primary_10_1016_j_talanta_2023_125508
crossref_primary_10_1016_j_partic_2024_02_006
crossref_primary_10_1016_j_solener_2025_113859
crossref_primary_10_3390_nano13071265
crossref_primary_10_3390_met14121324
crossref_primary_10_1016_j_colsurfa_2025_136430
crossref_primary_10_1016_j_hybadv_2023_100110
crossref_primary_10_3390_jcs9010032
crossref_primary_10_3390_magnetochemistry9040110
crossref_primary_10_3390_pharmaceutics15061702
crossref_primary_10_3390_physchem3030020
crossref_primary_10_1016_j_optlastec_2024_111761
crossref_primary_10_1016_j_jics_2024_101142
crossref_primary_10_1016_j_ceramint_2024_11_118
crossref_primary_10_1002_pc_29621
crossref_primary_10_1016_j_addma_2023_103518
crossref_primary_10_1016_j_jsamd_2025_100936
crossref_primary_10_1021_acsomega_5c05934
crossref_primary_10_1039_D5MA00291E
crossref_primary_10_1134_S1061933X22600452
crossref_primary_10_1016_j_heliyon_2025_e43012
crossref_primary_10_1016_j_cej_2025_166825
crossref_primary_10_1002_cmdc_202400586
crossref_primary_10_1016_j_matchemphys_2024_129836
crossref_primary_10_1021_acscentsci_5c00519
crossref_primary_10_55713_jmmm_v35i4_2437
crossref_primary_10_1016_j_matpr_2023_11_134
crossref_primary_10_1109_TNB_2022_3187344
crossref_primary_10_1002_jccs_70055
crossref_primary_10_1007_s11051_024_06137_6
crossref_primary_10_1016_j_heliyon_2024_e38948
crossref_primary_10_1109_TIE_2023_3279522
crossref_primary_10_1016_j_compbiolchem_2025_108435
crossref_primary_10_3390_nano14020177
crossref_primary_10_3390_nano14110902
crossref_primary_10_1016_j_jmmm_2025_172770
crossref_primary_10_1039_D4SD00292J
crossref_primary_10_1002_elan_202300422
crossref_primary_10_1016_j_ijbiomac_2025_144006
crossref_primary_10_1088_1402_4896_ad7f08
crossref_primary_10_1007_s11581_025_06517_5
crossref_primary_10_1016_j_poly_2025_117641
crossref_primary_10_18321_cpc22_3_231_239
crossref_primary_10_1016_j_jddst_2025_106953
crossref_primary_10_1039_D4RA00375F
crossref_primary_10_1007_s11664_024_10953_w
crossref_primary_10_1080_17425247_2025_2506829
crossref_primary_10_1007_s11356_023_27096_w
crossref_primary_10_3390_pharmaceutics16040473
crossref_primary_10_54392_nnxt2341
crossref_primary_10_3390_catal15090839
crossref_primary_10_3390_w15173077
crossref_primary_10_1134_S106378262460219X
crossref_primary_10_1016_j_apsusc_2025_164028
crossref_primary_10_1016_j_jece_2025_115558
crossref_primary_10_1016_j_ijpharm_2025_125956
crossref_primary_10_1016_j_jtice_2024_105620
crossref_primary_10_1002_adma_202513609
crossref_primary_10_1007_s11356_023_26411_9
crossref_primary_10_1016_j_cryobiol_2024_104890
crossref_primary_10_1016_j_cej_2024_155405
crossref_primary_10_1016_j_ceja_2025_100843
crossref_primary_10_3390_bios12070490
crossref_primary_10_2174_0115734137336579241008054823
crossref_primary_10_1007_s41939_023_00352_9
crossref_primary_10_1134_S106378262460222X
crossref_primary_10_1016_j_inoche_2024_113384
crossref_primary_10_1038_s41598_024_70072_8
crossref_primary_10_1002_jctb_7500
crossref_primary_10_1016_j_apsusc_2024_160816
crossref_primary_10_1007_s40843_024_2978_8
crossref_primary_10_1007_s12596_024_02204_2
crossref_primary_10_1016_j_aej_2024_12_040
crossref_primary_10_1016_j_jallcom_2023_170967
crossref_primary_10_1016_j_talanta_2025_127957
crossref_primary_10_1002_cssc_202501055
crossref_primary_10_1016_j_inoche_2024_112290
crossref_primary_10_1155_2023_3848456
crossref_primary_10_1088_1402_4896_add796
crossref_primary_10_1007_s11090_024_10458_8
crossref_primary_10_1016_j_materresbull_2024_113197
crossref_primary_10_4028_p_3WfP8T
crossref_primary_10_1016_j_ijbiomac_2025_144902
crossref_primary_10_1080_10242422_2024_2400074
crossref_primary_10_1007_s10895_025_04225_x
crossref_primary_10_14233_ajchem_2025_34339
crossref_primary_10_1016_j_jorganchem_2025_123776
crossref_primary_10_1007_s12033_024_01052_6
crossref_primary_10_1016_j_cej_2023_146198
crossref_primary_10_3390_recycling10030099
crossref_primary_10_1016_j_jhazmat_2024_137081
crossref_primary_10_1016_j_jwpe_2025_107898
crossref_primary_10_1016_j_matpr_2023_07_017
crossref_primary_10_1016_j_jorganchem_2025_123786
crossref_primary_10_1016_j_colsurfa_2023_132037
crossref_primary_10_1016_j_inoche_2025_115279
crossref_primary_10_1016_j_bej_2024_109533
crossref_primary_10_3390_solids5010011
crossref_primary_10_3390_ma17236006
crossref_primary_10_1007_s10971_025_06931_1
crossref_primary_10_1039_D4RA05990E
crossref_primary_10_1002_slct_202301694
crossref_primary_10_1016_j_ceramint_2023_12_403
crossref_primary_10_1088_1361_6528_ad6b33
crossref_primary_10_1007_s00414_024_03402_0
crossref_primary_10_3390_ma15051786
crossref_primary_10_4028_p_IvadF6
crossref_primary_10_1038_s41598_025_11998_5
crossref_primary_10_1016_j_ijoes_2025_100956
crossref_primary_10_1038_s41598_023_41441_6
crossref_primary_10_1007_s10661_025_14287_w
crossref_primary_10_1021_acsami_4c18591
crossref_primary_10_3390_batteries9060327
crossref_primary_10_1016_j_rechem_2025_102474
crossref_primary_10_1002_smll_202307750
crossref_primary_10_1016_j_jece_2024_114252
crossref_primary_10_1002_smll_202402940
crossref_primary_10_1016_j_mseb_2025_118774
crossref_primary_10_3390_cryst15090829
crossref_primary_10_1007_s00253_025_13589_w
crossref_primary_10_1063_5_0245293
crossref_primary_10_1016_j_carbpol_2025_123679
crossref_primary_10_3390_eng6070149
crossref_primary_10_1016_j_foodchem_2024_138564
crossref_primary_10_1016_j_jwpe_2022_103001
crossref_primary_10_1016_j_physb_2025_416960
crossref_primary_10_1016_j_colsurfa_2024_135018
crossref_primary_10_3390_polym14153008
crossref_primary_10_3390_jcs9080434
crossref_primary_10_1016_j_jpcs_2023_111563
crossref_primary_10_3390_photonics12060555
crossref_primary_10_1089_adt_2025_026
crossref_primary_10_1080_10407782_2024_2350027
crossref_primary_10_3390_pharmaceutics16050639
crossref_primary_10_1016_j_chemosphere_2024_144047
crossref_primary_10_1007_s11164_023_05223_z
crossref_primary_10_1016_j_cej_2023_144546
crossref_primary_10_1016_j_nxmate_2025_101148
crossref_primary_10_1039_D2DT01422J
crossref_primary_10_1016_j_jwpe_2023_104246
crossref_primary_10_62063_ecb_22
crossref_primary_10_3390_app15020857
crossref_primary_10_3390_ma17246064
crossref_primary_10_1007_s10853_025_11375_7
crossref_primary_10_1039_D3RA08804A
crossref_primary_10_1007_s10904_023_02966_5
crossref_primary_10_1016_j_surfin_2023_103371
crossref_primary_10_1007_s10904_025_03788_3
crossref_primary_10_1016_j_poly_2024_117311
crossref_primary_10_3390_pharmaceutics17070844
crossref_primary_10_1088_1361_6528_ad8203
crossref_primary_10_1016_j_ijbiomac_2025_147169
crossref_primary_10_1002_slct_202401013
crossref_primary_10_3390_nano13081342
crossref_primary_10_1021_acs_langmuir_4c02495
crossref_primary_10_3390_magnetochemistry9010012
crossref_primary_10_1002_anbr_202300035
crossref_primary_10_1007_s42247_025_01195_5
crossref_primary_10_1515_revic_2024_0117
crossref_primary_10_3390_cryst14121028
crossref_primary_10_1007_s11015_025_01958_9
crossref_primary_10_1007_s10876_025_02861_8
crossref_primary_10_1016_j_envres_2025_120911
crossref_primary_10_3390_nano15151200
crossref_primary_10_3390_ma15093394
crossref_primary_10_1016_j_jenvman_2025_126509
crossref_primary_10_1007_s11270_025_07781_x
crossref_primary_10_1016_j_ultsonch_2023_106371
crossref_primary_10_1016_j_jallcom_2023_172038
crossref_primary_10_1016_j_ceramint_2025_02_049
crossref_primary_10_1002_ppsc_202400168
crossref_primary_10_1016_j_jpowsour_2024_235785
crossref_primary_10_1080_10406638_2022_2112713
crossref_primary_10_1021_acsami_5c00830
crossref_primary_10_1038_s41598_025_12170_9
crossref_primary_10_1016_j_cej_2025_162641
crossref_primary_10_1111_1751_7915_70183
crossref_primary_10_3389_fenrg_2023_1220587
crossref_primary_10_1016_j_bioadv_2023_213309
crossref_primary_10_3390_ijms232314764
crossref_primary_10_1016_j_jtice_2023_104774
crossref_primary_10_1038_s41598_023_28725_7
crossref_primary_10_1039_D4RA02939A
crossref_primary_10_1039_D5TB00682A
crossref_primary_10_1016_j_seta_2023_103102
crossref_primary_10_4028_p_bQTX02
crossref_primary_10_3390_encyclopedia2040125
crossref_primary_10_1021_acsami_5c13454
crossref_primary_10_1039_D4RA00629A
crossref_primary_10_1016_j_scitotenv_2022_159497
crossref_primary_10_1007_s40199_025_00568_9
crossref_primary_10_1039_D2RA07238F
crossref_primary_10_1002_chem_202201861
crossref_primary_10_1016_j_jmmm_2024_172062
crossref_primary_10_1007_s13399_024_05976_6
crossref_primary_10_1007_s12035_024_04215_3
crossref_primary_10_1016_j_scenv_2024_100187
crossref_primary_10_1002_aoc_7282
crossref_primary_10_1016_j_optmat_2023_114816
crossref_primary_10_1134_S1061934824701296
crossref_primary_10_1007_s11468_024_02579_9
crossref_primary_10_1016_j_arabjc_2024_106080
crossref_primary_10_1021_acs_jafc_5c04862
crossref_primary_10_3390_s23073508
crossref_primary_10_1016_j_ceramint_2025_05_002
crossref_primary_10_1002_jssc_202400274
crossref_primary_10_1080_10406638_2022_2094422
crossref_primary_10_3390_nano14191586
crossref_primary_10_1016_j_heliyon_2024_e40747
crossref_primary_10_1016_j_surfin_2023_102930
crossref_primary_10_3390_ma17102279
crossref_primary_10_3390_min14121256
crossref_primary_10_3390_ma15020503
crossref_primary_10_1088_1402_4896_ace8d3
crossref_primary_10_3390_ma15238328
crossref_primary_10_3762_bjnano_13_126
crossref_primary_10_1007_s11696_024_03821_8
crossref_primary_10_1007_s10544_024_00698_y
crossref_primary_10_3390_molecules30153313
crossref_primary_10_1016_j_jpcs_2025_113108
crossref_primary_10_1016_j_jenvman_2024_122571
crossref_primary_10_1016_j_heliyon_2024_e31352
crossref_primary_10_1016_j_sab_2022_106412
crossref_primary_10_1002_celc_202500230
crossref_primary_10_1016_j_scowo_2025_100083
crossref_primary_10_1016_j_inoche_2024_112160
crossref_primary_10_1007_s42114_024_00893_8
crossref_primary_10_1002_pssa_202200786
crossref_primary_10_1002_marc_202400521
crossref_primary_10_1016_j_jmmm_2024_171781
crossref_primary_10_1016_j_inoche_2024_113254
crossref_primary_10_1016_j_inoche_2025_114764
crossref_primary_10_3390_molecules30132879
crossref_primary_10_1080_1536383X_2025_2533940
crossref_primary_10_3389_fbioe_2024_1450694
crossref_primary_10_1007_s13762_025_06692_y
crossref_primary_10_1088_2053_1591_ac9819
crossref_primary_10_1109_JSEN_2024_3472281
crossref_primary_10_1088_2053_1591_acf09d
crossref_primary_10_3390_nano13050870
crossref_primary_10_3390_gels11080657
crossref_primary_10_1007_s00604_025_07129_6
crossref_primary_10_1016_j_seppur_2023_124054
crossref_primary_10_1039_D4RA07232D
crossref_primary_10_1038_s41598_022_19030_w
crossref_primary_10_1002_aoc_70299
crossref_primary_10_3390_magnetochemistry9040092
Cites_doi 10.1063/1.30264
10.1021/nn301046w
10.1021/acs.jpcc.6b02006
10.1016/j.jallcom.2009.11.204
10.1021/nn2048137
10.1021/ja0692478
10.1016/j.jcis.2018.10.060
10.1039/c1jm11845e
10.1039/c2cs15337h
10.1039/c1cc13218k
10.1016/j.matchemphys.2021.124505
10.1039/C5NR09235C
10.1016/j.aca.2010.11.053
10.1002/adfm.201404354
10.1039/c0jm00159g
10.1002/aoc.4634
10.1021/acsabm.9b01244
10.1039/C7NR01541K
10.7150/thno.5366
10.1002/wnan.36
10.1021/jp211986a
10.1016/j.cej.2012.01.016
10.1002/adfm.201101371
10.1021/acsanm.9b01867
10.1002/anie.200700197
10.3390/ma9090771
10.1016/j.phrs.2009.12.012
10.1021/acsnano.9b01281
10.1002/jrs.1056
10.1021/ja0380852
10.1021/cr068445e
10.1021/acs.jpcc.7b10528
10.1155/2019/8457383
10.1021/acsomega.7b01312
10.1021/jp075133m
10.1016/j.matlet.2019.127187
10.1038/144327b0
10.1021/ac503966u
10.1002/3527602097
10.1016/j.snb.2015.08.027
10.1016/j.apsusc.2017.11.053
10.1021/jp1084982
10.1016/j.jhazmat.2011.07.033
10.1016/j.cej.2020.124269
10.1016/j.jhazmat.2020.124560
10.1002/gch2.201700078
10.1021/acsanm.0c02048
10.1021/cm802978z
10.3390/nano5010063
10.1103/RevModPhys.29.279
10.1016/j.mtcomm.2020.101368
10.1002/smll.200901403
10.1021/acsanm.0c03198
10.1021/acsami.7b10923
10.1002/adma.201906539
10.1002/anie.200460715
10.1021/acsaem.8b00770
10.1149/1945-7111/abd928
10.1021/acsami.9b15501
10.1016/j.apsusc.2014.08.193
10.1039/c0cc00246a
10.3390/ma11020324
10.1016/j.tsf.2011.03.108
10.1038/nmat1251
10.1021/jp502820r
10.1016/j.matchemphys.2016.01.053
10.1007/978-3-642-20620-7
10.1016/j.apsusc.2012.03.031
10.1002/smll.200700283
10.1007/s11051-012-1354-y
10.1039/C5NR02680F
10.1021/cm101532x
10.1016/j.arabjc.2018.04.013
10.1021/acsnano.5b07249
10.1016/j.jcis.2012.07.066
10.1021/ja8086906
10.1021/ja105079y
10.1016/j.jmmm.2016.12.079
10.1002/adma.200600674
10.1016/j.matchemphys.2020.123752
10.1021/acs.nanolett.8b02722
10.1021/jp106685q
10.1103/PhysRevB.76.054406
10.1002/slct.201600240
10.1016/j.cis.2011.04.003
10.1002/adma.200904285
10.1039/c2jm30422h
10.1039/C7SE00448F
10.1016/j.pcrysgrow.2008.08.003
10.1016/j.jmmm.2006.10.1156
10.1002/adma.201301376
10.1016/j.pmatsci.2018.03.003
10.1021/acsami.6b14704
10.3390/s17102300
10.1088/0953-8984/18/38/S26
10.1016/j.snb.2018.11.152
10.1002/anie.200462551
10.1002/anie.200701694
10.1016/j.dyepig.2018.10.061
10.1021/ja903300f
10.1002/sia.1984
10.3390/ijms140815977
10.1016/j.colsurfb.2019.01.053
10.1021/cm049205n
10.1021/cm901618m
10.1002/adfm.200801689
10.1021/acsanm.9b02449
10.1016/S0304-8853(98)00558-7
10.3390/nano6110221
10.1063/1.2833820
10.3390/magnetochemistry6040068
10.1039/C0NR00521E
10.1016/j.jallcom.2011.04.117
10.1016/j.carbpol.2019.02.067
10.20944/preprints201804.0104.v1
10.1021/acsanm.0c01193
10.1021/jp201666s
10.3390/s91008130
10.1088/0022-3727/40/19/001
10.1016/j.matchemphys.2016.09.016
10.1016/j.colsurfa.2017.06.008
10.1002/chem.201202433
10.1021/acsnano.7b02752
10.1016/j.jcis.2020.12.109
10.1016/j.jallcom.2008.10.105
10.1021/acsanm.0c00306
10.1016/j.ceramint.2018.11.132
10.1007/s11095-016-1958-5
10.1002/elan.200603785
10.1039/c0cc05862a
10.1016/j.ceramint.2019.08.064
10.1016/j.powtec.2013.08.042
10.1039/c0cc01179g
10.1002/chem.201202249
10.1021/acsnano.0c00910
10.1039/C6CS00432F
10.1016/j.jallcom.2008.04.019
10.1039/b305526d
10.1002/anie.200705049
10.1021/cm8031863
10.1016/j.ijbiomac.2018.09.025
10.3390/met8020107
10.1016/j.ultsonch.2009.11.001
10.1021/am201079z
10.1021/jp202473y
10.1016/j.mattod.2015.08.022
10.1021/acs.analchem.8b00593
10.1080/02656730110108785
10.1021/nl3010308
10.1039/b815548h
10.1021/acsnano.7b05182
10.1002/adma.200802366
10.1016/j.biomaterials.2011.03.024
10.1021/ja076494i
10.1149/1.3478667
10.1002/adma.201300445
10.1021/acs.chemmater.9b00728
10.1039/c4tb00061g
10.1088/0022-3727/41/13/134003
10.1016/j.cis.2020.102165
10.1109/TMAG.2010.2046907
10.1149/1.3254160
10.1088/1361-6463/aaa697
10.1002/smll.201202111
10.1103/PhysRevB.77.012411
10.3390/mi11030302
10.1021/acsami.6b05415
10.1021/ja026501x
10.1039/b926780h
10.1021/jp902953t
10.1002/anie.200602866
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/app112311301
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_fadc2e64eba4437eb8eb00617c769a92
PMC9285867
10_3390_app112311301
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c521t-9ec72c49a5048996707b69d2aa389fce4ff8106fea7d1b753e04b9b109394c4a3
IEDL.DBID BENPR
ISICitedReferencesCount 460
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742020400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 18:27:18 EDT 2025
Tue Nov 04 01:55:43 EST 2025
Wed Oct 01 13:34:22 EDT 2025
Mon Jun 30 07:28:23 EDT 2025
Sat Nov 29 07:13:16 EST 2025
Tue Nov 18 21:34:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-9ec72c49a5048996707b69d2aa389fce4ff8106fea7d1b753e04b9b109394c4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author Contributions: M.D.N., H.-V.T., S.X. and T.R.L. discussed, commented on, and wrote the manuscript. All authors have read and agreed to the published version of the manuscript.
ORCID 0000-0001-8536-2737
0000-0001-9584-8861
0000-0002-2569-8279
OpenAccessLink https://www.proquest.com/docview/2608086002?pq-origsite=%requestingapplication%
PMID 35844268
PQID 2608086002
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_fadc2e64eba4437eb8eb00617c769a92
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9285867
proquest_miscellaneous_2691462689
proquest_journals_2608086002
crossref_primary_10_3390_app112311301
crossref_citationtrail_10_3390_app112311301
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
Bai (ref_109) 2020; 3
ref_139
Singamaneni (ref_3) 2011; 21
Wang (ref_103) 2020; 262
ref_11
Ge (ref_61) 2009; 113
Liu (ref_18) 2020; 281
Evans (ref_28) 1975; 24
Lisjak (ref_5) 2018; 95
Zhang (ref_148) 2012; 387
Jeong (ref_64) 2011; 519
Li (ref_83) 2010; 12
Ansari (ref_147) 2019; 33
Sinan (ref_155) 2016; 183
Hergt (ref_115) 2006; 18
ref_16
Guijarro (ref_30) 2018; 2
Zhu (ref_125) 2010; 6
Komaba (ref_163) 2009; 157
Mirabello (ref_37) 2016; 45
Zhang (ref_131) 2020; 3
Yang (ref_17) 2011; 47
Voros (ref_129) 2015; 25
Ban (ref_169) 2010; 22
Figuerola (ref_35) 2010; 62
Kolhatkar (ref_45) 2013; 14
Yang (ref_49) 2008; 103
Frey (ref_4) 2009; 38
Elsayed (ref_71) 2017; 529
Bohra (ref_19) 2019; 2019
Ren (ref_143) 2019; 45
ref_20
Li (ref_161) 2021; 265
Laurent (ref_12) 2008; 108
Gross (ref_31) 2016; 222
ref_123
Li (ref_99) 2013; 3
Ying (ref_89) 2020; 14
Dheyab (ref_110) 2020; 25
Wu (ref_9) 2020; 3
Costo (ref_78) 2008; 41
Li (ref_88) 2012; 18
Behbahani (ref_144) 2021; 410
Roca (ref_74) 2019; 13
Zhuang (ref_67) 2007; 129
Moroz (ref_113) 2002; 18
Zhu (ref_126) 2010; 114
Cheng (ref_87) 2009; 131
Bilal (ref_8) 2018; 120
Liu (ref_70) 2016; 173
Sun (ref_55) 2004; 126
Obaidat (ref_111) 2015; 5
Wang (ref_107) 2009; 19
Khalaf (ref_142) 2019; 45
Wei (ref_171) 2013; 25
ref_154
Kumar (ref_156) 2017; 9
Sun (ref_54) 2002; 124
Zhang (ref_140) 2011; 193
Li (ref_60) 2005; 44
Hou (ref_59) 2003; 13
Abbas (ref_75) 2012; 15
Chen (ref_162) 2011; 3
Wu (ref_101) 2011; 32
Su (ref_167) 2011; 115
Zhang (ref_141) 2019; 162
Si (ref_66) 2004; 16
Soni (ref_132) 2019; 2
Jeon (ref_98) 2021; 33
Gu (ref_135) 2015; 87
Zhang (ref_82) 2009; 477
Espinosa (ref_120) 2016; 10
Fang (ref_102) 2020; 3
Kim (ref_50) 2009; 131
Gu (ref_86) 2009; 472
Hou (ref_65) 2007; 46
Kang (ref_124) 2012; 18
Guardia (ref_72) 2010; 46
Qiao (ref_76) 2017; 11
Chen (ref_166) 2011; 115
Park (ref_56) 2004; 3
Ma (ref_170) 2012; 22
Jordan (ref_112) 1999; 194
Zhou (ref_159) 2018; 1
Wu (ref_136) 2011; 686
Rittikulsittichai (ref_69) 2016; 8
Li (ref_85) 2010; 132
Jeong (ref_1) 2007; 19
Fan (ref_157) 2016; 8
Xuan (ref_47) 2010; 20
Xu (ref_57) 2009; 21
ref_58
Hergt (ref_114) 2007; 311
Prozorov (ref_96) 2007; 76
Zhang (ref_105) 2020; 388
Ge (ref_53) 2007; 46
Zeng (ref_84) 2010; 46
Lavorato (ref_121) 2020; 3
Abbas (ref_77) 2015; 7
Fan (ref_146) 2019; 213
Zhou (ref_160) 2017; 9
Tadic (ref_23) 2014; 320
Lu (ref_2) 2007; 46
Kolhatkar (ref_42) 2017; 2
Klotz (ref_21) 2008; 77
Zhuang (ref_68) 2008; 47
Rehman (ref_29) 2020; 256
Niculaes (ref_117) 2017; 11
Soni (ref_133) 2021; 4
Colombo (ref_10) 2012; 41
Nath (ref_81) 2009; 21
Koh (ref_6) 2009; 9
Chen (ref_43) 2018; 90
Siregar (ref_39) 2021; 168
Supattarasakda (ref_22) 2013; 249
Chandra (ref_90) 2017; 9
Shebanova (ref_95) 2003; 34
Grosvenor (ref_92) 2004; 36
Chen (ref_152) 2021; 589
Lak (ref_122) 2018; 18
Hsing (ref_134) 2007; 19
Falahian (ref_149) 2018; 2
Zyuzin (ref_118) 2019; 11
Das (ref_40) 2016; 120
Caruntu (ref_63) 2007; 40
Zhu (ref_165) 2010; 157
Verwey (ref_32) 1939; 144
Krishnan (ref_51) 2010; 46
Panissod (ref_91) 2011; 3
Panjan (ref_24) 2011; 509
Hu (ref_150) 2010; 492
Zhou (ref_168) 2010; 22
Xin (ref_145) 2012; 184
Qiu (ref_127) 2014; 118
Dau (ref_137) 2019; 283
Roca (ref_93) 2007; 111
Chen (ref_138) 2019; 177
Gossuin (ref_26) 2009; 1
Tipsawat (ref_33) 2018; 446
Xuan (ref_46) 2009; 21
ref_36
Lee (ref_106) 2012; 12
Ninjbadgar (ref_108) 2011; 21
Sheng (ref_158) 2019; 536
Miles (ref_27) 1957; 29
Bae (ref_116) 2012; 6
Kovalenko (ref_73) 2007; 129
Wang (ref_128) 2013; 25
Behera (ref_164) 2011; 47
Nemati (ref_41) 2018; 122
Lai (ref_130) 2008; 4
Guardia (ref_44) 2014; 2
Guardia (ref_62) 2011; 115
Wang (ref_151) 2010; 17
Sun (ref_79) 2012; 116
Yew (ref_38) 2020; 13
Beg (ref_100) 2017; 428
Revia (ref_25) 2016; 19
Laurent (ref_34) 2011; 166
Ling (ref_13) 2013; 9
Teja (ref_15) 2009; 55
Na (ref_97) 2009; 21
Mitra (ref_80) 2018; 51
Deng (ref_48) 2005; 44
Bobo (ref_14) 2016; 33
Avugadda (ref_119) 2019; 31
Guardia (ref_52) 2012; 6
Clements (ref_104) 2016; 1
Zhu (ref_153) 2012; 258
ref_7
References_xml – volume: 24
  start-page: 73
  year: 1975
  ident: ref_28
  article-title: Experimental Studies of the Electrical Conductivity and Phase Transition in Fe3O4
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.30264
– volume: 6
  start-page: 5266
  year: 2012
  ident: ref_116
  article-title: Chitosan Oligosaccharide-Stabilized Ferrimagnetic Iron Oxide Nanocubes for Magnetically Modulated Cancer Hyperthermia
  publication-title: ACS Nano
  doi: 10.1021/nn301046w
– volume: 120
  start-page: 10086
  year: 2016
  ident: ref_40
  article-title: Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b02006
– volume: 492
  start-page: 656
  year: 2010
  ident: ref_150
  article-title: Synthesis of Monodisperse Fe3O4@silica Core–Shell Microspheres and Their Application for Removal of Heavy Metal Ions from Water
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2009.11.204
– volume: 6
  start-page: 3080
  year: 2012
  ident: ref_52
  article-title: Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment
  publication-title: ACS Nano
  doi: 10.1021/nn2048137
– volume: 129
  start-page: 6352
  year: 2007
  ident: ref_73
  article-title: Fatty Acid Salts as Stabilizers in Size- and Shape-Controlled Nanocrystal Synthesis: The Case of Inverse Spinel Iron Oxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0692478
– volume: 536
  start-page: 235
  year: 2019
  ident: ref_158
  article-title: Fe3O4 Nanospheres in Situ Decorated Graphene as High-Performance Anode for Asymmetric Supercapacitor with Impressive Energy Density
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.10.060
– volume: 21
  start-page: 16819
  year: 2011
  ident: ref_3
  article-title: Magnetic Nanoparticles: Recent Advances in Synthesis, Self-Assembly and Applications
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm11845e
– volume: 41
  start-page: 4306
  year: 2012
  ident: ref_10
  article-title: Biological Applications of Magnetic Nanoparticles
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15337h
– volume: 47
  start-page: 10371
  year: 2011
  ident: ref_164
  article-title: Enhanced Rate Performance and Cyclic Stability of Fe3O4 –Graphene Nanocomposites for Li Ion Battery Anodes
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc13218k
– volume: 265
  start-page: 124505
  year: 2021
  ident: ref_161
  article-title: Construction of Ternary Core-Shell Fe3O4@BaTiO3/PVDF Nanocomposites with Enhanced Permittivity and Breakdown Strength for Energy Storage
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.124505
– volume: 8
  start-page: 11851
  year: 2016
  ident: ref_69
  article-title: Multi-Responsive Hybrid Particles: Thermo-, PH-, Photo-, and Magneto-Responsive Magnetic Hydrogel Cores with Gold Nanorod Optical Triggers
  publication-title: Nanoscale
  doi: 10.1039/C5NR09235C
– volume: 686
  start-page: 81
  year: 2011
  ident: ref_136
  article-title: Magnetic Loading of Tyrosinase-Fe3O4/Mesoporous Silica Core/Shell Microspheres for High Sensitive Electrochemical Biosensing
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2010.11.053
– volume: 25
  start-page: 1709
  year: 2015
  ident: ref_129
  article-title: TPA Immobilization on Iron Oxide Nanocubes and Localized Magnetic Hyperthermia Accelerate Blood Clot Lysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201404354
– volume: 20
  start-page: 5086
  year: 2010
  ident: ref_47
  article-title: Facile Synthesis of Size-Controllable Monodispersed Ferrite Nanospheres
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00159g
– volume: 33
  start-page: e4634
  year: 2019
  ident: ref_147
  article-title: Novel Fe3O4/Hydroxyapatite/β-Cyclodextrin Nanocomposite Adsorbent: Synthesis and Application in Heavy Metal Removal from Aqueous Solution
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.4634
– volume: 3
  start-page: 1690
  year: 2020
  ident: ref_102
  article-title: MRI Enhancement and Tumor Targeted Drug Delivery Using Zn2+-Doped Fe3O4 Core/Mesoporous Silica Shell Nanocomposites
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.9b01244
– volume: 9
  start-page: 7858
  year: 2017
  ident: ref_90
  article-title: Epitaxial Magnetite Nanorods with Enhanced Room Temperature Magnetic Anisotropy
  publication-title: Nanoscale
  doi: 10.1039/C7NR01541K
– volume: 3
  start-page: 595
  year: 2013
  ident: ref_99
  article-title: Superparamagnetic Iron Oxide Nanoparticles as MRI Contrast Agents for Non-Invasive Stem Cell Labeling and Tracking
  publication-title: Theranostics
  doi: 10.7150/thno.5366
– volume: 1
  start-page: 299
  year: 2009
  ident: ref_26
  article-title: Magnetic Resonance Relaxation Properties of Superparamagnetic Particles
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.36
– volume: 116
  start-page: 5476
  year: 2012
  ident: ref_79
  article-title: Solvothermal Synthesis of Tunable Electroactive Magnetite Nanorods by Controlling the Side Reaction
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp211986a
– volume: 184
  start-page: 132
  year: 2012
  ident: ref_145
  article-title: Highly Efficient Removal of Heavy Metal Ions by Amine-Functionalized Mesoporous Fe3O4 Nanoparticles
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.01.016
– volume: 21
  start-page: 4769
  year: 2011
  ident: ref_108
  article-title: Epoxy Ring Opening Phase Transfer as a General Route to Water Dispersible Superparamagnetic Fe3O4 Nanoparticles and Their Application as Positive MRI Contrast Agents
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101371
– volume: 2
  start-page: 7350
  year: 2019
  ident: ref_132
  article-title: Near-Infrared- and Magnetic-Field-Responsive NaYF4:Er3+/Yb3+@SiO2@AuNP@Fe3O4 Nanocomposites for Hyperthermia Applications Induced by Fluorescence Resonance Energy Transfer and Surface Plasmon Absorption
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01867
– volume: 46
  start-page: 4342
  year: 2007
  ident: ref_53
  article-title: Superparamagnetic Magnetite Colloidal Nanocrystal Clusters
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200700197
– ident: ref_154
  doi: 10.3390/ma9090771
– volume: 62
  start-page: 126
  year: 2010
  ident: ref_35
  article-title: From Iron Oxide Nanoparticles towards Advanced Iron-Based Inorganic Materials Designed for Biomedical Applications
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2009.12.012
– volume: 13
  start-page: 7716
  year: 2019
  ident: ref_74
  article-title: Precise Size Control of the Growth of Fe3O4 Nanocubes over a Wide Size Range Using a Rationally Designed One-Pot Synthesis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01281
– volume: 34
  start-page: 845
  year: 2003
  ident: ref_95
  article-title: Raman Study of Magnetite (Fe3O4): Laser-Induced Thermal Effects and Oxidation
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1056
– volume: 126
  start-page: 273
  year: 2004
  ident: ref_55
  article-title: Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0380852
– volume: 108
  start-page: 2064
  year: 2008
  ident: ref_12
  article-title: Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr068445e
– volume: 122
  start-page: 2367
  year: 2018
  ident: ref_41
  article-title: Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b10528
– volume: 2019
  start-page: e8457383
  year: 2019
  ident: ref_19
  article-title: A Short Review on Verwey Transition in Nanostructured Fe3O4 Materials
  publication-title: J. Nanomater.
  doi: 10.1155/2019/8457383
– volume: 2
  start-page: 8010
  year: 2017
  ident: ref_42
  article-title: Magnetic Sensing Potential of Fe3O4 Nanocubes Exceeds That of Fe3O4 Nanospheres
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01312
– volume: 111
  start-page: 18577
  year: 2007
  ident: ref_93
  article-title: Effect of Nature and Particle Size on Properties of Uniform Magnetite and Maghemite Nanoparticles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp075133m
– volume: 262
  start-page: 127187
  year: 2020
  ident: ref_103
  article-title: Magnetic Fe3O4@PVP Nanotubes with High Heating Efficiency for MRI-Guided Magnetic Hyperthermia Applications
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.127187
– volume: 144
  start-page: 327
  year: 1939
  ident: ref_32
  article-title: Electronic Conduction of Magnetite (Fe3O4) and Its Transition Point at Low Temperatures
  publication-title: Nature
  doi: 10.1038/144327b0
– volume: 87
  start-page: 1876
  year: 2015
  ident: ref_135
  article-title: Stabilized, Superparamagnetic Functionalized Graphene/Fe3O4@Au Nanocomposites for a Magnetically-Controlled Solid-State Electrochemiluminescence Biosensing Application
  publication-title: Anal. Chem.
  doi: 10.1021/ac503966u
– ident: ref_20
  doi: 10.1002/3527602097
– volume: 222
  start-page: 95
  year: 2016
  ident: ref_31
  article-title: Spinel Ferrite Oxide Semiconductor Gas Sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2015.08.027
– volume: 446
  start-page: 287
  year: 2018
  ident: ref_33
  article-title: Magnetite (Fe3O4) Nanoparticles: Synthesis, Characterization and Electrochemical Properties
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.11.053
– volume: 115
  start-page: 390
  year: 2011
  ident: ref_62
  article-title: Tuning the Size, the Shape, and the Magnetic Properties of Iron Oxide Nanoparticles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1084982
– volume: 193
  start-page: 325
  year: 2011
  ident: ref_140
  article-title: Novel Magnetic Fe3O4@C Nanoparticles as Adsorbents for Removal of Organic Dyes from Aqueous Solution
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.07.033
– volume: 388
  start-page: 124269
  year: 2020
  ident: ref_105
  article-title: Oxygen-Enriched Fe3O4/Gd2O3 Nanopeanuts for Tumor-Targeting MRI and ROS-Triggered Dual-Modal Cancer Therapy through Platinum (IV) Prodrugs Delivery
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124269
– volume: 410
  start-page: 124560
  year: 2021
  ident: ref_144
  article-title: Fe3O4-FeMoS4: Promise Magnetite LDH-Based Adsorbent for Simultaneous Removal of Pb (II), Cd (II), and Cu (II) Heavy Metal Ions
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124560
– volume: 2
  start-page: 1700078
  year: 2018
  ident: ref_149
  article-title: Synthesis and Application of Polypyrrole/Fe3O4 Nanosize Magnetic Adsorbent for Efficient Separation of Hg2+ from Aqueous Solution
  publication-title: Glob. Chall.
  doi: 10.1002/gch2.201700078
– volume: 3
  start-page: 9560
  year: 2020
  ident: ref_9
  article-title: Magnetic-Nanosensor-Based Virus and Pathogen Detection Strategies before and during COVID-19
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c02048
– volume: 21
  start-page: 1778
  year: 2009
  ident: ref_57
  article-title: Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles
  publication-title: Chem. Mater.
  doi: 10.1021/cm802978z
– volume: 5
  start-page: 63
  year: 2015
  ident: ref_111
  article-title: Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia
  publication-title: Nanomaterials
  doi: 10.3390/nano5010063
– volume: 29
  start-page: 279
  year: 1957
  ident: ref_27
  article-title: Dielectric Spectroscopy of Ferromagnetic Semiconductors
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.29.279
– volume: 25
  start-page: 101368
  year: 2020
  ident: ref_110
  article-title: Excellent Relaxivity and X-Ray Attenuation Combo Properties of Fe3O4@Au CSNPs Produced via Rapid Sonochemical Synthesis for MRI and CT Imaging
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2020.101368
– volume: 6
  start-page: 471
  year: 2010
  ident: ref_125
  article-title: Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres as Carriers for Drug Delivery
  publication-title: Small
  doi: 10.1002/smll.200901403
– volume: 4
  start-page: 850
  year: 2021
  ident: ref_133
  article-title: Smart YPO4:Er–Yb Nanophosphor for Optical Heating, Hyperthermia, Security Ink, Cancer Endoradiotherapy, and Uranyl Recovery
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c03198
– volume: 9
  start-page: 40792
  year: 2017
  ident: ref_160
  article-title: Multiple Interfacial Fe3O4@BaTiO3/P(VDF-HFP) Core–Shell–Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10923
– volume: 33
  start-page: 1906539
  year: 2021
  ident: ref_98
  article-title: Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906539
– volume: 44
  start-page: 123
  year: 2005
  ident: ref_60
  article-title: Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe3O4
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200460715
– volume: 1
  start-page: 4599
  year: 2018
  ident: ref_159
  article-title: Controlled Synthesis of Fe3O4 Nanospheres Coated with Nitrogen-Doped Carbon for High Performance Supercapacitors
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00770
– volume: 168
  start-page: 027510
  year: 2021
  ident: ref_39
  article-title: Review—A Pollutant Gas Sensor Based On Fe3O4 Nanostructures: A Review
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abd928
– volume: 11
  start-page: 41957
  year: 2019
  ident: ref_118
  article-title: Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy to Preserve Magnetic Heat Losses in an Intracellular Environment
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b15501
– volume: 320
  start-page: 183
  year: 2014
  ident: ref_23
  article-title: Magnetic Properties of Hematite (α-Fe2O3) Nanoparticles Prepared by Hydrothermal Synthesis Method
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.08.193
– volume: 46
  start-page: 3920
  year: 2010
  ident: ref_84
  article-title: One-Pot Synthesis of Fe3O4 Nanoprisms with Controlled Electrochemical Properties
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc00246a
– ident: ref_123
  doi: 10.3390/ma11020324
– volume: 519
  start-page: 8277
  year: 2011
  ident: ref_64
  article-title: A Facile Route to Sonochemical Synthesis of Magnetic Iron Oxide (Fe3O4) Nanoparticles
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2011.03.108
– volume: 3
  start-page: 891
  year: 2004
  ident: ref_56
  article-title: Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1251
– volume: 118
  start-page: 14929
  year: 2014
  ident: ref_127
  article-title: Novel Fe3O4@ZnO@mSiO2 Nanocarrier for Targeted Drug Delivery and Controllable Release with Microwave Irradiation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp502820r
– volume: 173
  start-page: 152
  year: 2016
  ident: ref_70
  article-title: Effects of Crystal Size and Sphere Diameter on Static Magnetic and Electromagnetic Properties of Monodisperse Fe3O4 Microspheres
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2016.01.053
– ident: ref_94
  doi: 10.1007/978-3-642-20620-7
– volume: 258
  start-page: 6326
  year: 2012
  ident: ref_153
  article-title: A Simple Method to Synthesize Modified Fe3O4 for the Removal of Organic Pollutants on Water Surface
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.03.031
– volume: 4
  start-page: 218
  year: 2008
  ident: ref_130
  article-title: Iridium-Complex-Functionalized Fe3O4/SiO2 Core/Shell Nanoparticles: A Facile Three-in-One System in Magnetic Resonance Imaging, Luminescence Imaging, and Photodynamic Therapy
  publication-title: Small
  doi: 10.1002/smll.200700283
– volume: 15
  start-page: 1354
  year: 2012
  ident: ref_75
  article-title: Facile Sonochemical Synthesis of High-Moment Magnetite (Fe3O4) Nanocube
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-012-1354-y
– volume: 7
  start-page: 12192
  year: 2015
  ident: ref_77
  article-title: A Novel Approach for the Synthesis of Ultrathin Silica-Coated Iron Oxide Nanocubes Decorated with Silver Nanodots (Fe3O4/SiO2/Ag) and Their Superior Catalytic Reduction of 4-Nitroaniline
  publication-title: Nanoscale
  doi: 10.1039/C5NR02680F
– volume: 22
  start-page: 5306
  year: 2010
  ident: ref_168
  article-title: Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm101532x
– volume: 13
  start-page: 2287
  year: 2020
  ident: ref_38
  article-title: Green Biosynthesis of Superparamagnetic Magnetite Fe3O4 Nanoparticles and Biomedical Applications in Targeted Anticancer Drug Delivery System: A Review
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2018.04.013
– volume: 10
  start-page: 2436
  year: 2016
  ident: ref_120
  article-title: Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07249
– volume: 387
  start-page: 205
  year: 2012
  ident: ref_148
  article-title: Removal of Heavy Metal Ions from Aqueous Solution Using Fe3O4 –SiO2-Poly(1,2-Diaminobenzene) Core–Shell Sub-Micron Particles
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.07.066
– volume: 131
  start-page: 454
  year: 2009
  ident: ref_50
  article-title: Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8086906
– volume: 132
  start-page: 12540
  year: 2010
  ident: ref_85
  article-title: Supercritical Fluid Synthesis of Magnetic Hexagonal Nanoplatelets of Magnetite
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105079y
– volume: 428
  start-page: 340
  year: 2017
  ident: ref_100
  article-title: Porous Fe3O4-SiO2 Core-Shell Nanorods as High-Performance MRI Contrast Agent and Drug Delivery Vehicle
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.12.079
– volume: 19
  start-page: 33
  year: 2007
  ident: ref_1
  article-title: Superparamagnetic Colloids: Controlled Synthesis and Niche Applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600674
– volume: 256
  start-page: 123752
  year: 2020
  ident: ref_29
  article-title: Nanostructured Maghemite and Magnetite and Their Nanocomposites with Graphene Oxide for Photocatalytic Degradation of Methylene Blue
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.123752
– volume: 18
  start-page: 6856
  year: 2018
  ident: ref_122
  article-title: Fe2+ Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02722
– volume: 114
  start-page: 16382
  year: 2010
  ident: ref_126
  article-title: Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106685q
– volume: 76
  start-page: 054406
  year: 2007
  ident: ref_96
  article-title: Magnetic Irreversibility and the Verwey Transition in Nanocrystalline Bacterial Magnetite
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.054406
– volume: 1
  start-page: 1602
  year: 2016
  ident: ref_104
  article-title: Maltol-Functionalized Fe3O4 Nanoparticles as T2 Magnetic Resonance Imaging Contrast Agents
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201600240
– volume: 166
  start-page: 8
  year: 2011
  ident: ref_34
  article-title: Magnetic Fluid Hyperthermia: Focus on Superparamagnetic Iron Oxide Nanoparticles
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2011.04.003
– volume: 22
  start-page: E145
  year: 2010
  ident: ref_169
  article-title: Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200904285
– volume: 22
  start-page: 7845
  year: 2012
  ident: ref_170
  article-title: Nitrogen-Doped Carbon-Encapsulation of Fe3O4 for Increased Reversibility in Li+ Storage by the Conversion Reaction
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30422h
– volume: 2
  start-page: 103
  year: 2018
  ident: ref_30
  article-title: Evaluating Spinel Ferrites MFe2O4 (M = Cu, Mg, Zn) as Photoanodes for Solar Water Oxidation: Prospects and Limitations
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C7SE00448F
– volume: 55
  start-page: 22
  year: 2009
  ident: ref_15
  article-title: Synthesis, Properties, and Applications of Magnetic Iron Oxide Nanoparticles
  publication-title: Prog. Cryst. Growth Charact. Mater.
  doi: 10.1016/j.pcrysgrow.2008.08.003
– volume: 311
  start-page: 187
  year: 2007
  ident: ref_114
  article-title: Magnetic Particle Hyperthermia—Biophysical Limitations of a Visionary Tumour Therapy
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.10.1156
– volume: 25
  start-page: 3485
  year: 2013
  ident: ref_128
  article-title: Dual Surface-Functionalized Janus Nanocomposites of Polystyrene/Fe3O4@SiO2 for Simultaneous Tumor Cell Targeting and Stimulus-Induced Drug Release
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301376
– volume: 95
  start-page: 286
  year: 2018
  ident: ref_5
  article-title: Anisotropic Magnetic Nanoparticles: A Review of Their Properties, Syntheses and Potential Applications
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2018.03.003
– volume: 9
  start-page: 8880
  year: 2017
  ident: ref_156
  article-title: Self-Assembled and One-Step Synthesis of Interconnected 3D Network of Fe3O4/Reduced Graphene Oxide Nanosheets Hybrid for High-Performance Supercapacitor Electrode
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14704
– ident: ref_7
  doi: 10.3390/s17102300
– volume: 18
  start-page: S2919
  year: 2006
  ident: ref_115
  article-title: Magnetic Particle Hyperthermia: Nanoparticle Magnetism and Materials Development for Cancer Therapy
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/18/38/S26
– volume: 283
  start-page: 52
  year: 2019
  ident: ref_137
  article-title: In-Situ Electrochemically Deposited Fe3O4 Nanoparticles onto Graphene Nanosheets as Amperometric Amplifier for Electrochemical Biosensing Applications
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.11.152
– volume: 44
  start-page: 2782
  year: 2005
  ident: ref_48
  article-title: Monodisperse Magnetic Single-Crystal Ferrite Microspheres
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200462551
– volume: 46
  start-page: 6329
  year: 2007
  ident: ref_65
  article-title: Controlled Synthesis and Chemical Conversions of FeO Nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200701694
– volume: 162
  start-page: 512
  year: 2019
  ident: ref_141
  article-title: One-Pot Solvothermal Synthesis of Carboxylatopillar[5]Arene-Modified Fe3O4 Magnetic Nanoparticles for Ultrafast Separation of Cationic Dyes
  publication-title: Dyes Pigments
  doi: 10.1016/j.dyepig.2018.10.061
– volume: 131
  start-page: 10637
  year: 2009
  ident: ref_87
  article-title: Porous Hollow Fe3O4 Nanoparticles for Targeted Delivery and Controlled Release of Cisplatin
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903300f
– volume: 36
  start-page: 1564
  year: 2004
  ident: ref_92
  article-title: Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.1984
– volume: 14
  start-page: 15977
  year: 2013
  ident: ref_45
  article-title: Tuning the Magnetic Properties of Nanoparticles
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms140815977
– volume: 177
  start-page: 105
  year: 2019
  ident: ref_138
  article-title: Fe3O4@PDA Immune Probe-Based Signal Amplification in Surface Plasmon Resonance (SPR) Biosensing of Human Cardiac Troponin I
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2019.01.053
– volume: 16
  start-page: 3489
  year: 2004
  ident: ref_66
  article-title: Size-Controlled Synthesis of Magnetite Nanoparticles in the Presence of Polyelectrolytes
  publication-title: Chem. Mater.
  doi: 10.1021/cm049205n
– volume: 21
  start-page: 5079
  year: 2009
  ident: ref_46
  article-title: Tuning the Grain Size and Particle Size of Superparamagnetic Fe3O4 Microparticles
  publication-title: Chem. Mater.
  doi: 10.1021/cm901618m
– volume: 19
  start-page: 2615
  year: 2009
  ident: ref_107
  article-title: Superparamagnetic Hyperbranched Polyglycerol-Grafted Fe3O4 Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent: An In Vitro Assessment
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801689
– volume: 3
  start-page: 1755
  year: 2020
  ident: ref_121
  article-title: Origin and Shell-Driven Optimization of the Heating Power in Core/Shell Bimagnetic Nanoparticles
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b02449
– volume: 194
  start-page: 185
  year: 1999
  ident: ref_112
  article-title: Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in Vitro
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(98)00558-7
– ident: ref_16
  doi: 10.3390/nano6110221
– volume: 103
  start-page: 07D526
  year: 2008
  ident: ref_49
  article-title: Synthesis and Magnetic Properties of Monodisperse Magnetite Nanocubes
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2833820
– ident: ref_36
  doi: 10.3390/magnetochemistry6040068
– volume: 3
  start-page: 225
  year: 2011
  ident: ref_91
  article-title: Size-Dependent Properties of Magnetic Iron Oxide Nanocrystals
  publication-title: Nanoscale
  doi: 10.1039/C0NR00521E
– volume: 509
  start-page: 7639
  year: 2011
  ident: ref_24
  article-title: Synthesis, Morphology, Microstructure and Magnetic Properties of Hematite Submicron Particles
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2011.04.117
– volume: 213
  start-page: 39
  year: 2019
  ident: ref_146
  article-title: Highly Efficient Removal of Heavy Metal Ions by Carboxymethyl Cellulose-Immobilized Fe3O4 Nanoparticles Prepared via High-Gravity Technology
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.02.067
– ident: ref_11
  doi: 10.20944/preprints201804.0104.v1
– volume: 3
  start-page: 6785
  year: 2020
  ident: ref_131
  article-title: Lipid-Encapsulated Fe3O4 Nanoparticles for Multimodal Magnetic Resonance/Fluorescence Imaging
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c01193
– volume: 115
  start-page: 14469
  year: 2011
  ident: ref_167
  article-title: Fe3O4–Graphene Nanocomposites with Improved Lithium Storage and Magnetism Properties
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp201666s
– volume: 9
  start-page: 8130
  year: 2009
  ident: ref_6
  article-title: Magnetic Nanoparticle Sensors
  publication-title: Sensors
  doi: 10.3390/s91008130
– volume: 40
  start-page: 5801
  year: 2007
  ident: ref_63
  article-title: Magnetic Properties of Variable-Sized Fe3O4 Nanoparticles Synthesized from Non-Aqueous Homogeneous Solutions of Polyols
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/40/19/001
– volume: 183
  start-page: 571
  year: 2016
  ident: ref_155
  article-title: Fe3O4/Carbon Nanocomposite: Investigation of Capacitive & Magnetic Properties for Supercapacitor Applications
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2016.09.016
– volume: 529
  start-page: 239
  year: 2017
  ident: ref_71
  article-title: A Novel Approach for Rapid Green Synthesis of Nearly Mono-Disperse Iron Oxide Magnetic Nanocubes with Remarkable Surface Magnetic Anisotropy Density for Enhancing Hyperthermia Performance
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2017.06.008
– volume: 18
  start-page: 15676
  year: 2012
  ident: ref_124
  article-title: Poly(Acrylic Acid)-Modified Fe3O4 Microspheres for Magnetic-Targeted and PH-Triggered Anticancer Drug Delivery
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201202433
– volume: 11
  start-page: 6370
  year: 2017
  ident: ref_76
  article-title: Standardizing Size- and Shape-Controlled Synthesis of Monodisperse Magnetite (Fe3O4) Nanocrystals by Identifying and Exploiting Effects of Organic Impurities
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02752
– volume: 589
  start-page: 217
  year: 2021
  ident: ref_152
  article-title: Efficient Removal of Various Coexisting Organic Pollutants in Water Based on β-Cyclodextrin Polymer Modified Flower-like Fe3O4 Particles
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.12.109
– volume: 477
  start-page: 736
  year: 2009
  ident: ref_82
  article-title: Template-Free Solvothermal Synthesis and Magnetic Properties of Novel Single-Crystalline Magnetite Nanoplates
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.10.105
– volume: 3
  start-page: 3585
  year: 2020
  ident: ref_109
  article-title: Synthesis of Ultrasmall Fe3O4 Nanoparticles as T1–T2 Dual-Modal Magnetic Resonance Imaging Contrast Agents in Rabbit Hepatic Tumors
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00306
– volume: 45
  start-page: 9646
  year: 2019
  ident: ref_143
  article-title: One-Step Solvothermal Synthesis of Fe3O4@Carbon Composites and Their Application in Removing of Cr (VI) and Congo Red
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.11.132
– volume: 33
  start-page: 2373
  year: 2016
  ident: ref_14
  article-title: Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-016-1958-5
– volume: 19
  start-page: 755
  year: 2007
  ident: ref_134
  article-title: Micro- and Nano- Magnetic Particles for Applications in Biosensing
  publication-title: Electroanalysis
  doi: 10.1002/elan.200603785
– volume: 47
  start-page: 5130
  year: 2011
  ident: ref_17
  article-title: Fe3O4 Nanostructures: Synthesis, Growth Mechanism, Properties and Applications
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc05862a
– volume: 45
  start-page: 23548
  year: 2019
  ident: ref_142
  article-title: Magnetic Fe3O4 Nanocubes Coated by SiO2 and TiO2 Layers as Nanocomposites for Cr (VI) up Taking from Wastewater
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.08.064
– volume: 249
  start-page: 353
  year: 2013
  ident: ref_22
  article-title: Control of Hematite Nanoparticle Size and Shape by the Chemical Precipitation Method
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.08.042
– volume: 46
  start-page: 6108
  year: 2010
  ident: ref_72
  article-title: Heating Rate Influence on the Synthesis of Iron Oxide Nanoparticles: The Case of Decanoic Acid
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01179g
– volume: 18
  start-page: 16517
  year: 2012
  ident: ref_88
  article-title: Hollow-Core Magnetic Colloidal Nanocrystal Clusters with Ligand-Exchanged Surface Modification as Delivery Vehicles for Targeted and Stimuli-Responsive Drug Release
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201202249
– volume: 14
  start-page: 9662
  year: 2020
  ident: ref_89
  article-title: Hollow Magnetic Nanocatalysts Drive Starvation–Chemodynamic–Hyperthermia Synergistic Therapy for Tumor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00910
– volume: 45
  start-page: 5085
  year: 2016
  ident: ref_37
  article-title: Bioinspired Synthesis of Magnetite Nanoparticles
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00432F
– volume: 472
  start-page: 50
  year: 2009
  ident: ref_86
  article-title: Facile One-Pot Synthesis of Multi-Armed Fe3O4 Nanocrystals
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.04.019
– volume: 13
  start-page: 1983
  year: 2003
  ident: ref_59
  article-title: Solvothermal Reduction Synthesis and Characterization of Superparamagnetic Magnetite Nanoparticles
  publication-title: J. Mater. Chem.
  doi: 10.1039/b305526d
– volume: 47
  start-page: 2208
  year: 2008
  ident: ref_68
  article-title: Controlling Colloidal Superparticle Growth Through Solvophobic Interactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200705049
– volume: 21
  start-page: 1761
  year: 2009
  ident: ref_81
  article-title: Synthesis, Magnetic Characterization, and Sensing Applications of Novel Dextran-Coated Iron Oxide Nanorods
  publication-title: Chem. Mater.
  doi: 10.1021/cm8031863
– volume: 120
  start-page: 2530
  year: 2018
  ident: ref_8
  article-title: Magnetic Nanoparticles as Versatile Carriers for Enzymes Immobilization: A Review
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.09.025
– ident: ref_58
  doi: 10.3390/met8020107
– volume: 17
  start-page: 526
  year: 2010
  ident: ref_151
  article-title: Sono-Assisted Preparation of Highly-Efficient Peroxidase-like Fe3O4 Magnetic Nanoparticles for Catalytic Removal of Organic Pollutants with H2O2
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2009.11.001
– volume: 3
  start-page: 3276
  year: 2011
  ident: ref_162
  article-title: (David) One-Pot Synthesis of Uniform Fe3O4 Nanospheres with Carbon Matrix Support for Improved Lithium Storage Capabilities
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am201079z
– volume: 115
  start-page: 13603
  year: 2011
  ident: ref_166
  article-title: Porous Fe3O4/Carbon Core/Shell Nanorods: Synthesis and Electromagnetic Properties
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp202473y
– volume: 19
  start-page: 157
  year: 2016
  ident: ref_25
  article-title: Magnetite Nanoparticles for Cancer Diagnosis, Treatment, and Treatment Monitoring: Recent Advances
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.08.022
– volume: 90
  start-page: 6749
  year: 2018
  ident: ref_43
  article-title: Specific Detection of Proteins Using Exceptionally Responsive Magnetic Particles
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b00593
– volume: 18
  start-page: 267
  year: 2002
  ident: ref_113
  article-title: Magnetically Mediated Hyperthermia: Current Status and Future Directions
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730110108785
– volume: 12
  start-page: 3127
  year: 2012
  ident: ref_106
  article-title: Water-Dispersible Ferrimagnetic Iron Oxide Nanocubes with Extremely High R2 Relaxivity for Highly Sensitive in Vivo MRI of Tumors
  publication-title: Nano Lett.
  doi: 10.1021/nl3010308
– volume: 38
  start-page: 2532
  year: 2009
  ident: ref_4
  article-title: Magnetic Nanoparticles: Synthesis, Functionalization, and Applications in Bioimaging and Magnetic Energy Storage
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b815548h
– volume: 11
  start-page: 12121
  year: 2017
  ident: ref_117
  article-title: Asymmetric Assembling of Iron Oxide Nanocubes for Improving Magnetic Hyperthermia Performance
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05182
– volume: 21
  start-page: 2133
  year: 2009
  ident: ref_97
  article-title: Inorganic Nanoparticles for MRI Contrast Agents
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802366
– volume: 32
  start-page: 4867
  year: 2011
  ident: ref_101
  article-title: The Behavior after Intravenous Injection in Mice of Multiwalled Carbon Nanotube/Fe3O4 Hybrid MRI Contrast Agents
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.03.024
– volume: 129
  start-page: 14166
  year: 2007
  ident: ref_67
  article-title: Supercrystalline Colloidal Particles from Artificial Atoms
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076494i
– volume: 157
  start-page: A1158
  year: 2010
  ident: ref_165
  article-title: Nanocrystalline Magnetite: Synthetic Crystallite Size Control and Resulting Magnetic and Electrochemical Properties
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3478667
– volume: 25
  start-page: 2909
  year: 2013
  ident: ref_171
  article-title: 3D Graphene Foams Cross-Linked with Pre-Encapsulated Fe3O4 Nanospheres for Enhanced Lithium Storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300445
– volume: 31
  start-page: 5450
  year: 2019
  ident: ref_119
  article-title: Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling to Improve Magnetic Hyperthermia Heat Losses
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b00728
– volume: 2
  start-page: 4426
  year: 2014
  ident: ref_44
  article-title: One Pot Synthesis of Monodisperse Water Soluble Iron Oxide Nanocrystals with High Values of the Specific Absorption Rate
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c4tb00061g
– volume: 41
  start-page: 134003
  year: 2008
  ident: ref_78
  article-title: Uniform and Water Stable Magnetite Nanoparticles with Diameters around the Monodomain–Multidomain Limit
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/41/13/134003
– volume: 281
  start-page: 102165
  year: 2020
  ident: ref_18
  article-title: Preparation, Surface Functionalization and Application of Fe3O4 Magnetic Nanoparticles
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2020.102165
– volume: 46
  start-page: 2523
  year: 2010
  ident: ref_51
  article-title: Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2010.2046907
– volume: 157
  start-page: A60
  year: 2009
  ident: ref_163
  article-title: Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and A-Fe2O3 for Rechargeable Batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3254160
– volume: 51
  start-page: 085002
  year: 2018
  ident: ref_80
  article-title: Controlled Synthesis and Enhanced Tunnelling Magnetoresistance in Oriented Fe3O4 Assemblies
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/aaa697
– volume: 9
  start-page: 1450
  year: 2013
  ident: ref_13
  article-title: Chemical Design of Biocompatible Iron Oxide Nanoparticles for Medical Applications
  publication-title: Small
  doi: 10.1002/smll.201202111
– volume: 77
  start-page: 012411
  year: 2008
  ident: ref_21
  article-title: Magnetism and the Verwey Transition in Fe3O4 under Pressure
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.012411
– ident: ref_139
  doi: 10.3390/mi11030302
– volume: 8
  start-page: 19475
  year: 2016
  ident: ref_157
  article-title: Fe3O4@Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05415
– volume: 124
  start-page: 8204
  year: 2002
  ident: ref_54
  article-title: Size-Controlled Synthesis of Magnetite Nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja026501x
– volume: 12
  start-page: 2060
  year: 2010
  ident: ref_83
  article-title: Direct Hydrothermal Synthesis of Single-Crystalline Triangular Fe3O4 Nanoprisms
  publication-title: CrystEngComm
  doi: 10.1039/b926780h
– volume: 113
  start-page: 13593
  year: 2009
  ident: ref_61
  article-title: Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp902953t
– volume: 46
  start-page: 1222
  year: 2007
  ident: ref_2
  article-title: Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200602866
SSID ssj0000913810
Score 2.6606991
SecondaryResourceType review_article
Snippet Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 11301
SubjectTerms Biocompatibility
biomedical applications
Contrast agents
core–shell structures
Crystal structure
Energy storage
Fe3O4 nanoparticles
Hyperthermia
Iron
Magnetic fields
magnetic properties
Magnetism
Morphology
nanocomposites
Nanomaterials
Nanoparticles
Semiconductors
surface functionalization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (ODIN)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hxIEeEI9WDS-5EkitStRNYmKbG0WseoEi0UrcIj_LSiigXRaJf8-MY1bJAfXCLYp9SGY8j88efwNwQIQrwVci176WObejkCtpynykKxUEZgzO2dhsQlxeypsbddVr9UU1YR09cCe4H0E7W_qae6M5r4Q3krrdYNy1olZaRe-LWU8PTEUfrAqiruoq3SvE9XQejKlFVaDPLgYxKFL1D_LLYXVkL9yM12Et5YnstPu-DVjy7SZ86LEHbsJGsssZ-5rIo79twXzsq9-codNENJyK3k7YdWSJnSO0PmLXzy0mfbMJPl7ofy1dYmRXtCU_JW5VHJ9Pg7aejTHidRuF6armEdOtY7SLRY2N2Gnv6Psj_B2f_zn7lafWCrmlDga58laUlit9jBaMkEeMhKmVK7XGBCZYz0NA8aEWtXCFQUjjR9woQ9xTiluuq0-w3N63_jMwZwrMeWxd8SB5YaTWBDFr54IIXnmXwfdXYTc28Y5T-4u7BvEHqabpqyaDw8Xsh45v4415P0lviznEkh1f4Nppknib_62dDHZftd4k0501CPAk4jyMFBl8WQyj0dFJim79_ZzmKIwwZS1VBmKwWgYfNBxpJ7eRvluV8ljWYvs9_mAHVksqson1NbuwjKvJ78GKfXqczKb70SZeAJpKFTU
  priority: 102
  providerName: Directory of Open Access Journals
Title Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications
URI https://www.proquest.com/docview/2608086002
https://www.proquest.com/docview/2691462689
https://pubmed.ncbi.nlm.nih.gov/PMC9285867
https://doaj.org/article/fadc2e64eba4437eb8eb00617c769a92
Volume 11
WOSCitedRecordID wos000742020400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLQd6AFpADZSVkUAC0Yg83NjmglrUFRy6RBSk5RQ5frQrVdmyYSv13zOT9S6bA1y4JbGlWPZ4_M3D3wC8JMIV73IRa1fImJvEx0rWWZzoXHmBiMFa0xWbEOOxnExUGRxubUirXOnETlHbmSEf-TvE3RLhN27gD9c_Y6oaRdHVUEJjC7aJqYwPYPvkdFx-XXtZiPVSpsky4z1H-57iwggx8hR1d9o7izrK_h7O7GdJbhw7owf_O-CHcD8ATna8lJBduOOaPdjZoCHcg92wwVv2OrBQv3kEi5HLv3CG2hfN6pA9956dd3SzC7TRD9n5bYPosZ3i45m-aOg2JCvJtz8nklZsX8y9No6N8OhcehzDnc9DphvLyB1GFZLY8UYM_TF8H51--_gpDjUaYkOlEGLljMgMV_oIVQHaTiIRdaFspjUiIW8c9x7nH8VBC5vWaBu5hNeqJhIrxQ3X-RMYNLPG7QOzdYrgyRQ595KntdSabNXCWi-8U85G8Ha1WpUJBOZUR-OqQkOG1rbaXNsIXq17Xy-JO_7S74QWft2H6La7D7P5RRWmt_LamswV3NWa81y4WlLJJQR_RhRKqyyCg5UMVEEHtNUfAYjgxboZdy-FZHTjZgvqo_CoygqpIhA9cesNqN_STC87HnCVySNZiKf__vkzuJdRHk6XgnMAA5QT9xzumptf03Y-hC0xkcOwbYadRwLfys9n5Y_fvd8nNg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIlyAFqoCBRYJCqBqEVib727SAiVR9SoTYjUIpWTWe-jREJOsAmof4rfyIwfIT7ArQdukXfsWOtvZ77dnf0G4AkJrngXiUC7WAbc9HygZBoGPR0pL5AxWGvKYhNiPJZnZ2qyBr-aszCUVtn4xNJR25mhNfIXyLsl0m8cwK_n3wKqGkW7q00JjQoWR-7iJ07ZilfDd_h9d8Nw8P707WFQVxUIDIn3B8oZERqu9D6CF9m-6Ik0VjbUGmO3N457L3Ge5J0Wtp8im3c9nqqUZJcUN1xH-NwrsM4R7LID65PhaPJpuapDKpt4d5VhH0WqR_vQSGmiPsaKfiv2lSUCWry2nZW5EuYGN_-3DroFN2pCzQ6qEbAJay7bgusrMotbsFk7sII9rVW2n92GxcBFHzjD6DKbN9mBL9lJKae7yF2xx04uMmTHxRR_jvR5Rqc92YT2LnISocX2Re61cWyA1KBaUa3PtO4xnVlGy31UAYodrOQI3IGPl9IZ29DJZpm7C8ymfSSHJo64l7yfSq1pLh5b64V3ytkuPG_QkZhaoJ3qhHxNcKJGWEpWsdSF3aX1vBIm-YvdGwLa0obkxMsLs_w8qbs38dqa0MXcpZrzSLhUUkkpJLdGxEqrsAs7DeaS2scVyR_AdeHxshm9E2056czNFmSjMBSHsVRdEC14t16o3ZJNv5Q65yqU-zIW9_7954_g2uHp6Dg5Ho6P7sNGSDlHZbrRDnQQM-4BXDU_vk-L_GE9WBl8vmz4_waFb4Ai
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDaHxAGyAVhhgJCaBWLQ08WIbCaHBiKjGSqUNaTwFxz9GJZSWhoL2r_HXcZcfpXmAtz3wVsWXNHI-3322z98BPCHBFe9iEWiXyICb0AdK5lEQ6lh5gYzBWlMVmxDDoTw7U6MV-NWehaG0ytYnVo7aTgytke8h75ZIv3EA7_kmLWJ0mL6afguoghTttLblNGqIHLmLnzh9K18ODvFb70RR-vb0zbugqTAQGBLyD5QzIjJc6X0EMjJ_EYo8UTbSGuO4N457L3HO5J0Wtp8js3chz1VOEkyKG65jfO4VWENKznGMrY0Gx6NPixUeUtzEu-ts-zhWIe1JI72J-xg3-p04WJUL6HDcbobmUshLb_7PnXULbjREmx3UI2MDVlyxCdeX5Bc3YaNxbCV72qhvP7sN89TFHzjDqDOZtlmDL9hJJbM7n7lyl51cFMiayzH-PNbnBZ0CZSPa05iROC22z2deG8dSpAz1Smtz1nWX6cIyWgakylDsYCl34A58vJTOuAurxaRwW8Bs3kfSaJKYe8n7udSa5uiJtV54p5ztwfMWKZlphNupfsjXDCdwhKtsGVc92FlYT2vBkr_YvSbQLWxIZry6MJmdZ033Zl5bE7mEu1xzHguXSyo1haTXiERpFfVgu8Vf1vi-MvsDvh48XjSj16KtKF24yZxsFIboKJGqB6ID9c4LdVuK8ZdK_1xFcl8m4t6___wRXEPMZ-8Hw6P7sB5RKlKVhbQNqwgZ9wCumh_fx-XsYTNuGXy-bPT_Bt57iOI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fe3O4+Nanoparticles%3A+Structures%2C+Synthesis%2C+Magnetic+Properties%2C+Surface+Functionalization%2C+and+Emerging+Applications&rft.jtitle=Applied+sciences&rft.au=Minh+Dang+Nguyen&rft.au=Hung-Vu%2C+Tran&rft.au=Xu%2C+Shoujun&rft.au=Lee%2C+T+Randall&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=23&rft.spage=11301&rft_id=info:doi/10.3390%2Fapp112311301&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon