Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications
Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and...
Uložené v:
| Vydané v: | Applied sciences Ročník 11; číslo 23; s. 11301 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.12.2021
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and nanoarchitectures have been synthesized, and the related properties have been studied with targets in multiple fields of applications, including biomedical devices, electronic devices, environmental solutions, and energy applications. Tailoring the sizes, geometries, magnetic properties, and functionalities is an important task that determines the performance of Fe3O4 NPs in many applications. Therefore, this review focuses on the crucial aspects of Fe3O4 NPs, including structures, synthesis, magnetic properties, and strategies for functionalization, which jointly determine the application performance of various Fe3O4 NP-based systems. We first summarize the recent advances in the synthesis of magnetite NPs with different sizes, morphologies, and magnetic properties. We also highlight the importance of synthetic factors in controlling the structures and properties of NPs, such as the uniformity of sizes, morphology, surfaces, and magnetic properties. Moreover, emerging applications using Fe3O4 NPs and their functionalized nanostructures are also highlighted with a focus on applications in biomedical technologies, biosensing, environmental remedies for water treatment, and energy storage and conversion devices. |
|---|---|
| AbstractList | Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and nanoarchitectures have been synthesized, and the related properties have been studied with targets in multiple fields of applications, including biomedical devices, electronic devices, environmental solutions, and energy applications. Tailoring the sizes, geometries, magnetic properties, and functionalities is an important task that determines the performance of Fe3O4 NPs in many applications. Therefore, this review focuses on the crucial aspects of Fe3O4 NPs, including structures, synthesis, magnetic properties, and strategies for functionalization, which jointly determine the application performance of various Fe3O4 NP-based systems. We first summarize the recent advances in the synthesis of magnetite NPs with different sizes, morphologies, and magnetic properties. We also highlight the importance of synthetic factors in controlling the structures and properties of NPs, such as the uniformity of sizes, morphology, surfaces, and magnetic properties. Moreover, emerging applications using Fe3O4 NPs and their functionalized nanostructures are also highlighted with a focus on applications in biomedical technologies, biosensing, environmental remedies for water treatment, and energy storage and conversion devices. Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and nanoarchitectures have been synthesized, and the related properties have been studied with targets in multiple fields of applications, including biomedical devices, electronic devices, environmental solutions, and energy applications. Tailoring the sizes, geometries, magnetic properties, and functionalities is an important task that determines the performance of Fe3O4 NPs in many applications. Therefore, this review focuses on the crucial aspects of Fe3O4 NPs, including structures, synthesis, magnetic properties, and strategies for functionalization, which jointly determine the application performance of various Fe3O4 NP-based systems. We first summarize the recent advances in the synthesis of magnetite NPs with different sizes, morphologies, and magnetic properties. We also highlight the importance of synthetic factors in controlling the structures and properties of NPs, such as the uniformity of sizes, morphology, surfaces, and magnetic properties. Moreover, emerging applications using Fe3O4 NPs and their functionalized nanostructures are also highlighted with a focus on applications in biomedical technologies, biosensing, environmental remedies for water treatment, and energy storage and conversion devices.Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and nanoarchitectures have been synthesized, and the related properties have been studied with targets in multiple fields of applications, including biomedical devices, electronic devices, environmental solutions, and energy applications. Tailoring the sizes, geometries, magnetic properties, and functionalities is an important task that determines the performance of Fe3O4 NPs in many applications. Therefore, this review focuses on the crucial aspects of Fe3O4 NPs, including structures, synthesis, magnetic properties, and strategies for functionalization, which jointly determine the application performance of various Fe3O4 NP-based systems. We first summarize the recent advances in the synthesis of magnetite NPs with different sizes, morphologies, and magnetic properties. We also highlight the importance of synthetic factors in controlling the structures and properties of NPs, such as the uniformity of sizes, morphology, surfaces, and magnetic properties. Moreover, emerging applications using Fe3O4 NPs and their functionalized nanostructures are also highlighted with a focus on applications in biomedical technologies, biosensing, environmental remedies for water treatment, and energy storage and conversion devices. |
| Author | Xu, Shoujun Tran, Hung-Vu Nguyen, Minh Dang Lee, T. Randall |
| Author_xml | – sequence: 1 givenname: Minh Dang orcidid: 0000-0002-2569-8279 surname: Nguyen fullname: Nguyen, Minh Dang – sequence: 2 givenname: Hung-Vu orcidid: 0000-0001-8536-2737 surname: Tran fullname: Tran, Hung-Vu – sequence: 3 givenname: Shoujun surname: Xu fullname: Xu, Shoujun – sequence: 4 givenname: T. Randall orcidid: 0000-0001-9584-8861 surname: Lee fullname: Lee, T. Randall |
| BookMark | eNptkk1v1DAQhiNUREvpjR8QiQuHXfBX7JgDUlV1oVKhSIWzNXEmqVdZO9hJpfLr8X4ItRW-eDTz-NU7nnldHPngsSjeUvKBc00-wjhSyjilnNAXxQkjSi65oOroUXxcnKW0JvloymtKXhXHvKqFYLI-KeYV8htRfgcfRoiTswOmT-XtFGc7zRHTorx98NMdJpfDb9B7zEz5I4YRM72rz7EDi-Vq9nZywcPg_sA2WJTg2_Jyg7F3vi_Px3FwdldJb4qXHQwJzw73afFrdfnz4uvy-ubL1cX59dJWjE5LjVYxKzRURNRaS0VUI3XLAHitO4ui63I_skNQLW1UxZGIRjeUaK6FFcBPi6u9bhtgbcboNhAfTABndokQe3No2nTQWoZSYANCcIVNjQ0hkiqrpAbNstbnvdY4NxtsLfopwvBE9GnFuzvTh3ujWV3VUmWB9weBGH7PmCazccniMIDHMCfDpKZC5qnojL57hq7DHPPXbilSk1oSsnW02FM2hpQidv_MUGK262Eer0fG2TPcumk3j2zXDf9_9BfZA78j |
| CitedBy_id | crossref_primary_10_1002_pc_27937 crossref_primary_10_1016_j_colsurfa_2023_132689 crossref_primary_10_1080_14786419_2024_2443488 crossref_primary_10_1007_s43440_023_00467_3 crossref_primary_10_1016_j_matchemphys_2024_128882 crossref_primary_10_1016_j_sna_2025_116807 crossref_primary_10_3390_magnetochemistry9060157 crossref_primary_10_1002_mawe_202200291 crossref_primary_10_1016_j_electacta_2025_147049 crossref_primary_10_32628_IJSRST2512126 crossref_primary_10_3390_bios13090851 crossref_primary_10_1016_j_apsusc_2025_163528 crossref_primary_10_1016_j_apcato_2025_207049 crossref_primary_10_1016_j_cap_2025_03_013 crossref_primary_10_1007_s11270_025_08364_6 crossref_primary_10_1016_j_molstruc_2024_141017 crossref_primary_10_3390_molecules30030676 crossref_primary_10_1016_j_nxmate_2025_100927 crossref_primary_10_1016_j_pmatsci_2024_101267 crossref_primary_10_1021_acs_inorgchem_5c03293 crossref_primary_10_1002_slct_202502387 crossref_primary_10_1007_s10854_025_14422_w crossref_primary_10_1016_j_ceramint_2024_08_421 crossref_primary_10_1007_s42823_024_00808_z crossref_primary_10_1016_j_eurpolymj_2024_112870 crossref_primary_10_1186_s12870_025_06423_y crossref_primary_10_1002_advs_202404254 crossref_primary_10_1016_j_jmmm_2024_171847 crossref_primary_10_1039_D3NH00412K crossref_primary_10_1007_s42247_024_00849_0 crossref_primary_10_1016_j_apsusc_2024_161873 crossref_primary_10_1007_s10948_025_07003_9 crossref_primary_10_3390_en18112767 crossref_primary_10_3390_foods12091882 crossref_primary_10_18321_cpc21_3_147_157 crossref_primary_10_1039_D3NR05737B crossref_primary_10_1016_j_colsurfa_2024_133144 crossref_primary_10_1016_j_ijhydene_2025_150114 crossref_primary_10_1016_j_jallcom_2025_179956 crossref_primary_10_1002_adom_202401002 crossref_primary_10_1016_j_inoche_2024_112466 crossref_primary_10_1021_acsanm_5c03013 crossref_primary_10_1016_j_colsurfa_2024_134912 crossref_primary_10_1016_j_inoche_2023_111999 crossref_primary_10_3390_app14156750 crossref_primary_10_1088_1361_6463_ace373 crossref_primary_10_1007_s42250_025_01333_w crossref_primary_10_3390_magnetochemistry9030087 crossref_primary_10_1016_j_inoche_2025_114452 crossref_primary_10_1016_j_mtla_2024_102135 crossref_primary_10_1002_eem2_12880 crossref_primary_10_1007_s12596_025_02870_w crossref_primary_10_1007_s00289_023_05072_1 crossref_primary_10_1007_s10924_024_03190_z crossref_primary_10_1038_s41598_025_03867_y crossref_primary_10_1016_j_eurpolymj_2024_113135 crossref_primary_10_1016_j_mseb_2025_118497 crossref_primary_10_1016_j_carbpol_2025_123834 crossref_primary_10_1016_j_ijbiomac_2024_138694 crossref_primary_10_1039_D5RA02609A crossref_primary_10_1007_s11164_024_05295_5 crossref_primary_10_3390_polym15132836 crossref_primary_10_3390_ijms24054480 crossref_primary_10_1002_cphc_202500065 crossref_primary_10_1002_open_202500214 crossref_primary_10_1007_s11468_023_02167_3 crossref_primary_10_3390_magnetochemistry10010002 crossref_primary_10_1016_j_bsecv_2025_100448 crossref_primary_10_1016_j_inoche_2024_112357 crossref_primary_10_3390_pharmaceutics16121578 crossref_primary_10_1016_j_rechem_2025_102066 crossref_primary_10_1007_s40033_025_00896_9 crossref_primary_10_1016_j_nanoen_2024_110169 crossref_primary_10_1063_5_0245200 crossref_primary_10_1016_j_solidstatesciences_2024_107699 crossref_primary_10_3390_catal12111425 crossref_primary_10_1007_s10098_023_02578_0 crossref_primary_10_3390_s24217042 crossref_primary_10_1002_jobm_202400153 crossref_primary_10_1016_j_ceramint_2025_03_207 crossref_primary_10_1134_S003602442304012X crossref_primary_10_1002_slct_202400959 crossref_primary_10_1002_jbm_a_37817 crossref_primary_10_1002_slct_202303580 crossref_primary_10_3390_nano12234171 crossref_primary_10_1002_adhm_202303103 crossref_primary_10_1038_s41598_024_70896_4 crossref_primary_10_3390_ma18122841 crossref_primary_10_3390_bios15020116 crossref_primary_10_1007_s11696_025_04310_2 crossref_primary_10_1016_j_ceramint_2024_09_007 crossref_primary_10_1080_10934529_2024_2424084 crossref_primary_10_1016_j_jcis_2025_02_007 crossref_primary_10_3390_magnetochemistry8100129 crossref_primary_10_1007_s10924_022_02663_3 crossref_primary_10_1002_slct_202303305 crossref_primary_10_1016_j_matchemphys_2024_129136 crossref_primary_10_1016_j_jece_2025_117145 crossref_primary_10_1016_j_seppur_2025_134754 crossref_primary_10_1002_pc_70404 crossref_primary_10_1002_slct_202402628 crossref_primary_10_1080_1023666X_2025_2506744 crossref_primary_10_3390_mi16010068 crossref_primary_10_4028_p_Qz5qTs crossref_primary_10_1016_j_physb_2024_416820 crossref_primary_10_3390_nano12111786 crossref_primary_10_1007_s13369_024_09273_2 crossref_primary_10_1016_j_jallcom_2024_176755 crossref_primary_10_1016_j_bioactmat_2024_11_035 crossref_primary_10_1080_10408347_2023_2298328 crossref_primary_10_1007_s10876_024_02712_y crossref_primary_10_3390_catal15040376 crossref_primary_10_1016_j_ceramint_2024_11_006 crossref_primary_10_1016_j_cdc_2024_101175 crossref_primary_10_3390_pharmaceutics14051000 crossref_primary_10_1088_1742_6596_2518_1_012003 crossref_primary_10_1155_2023_5447693 crossref_primary_10_1039_D3RA03509C crossref_primary_10_1007_s41127_024_00087_5 crossref_primary_10_1016_j_talanta_2023_125508 crossref_primary_10_1016_j_partic_2024_02_006 crossref_primary_10_1016_j_solener_2025_113859 crossref_primary_10_3390_nano13071265 crossref_primary_10_3390_met14121324 crossref_primary_10_1016_j_colsurfa_2025_136430 crossref_primary_10_1016_j_hybadv_2023_100110 crossref_primary_10_3390_jcs9010032 crossref_primary_10_3390_magnetochemistry9040110 crossref_primary_10_3390_pharmaceutics15061702 crossref_primary_10_3390_physchem3030020 crossref_primary_10_1016_j_optlastec_2024_111761 crossref_primary_10_1016_j_jics_2024_101142 crossref_primary_10_1016_j_ceramint_2024_11_118 crossref_primary_10_1002_pc_29621 crossref_primary_10_1016_j_addma_2023_103518 crossref_primary_10_1016_j_jsamd_2025_100936 crossref_primary_10_1021_acsomega_5c05934 crossref_primary_10_1039_D5MA00291E crossref_primary_10_1134_S1061933X22600452 crossref_primary_10_1016_j_heliyon_2025_e43012 crossref_primary_10_1016_j_cej_2025_166825 crossref_primary_10_1002_cmdc_202400586 crossref_primary_10_1016_j_matchemphys_2024_129836 crossref_primary_10_1021_acscentsci_5c00519 crossref_primary_10_55713_jmmm_v35i4_2437 crossref_primary_10_1016_j_matpr_2023_11_134 crossref_primary_10_1109_TNB_2022_3187344 crossref_primary_10_1002_jccs_70055 crossref_primary_10_1007_s11051_024_06137_6 crossref_primary_10_1016_j_heliyon_2024_e38948 crossref_primary_10_1109_TIE_2023_3279522 crossref_primary_10_1016_j_compbiolchem_2025_108435 crossref_primary_10_3390_nano14020177 crossref_primary_10_3390_nano14110902 crossref_primary_10_1016_j_jmmm_2025_172770 crossref_primary_10_1039_D4SD00292J crossref_primary_10_1002_elan_202300422 crossref_primary_10_1016_j_ijbiomac_2025_144006 crossref_primary_10_1088_1402_4896_ad7f08 crossref_primary_10_1007_s11581_025_06517_5 crossref_primary_10_1016_j_poly_2025_117641 crossref_primary_10_18321_cpc22_3_231_239 crossref_primary_10_1016_j_jddst_2025_106953 crossref_primary_10_1039_D4RA00375F crossref_primary_10_1007_s11664_024_10953_w crossref_primary_10_1080_17425247_2025_2506829 crossref_primary_10_1007_s11356_023_27096_w crossref_primary_10_3390_pharmaceutics16040473 crossref_primary_10_54392_nnxt2341 crossref_primary_10_3390_catal15090839 crossref_primary_10_3390_w15173077 crossref_primary_10_1134_S106378262460219X crossref_primary_10_1016_j_apsusc_2025_164028 crossref_primary_10_1016_j_jece_2025_115558 crossref_primary_10_1016_j_ijpharm_2025_125956 crossref_primary_10_1016_j_jtice_2024_105620 crossref_primary_10_1002_adma_202513609 crossref_primary_10_1007_s11356_023_26411_9 crossref_primary_10_1016_j_cryobiol_2024_104890 crossref_primary_10_1016_j_cej_2024_155405 crossref_primary_10_1016_j_ceja_2025_100843 crossref_primary_10_3390_bios12070490 crossref_primary_10_2174_0115734137336579241008054823 crossref_primary_10_1007_s41939_023_00352_9 crossref_primary_10_1134_S106378262460222X crossref_primary_10_1016_j_inoche_2024_113384 crossref_primary_10_1038_s41598_024_70072_8 crossref_primary_10_1002_jctb_7500 crossref_primary_10_1016_j_apsusc_2024_160816 crossref_primary_10_1007_s40843_024_2978_8 crossref_primary_10_1007_s12596_024_02204_2 crossref_primary_10_1016_j_aej_2024_12_040 crossref_primary_10_1016_j_jallcom_2023_170967 crossref_primary_10_1016_j_talanta_2025_127957 crossref_primary_10_1002_cssc_202501055 crossref_primary_10_1016_j_inoche_2024_112290 crossref_primary_10_1155_2023_3848456 crossref_primary_10_1088_1402_4896_add796 crossref_primary_10_1007_s11090_024_10458_8 crossref_primary_10_1016_j_materresbull_2024_113197 crossref_primary_10_4028_p_3WfP8T crossref_primary_10_1016_j_ijbiomac_2025_144902 crossref_primary_10_1080_10242422_2024_2400074 crossref_primary_10_1007_s10895_025_04225_x crossref_primary_10_14233_ajchem_2025_34339 crossref_primary_10_1016_j_jorganchem_2025_123776 crossref_primary_10_1007_s12033_024_01052_6 crossref_primary_10_1016_j_cej_2023_146198 crossref_primary_10_3390_recycling10030099 crossref_primary_10_1016_j_jhazmat_2024_137081 crossref_primary_10_1016_j_jwpe_2025_107898 crossref_primary_10_1016_j_matpr_2023_07_017 crossref_primary_10_1016_j_jorganchem_2025_123786 crossref_primary_10_1016_j_colsurfa_2023_132037 crossref_primary_10_1016_j_inoche_2025_115279 crossref_primary_10_1016_j_bej_2024_109533 crossref_primary_10_3390_solids5010011 crossref_primary_10_3390_ma17236006 crossref_primary_10_1007_s10971_025_06931_1 crossref_primary_10_1039_D4RA05990E crossref_primary_10_1002_slct_202301694 crossref_primary_10_1016_j_ceramint_2023_12_403 crossref_primary_10_1088_1361_6528_ad6b33 crossref_primary_10_1007_s00414_024_03402_0 crossref_primary_10_3390_ma15051786 crossref_primary_10_4028_p_IvadF6 crossref_primary_10_1038_s41598_025_11998_5 crossref_primary_10_1016_j_ijoes_2025_100956 crossref_primary_10_1038_s41598_023_41441_6 crossref_primary_10_1007_s10661_025_14287_w crossref_primary_10_1021_acsami_4c18591 crossref_primary_10_3390_batteries9060327 crossref_primary_10_1016_j_rechem_2025_102474 crossref_primary_10_1002_smll_202307750 crossref_primary_10_1016_j_jece_2024_114252 crossref_primary_10_1002_smll_202402940 crossref_primary_10_1016_j_mseb_2025_118774 crossref_primary_10_3390_cryst15090829 crossref_primary_10_1007_s00253_025_13589_w crossref_primary_10_1063_5_0245293 crossref_primary_10_1016_j_carbpol_2025_123679 crossref_primary_10_3390_eng6070149 crossref_primary_10_1016_j_foodchem_2024_138564 crossref_primary_10_1016_j_jwpe_2022_103001 crossref_primary_10_1016_j_physb_2025_416960 crossref_primary_10_1016_j_colsurfa_2024_135018 crossref_primary_10_3390_polym14153008 crossref_primary_10_3390_jcs9080434 crossref_primary_10_1016_j_jpcs_2023_111563 crossref_primary_10_3390_photonics12060555 crossref_primary_10_1089_adt_2025_026 crossref_primary_10_1080_10407782_2024_2350027 crossref_primary_10_3390_pharmaceutics16050639 crossref_primary_10_1016_j_chemosphere_2024_144047 crossref_primary_10_1007_s11164_023_05223_z crossref_primary_10_1016_j_cej_2023_144546 crossref_primary_10_1016_j_nxmate_2025_101148 crossref_primary_10_1039_D2DT01422J crossref_primary_10_1016_j_jwpe_2023_104246 crossref_primary_10_62063_ecb_22 crossref_primary_10_3390_app15020857 crossref_primary_10_3390_ma17246064 crossref_primary_10_1007_s10853_025_11375_7 crossref_primary_10_1039_D3RA08804A crossref_primary_10_1007_s10904_023_02966_5 crossref_primary_10_1016_j_surfin_2023_103371 crossref_primary_10_1007_s10904_025_03788_3 crossref_primary_10_1016_j_poly_2024_117311 crossref_primary_10_3390_pharmaceutics17070844 crossref_primary_10_1088_1361_6528_ad8203 crossref_primary_10_1016_j_ijbiomac_2025_147169 crossref_primary_10_1002_slct_202401013 crossref_primary_10_3390_nano13081342 crossref_primary_10_1021_acs_langmuir_4c02495 crossref_primary_10_3390_magnetochemistry9010012 crossref_primary_10_1002_anbr_202300035 crossref_primary_10_1007_s42247_025_01195_5 crossref_primary_10_1515_revic_2024_0117 crossref_primary_10_3390_cryst14121028 crossref_primary_10_1007_s11015_025_01958_9 crossref_primary_10_1007_s10876_025_02861_8 crossref_primary_10_1016_j_envres_2025_120911 crossref_primary_10_3390_nano15151200 crossref_primary_10_3390_ma15093394 crossref_primary_10_1016_j_jenvman_2025_126509 crossref_primary_10_1007_s11270_025_07781_x crossref_primary_10_1016_j_ultsonch_2023_106371 crossref_primary_10_1016_j_jallcom_2023_172038 crossref_primary_10_1016_j_ceramint_2025_02_049 crossref_primary_10_1002_ppsc_202400168 crossref_primary_10_1016_j_jpowsour_2024_235785 crossref_primary_10_1080_10406638_2022_2112713 crossref_primary_10_1021_acsami_5c00830 crossref_primary_10_1038_s41598_025_12170_9 crossref_primary_10_1016_j_cej_2025_162641 crossref_primary_10_1111_1751_7915_70183 crossref_primary_10_3389_fenrg_2023_1220587 crossref_primary_10_1016_j_bioadv_2023_213309 crossref_primary_10_3390_ijms232314764 crossref_primary_10_1016_j_jtice_2023_104774 crossref_primary_10_1038_s41598_023_28725_7 crossref_primary_10_1039_D4RA02939A crossref_primary_10_1039_D5TB00682A crossref_primary_10_1016_j_seta_2023_103102 crossref_primary_10_4028_p_bQTX02 crossref_primary_10_3390_encyclopedia2040125 crossref_primary_10_1021_acsami_5c13454 crossref_primary_10_1039_D4RA00629A crossref_primary_10_1016_j_scitotenv_2022_159497 crossref_primary_10_1007_s40199_025_00568_9 crossref_primary_10_1039_D2RA07238F crossref_primary_10_1002_chem_202201861 crossref_primary_10_1016_j_jmmm_2024_172062 crossref_primary_10_1007_s13399_024_05976_6 crossref_primary_10_1007_s12035_024_04215_3 crossref_primary_10_1016_j_scenv_2024_100187 crossref_primary_10_1002_aoc_7282 crossref_primary_10_1016_j_optmat_2023_114816 crossref_primary_10_1134_S1061934824701296 crossref_primary_10_1007_s11468_024_02579_9 crossref_primary_10_1016_j_arabjc_2024_106080 crossref_primary_10_1021_acs_jafc_5c04862 crossref_primary_10_3390_s23073508 crossref_primary_10_1016_j_ceramint_2025_05_002 crossref_primary_10_1002_jssc_202400274 crossref_primary_10_1080_10406638_2022_2094422 crossref_primary_10_3390_nano14191586 crossref_primary_10_1016_j_heliyon_2024_e40747 crossref_primary_10_1016_j_surfin_2023_102930 crossref_primary_10_3390_ma17102279 crossref_primary_10_3390_min14121256 crossref_primary_10_3390_ma15020503 crossref_primary_10_1088_1402_4896_ace8d3 crossref_primary_10_3390_ma15238328 crossref_primary_10_3762_bjnano_13_126 crossref_primary_10_1007_s11696_024_03821_8 crossref_primary_10_1007_s10544_024_00698_y crossref_primary_10_3390_molecules30153313 crossref_primary_10_1016_j_jpcs_2025_113108 crossref_primary_10_1016_j_jenvman_2024_122571 crossref_primary_10_1016_j_heliyon_2024_e31352 crossref_primary_10_1016_j_sab_2022_106412 crossref_primary_10_1002_celc_202500230 crossref_primary_10_1016_j_scowo_2025_100083 crossref_primary_10_1016_j_inoche_2024_112160 crossref_primary_10_1007_s42114_024_00893_8 crossref_primary_10_1002_pssa_202200786 crossref_primary_10_1002_marc_202400521 crossref_primary_10_1016_j_jmmm_2024_171781 crossref_primary_10_1016_j_inoche_2024_113254 crossref_primary_10_1016_j_inoche_2025_114764 crossref_primary_10_3390_molecules30132879 crossref_primary_10_1080_1536383X_2025_2533940 crossref_primary_10_3389_fbioe_2024_1450694 crossref_primary_10_1007_s13762_025_06692_y crossref_primary_10_1088_2053_1591_ac9819 crossref_primary_10_1109_JSEN_2024_3472281 crossref_primary_10_1088_2053_1591_acf09d crossref_primary_10_3390_nano13050870 crossref_primary_10_3390_gels11080657 crossref_primary_10_1007_s00604_025_07129_6 crossref_primary_10_1016_j_seppur_2023_124054 crossref_primary_10_1039_D4RA07232D crossref_primary_10_1038_s41598_022_19030_w crossref_primary_10_1002_aoc_70299 crossref_primary_10_3390_magnetochemistry9040092 |
| Cites_doi | 10.1063/1.30264 10.1021/nn301046w 10.1021/acs.jpcc.6b02006 10.1016/j.jallcom.2009.11.204 10.1021/nn2048137 10.1021/ja0692478 10.1016/j.jcis.2018.10.060 10.1039/c1jm11845e 10.1039/c2cs15337h 10.1039/c1cc13218k 10.1016/j.matchemphys.2021.124505 10.1039/C5NR09235C 10.1016/j.aca.2010.11.053 10.1002/adfm.201404354 10.1039/c0jm00159g 10.1002/aoc.4634 10.1021/acsabm.9b01244 10.1039/C7NR01541K 10.7150/thno.5366 10.1002/wnan.36 10.1021/jp211986a 10.1016/j.cej.2012.01.016 10.1002/adfm.201101371 10.1021/acsanm.9b01867 10.1002/anie.200700197 10.3390/ma9090771 10.1016/j.phrs.2009.12.012 10.1021/acsnano.9b01281 10.1002/jrs.1056 10.1021/ja0380852 10.1021/cr068445e 10.1021/acs.jpcc.7b10528 10.1155/2019/8457383 10.1021/acsomega.7b01312 10.1021/jp075133m 10.1016/j.matlet.2019.127187 10.1038/144327b0 10.1021/ac503966u 10.1002/3527602097 10.1016/j.snb.2015.08.027 10.1016/j.apsusc.2017.11.053 10.1021/jp1084982 10.1016/j.jhazmat.2011.07.033 10.1016/j.cej.2020.124269 10.1016/j.jhazmat.2020.124560 10.1002/gch2.201700078 10.1021/acsanm.0c02048 10.1021/cm802978z 10.3390/nano5010063 10.1103/RevModPhys.29.279 10.1016/j.mtcomm.2020.101368 10.1002/smll.200901403 10.1021/acsanm.0c03198 10.1021/acsami.7b10923 10.1002/adma.201906539 10.1002/anie.200460715 10.1021/acsaem.8b00770 10.1149/1945-7111/abd928 10.1021/acsami.9b15501 10.1016/j.apsusc.2014.08.193 10.1039/c0cc00246a 10.3390/ma11020324 10.1016/j.tsf.2011.03.108 10.1038/nmat1251 10.1021/jp502820r 10.1016/j.matchemphys.2016.01.053 10.1007/978-3-642-20620-7 10.1016/j.apsusc.2012.03.031 10.1002/smll.200700283 10.1007/s11051-012-1354-y 10.1039/C5NR02680F 10.1021/cm101532x 10.1016/j.arabjc.2018.04.013 10.1021/acsnano.5b07249 10.1016/j.jcis.2012.07.066 10.1021/ja8086906 10.1021/ja105079y 10.1016/j.jmmm.2016.12.079 10.1002/adma.200600674 10.1016/j.matchemphys.2020.123752 10.1021/acs.nanolett.8b02722 10.1021/jp106685q 10.1103/PhysRevB.76.054406 10.1002/slct.201600240 10.1016/j.cis.2011.04.003 10.1002/adma.200904285 10.1039/c2jm30422h 10.1039/C7SE00448F 10.1016/j.pcrysgrow.2008.08.003 10.1016/j.jmmm.2006.10.1156 10.1002/adma.201301376 10.1016/j.pmatsci.2018.03.003 10.1021/acsami.6b14704 10.3390/s17102300 10.1088/0953-8984/18/38/S26 10.1016/j.snb.2018.11.152 10.1002/anie.200462551 10.1002/anie.200701694 10.1016/j.dyepig.2018.10.061 10.1021/ja903300f 10.1002/sia.1984 10.3390/ijms140815977 10.1016/j.colsurfb.2019.01.053 10.1021/cm049205n 10.1021/cm901618m 10.1002/adfm.200801689 10.1021/acsanm.9b02449 10.1016/S0304-8853(98)00558-7 10.3390/nano6110221 10.1063/1.2833820 10.3390/magnetochemistry6040068 10.1039/C0NR00521E 10.1016/j.jallcom.2011.04.117 10.1016/j.carbpol.2019.02.067 10.20944/preprints201804.0104.v1 10.1021/acsanm.0c01193 10.1021/jp201666s 10.3390/s91008130 10.1088/0022-3727/40/19/001 10.1016/j.matchemphys.2016.09.016 10.1016/j.colsurfa.2017.06.008 10.1002/chem.201202433 10.1021/acsnano.7b02752 10.1016/j.jcis.2020.12.109 10.1016/j.jallcom.2008.10.105 10.1021/acsanm.0c00306 10.1016/j.ceramint.2018.11.132 10.1007/s11095-016-1958-5 10.1002/elan.200603785 10.1039/c0cc05862a 10.1016/j.ceramint.2019.08.064 10.1016/j.powtec.2013.08.042 10.1039/c0cc01179g 10.1002/chem.201202249 10.1021/acsnano.0c00910 10.1039/C6CS00432F 10.1016/j.jallcom.2008.04.019 10.1039/b305526d 10.1002/anie.200705049 10.1021/cm8031863 10.1016/j.ijbiomac.2018.09.025 10.3390/met8020107 10.1016/j.ultsonch.2009.11.001 10.1021/am201079z 10.1021/jp202473y 10.1016/j.mattod.2015.08.022 10.1021/acs.analchem.8b00593 10.1080/02656730110108785 10.1021/nl3010308 10.1039/b815548h 10.1021/acsnano.7b05182 10.1002/adma.200802366 10.1016/j.biomaterials.2011.03.024 10.1021/ja076494i 10.1149/1.3478667 10.1002/adma.201300445 10.1021/acs.chemmater.9b00728 10.1039/c4tb00061g 10.1088/0022-3727/41/13/134003 10.1016/j.cis.2020.102165 10.1109/TMAG.2010.2046907 10.1149/1.3254160 10.1088/1361-6463/aaa697 10.1002/smll.201202111 10.1103/PhysRevB.77.012411 10.3390/mi11030302 10.1021/acsami.6b05415 10.1021/ja026501x 10.1039/b926780h 10.1021/jp902953t 10.1002/anie.200602866 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/app112311301 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (ODIN) |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_fadc2e64eba4437eb8eb00617c769a92 PMC9285867 10_3390_app112311301 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c521t-9ec72c49a5048996707b69d2aa389fce4ff8106fea7d1b753e04b9b109394c4a3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 460 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742020400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 18:27:18 EDT 2025 Tue Nov 04 01:55:43 EST 2025 Wed Oct 01 13:34:22 EDT 2025 Mon Jun 30 07:28:23 EDT 2025 Sat Nov 29 07:13:16 EST 2025 Tue Nov 18 21:34:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c521t-9ec72c49a5048996707b69d2aa389fce4ff8106fea7d1b753e04b9b109394c4a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author Contributions: M.D.N., H.-V.T., S.X. and T.R.L. discussed, commented on, and wrote the manuscript. All authors have read and agreed to the published version of the manuscript. |
| ORCID | 0000-0001-8536-2737 0000-0001-9584-8861 0000-0002-2569-8279 |
| OpenAccessLink | https://www.proquest.com/docview/2608086002?pq-origsite=%requestingapplication% |
| PMID | 35844268 |
| PQID | 2608086002 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fadc2e64eba4437eb8eb00617c769a92 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9285867 proquest_miscellaneous_2691462689 proquest_journals_2608086002 crossref_primary_10_3390_app112311301 crossref_citationtrail_10_3390_app112311301 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_94 Bai (ref_109) 2020; 3 ref_139 Singamaneni (ref_3) 2011; 21 Wang (ref_103) 2020; 262 ref_11 Ge (ref_61) 2009; 113 Liu (ref_18) 2020; 281 Evans (ref_28) 1975; 24 Lisjak (ref_5) 2018; 95 Zhang (ref_148) 2012; 387 Jeong (ref_64) 2011; 519 Li (ref_83) 2010; 12 Ansari (ref_147) 2019; 33 Sinan (ref_155) 2016; 183 Hergt (ref_115) 2006; 18 ref_16 Guijarro (ref_30) 2018; 2 Zhu (ref_125) 2010; 6 Komaba (ref_163) 2009; 157 Mirabello (ref_37) 2016; 45 Zhang (ref_131) 2020; 3 Yang (ref_17) 2011; 47 Voros (ref_129) 2015; 25 Ban (ref_169) 2010; 22 Figuerola (ref_35) 2010; 62 Kolhatkar (ref_45) 2013; 14 Yang (ref_49) 2008; 103 Frey (ref_4) 2009; 38 Elsayed (ref_71) 2017; 529 Bohra (ref_19) 2019; 2019 Ren (ref_143) 2019; 45 ref_20 Li (ref_161) 2021; 265 Laurent (ref_12) 2008; 108 Gross (ref_31) 2016; 222 ref_123 Li (ref_99) 2013; 3 Ying (ref_89) 2020; 14 Dheyab (ref_110) 2020; 25 Wu (ref_9) 2020; 3 Costo (ref_78) 2008; 41 Li (ref_88) 2012; 18 Behbahani (ref_144) 2021; 410 Roca (ref_74) 2019; 13 Zhuang (ref_67) 2007; 129 Moroz (ref_113) 2002; 18 Zhu (ref_126) 2010; 114 Cheng (ref_87) 2009; 131 Bilal (ref_8) 2018; 120 Liu (ref_70) 2016; 173 Sun (ref_55) 2004; 126 Obaidat (ref_111) 2015; 5 Wang (ref_107) 2009; 19 Khalaf (ref_142) 2019; 45 Wei (ref_171) 2013; 25 ref_154 Kumar (ref_156) 2017; 9 Sun (ref_54) 2002; 124 Zhang (ref_140) 2011; 193 Li (ref_60) 2005; 44 Hou (ref_59) 2003; 13 Abbas (ref_75) 2012; 15 Chen (ref_162) 2011; 3 Wu (ref_101) 2011; 32 Su (ref_167) 2011; 115 Zhang (ref_141) 2019; 162 Si (ref_66) 2004; 16 Soni (ref_132) 2019; 2 Jeon (ref_98) 2021; 33 Gu (ref_135) 2015; 87 Zhang (ref_82) 2009; 477 Espinosa (ref_120) 2016; 10 Fang (ref_102) 2020; 3 Kim (ref_50) 2009; 131 Gu (ref_86) 2009; 472 Hou (ref_65) 2007; 46 Kang (ref_124) 2012; 18 Guardia (ref_72) 2010; 46 Qiao (ref_76) 2017; 11 Chen (ref_166) 2011; 115 Park (ref_56) 2004; 3 Ma (ref_170) 2012; 22 Jordan (ref_112) 1999; 194 Zhou (ref_159) 2018; 1 Wu (ref_136) 2011; 686 Rittikulsittichai (ref_69) 2016; 8 Li (ref_85) 2010; 132 Jeong (ref_1) 2007; 19 Fan (ref_157) 2016; 8 Xuan (ref_47) 2010; 20 Xu (ref_57) 2009; 21 ref_58 Hergt (ref_114) 2007; 311 Prozorov (ref_96) 2007; 76 Zhang (ref_105) 2020; 388 Ge (ref_53) 2007; 46 Zeng (ref_84) 2010; 46 Lavorato (ref_121) 2020; 3 Abbas (ref_77) 2015; 7 Fan (ref_146) 2019; 213 Zhou (ref_160) 2017; 9 Tadic (ref_23) 2014; 320 Lu (ref_2) 2007; 46 Kolhatkar (ref_42) 2017; 2 Klotz (ref_21) 2008; 77 Zhuang (ref_68) 2008; 47 Rehman (ref_29) 2020; 256 Niculaes (ref_117) 2017; 11 Soni (ref_133) 2021; 4 Colombo (ref_10) 2012; 41 Nath (ref_81) 2009; 21 Koh (ref_6) 2009; 9 Chen (ref_43) 2018; 90 Siregar (ref_39) 2021; 168 Supattarasakda (ref_22) 2013; 249 Chandra (ref_90) 2017; 9 Shebanova (ref_95) 2003; 34 Grosvenor (ref_92) 2004; 36 Chen (ref_152) 2021; 589 Lak (ref_122) 2018; 18 Hsing (ref_134) 2007; 19 Falahian (ref_149) 2018; 2 Zyuzin (ref_118) 2019; 11 Das (ref_40) 2016; 120 Caruntu (ref_63) 2007; 40 Zhu (ref_165) 2010; 157 Verwey (ref_32) 1939; 144 Krishnan (ref_51) 2010; 46 Panissod (ref_91) 2011; 3 Panjan (ref_24) 2011; 509 Hu (ref_150) 2010; 492 Zhou (ref_168) 2010; 22 Xin (ref_145) 2012; 184 Qiu (ref_127) 2014; 118 Dau (ref_137) 2019; 283 Roca (ref_93) 2007; 111 Chen (ref_138) 2019; 177 Gossuin (ref_26) 2009; 1 Tipsawat (ref_33) 2018; 446 Xuan (ref_46) 2009; 21 ref_36 Lee (ref_106) 2012; 12 Ninjbadgar (ref_108) 2011; 21 Sheng (ref_158) 2019; 536 Miles (ref_27) 1957; 29 Bae (ref_116) 2012; 6 Kovalenko (ref_73) 2007; 129 Wang (ref_128) 2013; 25 Behera (ref_164) 2011; 47 Nemati (ref_41) 2018; 122 Lai (ref_130) 2008; 4 Guardia (ref_44) 2014; 2 Guardia (ref_62) 2011; 115 Wang (ref_151) 2010; 17 Sun (ref_79) 2012; 116 Yew (ref_38) 2020; 13 Beg (ref_100) 2017; 428 Revia (ref_25) 2016; 19 Laurent (ref_34) 2011; 166 Ling (ref_13) 2013; 9 Teja (ref_15) 2009; 55 Na (ref_97) 2009; 21 Mitra (ref_80) 2018; 51 Deng (ref_48) 2005; 44 Bobo (ref_14) 2016; 33 Avugadda (ref_119) 2019; 31 Guardia (ref_52) 2012; 6 Clements (ref_104) 2016; 1 Zhu (ref_153) 2012; 258 ref_7 |
| References_xml | – volume: 24 start-page: 73 year: 1975 ident: ref_28 article-title: Experimental Studies of the Electrical Conductivity and Phase Transition in Fe3O4 publication-title: AIP Conf. Proc. doi: 10.1063/1.30264 – volume: 6 start-page: 5266 year: 2012 ident: ref_116 article-title: Chitosan Oligosaccharide-Stabilized Ferrimagnetic Iron Oxide Nanocubes for Magnetically Modulated Cancer Hyperthermia publication-title: ACS Nano doi: 10.1021/nn301046w – volume: 120 start-page: 10086 year: 2016 ident: ref_40 article-title: Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b02006 – volume: 492 start-page: 656 year: 2010 ident: ref_150 article-title: Synthesis of Monodisperse Fe3O4@silica Core–Shell Microspheres and Their Application for Removal of Heavy Metal Ions from Water publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.11.204 – volume: 6 start-page: 3080 year: 2012 ident: ref_52 article-title: Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment publication-title: ACS Nano doi: 10.1021/nn2048137 – volume: 129 start-page: 6352 year: 2007 ident: ref_73 article-title: Fatty Acid Salts as Stabilizers in Size- and Shape-Controlled Nanocrystal Synthesis: The Case of Inverse Spinel Iron Oxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0692478 – volume: 536 start-page: 235 year: 2019 ident: ref_158 article-title: Fe3O4 Nanospheres in Situ Decorated Graphene as High-Performance Anode for Asymmetric Supercapacitor with Impressive Energy Density publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.10.060 – volume: 21 start-page: 16819 year: 2011 ident: ref_3 article-title: Magnetic Nanoparticles: Recent Advances in Synthesis, Self-Assembly and Applications publication-title: J. Mater. Chem. doi: 10.1039/c1jm11845e – volume: 41 start-page: 4306 year: 2012 ident: ref_10 article-title: Biological Applications of Magnetic Nanoparticles publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15337h – volume: 47 start-page: 10371 year: 2011 ident: ref_164 article-title: Enhanced Rate Performance and Cyclic Stability of Fe3O4 –Graphene Nanocomposites for Li Ion Battery Anodes publication-title: Chem. Commun. doi: 10.1039/c1cc13218k – volume: 265 start-page: 124505 year: 2021 ident: ref_161 article-title: Construction of Ternary Core-Shell Fe3O4@BaTiO3/PVDF Nanocomposites with Enhanced Permittivity and Breakdown Strength for Energy Storage publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.124505 – volume: 8 start-page: 11851 year: 2016 ident: ref_69 article-title: Multi-Responsive Hybrid Particles: Thermo-, PH-, Photo-, and Magneto-Responsive Magnetic Hydrogel Cores with Gold Nanorod Optical Triggers publication-title: Nanoscale doi: 10.1039/C5NR09235C – volume: 686 start-page: 81 year: 2011 ident: ref_136 article-title: Magnetic Loading of Tyrosinase-Fe3O4/Mesoporous Silica Core/Shell Microspheres for High Sensitive Electrochemical Biosensing publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2010.11.053 – volume: 25 start-page: 1709 year: 2015 ident: ref_129 article-title: TPA Immobilization on Iron Oxide Nanocubes and Localized Magnetic Hyperthermia Accelerate Blood Clot Lysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201404354 – volume: 20 start-page: 5086 year: 2010 ident: ref_47 article-title: Facile Synthesis of Size-Controllable Monodispersed Ferrite Nanospheres publication-title: J. Mater. Chem. doi: 10.1039/c0jm00159g – volume: 33 start-page: e4634 year: 2019 ident: ref_147 article-title: Novel Fe3O4/Hydroxyapatite/β-Cyclodextrin Nanocomposite Adsorbent: Synthesis and Application in Heavy Metal Removal from Aqueous Solution publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.4634 – volume: 3 start-page: 1690 year: 2020 ident: ref_102 article-title: MRI Enhancement and Tumor Targeted Drug Delivery Using Zn2+-Doped Fe3O4 Core/Mesoporous Silica Shell Nanocomposites publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.9b01244 – volume: 9 start-page: 7858 year: 2017 ident: ref_90 article-title: Epitaxial Magnetite Nanorods with Enhanced Room Temperature Magnetic Anisotropy publication-title: Nanoscale doi: 10.1039/C7NR01541K – volume: 3 start-page: 595 year: 2013 ident: ref_99 article-title: Superparamagnetic Iron Oxide Nanoparticles as MRI Contrast Agents for Non-Invasive Stem Cell Labeling and Tracking publication-title: Theranostics doi: 10.7150/thno.5366 – volume: 1 start-page: 299 year: 2009 ident: ref_26 article-title: Magnetic Resonance Relaxation Properties of Superparamagnetic Particles publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.36 – volume: 116 start-page: 5476 year: 2012 ident: ref_79 article-title: Solvothermal Synthesis of Tunable Electroactive Magnetite Nanorods by Controlling the Side Reaction publication-title: J. Phys. Chem. C doi: 10.1021/jp211986a – volume: 184 start-page: 132 year: 2012 ident: ref_145 article-title: Highly Efficient Removal of Heavy Metal Ions by Amine-Functionalized Mesoporous Fe3O4 Nanoparticles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.01.016 – volume: 21 start-page: 4769 year: 2011 ident: ref_108 article-title: Epoxy Ring Opening Phase Transfer as a General Route to Water Dispersible Superparamagnetic Fe3O4 Nanoparticles and Their Application as Positive MRI Contrast Agents publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101371 – volume: 2 start-page: 7350 year: 2019 ident: ref_132 article-title: Near-Infrared- and Magnetic-Field-Responsive NaYF4:Er3+/Yb3+@SiO2@AuNP@Fe3O4 Nanocomposites for Hyperthermia Applications Induced by Fluorescence Resonance Energy Transfer and Surface Plasmon Absorption publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01867 – volume: 46 start-page: 4342 year: 2007 ident: ref_53 article-title: Superparamagnetic Magnetite Colloidal Nanocrystal Clusters publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200700197 – ident: ref_154 doi: 10.3390/ma9090771 – volume: 62 start-page: 126 year: 2010 ident: ref_35 article-title: From Iron Oxide Nanoparticles towards Advanced Iron-Based Inorganic Materials Designed for Biomedical Applications publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2009.12.012 – volume: 13 start-page: 7716 year: 2019 ident: ref_74 article-title: Precise Size Control of the Growth of Fe3O4 Nanocubes over a Wide Size Range Using a Rationally Designed One-Pot Synthesis publication-title: ACS Nano doi: 10.1021/acsnano.9b01281 – volume: 34 start-page: 845 year: 2003 ident: ref_95 article-title: Raman Study of Magnetite (Fe3O4): Laser-Induced Thermal Effects and Oxidation publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1056 – volume: 126 start-page: 273 year: 2004 ident: ref_55 article-title: Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0380852 – volume: 108 start-page: 2064 year: 2008 ident: ref_12 article-title: Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications publication-title: Chem. Rev. doi: 10.1021/cr068445e – volume: 122 start-page: 2367 year: 2018 ident: ref_41 article-title: Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b10528 – volume: 2019 start-page: e8457383 year: 2019 ident: ref_19 article-title: A Short Review on Verwey Transition in Nanostructured Fe3O4 Materials publication-title: J. Nanomater. doi: 10.1155/2019/8457383 – volume: 2 start-page: 8010 year: 2017 ident: ref_42 article-title: Magnetic Sensing Potential of Fe3O4 Nanocubes Exceeds That of Fe3O4 Nanospheres publication-title: ACS Omega doi: 10.1021/acsomega.7b01312 – volume: 111 start-page: 18577 year: 2007 ident: ref_93 article-title: Effect of Nature and Particle Size on Properties of Uniform Magnetite and Maghemite Nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/jp075133m – volume: 262 start-page: 127187 year: 2020 ident: ref_103 article-title: Magnetic Fe3O4@PVP Nanotubes with High Heating Efficiency for MRI-Guided Magnetic Hyperthermia Applications publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.127187 – volume: 144 start-page: 327 year: 1939 ident: ref_32 article-title: Electronic Conduction of Magnetite (Fe3O4) and Its Transition Point at Low Temperatures publication-title: Nature doi: 10.1038/144327b0 – volume: 87 start-page: 1876 year: 2015 ident: ref_135 article-title: Stabilized, Superparamagnetic Functionalized Graphene/Fe3O4@Au Nanocomposites for a Magnetically-Controlled Solid-State Electrochemiluminescence Biosensing Application publication-title: Anal. Chem. doi: 10.1021/ac503966u – ident: ref_20 doi: 10.1002/3527602097 – volume: 222 start-page: 95 year: 2016 ident: ref_31 article-title: Spinel Ferrite Oxide Semiconductor Gas Sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.08.027 – volume: 446 start-page: 287 year: 2018 ident: ref_33 article-title: Magnetite (Fe3O4) Nanoparticles: Synthesis, Characterization and Electrochemical Properties publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.11.053 – volume: 115 start-page: 390 year: 2011 ident: ref_62 article-title: Tuning the Size, the Shape, and the Magnetic Properties of Iron Oxide Nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/jp1084982 – volume: 193 start-page: 325 year: 2011 ident: ref_140 article-title: Novel Magnetic Fe3O4@C Nanoparticles as Adsorbents for Removal of Organic Dyes from Aqueous Solution publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.07.033 – volume: 388 start-page: 124269 year: 2020 ident: ref_105 article-title: Oxygen-Enriched Fe3O4/Gd2O3 Nanopeanuts for Tumor-Targeting MRI and ROS-Triggered Dual-Modal Cancer Therapy through Platinum (IV) Prodrugs Delivery publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124269 – volume: 410 start-page: 124560 year: 2021 ident: ref_144 article-title: Fe3O4-FeMoS4: Promise Magnetite LDH-Based Adsorbent for Simultaneous Removal of Pb (II), Cd (II), and Cu (II) Heavy Metal Ions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124560 – volume: 2 start-page: 1700078 year: 2018 ident: ref_149 article-title: Synthesis and Application of Polypyrrole/Fe3O4 Nanosize Magnetic Adsorbent for Efficient Separation of Hg2+ from Aqueous Solution publication-title: Glob. Chall. doi: 10.1002/gch2.201700078 – volume: 3 start-page: 9560 year: 2020 ident: ref_9 article-title: Magnetic-Nanosensor-Based Virus and Pathogen Detection Strategies before and during COVID-19 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c02048 – volume: 21 start-page: 1778 year: 2009 ident: ref_57 article-title: Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm802978z – volume: 5 start-page: 63 year: 2015 ident: ref_111 article-title: Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia publication-title: Nanomaterials doi: 10.3390/nano5010063 – volume: 29 start-page: 279 year: 1957 ident: ref_27 article-title: Dielectric Spectroscopy of Ferromagnetic Semiconductors publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.29.279 – volume: 25 start-page: 101368 year: 2020 ident: ref_110 article-title: Excellent Relaxivity and X-Ray Attenuation Combo Properties of Fe3O4@Au CSNPs Produced via Rapid Sonochemical Synthesis for MRI and CT Imaging publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2020.101368 – volume: 6 start-page: 471 year: 2010 ident: ref_125 article-title: Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres as Carriers for Drug Delivery publication-title: Small doi: 10.1002/smll.200901403 – volume: 4 start-page: 850 year: 2021 ident: ref_133 article-title: Smart YPO4:Er–Yb Nanophosphor for Optical Heating, Hyperthermia, Security Ink, Cancer Endoradiotherapy, and Uranyl Recovery publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c03198 – volume: 9 start-page: 40792 year: 2017 ident: ref_160 article-title: Multiple Interfacial Fe3O4@BaTiO3/P(VDF-HFP) Core–Shell–Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10923 – volume: 33 start-page: 1906539 year: 2021 ident: ref_98 article-title: Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives publication-title: Adv. Mater. doi: 10.1002/adma.201906539 – volume: 44 start-page: 123 year: 2005 ident: ref_60 article-title: Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe3O4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200460715 – volume: 1 start-page: 4599 year: 2018 ident: ref_159 article-title: Controlled Synthesis of Fe3O4 Nanospheres Coated with Nitrogen-Doped Carbon for High Performance Supercapacitors publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00770 – volume: 168 start-page: 027510 year: 2021 ident: ref_39 article-title: Review—A Pollutant Gas Sensor Based On Fe3O4 Nanostructures: A Review publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abd928 – volume: 11 start-page: 41957 year: 2019 ident: ref_118 article-title: Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy to Preserve Magnetic Heat Losses in an Intracellular Environment publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b15501 – volume: 320 start-page: 183 year: 2014 ident: ref_23 article-title: Magnetic Properties of Hematite (α-Fe2O3) Nanoparticles Prepared by Hydrothermal Synthesis Method publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.08.193 – volume: 46 start-page: 3920 year: 2010 ident: ref_84 article-title: One-Pot Synthesis of Fe3O4 Nanoprisms with Controlled Electrochemical Properties publication-title: Chem. Commun. doi: 10.1039/c0cc00246a – ident: ref_123 doi: 10.3390/ma11020324 – volume: 519 start-page: 8277 year: 2011 ident: ref_64 article-title: A Facile Route to Sonochemical Synthesis of Magnetic Iron Oxide (Fe3O4) Nanoparticles publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.03.108 – volume: 3 start-page: 891 year: 2004 ident: ref_56 article-title: Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals publication-title: Nat. Mater. doi: 10.1038/nmat1251 – volume: 118 start-page: 14929 year: 2014 ident: ref_127 article-title: Novel Fe3O4@ZnO@mSiO2 Nanocarrier for Targeted Drug Delivery and Controllable Release with Microwave Irradiation publication-title: J. Phys. Chem. C doi: 10.1021/jp502820r – volume: 173 start-page: 152 year: 2016 ident: ref_70 article-title: Effects of Crystal Size and Sphere Diameter on Static Magnetic and Electromagnetic Properties of Monodisperse Fe3O4 Microspheres publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2016.01.053 – ident: ref_94 doi: 10.1007/978-3-642-20620-7 – volume: 258 start-page: 6326 year: 2012 ident: ref_153 article-title: A Simple Method to Synthesize Modified Fe3O4 for the Removal of Organic Pollutants on Water Surface publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.03.031 – volume: 4 start-page: 218 year: 2008 ident: ref_130 article-title: Iridium-Complex-Functionalized Fe3O4/SiO2 Core/Shell Nanoparticles: A Facile Three-in-One System in Magnetic Resonance Imaging, Luminescence Imaging, and Photodynamic Therapy publication-title: Small doi: 10.1002/smll.200700283 – volume: 15 start-page: 1354 year: 2012 ident: ref_75 article-title: Facile Sonochemical Synthesis of High-Moment Magnetite (Fe3O4) Nanocube publication-title: J. Nanopart. Res. doi: 10.1007/s11051-012-1354-y – volume: 7 start-page: 12192 year: 2015 ident: ref_77 article-title: A Novel Approach for the Synthesis of Ultrathin Silica-Coated Iron Oxide Nanocubes Decorated with Silver Nanodots (Fe3O4/SiO2/Ag) and Their Superior Catalytic Reduction of 4-Nitroaniline publication-title: Nanoscale doi: 10.1039/C5NR02680F – volume: 22 start-page: 5306 year: 2010 ident: ref_168 article-title: Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries publication-title: Chem. Mater. doi: 10.1021/cm101532x – volume: 13 start-page: 2287 year: 2020 ident: ref_38 article-title: Green Biosynthesis of Superparamagnetic Magnetite Fe3O4 Nanoparticles and Biomedical Applications in Targeted Anticancer Drug Delivery System: A Review publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2018.04.013 – volume: 10 start-page: 2436 year: 2016 ident: ref_120 article-title: Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment publication-title: ACS Nano doi: 10.1021/acsnano.5b07249 – volume: 387 start-page: 205 year: 2012 ident: ref_148 article-title: Removal of Heavy Metal Ions from Aqueous Solution Using Fe3O4 –SiO2-Poly(1,2-Diaminobenzene) Core–Shell Sub-Micron Particles publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.07.066 – volume: 131 start-page: 454 year: 2009 ident: ref_50 article-title: Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8086906 – volume: 132 start-page: 12540 year: 2010 ident: ref_85 article-title: Supercritical Fluid Synthesis of Magnetic Hexagonal Nanoplatelets of Magnetite publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105079y – volume: 428 start-page: 340 year: 2017 ident: ref_100 article-title: Porous Fe3O4-SiO2 Core-Shell Nanorods as High-Performance MRI Contrast Agent and Drug Delivery Vehicle publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.12.079 – volume: 19 start-page: 33 year: 2007 ident: ref_1 article-title: Superparamagnetic Colloids: Controlled Synthesis and Niche Applications publication-title: Adv. Mater. doi: 10.1002/adma.200600674 – volume: 256 start-page: 123752 year: 2020 ident: ref_29 article-title: Nanostructured Maghemite and Magnetite and Their Nanocomposites with Graphene Oxide for Photocatalytic Degradation of Methylene Blue publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.123752 – volume: 18 start-page: 6856 year: 2018 ident: ref_122 article-title: Fe2+ Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02722 – volume: 114 start-page: 16382 year: 2010 ident: ref_126 article-title: Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery publication-title: J. Phys. Chem. C doi: 10.1021/jp106685q – volume: 76 start-page: 054406 year: 2007 ident: ref_96 article-title: Magnetic Irreversibility and the Verwey Transition in Nanocrystalline Bacterial Magnetite publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.054406 – volume: 1 start-page: 1602 year: 2016 ident: ref_104 article-title: Maltol-Functionalized Fe3O4 Nanoparticles as T2 Magnetic Resonance Imaging Contrast Agents publication-title: ChemistrySelect doi: 10.1002/slct.201600240 – volume: 166 start-page: 8 year: 2011 ident: ref_34 article-title: Magnetic Fluid Hyperthermia: Focus on Superparamagnetic Iron Oxide Nanoparticles publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2011.04.003 – volume: 22 start-page: E145 year: 2010 ident: ref_169 article-title: Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode publication-title: Adv. Mater. doi: 10.1002/adma.200904285 – volume: 22 start-page: 7845 year: 2012 ident: ref_170 article-title: Nitrogen-Doped Carbon-Encapsulation of Fe3O4 for Increased Reversibility in Li+ Storage by the Conversion Reaction publication-title: J. Mater. Chem. doi: 10.1039/c2jm30422h – volume: 2 start-page: 103 year: 2018 ident: ref_30 article-title: Evaluating Spinel Ferrites MFe2O4 (M = Cu, Mg, Zn) as Photoanodes for Solar Water Oxidation: Prospects and Limitations publication-title: Sustain. Energy Fuels doi: 10.1039/C7SE00448F – volume: 55 start-page: 22 year: 2009 ident: ref_15 article-title: Synthesis, Properties, and Applications of Magnetic Iron Oxide Nanoparticles publication-title: Prog. Cryst. Growth Charact. Mater. doi: 10.1016/j.pcrysgrow.2008.08.003 – volume: 311 start-page: 187 year: 2007 ident: ref_114 article-title: Magnetic Particle Hyperthermia—Biophysical Limitations of a Visionary Tumour Therapy publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2006.10.1156 – volume: 25 start-page: 3485 year: 2013 ident: ref_128 article-title: Dual Surface-Functionalized Janus Nanocomposites of Polystyrene/Fe3O4@SiO2 for Simultaneous Tumor Cell Targeting and Stimulus-Induced Drug Release publication-title: Adv. Mater. doi: 10.1002/adma.201301376 – volume: 95 start-page: 286 year: 2018 ident: ref_5 article-title: Anisotropic Magnetic Nanoparticles: A Review of Their Properties, Syntheses and Potential Applications publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.03.003 – volume: 9 start-page: 8880 year: 2017 ident: ref_156 article-title: Self-Assembled and One-Step Synthesis of Interconnected 3D Network of Fe3O4/Reduced Graphene Oxide Nanosheets Hybrid for High-Performance Supercapacitor Electrode publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14704 – ident: ref_7 doi: 10.3390/s17102300 – volume: 18 start-page: S2919 year: 2006 ident: ref_115 article-title: Magnetic Particle Hyperthermia: Nanoparticle Magnetism and Materials Development for Cancer Therapy publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/18/38/S26 – volume: 283 start-page: 52 year: 2019 ident: ref_137 article-title: In-Situ Electrochemically Deposited Fe3O4 Nanoparticles onto Graphene Nanosheets as Amperometric Amplifier for Electrochemical Biosensing Applications publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.11.152 – volume: 44 start-page: 2782 year: 2005 ident: ref_48 article-title: Monodisperse Magnetic Single-Crystal Ferrite Microspheres publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200462551 – volume: 46 start-page: 6329 year: 2007 ident: ref_65 article-title: Controlled Synthesis and Chemical Conversions of FeO Nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200701694 – volume: 162 start-page: 512 year: 2019 ident: ref_141 article-title: One-Pot Solvothermal Synthesis of Carboxylatopillar[5]Arene-Modified Fe3O4 Magnetic Nanoparticles for Ultrafast Separation of Cationic Dyes publication-title: Dyes Pigments doi: 10.1016/j.dyepig.2018.10.061 – volume: 131 start-page: 10637 year: 2009 ident: ref_87 article-title: Porous Hollow Fe3O4 Nanoparticles for Targeted Delivery and Controlled Release of Cisplatin publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903300f – volume: 36 start-page: 1564 year: 2004 ident: ref_92 article-title: Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds publication-title: Surf. Interface Anal. doi: 10.1002/sia.1984 – volume: 14 start-page: 15977 year: 2013 ident: ref_45 article-title: Tuning the Magnetic Properties of Nanoparticles publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms140815977 – volume: 177 start-page: 105 year: 2019 ident: ref_138 article-title: Fe3O4@PDA Immune Probe-Based Signal Amplification in Surface Plasmon Resonance (SPR) Biosensing of Human Cardiac Troponin I publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2019.01.053 – volume: 16 start-page: 3489 year: 2004 ident: ref_66 article-title: Size-Controlled Synthesis of Magnetite Nanoparticles in the Presence of Polyelectrolytes publication-title: Chem. Mater. doi: 10.1021/cm049205n – volume: 21 start-page: 5079 year: 2009 ident: ref_46 article-title: Tuning the Grain Size and Particle Size of Superparamagnetic Fe3O4 Microparticles publication-title: Chem. Mater. doi: 10.1021/cm901618m – volume: 19 start-page: 2615 year: 2009 ident: ref_107 article-title: Superparamagnetic Hyperbranched Polyglycerol-Grafted Fe3O4 Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent: An In Vitro Assessment publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801689 – volume: 3 start-page: 1755 year: 2020 ident: ref_121 article-title: Origin and Shell-Driven Optimization of the Heating Power in Core/Shell Bimagnetic Nanoparticles publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b02449 – volume: 194 start-page: 185 year: 1999 ident: ref_112 article-title: Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in Vitro publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(98)00558-7 – ident: ref_16 doi: 10.3390/nano6110221 – volume: 103 start-page: 07D526 year: 2008 ident: ref_49 article-title: Synthesis and Magnetic Properties of Monodisperse Magnetite Nanocubes publication-title: J. Appl. Phys. doi: 10.1063/1.2833820 – ident: ref_36 doi: 10.3390/magnetochemistry6040068 – volume: 3 start-page: 225 year: 2011 ident: ref_91 article-title: Size-Dependent Properties of Magnetic Iron Oxide Nanocrystals publication-title: Nanoscale doi: 10.1039/C0NR00521E – volume: 509 start-page: 7639 year: 2011 ident: ref_24 article-title: Synthesis, Morphology, Microstructure and Magnetic Properties of Hematite Submicron Particles publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2011.04.117 – volume: 213 start-page: 39 year: 2019 ident: ref_146 article-title: Highly Efficient Removal of Heavy Metal Ions by Carboxymethyl Cellulose-Immobilized Fe3O4 Nanoparticles Prepared via High-Gravity Technology publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.02.067 – ident: ref_11 doi: 10.20944/preprints201804.0104.v1 – volume: 3 start-page: 6785 year: 2020 ident: ref_131 article-title: Lipid-Encapsulated Fe3O4 Nanoparticles for Multimodal Magnetic Resonance/Fluorescence Imaging publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c01193 – volume: 115 start-page: 14469 year: 2011 ident: ref_167 article-title: Fe3O4–Graphene Nanocomposites with Improved Lithium Storage and Magnetism Properties publication-title: J. Phys. Chem. C doi: 10.1021/jp201666s – volume: 9 start-page: 8130 year: 2009 ident: ref_6 article-title: Magnetic Nanoparticle Sensors publication-title: Sensors doi: 10.3390/s91008130 – volume: 40 start-page: 5801 year: 2007 ident: ref_63 article-title: Magnetic Properties of Variable-Sized Fe3O4 Nanoparticles Synthesized from Non-Aqueous Homogeneous Solutions of Polyols publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/40/19/001 – volume: 183 start-page: 571 year: 2016 ident: ref_155 article-title: Fe3O4/Carbon Nanocomposite: Investigation of Capacitive & Magnetic Properties for Supercapacitor Applications publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2016.09.016 – volume: 529 start-page: 239 year: 2017 ident: ref_71 article-title: A Novel Approach for Rapid Green Synthesis of Nearly Mono-Disperse Iron Oxide Magnetic Nanocubes with Remarkable Surface Magnetic Anisotropy Density for Enhancing Hyperthermia Performance publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2017.06.008 – volume: 18 start-page: 15676 year: 2012 ident: ref_124 article-title: Poly(Acrylic Acid)-Modified Fe3O4 Microspheres for Magnetic-Targeted and PH-Triggered Anticancer Drug Delivery publication-title: Chem. Eur. J. doi: 10.1002/chem.201202433 – volume: 11 start-page: 6370 year: 2017 ident: ref_76 article-title: Standardizing Size- and Shape-Controlled Synthesis of Monodisperse Magnetite (Fe3O4) Nanocrystals by Identifying and Exploiting Effects of Organic Impurities publication-title: ACS Nano doi: 10.1021/acsnano.7b02752 – volume: 589 start-page: 217 year: 2021 ident: ref_152 article-title: Efficient Removal of Various Coexisting Organic Pollutants in Water Based on β-Cyclodextrin Polymer Modified Flower-like Fe3O4 Particles publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.12.109 – volume: 477 start-page: 736 year: 2009 ident: ref_82 article-title: Template-Free Solvothermal Synthesis and Magnetic Properties of Novel Single-Crystalline Magnetite Nanoplates publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.10.105 – volume: 3 start-page: 3585 year: 2020 ident: ref_109 article-title: Synthesis of Ultrasmall Fe3O4 Nanoparticles as T1–T2 Dual-Modal Magnetic Resonance Imaging Contrast Agents in Rabbit Hepatic Tumors publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00306 – volume: 45 start-page: 9646 year: 2019 ident: ref_143 article-title: One-Step Solvothermal Synthesis of Fe3O4@Carbon Composites and Their Application in Removing of Cr (VI) and Congo Red publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.11.132 – volume: 33 start-page: 2373 year: 2016 ident: ref_14 article-title: Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date publication-title: Pharm. Res. doi: 10.1007/s11095-016-1958-5 – volume: 19 start-page: 755 year: 2007 ident: ref_134 article-title: Micro- and Nano- Magnetic Particles for Applications in Biosensing publication-title: Electroanalysis doi: 10.1002/elan.200603785 – volume: 47 start-page: 5130 year: 2011 ident: ref_17 article-title: Fe3O4 Nanostructures: Synthesis, Growth Mechanism, Properties and Applications publication-title: Chem. Commun. doi: 10.1039/c0cc05862a – volume: 45 start-page: 23548 year: 2019 ident: ref_142 article-title: Magnetic Fe3O4 Nanocubes Coated by SiO2 and TiO2 Layers as Nanocomposites for Cr (VI) up Taking from Wastewater publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.08.064 – volume: 249 start-page: 353 year: 2013 ident: ref_22 article-title: Control of Hematite Nanoparticle Size and Shape by the Chemical Precipitation Method publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.08.042 – volume: 46 start-page: 6108 year: 2010 ident: ref_72 article-title: Heating Rate Influence on the Synthesis of Iron Oxide Nanoparticles: The Case of Decanoic Acid publication-title: Chem. Commun. doi: 10.1039/c0cc01179g – volume: 18 start-page: 16517 year: 2012 ident: ref_88 article-title: Hollow-Core Magnetic Colloidal Nanocrystal Clusters with Ligand-Exchanged Surface Modification as Delivery Vehicles for Targeted and Stimuli-Responsive Drug Release publication-title: Chem. Eur. J. doi: 10.1002/chem.201202249 – volume: 14 start-page: 9662 year: 2020 ident: ref_89 article-title: Hollow Magnetic Nanocatalysts Drive Starvation–Chemodynamic–Hyperthermia Synergistic Therapy for Tumor publication-title: ACS Nano doi: 10.1021/acsnano.0c00910 – volume: 45 start-page: 5085 year: 2016 ident: ref_37 article-title: Bioinspired Synthesis of Magnetite Nanoparticles publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00432F – volume: 472 start-page: 50 year: 2009 ident: ref_86 article-title: Facile One-Pot Synthesis of Multi-Armed Fe3O4 Nanocrystals publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.04.019 – volume: 13 start-page: 1983 year: 2003 ident: ref_59 article-title: Solvothermal Reduction Synthesis and Characterization of Superparamagnetic Magnetite Nanoparticles publication-title: J. Mater. Chem. doi: 10.1039/b305526d – volume: 47 start-page: 2208 year: 2008 ident: ref_68 article-title: Controlling Colloidal Superparticle Growth Through Solvophobic Interactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200705049 – volume: 21 start-page: 1761 year: 2009 ident: ref_81 article-title: Synthesis, Magnetic Characterization, and Sensing Applications of Novel Dextran-Coated Iron Oxide Nanorods publication-title: Chem. Mater. doi: 10.1021/cm8031863 – volume: 120 start-page: 2530 year: 2018 ident: ref_8 article-title: Magnetic Nanoparticles as Versatile Carriers for Enzymes Immobilization: A Review publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.09.025 – ident: ref_58 doi: 10.3390/met8020107 – volume: 17 start-page: 526 year: 2010 ident: ref_151 article-title: Sono-Assisted Preparation of Highly-Efficient Peroxidase-like Fe3O4 Magnetic Nanoparticles for Catalytic Removal of Organic Pollutants with H2O2 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2009.11.001 – volume: 3 start-page: 3276 year: 2011 ident: ref_162 article-title: (David) One-Pot Synthesis of Uniform Fe3O4 Nanospheres with Carbon Matrix Support for Improved Lithium Storage Capabilities publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am201079z – volume: 115 start-page: 13603 year: 2011 ident: ref_166 article-title: Porous Fe3O4/Carbon Core/Shell Nanorods: Synthesis and Electromagnetic Properties publication-title: J. Phys. Chem. C doi: 10.1021/jp202473y – volume: 19 start-page: 157 year: 2016 ident: ref_25 article-title: Magnetite Nanoparticles for Cancer Diagnosis, Treatment, and Treatment Monitoring: Recent Advances publication-title: Mater. Today doi: 10.1016/j.mattod.2015.08.022 – volume: 90 start-page: 6749 year: 2018 ident: ref_43 article-title: Specific Detection of Proteins Using Exceptionally Responsive Magnetic Particles publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00593 – volume: 18 start-page: 267 year: 2002 ident: ref_113 article-title: Magnetically Mediated Hyperthermia: Current Status and Future Directions publication-title: Int. J. Hyperth. doi: 10.1080/02656730110108785 – volume: 12 start-page: 3127 year: 2012 ident: ref_106 article-title: Water-Dispersible Ferrimagnetic Iron Oxide Nanocubes with Extremely High R2 Relaxivity for Highly Sensitive in Vivo MRI of Tumors publication-title: Nano Lett. doi: 10.1021/nl3010308 – volume: 38 start-page: 2532 year: 2009 ident: ref_4 article-title: Magnetic Nanoparticles: Synthesis, Functionalization, and Applications in Bioimaging and Magnetic Energy Storage publication-title: Chem. Soc. Rev. doi: 10.1039/b815548h – volume: 11 start-page: 12121 year: 2017 ident: ref_117 article-title: Asymmetric Assembling of Iron Oxide Nanocubes for Improving Magnetic Hyperthermia Performance publication-title: ACS Nano doi: 10.1021/acsnano.7b05182 – volume: 21 start-page: 2133 year: 2009 ident: ref_97 article-title: Inorganic Nanoparticles for MRI Contrast Agents publication-title: Adv. Mater. doi: 10.1002/adma.200802366 – volume: 32 start-page: 4867 year: 2011 ident: ref_101 article-title: The Behavior after Intravenous Injection in Mice of Multiwalled Carbon Nanotube/Fe3O4 Hybrid MRI Contrast Agents publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.03.024 – volume: 129 start-page: 14166 year: 2007 ident: ref_67 article-title: Supercrystalline Colloidal Particles from Artificial Atoms publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076494i – volume: 157 start-page: A1158 year: 2010 ident: ref_165 article-title: Nanocrystalline Magnetite: Synthetic Crystallite Size Control and Resulting Magnetic and Electrochemical Properties publication-title: J. Electrochem. Soc. doi: 10.1149/1.3478667 – volume: 25 start-page: 2909 year: 2013 ident: ref_171 article-title: 3D Graphene Foams Cross-Linked with Pre-Encapsulated Fe3O4 Nanospheres for Enhanced Lithium Storage publication-title: Adv. Mater. doi: 10.1002/adma.201300445 – volume: 31 start-page: 5450 year: 2019 ident: ref_119 article-title: Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling to Improve Magnetic Hyperthermia Heat Losses publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b00728 – volume: 2 start-page: 4426 year: 2014 ident: ref_44 article-title: One Pot Synthesis of Monodisperse Water Soluble Iron Oxide Nanocrystals with High Values of the Specific Absorption Rate publication-title: J. Mater. Chem. B doi: 10.1039/c4tb00061g – volume: 41 start-page: 134003 year: 2008 ident: ref_78 article-title: Uniform and Water Stable Magnetite Nanoparticles with Diameters around the Monodomain–Multidomain Limit publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/41/13/134003 – volume: 281 start-page: 102165 year: 2020 ident: ref_18 article-title: Preparation, Surface Functionalization and Application of Fe3O4 Magnetic Nanoparticles publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2020.102165 – volume: 46 start-page: 2523 year: 2010 ident: ref_51 article-title: Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2010.2046907 – volume: 157 start-page: A60 year: 2009 ident: ref_163 article-title: Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe3O4 and A-Fe2O3 for Rechargeable Batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.3254160 – volume: 51 start-page: 085002 year: 2018 ident: ref_80 article-title: Controlled Synthesis and Enhanced Tunnelling Magnetoresistance in Oriented Fe3O4 Assemblies publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/aaa697 – volume: 9 start-page: 1450 year: 2013 ident: ref_13 article-title: Chemical Design of Biocompatible Iron Oxide Nanoparticles for Medical Applications publication-title: Small doi: 10.1002/smll.201202111 – volume: 77 start-page: 012411 year: 2008 ident: ref_21 article-title: Magnetism and the Verwey Transition in Fe3O4 under Pressure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.012411 – ident: ref_139 doi: 10.3390/mi11030302 – volume: 8 start-page: 19475 year: 2016 ident: ref_157 article-title: Fe3O4@Carbon Nanosheets for All-Solid-State Supercapacitor Electrodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05415 – volume: 124 start-page: 8204 year: 2002 ident: ref_54 article-title: Size-Controlled Synthesis of Magnetite Nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja026501x – volume: 12 start-page: 2060 year: 2010 ident: ref_83 article-title: Direct Hydrothermal Synthesis of Single-Crystalline Triangular Fe3O4 Nanoprisms publication-title: CrystEngComm doi: 10.1039/b926780h – volume: 113 start-page: 13593 year: 2009 ident: ref_61 article-title: Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties publication-title: J. Phys. Chem. C doi: 10.1021/jp902953t – volume: 46 start-page: 1222 year: 2007 ident: ref_2 article-title: Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200602866 |
| SSID | ssj0000913810 |
| Score | 2.6606991 |
| SecondaryResourceType | review_article |
| Snippet | Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 11301 |
| SubjectTerms | Biocompatibility biomedical applications Contrast agents core–shell structures Crystal structure Energy storage Fe3O4 nanoparticles Hyperthermia Iron Magnetic fields magnetic properties Magnetism Morphology nanocomposites Nanomaterials Nanoparticles Semiconductors surface functionalization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (ODIN) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hxIEeEI9WDS-5EkitStRNYmKbG0WseoEi0UrcIj_LSiigXRaJf8-MY1bJAfXCLYp9SGY8j88efwNwQIQrwVci176WObejkCtpynykKxUEZgzO2dhsQlxeypsbddVr9UU1YR09cCe4H0E7W_qae6M5r4Q3krrdYNy1olZaRe-LWU8PTEUfrAqiruoq3SvE9XQejKlFVaDPLgYxKFL1D_LLYXVkL9yM12Et5YnstPu-DVjy7SZ86LEHbsJGsssZ-5rIo79twXzsq9-codNENJyK3k7YdWSJnSO0PmLXzy0mfbMJPl7ofy1dYmRXtCU_JW5VHJ9Pg7aejTHidRuF6armEdOtY7SLRY2N2Gnv6Psj_B2f_zn7lafWCrmlDga58laUlit9jBaMkEeMhKmVK7XGBCZYz0NA8aEWtXCFQUjjR9woQ9xTiluuq0-w3N63_jMwZwrMeWxd8SB5YaTWBDFr54IIXnmXwfdXYTc28Y5T-4u7BvEHqabpqyaDw8Xsh45v4415P0lviznEkh1f4Nppknib_62dDHZftd4k0501CPAk4jyMFBl8WQyj0dFJim79_ZzmKIwwZS1VBmKwWgYfNBxpJ7eRvluV8ljWYvs9_mAHVksqson1NbuwjKvJ78GKfXqczKb70SZeAJpKFTU priority: 102 providerName: Directory of Open Access Journals |
| Title | Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications |
| URI | https://www.proquest.com/docview/2608086002 https://www.proquest.com/docview/2691462689 https://pubmed.ncbi.nlm.nih.gov/PMC9285867 https://doaj.org/article/fadc2e64eba4437eb8eb00617c769a92 |
| Volume | 11 |
| WOSCitedRecordID | wos000742020400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLQd6AFpADZSVkUAC0Yg83NjmglrUFRy6RBSk5RQ5frQrVdmyYSv13zOT9S6bA1y4JbGlWPZ4_M3D3wC8JMIV73IRa1fImJvEx0rWWZzoXHmBiMFa0xWbEOOxnExUGRxubUirXOnETlHbmSEf-TvE3RLhN27gD9c_Y6oaRdHVUEJjC7aJqYwPYPvkdFx-XXtZiPVSpsky4z1H-57iwggx8hR1d9o7izrK_h7O7GdJbhw7owf_O-CHcD8ATna8lJBduOOaPdjZoCHcg92wwVv2OrBQv3kEi5HLv3CG2hfN6pA9956dd3SzC7TRD9n5bYPosZ3i45m-aOg2JCvJtz8nklZsX8y9No6N8OhcehzDnc9DphvLyB1GFZLY8UYM_TF8H51--_gpDjUaYkOlEGLljMgMV_oIVQHaTiIRdaFspjUiIW8c9x7nH8VBC5vWaBu5hNeqJhIrxQ3X-RMYNLPG7QOzdYrgyRQ595KntdSabNXCWi-8U85G8Ha1WpUJBOZUR-OqQkOG1rbaXNsIXq17Xy-JO_7S74QWft2H6La7D7P5RRWmt_LamswV3NWa81y4WlLJJQR_RhRKqyyCg5UMVEEHtNUfAYjgxboZdy-FZHTjZgvqo_CoygqpIhA9cesNqN_STC87HnCVySNZiKf__vkzuJdRHk6XgnMAA5QT9xzumptf03Y-hC0xkcOwbYadRwLfys9n5Y_fvd8nNg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFIlyAFqoCBRYJCqBqEVib727SAiVR9SoTYjUIpWTWe-jREJOsAmof4rfyIwfIT7ArQdukXfsWOtvZ77dnf0G4AkJrngXiUC7WAbc9HygZBoGPR0pL5AxWGvKYhNiPJZnZ2qyBr-aszCUVtn4xNJR25mhNfIXyLsl0m8cwK_n3wKqGkW7q00JjQoWR-7iJ07ZilfDd_h9d8Nw8P707WFQVxUIDIn3B8oZERqu9D6CF9m-6Ik0VjbUGmO3N457L3Ge5J0Wtp8im3c9nqqUZJcUN1xH-NwrsM4R7LID65PhaPJpuapDKpt4d5VhH0WqR_vQSGmiPsaKfiv2lSUCWry2nZW5EuYGN_-3DroFN2pCzQ6qEbAJay7bgusrMotbsFk7sII9rVW2n92GxcBFHzjD6DKbN9mBL9lJKae7yF2xx04uMmTHxRR_jvR5Rqc92YT2LnISocX2Re61cWyA1KBaUa3PtO4xnVlGy31UAYodrOQI3IGPl9IZ29DJZpm7C8ymfSSHJo64l7yfSq1pLh5b64V3ytkuPG_QkZhaoJ3qhHxNcKJGWEpWsdSF3aX1vBIm-YvdGwLa0obkxMsLs_w8qbs38dqa0MXcpZrzSLhUUkkpJLdGxEqrsAs7DeaS2scVyR_AdeHxshm9E2056czNFmSjMBSHsVRdEC14t16o3ZJNv5Q65yqU-zIW9_7954_g2uHp6Dg5Ho6P7sNGSDlHZbrRDnQQM-4BXDU_vk-L_GE9WBl8vmz4_waFb4Ai |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDaHxAGyAVhhgJCaBWLQ08WIbCaHBiKjGSqUNaTwFxz9GJZSWhoL2r_HXcZcfpXmAtz3wVsWXNHI-3322z98BPCHBFe9iEWiXyICb0AdK5lEQ6lh5gYzBWlMVmxDDoTw7U6MV-NWehaG0ytYnVo7aTgytke8h75ZIv3EA7_kmLWJ0mL6afguoghTttLblNGqIHLmLnzh9K18ODvFb70RR-vb0zbugqTAQGBLyD5QzIjJc6X0EMjJ_EYo8UTbSGuO4N457L3HO5J0Wtp8js3chz1VOEkyKG65jfO4VWENKznGMrY0Gx6NPixUeUtzEu-ts-zhWIe1JI72J-xg3-p04WJUL6HDcbobmUshLb_7PnXULbjREmx3UI2MDVlyxCdeX5Bc3YaNxbCV72qhvP7sN89TFHzjDqDOZtlmDL9hJJbM7n7lyl51cFMiayzH-PNbnBZ0CZSPa05iROC22z2deG8dSpAz1Smtz1nWX6cIyWgakylDsYCl34A58vJTOuAurxaRwW8Bs3kfSaJKYe8n7udSa5uiJtV54p5ztwfMWKZlphNupfsjXDCdwhKtsGVc92FlYT2vBkr_YvSbQLWxIZry6MJmdZ033Zl5bE7mEu1xzHguXSyo1haTXiERpFfVgu8Vf1vi-MvsDvh48XjSj16KtKF24yZxsFIboKJGqB6ID9c4LdVuK8ZdK_1xFcl8m4t6___wRXEPMZ-8Hw6P7sB5RKlKVhbQNqwgZ9wCumh_fx-XsYTNuGXy-bPT_Bt57iOI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fe3O4+Nanoparticles%3A+Structures%2C+Synthesis%2C+Magnetic+Properties%2C+Surface+Functionalization%2C+and+Emerging+Applications&rft.jtitle=Applied+sciences&rft.au=Minh+Dang+Nguyen&rft.au=Hung-Vu%2C+Tran&rft.au=Xu%2C+Shoujun&rft.au=Lee%2C+T+Randall&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=23&rft.spage=11301&rft_id=info:doi/10.3390%2Fapp112311301&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |