3D bioprinting of a corneal stroma equivalent
Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation...
Uloženo v:
| Vydáno v: | Experimental eye research Ročník 173; s. 188 - 193 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.08.2018
Academic Press |
| Témata: | |
| ISSN: | 0014-4835, 1096-0007, 1096-0007 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered.
[Display omitted] |
|---|---|
| AbstractList | Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered.
[Display omitted] Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered.Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered. Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered. Image 1 Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered. |
| Author | Swioklo, Stephen Isaacson, Abigail Connon, Che J. |
| AuthorAffiliation | Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK |
| AuthorAffiliation_xml | – name: Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK |
| Author_xml | – sequence: 1 givenname: Abigail surname: Isaacson fullname: Isaacson, Abigail – sequence: 2 givenname: Stephen surname: Swioklo fullname: Swioklo, Stephen – sequence: 3 givenname: Che J. orcidid: 0000-0001-8264-6531 surname: Connon fullname: Connon, Che J. email: Che.Connon@ncl.ac.uk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29772228$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9rGzEQxUVJaewkXyCHsMdedjvS7uoPhEBJm7QQ6KU9C1k768ispVham-TbR8Z2SHrwSaB5v_eGeVNy4oNHQi4pVBQo_7ao8BljxYDKCtoKKHwiEwqKlwAgTsgEgDZlI-v2lExTWuTfuhHNF3LKlBCMMTkhZf2jmLnwFJ0fnZ8XoS9MYUP0aIYijTEsTYGrtduYAf14Tj73Zkh4sX_PyL-7n39vf5UPf-5_335_KG3L6FhKgX2DBqyiXQdK9Qyaetb0HdZc9Ug70TIpUUAPLaCiSli0olXIORPAWH1Gbna-T-vZEjubo6MZdN5yaeKLDsbpjxPvHvU8bDQHWTc1zwZf9wYxrNaYRr10yeIwGI9hnXReiHImgassvXqf9RZyuFEWyJ3AxpBSxF5bN5rRhW20GzQFva1DL_S2Dr2tQ0Orcx0ZZf-hB_ej0PUOwnzhjcvTZB16i52LaEfdBXcMfwXfH6MZ |
| CitedBy_id | crossref_primary_10_1159_000515946 crossref_primary_10_1055_a_1263_9979 crossref_primary_10_3389_fbioe_2024_1423864 crossref_primary_10_3389_fbioe_2020_00219 crossref_primary_10_3389_fcimb_2022_840122 crossref_primary_10_1088_1758_5090_ad35ea crossref_primary_10_24193_subbphil_2021_2s_13 crossref_primary_10_1088_1758_5090_ad35eb crossref_primary_10_1557_s43579_023_00473_9 crossref_primary_10_1016_j_exer_2020_108314 crossref_primary_10_1002_adfm_201807334 crossref_primary_10_1002_jbm_a_36979 crossref_primary_10_1109_RBME_2022_3146293 crossref_primary_10_1186_s40662_018_0122_1 crossref_primary_10_3389_fphys_2020_00715 crossref_primary_10_1186_s12938_020_00822_y crossref_primary_10_1016_j_ijbiomac_2021_05_048 crossref_primary_10_1016_j_preteyeres_2024_101287 crossref_primary_10_1016_j_biomaterials_2022_121639 crossref_primary_10_1016_j_heliyon_2023_e17950 crossref_primary_10_1080_17469899_2020_1754798 crossref_primary_10_3389_fsurg_2021_639500 crossref_primary_10_1111_aor_14241 crossref_primary_10_1016_j_drudis_2019_04_009 crossref_primary_10_3389_fphar_2023_1193606 crossref_primary_10_1016_j_ejpb_2021_02_007 crossref_primary_10_1002_pol_20240720 crossref_primary_10_1016_j_actbio_2024_12_005 crossref_primary_10_1002_sctm_20_0408 crossref_primary_10_1016_j_ejps_2019_105167 crossref_primary_10_3389_fbioe_2024_1480772 crossref_primary_10_1007_s10856_019_6345_4 crossref_primary_10_1016_j_jconrel_2021_02_027 crossref_primary_10_1631_jzus_B1900190 crossref_primary_10_3390_pharmaceutics13081280 crossref_primary_10_1038_s41536_021_00170_y crossref_primary_10_3341_kjo_2021_0126 crossref_primary_10_1016_j_matdes_2025_114703 crossref_primary_10_1039_D4BM00833B crossref_primary_10_1186_s40824_022_00338_7 crossref_primary_10_1002_adhm_202100972 crossref_primary_10_1007_s00431_020_03819_w crossref_primary_10_3390_bioengineering10111287 crossref_primary_10_1016_j_survophthal_2023_02_005 crossref_primary_10_3390_jfb16070240 crossref_primary_10_1016_j_jconrel_2021_02_036 crossref_primary_10_1080_17476348_2019_1624163 crossref_primary_10_3390_life15040602 crossref_primary_10_3390_ma12244131 crossref_primary_10_1016_j_ymeth_2019_05_009 crossref_primary_10_1080_09205063_2025_2532567 crossref_primary_10_1007_s10561_021_09975_z crossref_primary_10_3390_biomedicines10071562 crossref_primary_10_1002_jbm_a_37381 crossref_primary_10_1177_25158414221106682 crossref_primary_10_3390_jcs6080227 crossref_primary_10_1007_s00417_019_04312_3 crossref_primary_10_1039_D5TB00090D crossref_primary_10_1038_s41598_020_62640_5 crossref_primary_10_3389_fbioe_2020_00681 crossref_primary_10_1016_j_preteyeres_2024_101275 crossref_primary_10_1016_j_tice_2022_101782 crossref_primary_10_3390_cells11203310 crossref_primary_10_1007_s42235_024_00520_8 crossref_primary_10_1016_j_mtcomm_2024_111249 crossref_primary_10_1007_s10570_023_05209_5 crossref_primary_10_1021_acsami_5c03479 crossref_primary_10_1177_03000605231190473 crossref_primary_10_1177_08853282251369229 crossref_primary_10_1557_s43577_022_00348_9 crossref_primary_10_3390_polym13173015 crossref_primary_10_1016_j_colcom_2022_100632 crossref_primary_10_1038_d41586_021_02629_w crossref_primary_10_3390_biomimetics9040202 crossref_primary_10_1002_adfm_201908996 crossref_primary_10_1016_j_jiec_2024_03_030 crossref_primary_10_1007_s00542_020_04960_0 crossref_primary_10_1016_j_exer_2024_110044 crossref_primary_10_1007_s44174_024_00254_5 crossref_primary_10_1016_j_ijbiomac_2022_05_088 crossref_primary_10_3389_fbioe_2024_1358246 crossref_primary_10_1007_s10792_020_01573_4 crossref_primary_10_1039_D5MA00076A crossref_primary_10_1088_1758_5090_ade7b2 crossref_primary_10_2217_rme_2019_0055 crossref_primary_10_3390_polym13172973 crossref_primary_10_1210_endocr_bqab033 crossref_primary_10_3389_fbioe_2019_00135 crossref_primary_10_1002_advs_202205878 crossref_primary_10_1002_jbm_b_34628 crossref_primary_10_1016_j_exer_2023_109697 crossref_primary_10_1016_j_preteyeres_2022_101090 crossref_primary_10_1002_INMD_20250058 crossref_primary_10_1177_09544119211028069 crossref_primary_10_1002_jbm_a_36702 crossref_primary_10_1016_j_jddst_2022_103798 crossref_primary_10_1088_1758_5090_abe6f2 crossref_primary_10_1002_mabi_202000280 crossref_primary_10_1016_j_matdes_2020_109398 crossref_primary_10_1007_s10439_020_02537_6 crossref_primary_10_1097_ICO_0000000000002374 crossref_primary_10_3390_ijms24108828 crossref_primary_10_1007_s10517_021_05339_5 crossref_primary_10_3390_biomedicines12112567 crossref_primary_10_1088_1748_605X_ad3312 crossref_primary_10_1016_j_bprint_2020_e00126 crossref_primary_10_1088_1758_5090_ac41a1 crossref_primary_10_1177_2041731418823382 crossref_primary_10_1016_j_matdes_2022_111277 crossref_primary_10_1088_1758_5090_ab331e crossref_primary_10_3389_fmed_2021_770780 crossref_primary_10_3390_ma14123149 crossref_primary_10_1016_j_actbio_2020_01_013 crossref_primary_10_1016_j_actbio_2021_10_056 crossref_primary_10_1016_j_bprint_2019_e00058 crossref_primary_10_3390_polym16202882 crossref_primary_10_1016_j_bprint_2025_e00391 crossref_primary_10_1016_j_ijbiomac_2024_130472 crossref_primary_10_1038_s41598_021_03270_3 crossref_primary_10_1016_j_tibtech_2023_11_001 crossref_primary_10_1016_j_pbiomolbio_2021_07_006 crossref_primary_10_1002_admi_202100670 crossref_primary_10_1002_smll_202006335 crossref_primary_10_3390_gels11060422 crossref_primary_10_1155_2020_8813447 crossref_primary_10_1007_s13346_020_00879_1 crossref_primary_10_1038_s41598_024_68597_z crossref_primary_10_3389_fbioe_2023_1124995 crossref_primary_10_3390_cells11162549 crossref_primary_10_3390_cancers14143535 crossref_primary_10_3390_pharmaceutics13030308 crossref_primary_10_3389_fbioe_2019_00164 crossref_primary_10_1016_j_bprint_2021_e00185 crossref_primary_10_3390_bioengineering8110161 crossref_primary_10_1007_s40883_025_00469_y crossref_primary_10_3390_bioengineering7030071 crossref_primary_10_1016_j_bprint_2022_e00227 crossref_primary_10_1088_1758_5090_ac1846 crossref_primary_10_1111_aos_14711 crossref_primary_10_3390_pharmaceutics12121215 crossref_primary_10_1002_mabi_202200422 crossref_primary_10_1016_j_bioactmat_2021_09_021 crossref_primary_10_1016_j_mfglet_2023_07_005 crossref_primary_10_1177_20417314231197793 crossref_primary_10_4000_14kbb crossref_primary_10_1016_j_ijpharm_2024_124510 crossref_primary_10_1021_acsami_4c04077 crossref_primary_10_1016_j_eurpolymj_2020_109744 crossref_primary_10_1016_j_ijbiomac_2025_141761 crossref_primary_10_1016_j_exer_2020_108256 crossref_primary_10_3390_biomimetics9030145 crossref_primary_10_1002_jcp_30085 crossref_primary_10_1016_j_actbio_2024_10_009 crossref_primary_10_1016_j_jconrel_2020_11_044 crossref_primary_10_1002_term_3309 crossref_primary_10_1177_20417314221138188 crossref_primary_10_1016_j_medengphy_2019_05_002 crossref_primary_10_3390_gels7040163 crossref_primary_10_1080_17469899_2021_1933441 crossref_primary_10_1039_D1MH01632F crossref_primary_10_1002_mabi_202500276 crossref_primary_10_3390_gels11070528 crossref_primary_10_1002_mabi_202400595 crossref_primary_10_3389_fbioe_2024_1454675 crossref_primary_10_3390_sym12010151 crossref_primary_10_1097_APO_0000000000000530 crossref_primary_10_1002_advs_202103469 crossref_primary_10_1007_s10792_025_03493_7 crossref_primary_10_1080_17452759_2025_2459802 crossref_primary_10_3390_pharmaceutics13030319 crossref_primary_10_1016_j_exer_2020_108127 crossref_primary_10_1007_s10916_019_1280_y crossref_primary_10_3390_bioengineering7030066 crossref_primary_10_1186_s43094_025_00866_8 crossref_primary_10_1088_1758_5090_ab84cb crossref_primary_10_3390_ijms22147545 crossref_primary_10_1177_2041731418802090 crossref_primary_10_1016_j_eng_2024_10_016 crossref_primary_10_1186_s13287_024_03672_w crossref_primary_10_3389_fmedt_2020_607648 crossref_primary_10_1007_s42242_020_00117_0 crossref_primary_10_1016_j_ijbiomac_2025_146052 crossref_primary_10_1016_j_colsurfb_2019_06_069 crossref_primary_10_3390_bioengineering12030270 crossref_primary_10_1080_09205063_2024_2301817 crossref_primary_10_1002_adma_202207750 crossref_primary_10_1080_00914037_2025_2475874 crossref_primary_10_1002_mabi_202400136 crossref_primary_10_1016_j_bprint_2021_e00147 crossref_primary_10_1002_adhm_202300600 crossref_primary_10_3389_fbioe_2022_905438 crossref_primary_10_1002_jbm_a_37500 crossref_primary_10_1016_j_actbio_2020_07_004 crossref_primary_10_3390_gels8040239 crossref_primary_10_3389_fbioe_2022_1065460 crossref_primary_10_1089_jop_2018_0142 crossref_primary_10_3390_cells9071713 crossref_primary_10_1007_s40123_021_00379_6 crossref_primary_10_1002_adhm_202301392 crossref_primary_10_3390_gels8070431 crossref_primary_10_3389_fbioe_2024_1434435 crossref_primary_10_1002_admt_202200492 crossref_primary_10_2174_1381612829666230228115442 crossref_primary_10_1002_term_3235 crossref_primary_10_1016_j_ijpharm_2022_122094 crossref_primary_10_3389_fbioe_2021_644595 crossref_primary_10_1080_17460441_2018_1542427 crossref_primary_10_1097_APO_0000000000000337 crossref_primary_10_3390_md17100555 crossref_primary_10_3390_polym14194227 crossref_primary_10_1007_s41745_019_00113_z crossref_primary_10_1016_j_exer_2020_108213 crossref_primary_10_1038_s41598_020_77146_3 crossref_primary_10_1088_1758_5090_acab34 crossref_primary_10_3390_pharmaceutics14122797 crossref_primary_10_1016_j_pmatsci_2025_101527 crossref_primary_10_3390_ijms22073648 crossref_primary_10_1016_j_jconrel_2021_04_003 crossref_primary_10_1097_ICU_0000000000000573 crossref_primary_10_1002_adfm_202007983 crossref_primary_10_3390_nano12030391 crossref_primary_10_1007_s10439_023_03243_9 crossref_primary_10_1063_5_0032777 crossref_primary_10_3389_fbioe_2022_849831 crossref_primary_10_1007_s13346_023_01376_x crossref_primary_10_1088_1758_5090_ab4d97 crossref_primary_10_3390_jfb16040118 crossref_primary_10_1208_s12248_021_00610_z crossref_primary_10_1016_j_exer_2021_108747 crossref_primary_10_1080_02713683_2019_1663874 crossref_primary_10_3390_md21010014 crossref_primary_10_1039_D4BM00826J crossref_primary_10_1080_02713683_2023_2251172 crossref_primary_10_1002_smll_202002931 crossref_primary_10_1039_D5TB01170A crossref_primary_10_1016_j_survophthal_2022_01_004 |
| Cites_doi | 10.1126/sciadv.1500758 10.1016/S0142-9612(96)00204-9 10.1203/PDR.0b013e31816c5bc3 10.1167/iovs.13-13092 10.1016/j.preteyeres.2008.08.001 10.1007/s12013-015-0531-x 10.1016/j.biomaterials.2014.06.047 10.1073/pnas.2536767100 10.1371/journal.pone.0130426 10.1016/j.preteyeres.2015.07.001 10.1016/j.biomaterials.2013.08.061 10.2217/rme.12.7 10.1016/j.copbio.2011.02.006 10.1016/j.biomaterials.2008.06.017 10.1038/nmeth.2089 10.1088/1758-5082/2/2/022001 10.1016/j.biotechadv.2015.12.011 10.1016/bs.pmbts.2015.04.001 10.1109/TBME.2013.2243912 10.1038/nbt.2958 10.1186/s13036-015-0001-4 10.1016/j.biomaterials.2003.10.002 10.1016/j.compbiomed.2016.08.011 10.1089/ten.2006.12.631 10.1136/bjo.85.4.437 10.1016/j.exer.2014.04.020 10.1016/j.progpolymsci.2011.06.003 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved. 2018 The Authors 2018 |
| Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2018 The Authors 2018 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.exer.2018.05.010 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1096-0007 |
| EndPage | 193 |
| ExternalDocumentID | PMC6083436 29772228 10_1016_j_exer_2018_05_010 S0014483518302124 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: G0900877 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/K011111/1 |
| GroupedDBID | --- --K --M .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AAAJQ AACTN AADPK AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXLA AAXUO ABBQC ABCQJ ABFNM ABJNI ABLJU ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CAG CJTIS COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEA HMK HMO HMQ HVGLF HZ~ IHE J1W KOM L7B LCYCR LG5 LUGTX LZ2 M29 M2U M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SPCBC SSH SSI SSN SSZ T5K TEORI WUQ X7M XPP ZA5 ZGI ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c521t-87ef4ea0c91dd099f2043b4fde369fe1d75288e70f050e9197cec759e66270223 |
| ISICitedReferencesCount | 290 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441370500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0014-4835 1096-0007 |
| IngestDate | Tue Sep 30 14:58:07 EDT 2025 Sat Sep 27 20:19:44 EDT 2025 Mon Jul 21 06:03:13 EDT 2025 Tue Nov 18 21:06:26 EST 2025 Sat Nov 29 05:31:33 EST 2025 Fri Feb 23 02:29:44 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cornea 3D bioprinting Bio-ink Tissue engineering Keratocytes Collagen |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c521t-87ef4ea0c91dd099f2043b4fde369fe1d75288e70f050e9197cec759e66270223 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8264-6531 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6083436 |
| PMID | 29772228 |
| PQID | 2041628069 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6083436 proquest_miscellaneous_2041628069 pubmed_primary_29772228 crossref_citationtrail_10_1016_j_exer_2018_05_010 crossref_primary_10_1016_j_exer_2018_05_010 elsevier_sciencedirect_doi_10_1016_j_exer_2018_05_010 |
| PublicationCentury | 2000 |
| PublicationDate | August 2018 2018-08-00 20180801 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Experimental eye research |
| PublicationTitleAlternate | Exp Eye Res |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Academic Press |
| Publisher_xml | – name: Elsevier Ltd – name: Academic Press |
| References | Whitcher, Srinivasan, Upadhyay (bib31) 2001; 79 Meek, Knupp (bib21) 2015; 49 Ozbolat, Yu (bib26) 2013; 60 FRESH Bioprinting Method. Allevi. Gouveia, Connon (bib9) 2013; 54 Murphy, Atala (bib25) 2014; 32 Wright, Cave, Cook, Khutoryanskiy, Mi, Chen, Leyland, Connon (bib32) 2012; 7 Simonini, Pandolfi (bib30) 2015; 10 Farrell, McCally (bib7) 2000 Mironov, Reis, Derby (bib22) 2006; 12 Schneider, Rasband, Eliceiri (bib29) 2012; 9 Drury, Dennis, Mooney (bib5) 2004; 25 Gouveia, Koudouna, Jester, Figueiredo, Connon (bib10) 2017 Golchet, Carr, Harris (bib8) 2000; 71 Jakab, Marga, Norotte, Murphy, Vunjak-Novakovic, Forgacs (bib15) 2010; 2 Griffiths, Płociniczak, Schiesser (bib11) 2016; 77 (accessed 26 December 2017). Eghrari, Riazuddin, Gottsch (bib6) 2015; 134 Muller, Pels, Vrensen (bib24) 2001; 85 Branco da Cunha, Klumpers, Li, Koshy, Weaver, Chaudhuri, Granja, Mooney (bib2) 2014; 35 Hinton, Jallerat, Palchesko, Park, Grodzicki, Shue, Ramadan, Hudson, Feinberg (bib13) 2015; 1 Rafat, Li, Fagerholm, Lagali, Watsky, Munger, Matsuura, Griffith (bib27) 2008; 29 Ruberti, Zieske (bib28) 2008; 27 Karamichos, Hutcheon, Zieske (bib16) 2014; 0 Chia, Wu (bib4) 2015; 9 Cen, Liu, Cui, Zhang, Cao (bib3) 2008; 63 Hogan, Alvarado, Weddell (bib14) 1971 Li, Carlsson, Lohmann, Suuronen, Vascotto, Kobuch, Sheardown, Munger, Nakamura, Griffith (bib19) 2003; 100 Zhang, Zhang (bib33) 2015; 72 Klöck, Pfeffermann, Ryser, Gröhn, Kuttler, Hahn, Zimmermann (bib17) 1997; 18 Mironov, Kasyanov, Markwald (bib23) 2011; 22 Lee, Mooney (bib18) 2012; 37 Guo, Phillip, Majumdar, Wu, Chen, Calderón-Colón, Schein, Smith, Trexler, Wirtz, Elisseeff (bib12) 2013; 34 Mandrycky, Wang, Kim, Kim (bib20) 2016; 34 10.1016/j.exer.2018.05.010_bib1 Hinton (10.1016/j.exer.2018.05.010_bib13) 2015; 1 Muller (10.1016/j.exer.2018.05.010_bib24) 2001; 85 Rafat (10.1016/j.exer.2018.05.010_bib27) 2008; 29 Hogan (10.1016/j.exer.2018.05.010_bib14) 1971 Meek (10.1016/j.exer.2018.05.010_bib21) 2015; 49 Branco da Cunha (10.1016/j.exer.2018.05.010_bib2) 2014; 35 Farrell (10.1016/j.exer.2018.05.010_bib7) 2000 Mironov (10.1016/j.exer.2018.05.010_bib23) 2011; 22 Griffiths (10.1016/j.exer.2018.05.010_bib11) 2016; 77 Klöck (10.1016/j.exer.2018.05.010_bib17) 1997; 18 Gouveia (10.1016/j.exer.2018.05.010_bib9) 2013; 54 Lee (10.1016/j.exer.2018.05.010_bib18) 2012; 37 Simonini (10.1016/j.exer.2018.05.010_bib30) 2015; 10 Guo (10.1016/j.exer.2018.05.010_bib12) 2013; 34 Chia (10.1016/j.exer.2018.05.010_bib4) 2015; 9 Mironov (10.1016/j.exer.2018.05.010_bib22) 2006; 12 Cen (10.1016/j.exer.2018.05.010_bib3) 2008; 63 Ruberti (10.1016/j.exer.2018.05.010_bib28) 2008; 27 Golchet (10.1016/j.exer.2018.05.010_bib8) 2000; 71 Li (10.1016/j.exer.2018.05.010_bib19) 2003; 100 Jakab (10.1016/j.exer.2018.05.010_bib15) 2010; 2 Zhang (10.1016/j.exer.2018.05.010_bib33) 2015; 72 Mandrycky (10.1016/j.exer.2018.05.010_bib20) 2016; 34 Gouveia (10.1016/j.exer.2018.05.010_bib10) 2017 Drury (10.1016/j.exer.2018.05.010_bib5) 2004; 25 Karamichos (10.1016/j.exer.2018.05.010_bib16) 2014; 0 Wright (10.1016/j.exer.2018.05.010_bib32) 2012; 7 Murphy (10.1016/j.exer.2018.05.010_bib25) 2014; 32 Eghrari (10.1016/j.exer.2018.05.010_bib6) 2015; 134 Ozbolat (10.1016/j.exer.2018.05.010_bib26) 2013; 60 Whitcher (10.1016/j.exer.2018.05.010_bib31) 2001; 79 Schneider (10.1016/j.exer.2018.05.010_bib29) 2012; 9 |
| References_xml | – volume: 29 start-page: 3960 year: 2008 end-page: 3972 ident: bib27 article-title: PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering publication-title: Biomaterials – volume: 10 year: 2015 ident: bib30 article-title: Customized finite element modelling of the human cornea publication-title: PLoS One – reference: (accessed 26 December 2017). – volume: 134 start-page: 7 year: 2015 end-page: 23 ident: bib6 article-title: Overview of the cornea: structure, function, and development publication-title: Prog. Mol. Biol. Transl. Sci. – start-page: 55 year: 1971 end-page: 111 ident: bib14 article-title: The Cornea. Histology of the Human Eye – volume: 85 start-page: 437 year: 2001 end-page: 443 ident: bib24 article-title: The specific architecture of the anterior stroma accounts for maintenance of corneal curvature publication-title: Br. J. Ophthalmol. – volume: 1 start-page: e1500758 year: 2015 ident: bib13 article-title: Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels publication-title: Sci. Adv. – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bib29 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 54 start-page: 7483 year: 2013 end-page: 7491 ident: bib9 article-title: The effects of retinoic acid on human corneal stromal keratocytes cultured in vitro under serum- free conditions publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 71 start-page: 318 year: 2000 end-page: 328 ident: bib8 article-title: Why don't we have enough cornea donors? A literature review and survey publication-title: Optometry – volume: 7 start-page: 295 year: 2012 end-page: 307 ident: bib32 article-title: Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel publication-title: Regen. Med. – volume: 35 start-page: 8927 year: 2014 end-page: 8936 ident: bib2 article-title: Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology publication-title: Biomaterials – volume: 12 start-page: 631 year: 2006 end-page: 634 ident: bib22 article-title: 3D bioprinting: a Beginning publication-title: Tissue Eng. – volume: 27 start-page: 549 year: 2008 end-page: 577 ident: bib28 article-title: Prelude to corneal tissue engineering - gaining control of collagen organization publication-title: Prog. Retin. Eye Res. – volume: 77 start-page: 274 year: 2016 end-page: 284 ident: bib11 article-title: Analysis of cornea curvature using radial basis functions - Part I: Methodology publication-title: Comput. Biol. Med. – volume: 9 start-page: 4 year: 2015 ident: bib4 article-title: Recent advances in 3D printing of biomaterials publication-title: J. Biol. Eng. – volume: 37 start-page: 106 year: 2012 end-page: 126 ident: bib18 article-title: Alginate: properties and biomedical applications publication-title: Prog. Polym. Sci. – volume: 2 year: 2010 ident: bib15 article-title: Tissue engineering by self-assembly and bio-printing of living cells publication-title: Biofabrication – volume: 49 start-page: 1 year: 2015 end-page: 16 ident: bib21 article-title: Corneal structure and transparency publication-title: Prog. Retin. Eye Res. – volume: 72 start-page: 777 year: 2015 end-page: 782 ident: bib33 article-title: Tissue engineering applications of three-dimensional bioprinting publication-title: Cell Biochem. Biophys. – volume: 34 start-page: 9365 year: 2013 end-page: 9372 ident: bib12 article-title: Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair publication-title: Biomaterials – volume: 0 start-page: 31 year: 2014 end-page: 36 ident: bib16 article-title: Reversal of fibrosis by TGF-β3 in a 3D in vitro model publication-title: Exp. Eye Res. – volume: 63 start-page: 492 year: 2008 end-page: 496 ident: bib3 article-title: Collagen tissue engineering: development of novel biomaterials and applications publication-title: Pediatr. Res. – volume: 25 start-page: 3187 year: 2004 end-page: 3199 ident: bib5 article-title: The tensile properties of alginate hydrogels publication-title: Biomaterials – year: 2017 ident: bib10 article-title: Template curvature influences cell alignment to create improved human corneal tissue equivalents publication-title: Adv. Biosys. – volume: 18 start-page: 707 year: 1997 end-page: 713 ident: bib17 article-title: Biocompatibility of mannuronic acid-rich alginates publication-title: Biomaterials – volume: 22 start-page: 667 year: 2011 end-page: 673 ident: bib23 article-title: Organ printing: from bioprinter to organ biofabrication line publication-title: Curr. Opin. Biotechnol. – volume: 100 start-page: 15346 year: 2003 end-page: 15351 ident: bib19 article-title: Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 629 year: 2000 end-page: 643 ident: bib7 article-title: Corneal transparency publication-title: Principles and Practice of Ophthalmology – reference: FRESH Bioprinting Method. Allevi. – volume: 34 start-page: 422 year: 2016 end-page: 434 ident: bib20 article-title: 3D bioprinting for engineering complex tissues publication-title: Biotechnol. Adv. – volume: 60 start-page: 691 year: 2013 end-page: 699 ident: bib26 article-title: Bioprinting toward organ fabrication: challenges and future trends publication-title: IEEE Trans. Biomed. Eng. – volume: 32 start-page: 773 year: 2014 end-page: 785 ident: bib25 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. – volume: 79 start-page: 214 year: 2001 end-page: 221 ident: bib31 article-title: Corneal blindness: a global perspective publication-title: Bull. World Health Organ. – volume: 1 start-page: e1500758 issue: 9 year: 2015 ident: 10.1016/j.exer.2018.05.010_bib13 article-title: Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels publication-title: Sci. Adv. doi: 10.1126/sciadv.1500758 – volume: 18 start-page: 707 issue: 10 year: 1997 ident: 10.1016/j.exer.2018.05.010_bib17 article-title: Biocompatibility of mannuronic acid-rich alginates publication-title: Biomaterials doi: 10.1016/S0142-9612(96)00204-9 – start-page: 55 year: 1971 ident: 10.1016/j.exer.2018.05.010_bib14 – volume: 63 start-page: 492 issue: 5 year: 2008 ident: 10.1016/j.exer.2018.05.010_bib3 article-title: Collagen tissue engineering: development of novel biomaterials and applications publication-title: Pediatr. Res. doi: 10.1203/PDR.0b013e31816c5bc3 – start-page: 629 year: 2000 ident: 10.1016/j.exer.2018.05.010_bib7 article-title: Corneal transparency – volume: 54 start-page: 7483 year: 2013 ident: 10.1016/j.exer.2018.05.010_bib9 article-title: The effects of retinoic acid on human corneal stromal keratocytes cultured in vitro under serum- free conditions publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.13-13092 – year: 2017 ident: 10.1016/j.exer.2018.05.010_bib10 article-title: Template curvature influences cell alignment to create improved human corneal tissue equivalents publication-title: Adv. Biosys. – volume: 27 start-page: 549 issue: 5 year: 2008 ident: 10.1016/j.exer.2018.05.010_bib28 article-title: Prelude to corneal tissue engineering - gaining control of collagen organization publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2008.08.001 – volume: 72 start-page: 777 issue: 3 year: 2015 ident: 10.1016/j.exer.2018.05.010_bib33 article-title: Tissue engineering applications of three-dimensional bioprinting publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-015-0531-x – volume: 35 start-page: 8927 issue: 32 year: 2014 ident: 10.1016/j.exer.2018.05.010_bib2 article-title: Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.06.047 – volume: 100 start-page: 15346 issue: 26 year: 2003 ident: 10.1016/j.exer.2018.05.010_bib19 article-title: Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2536767100 – volume: 10 issue: 6 year: 2015 ident: 10.1016/j.exer.2018.05.010_bib30 article-title: Customized finite element modelling of the human cornea publication-title: PLoS One doi: 10.1371/journal.pone.0130426 – volume: 49 start-page: 1 year: 2015 ident: 10.1016/j.exer.2018.05.010_bib21 article-title: Corneal structure and transparency publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2015.07.001 – volume: 34 start-page: 9365 year: 2013 ident: 10.1016/j.exer.2018.05.010_bib12 article-title: Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.08.061 – volume: 7 start-page: 295 issue: 3 year: 2012 ident: 10.1016/j.exer.2018.05.010_bib32 article-title: Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel publication-title: Regen. Med. doi: 10.2217/rme.12.7 – volume: 22 start-page: 667 issue: 5 year: 2011 ident: 10.1016/j.exer.2018.05.010_bib23 article-title: Organ printing: from bioprinter to organ biofabrication line publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.02.006 – volume: 29 start-page: 3960 year: 2008 ident: 10.1016/j.exer.2018.05.010_bib27 article-title: PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.06.017 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.exer.2018.05.010_bib29 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 71 start-page: 318 issue: 5 year: 2000 ident: 10.1016/j.exer.2018.05.010_bib8 article-title: Why don't we have enough cornea donors? A literature review and survey publication-title: Optometry – volume: 2 issue: 2 year: 2010 ident: 10.1016/j.exer.2018.05.010_bib15 article-title: Tissue engineering by self-assembly and bio-printing of living cells publication-title: Biofabrication doi: 10.1088/1758-5082/2/2/022001 – volume: 34 start-page: 422 issue: 4 year: 2016 ident: 10.1016/j.exer.2018.05.010_bib20 article-title: 3D bioprinting for engineering complex tissues publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.12.011 – volume: 134 start-page: 7 year: 2015 ident: 10.1016/j.exer.2018.05.010_bib6 article-title: Overview of the cornea: structure, function, and development publication-title: Prog. Mol. Biol. Transl. Sci. doi: 10.1016/bs.pmbts.2015.04.001 – volume: 60 start-page: 691 issue: 3 year: 2013 ident: 10.1016/j.exer.2018.05.010_bib26 article-title: Bioprinting toward organ fabrication: challenges and future trends publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2243912 – volume: 32 start-page: 773 issue: 8 year: 2014 ident: 10.1016/j.exer.2018.05.010_bib25 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2958 – volume: 79 start-page: 214 issue: 3 year: 2001 ident: 10.1016/j.exer.2018.05.010_bib31 article-title: Corneal blindness: a global perspective publication-title: Bull. World Health Organ. – volume: 9 start-page: 4 year: 2015 ident: 10.1016/j.exer.2018.05.010_bib4 article-title: Recent advances in 3D printing of biomaterials publication-title: J. Biol. Eng. doi: 10.1186/s13036-015-0001-4 – volume: 25 start-page: 3187 issue: 16 year: 2004 ident: 10.1016/j.exer.2018.05.010_bib5 article-title: The tensile properties of alginate hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.10.002 – volume: 77 start-page: 274 year: 2016 ident: 10.1016/j.exer.2018.05.010_bib11 article-title: Analysis of cornea curvature using radial basis functions - Part I: Methodology publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.08.011 – volume: 12 start-page: 631 issue: 4 year: 2006 ident: 10.1016/j.exer.2018.05.010_bib22 article-title: 3D bioprinting: a Beginning publication-title: Tissue Eng. doi: 10.1089/ten.2006.12.631 – volume: 85 start-page: 437 issue: 4 year: 2001 ident: 10.1016/j.exer.2018.05.010_bib24 article-title: The specific architecture of the anterior stroma accounts for maintenance of corneal curvature publication-title: Br. J. Ophthalmol. doi: 10.1136/bjo.85.4.437 – ident: 10.1016/j.exer.2018.05.010_bib1 – volume: 0 start-page: 31 year: 2014 ident: 10.1016/j.exer.2018.05.010_bib16 article-title: Reversal of fibrosis by TGF-β3 in a 3D in vitro model publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2014.04.020 – volume: 37 start-page: 106 issue: 1 year: 2012 ident: 10.1016/j.exer.2018.05.010_bib18 article-title: Alginate: properties and biomedical applications publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2011.06.003 |
| SSID | ssj0003474 |
| Score | 2.6403382 |
| Snippet | Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 188 |
| SubjectTerms | 3D bioprinting Bio-ink Bioartificial Organs Bioprinting - methods Collagen Cornea Corneal Keratocytes - cytology Corneal Stroma - cytology Equipment Design Humans Keratocytes Printing, Three-Dimensional - instrumentation Tissue Engineering Tissue Scaffolds |
| Title | 3D bioprinting of a corneal stroma equivalent |
| URI | https://dx.doi.org/10.1016/j.exer.2018.05.010 https://www.ncbi.nlm.nih.gov/pubmed/29772228 https://www.proquest.com/docview/2041628069 https://pubmed.ncbi.nlm.nih.gov/PMC6083436 |
| Volume | 173 |
| WOSCitedRecordID | wos000441370500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003474 issn: 0014-4835 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagRagXBC2P5VEZCXGJUiVxEsfHFS2CSlRIFGlvkZPYNAtN2u4utP-emdjxZrdqRQ9colU2cR7fxJ7HNzOEvCuEYjrjAh1V3I9TmfhCB9yXacR5UUY65KbZBD86yiYT8dX275x17QR402SXl-Lsv0IN-wBsTJ29A9xuUNgBvwF02ALssP0n4Nm-V9Qt-ut6RrP0wMRslMkMaU-lp84XNVyy57xMHR1vWexfXWE_lYGrqxMfKUuboTUu6h8Desa3P3X700RxLG_MBTewn7WN7CvvcG_oZggzR3JzU2cYI6DJytTJ2WDyC02DPruOhqbz4bUp2ngLpnvYUgqpdZmpnBosF6Q-CL-2Tjn2YE9Mm-Y4Ro5j5EGSd5l2mxFPBEzQm-PPB5NDtyaz2Nbjtg9h06cM02_9Tm5SUa6bIOtM2oFqcvyYPLI2BR0bWXhC7qlmm-yMGzlvT6_oe9qxfLvwyTZ5-MWSKXaIz_bpQFJoq6mkVlKokRS6lJSn5PvHg-MPn3zbPcMvsUkFLHNKx0oGpQirCuwAjVnQRawrxVKhVVjxJMoyxQMdJIESoeClKuHlKWwJAJode0Y2QD7UC0Lhs02Y5pJloAzGMFgFRgAvKlSfkyqtRiTsX1he2tLy2OHkV34zVCPiuXPOTGGVW49OehxyqxoalS8Hsbr1vLc9aDnMmxgMk41qFzM4CEwRpBWIEXluQHT3EYFRhJ7REeEr8LoDsCb76j9NfdLVZk_BpIlZ-vJOT_eKbC0_uddkY36xUG_Ig_L3vJ5d7JL7fJLtWon-C-rNqxI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+bioprinting+of+a+corneal+stroma+equivalent&rft.jtitle=Experimental+eye+research&rft.au=Isaacson%2C+Abigail&rft.au=Swioklo%2C+Stephen&rft.au=Connon%2C+Che+J.&rft.date=2018-08-01&rft.issn=0014-4835&rft.volume=173&rft.spage=188&rft.epage=193&rft_id=info:doi/10.1016%2Fj.exer.2018.05.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_exer_2018_05_010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4835&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4835&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4835&client=summon |