3D bioprinting of a corneal stroma equivalent

Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Experimental eye research Ročník 173; s. 188 - 193
Hlavní autoři: Isaacson, Abigail, Swioklo, Stephen, Connon, Che J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.08.2018
Academic Press
Témata:
ISSN:0014-4835, 1096-0007, 1096-0007
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered. [Display omitted]
AbstractList Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered. [Display omitted]
Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered.Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered.
Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered. Image 1
Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has been made by tissue engineers to produce functional, synthetic corneal prostheses as an alternative recourse. However, successful translation of these therapies into the clinic has not yet been accomplished. 3D bioprinting is an emerging technology that can be harnessed for the fabrication of biological tissue for clinical applications. We applied this to the area of corneal tissue engineering in order to fabricate corneal structures that resembled the structure of the native human corneal stroma using an existing 3D digital human corneal model and a suitable support structure. These were 3D bioprinted from an in-house collagen-based bio-ink containing encapsulated corneal keratocytes. Keratocytes exhibited high cell viability both at day 1 post-printing (>90%) and at day 7 (83%). We established 3D bio-printing to be a feasible method by which artificial corneal structures can be engineered.
Author Swioklo, Stephen
Isaacson, Abigail
Connon, Che J.
AuthorAffiliation Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK
AuthorAffiliation_xml – name: Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK
Author_xml – sequence: 1
  givenname: Abigail
  surname: Isaacson
  fullname: Isaacson, Abigail
– sequence: 2
  givenname: Stephen
  surname: Swioklo
  fullname: Swioklo, Stephen
– sequence: 3
  givenname: Che J.
  orcidid: 0000-0001-8264-6531
  surname: Connon
  fullname: Connon, Che J.
  email: Che.Connon@ncl.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29772228$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rGzEQxUVJaewkXyCHsMdedjvS7uoPhEBJm7QQ6KU9C1k768ispVham-TbR8Z2SHrwSaB5v_eGeVNy4oNHQi4pVBQo_7ao8BljxYDKCtoKKHwiEwqKlwAgTsgEgDZlI-v2lExTWuTfuhHNF3LKlBCMMTkhZf2jmLnwFJ0fnZ8XoS9MYUP0aIYijTEsTYGrtduYAf14Tj73Zkh4sX_PyL-7n39vf5UPf-5_335_KG3L6FhKgX2DBqyiXQdK9Qyaetb0HdZc9Ug70TIpUUAPLaCiSli0olXIORPAWH1Gbna-T-vZEjubo6MZdN5yaeKLDsbpjxPvHvU8bDQHWTc1zwZf9wYxrNaYRr10yeIwGI9hnXReiHImgassvXqf9RZyuFEWyJ3AxpBSxF5bN5rRhW20GzQFva1DL_S2Dr2tQ0Orcx0ZZf-hB_ej0PUOwnzhjcvTZB16i52LaEfdBXcMfwXfH6MZ
CitedBy_id crossref_primary_10_1159_000515946
crossref_primary_10_1055_a_1263_9979
crossref_primary_10_3389_fbioe_2024_1423864
crossref_primary_10_3389_fbioe_2020_00219
crossref_primary_10_3389_fcimb_2022_840122
crossref_primary_10_1088_1758_5090_ad35ea
crossref_primary_10_24193_subbphil_2021_2s_13
crossref_primary_10_1088_1758_5090_ad35eb
crossref_primary_10_1557_s43579_023_00473_9
crossref_primary_10_1016_j_exer_2020_108314
crossref_primary_10_1002_adfm_201807334
crossref_primary_10_1002_jbm_a_36979
crossref_primary_10_1109_RBME_2022_3146293
crossref_primary_10_1186_s40662_018_0122_1
crossref_primary_10_3389_fphys_2020_00715
crossref_primary_10_1186_s12938_020_00822_y
crossref_primary_10_1016_j_ijbiomac_2021_05_048
crossref_primary_10_1016_j_preteyeres_2024_101287
crossref_primary_10_1016_j_biomaterials_2022_121639
crossref_primary_10_1016_j_heliyon_2023_e17950
crossref_primary_10_1080_17469899_2020_1754798
crossref_primary_10_3389_fsurg_2021_639500
crossref_primary_10_1111_aor_14241
crossref_primary_10_1016_j_drudis_2019_04_009
crossref_primary_10_3389_fphar_2023_1193606
crossref_primary_10_1016_j_ejpb_2021_02_007
crossref_primary_10_1002_pol_20240720
crossref_primary_10_1016_j_actbio_2024_12_005
crossref_primary_10_1002_sctm_20_0408
crossref_primary_10_1016_j_ejps_2019_105167
crossref_primary_10_3389_fbioe_2024_1480772
crossref_primary_10_1007_s10856_019_6345_4
crossref_primary_10_1016_j_jconrel_2021_02_027
crossref_primary_10_1631_jzus_B1900190
crossref_primary_10_3390_pharmaceutics13081280
crossref_primary_10_1038_s41536_021_00170_y
crossref_primary_10_3341_kjo_2021_0126
crossref_primary_10_1016_j_matdes_2025_114703
crossref_primary_10_1039_D4BM00833B
crossref_primary_10_1186_s40824_022_00338_7
crossref_primary_10_1002_adhm_202100972
crossref_primary_10_1007_s00431_020_03819_w
crossref_primary_10_3390_bioengineering10111287
crossref_primary_10_1016_j_survophthal_2023_02_005
crossref_primary_10_3390_jfb16070240
crossref_primary_10_1016_j_jconrel_2021_02_036
crossref_primary_10_1080_17476348_2019_1624163
crossref_primary_10_3390_life15040602
crossref_primary_10_3390_ma12244131
crossref_primary_10_1016_j_ymeth_2019_05_009
crossref_primary_10_1080_09205063_2025_2532567
crossref_primary_10_1007_s10561_021_09975_z
crossref_primary_10_3390_biomedicines10071562
crossref_primary_10_1002_jbm_a_37381
crossref_primary_10_1177_25158414221106682
crossref_primary_10_3390_jcs6080227
crossref_primary_10_1007_s00417_019_04312_3
crossref_primary_10_1039_D5TB00090D
crossref_primary_10_1038_s41598_020_62640_5
crossref_primary_10_3389_fbioe_2020_00681
crossref_primary_10_1016_j_preteyeres_2024_101275
crossref_primary_10_1016_j_tice_2022_101782
crossref_primary_10_3390_cells11203310
crossref_primary_10_1007_s42235_024_00520_8
crossref_primary_10_1016_j_mtcomm_2024_111249
crossref_primary_10_1007_s10570_023_05209_5
crossref_primary_10_1021_acsami_5c03479
crossref_primary_10_1177_03000605231190473
crossref_primary_10_1177_08853282251369229
crossref_primary_10_1557_s43577_022_00348_9
crossref_primary_10_3390_polym13173015
crossref_primary_10_1016_j_colcom_2022_100632
crossref_primary_10_1038_d41586_021_02629_w
crossref_primary_10_3390_biomimetics9040202
crossref_primary_10_1002_adfm_201908996
crossref_primary_10_1016_j_jiec_2024_03_030
crossref_primary_10_1007_s00542_020_04960_0
crossref_primary_10_1016_j_exer_2024_110044
crossref_primary_10_1007_s44174_024_00254_5
crossref_primary_10_1016_j_ijbiomac_2022_05_088
crossref_primary_10_3389_fbioe_2024_1358246
crossref_primary_10_1007_s10792_020_01573_4
crossref_primary_10_1039_D5MA00076A
crossref_primary_10_1088_1758_5090_ade7b2
crossref_primary_10_2217_rme_2019_0055
crossref_primary_10_3390_polym13172973
crossref_primary_10_1210_endocr_bqab033
crossref_primary_10_3389_fbioe_2019_00135
crossref_primary_10_1002_advs_202205878
crossref_primary_10_1002_jbm_b_34628
crossref_primary_10_1016_j_exer_2023_109697
crossref_primary_10_1016_j_preteyeres_2022_101090
crossref_primary_10_1002_INMD_20250058
crossref_primary_10_1177_09544119211028069
crossref_primary_10_1002_jbm_a_36702
crossref_primary_10_1016_j_jddst_2022_103798
crossref_primary_10_1088_1758_5090_abe6f2
crossref_primary_10_1002_mabi_202000280
crossref_primary_10_1016_j_matdes_2020_109398
crossref_primary_10_1007_s10439_020_02537_6
crossref_primary_10_1097_ICO_0000000000002374
crossref_primary_10_3390_ijms24108828
crossref_primary_10_1007_s10517_021_05339_5
crossref_primary_10_3390_biomedicines12112567
crossref_primary_10_1088_1748_605X_ad3312
crossref_primary_10_1016_j_bprint_2020_e00126
crossref_primary_10_1088_1758_5090_ac41a1
crossref_primary_10_1177_2041731418823382
crossref_primary_10_1016_j_matdes_2022_111277
crossref_primary_10_1088_1758_5090_ab331e
crossref_primary_10_3389_fmed_2021_770780
crossref_primary_10_3390_ma14123149
crossref_primary_10_1016_j_actbio_2020_01_013
crossref_primary_10_1016_j_actbio_2021_10_056
crossref_primary_10_1016_j_bprint_2019_e00058
crossref_primary_10_3390_polym16202882
crossref_primary_10_1016_j_bprint_2025_e00391
crossref_primary_10_1016_j_ijbiomac_2024_130472
crossref_primary_10_1038_s41598_021_03270_3
crossref_primary_10_1016_j_tibtech_2023_11_001
crossref_primary_10_1016_j_pbiomolbio_2021_07_006
crossref_primary_10_1002_admi_202100670
crossref_primary_10_1002_smll_202006335
crossref_primary_10_3390_gels11060422
crossref_primary_10_1155_2020_8813447
crossref_primary_10_1007_s13346_020_00879_1
crossref_primary_10_1038_s41598_024_68597_z
crossref_primary_10_3389_fbioe_2023_1124995
crossref_primary_10_3390_cells11162549
crossref_primary_10_3390_cancers14143535
crossref_primary_10_3390_pharmaceutics13030308
crossref_primary_10_3389_fbioe_2019_00164
crossref_primary_10_1016_j_bprint_2021_e00185
crossref_primary_10_3390_bioengineering8110161
crossref_primary_10_1007_s40883_025_00469_y
crossref_primary_10_3390_bioengineering7030071
crossref_primary_10_1016_j_bprint_2022_e00227
crossref_primary_10_1088_1758_5090_ac1846
crossref_primary_10_1111_aos_14711
crossref_primary_10_3390_pharmaceutics12121215
crossref_primary_10_1002_mabi_202200422
crossref_primary_10_1016_j_bioactmat_2021_09_021
crossref_primary_10_1016_j_mfglet_2023_07_005
crossref_primary_10_1177_20417314231197793
crossref_primary_10_4000_14kbb
crossref_primary_10_1016_j_ijpharm_2024_124510
crossref_primary_10_1021_acsami_4c04077
crossref_primary_10_1016_j_eurpolymj_2020_109744
crossref_primary_10_1016_j_ijbiomac_2025_141761
crossref_primary_10_1016_j_exer_2020_108256
crossref_primary_10_3390_biomimetics9030145
crossref_primary_10_1002_jcp_30085
crossref_primary_10_1016_j_actbio_2024_10_009
crossref_primary_10_1016_j_jconrel_2020_11_044
crossref_primary_10_1002_term_3309
crossref_primary_10_1177_20417314221138188
crossref_primary_10_1016_j_medengphy_2019_05_002
crossref_primary_10_3390_gels7040163
crossref_primary_10_1080_17469899_2021_1933441
crossref_primary_10_1039_D1MH01632F
crossref_primary_10_1002_mabi_202500276
crossref_primary_10_3390_gels11070528
crossref_primary_10_1002_mabi_202400595
crossref_primary_10_3389_fbioe_2024_1454675
crossref_primary_10_3390_sym12010151
crossref_primary_10_1097_APO_0000000000000530
crossref_primary_10_1002_advs_202103469
crossref_primary_10_1007_s10792_025_03493_7
crossref_primary_10_1080_17452759_2025_2459802
crossref_primary_10_3390_pharmaceutics13030319
crossref_primary_10_1016_j_exer_2020_108127
crossref_primary_10_1007_s10916_019_1280_y
crossref_primary_10_3390_bioengineering7030066
crossref_primary_10_1186_s43094_025_00866_8
crossref_primary_10_1088_1758_5090_ab84cb
crossref_primary_10_3390_ijms22147545
crossref_primary_10_1177_2041731418802090
crossref_primary_10_1016_j_eng_2024_10_016
crossref_primary_10_1186_s13287_024_03672_w
crossref_primary_10_3389_fmedt_2020_607648
crossref_primary_10_1007_s42242_020_00117_0
crossref_primary_10_1016_j_ijbiomac_2025_146052
crossref_primary_10_1016_j_colsurfb_2019_06_069
crossref_primary_10_3390_bioengineering12030270
crossref_primary_10_1080_09205063_2024_2301817
crossref_primary_10_1002_adma_202207750
crossref_primary_10_1080_00914037_2025_2475874
crossref_primary_10_1002_mabi_202400136
crossref_primary_10_1016_j_bprint_2021_e00147
crossref_primary_10_1002_adhm_202300600
crossref_primary_10_3389_fbioe_2022_905438
crossref_primary_10_1002_jbm_a_37500
crossref_primary_10_1016_j_actbio_2020_07_004
crossref_primary_10_3390_gels8040239
crossref_primary_10_3389_fbioe_2022_1065460
crossref_primary_10_1089_jop_2018_0142
crossref_primary_10_3390_cells9071713
crossref_primary_10_1007_s40123_021_00379_6
crossref_primary_10_1002_adhm_202301392
crossref_primary_10_3390_gels8070431
crossref_primary_10_3389_fbioe_2024_1434435
crossref_primary_10_1002_admt_202200492
crossref_primary_10_2174_1381612829666230228115442
crossref_primary_10_1002_term_3235
crossref_primary_10_1016_j_ijpharm_2022_122094
crossref_primary_10_3389_fbioe_2021_644595
crossref_primary_10_1080_17460441_2018_1542427
crossref_primary_10_1097_APO_0000000000000337
crossref_primary_10_3390_md17100555
crossref_primary_10_3390_polym14194227
crossref_primary_10_1007_s41745_019_00113_z
crossref_primary_10_1016_j_exer_2020_108213
crossref_primary_10_1038_s41598_020_77146_3
crossref_primary_10_1088_1758_5090_acab34
crossref_primary_10_3390_pharmaceutics14122797
crossref_primary_10_1016_j_pmatsci_2025_101527
crossref_primary_10_3390_ijms22073648
crossref_primary_10_1016_j_jconrel_2021_04_003
crossref_primary_10_1097_ICU_0000000000000573
crossref_primary_10_1002_adfm_202007983
crossref_primary_10_3390_nano12030391
crossref_primary_10_1007_s10439_023_03243_9
crossref_primary_10_1063_5_0032777
crossref_primary_10_3389_fbioe_2022_849831
crossref_primary_10_1007_s13346_023_01376_x
crossref_primary_10_1088_1758_5090_ab4d97
crossref_primary_10_3390_jfb16040118
crossref_primary_10_1208_s12248_021_00610_z
crossref_primary_10_1016_j_exer_2021_108747
crossref_primary_10_1080_02713683_2019_1663874
crossref_primary_10_3390_md21010014
crossref_primary_10_1039_D4BM00826J
crossref_primary_10_1080_02713683_2023_2251172
crossref_primary_10_1002_smll_202002931
crossref_primary_10_1039_D5TB01170A
crossref_primary_10_1016_j_survophthal_2022_01_004
Cites_doi 10.1126/sciadv.1500758
10.1016/S0142-9612(96)00204-9
10.1203/PDR.0b013e31816c5bc3
10.1167/iovs.13-13092
10.1016/j.preteyeres.2008.08.001
10.1007/s12013-015-0531-x
10.1016/j.biomaterials.2014.06.047
10.1073/pnas.2536767100
10.1371/journal.pone.0130426
10.1016/j.preteyeres.2015.07.001
10.1016/j.biomaterials.2013.08.061
10.2217/rme.12.7
10.1016/j.copbio.2011.02.006
10.1016/j.biomaterials.2008.06.017
10.1038/nmeth.2089
10.1088/1758-5082/2/2/022001
10.1016/j.biotechadv.2015.12.011
10.1016/bs.pmbts.2015.04.001
10.1109/TBME.2013.2243912
10.1038/nbt.2958
10.1186/s13036-015-0001-4
10.1016/j.biomaterials.2003.10.002
10.1016/j.compbiomed.2016.08.011
10.1089/ten.2006.12.631
10.1136/bjo.85.4.437
10.1016/j.exer.2014.04.020
10.1016/j.progpolymsci.2011.06.003
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
2018 The Authors 2018
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: 2018 The Authors 2018
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.exer.2018.05.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1096-0007
EndPage 193
ExternalDocumentID PMC6083436
29772228
10_1016_j_exer_2018_05_010
S0014483518302124
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0900877
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/K011111/1
GroupedDBID ---
--K
--M
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29G
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AAAJQ
AACTN
AADPK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXLA
AAXUO
ABBQC
ABCQJ
ABFNM
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CAG
CJTIS
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
L7B
LCYCR
LG5
LUGTX
LZ2
M29
M2U
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSH
SSI
SSN
SSZ
T5K
TEORI
WUQ
X7M
XPP
ZA5
ZGI
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-87ef4ea0c91dd099f2043b4fde369fe1d75288e70f050e9197cec759e66270223
ISICitedReferencesCount 290
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000441370500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0014-4835
1096-0007
IngestDate Tue Sep 30 14:58:07 EDT 2025
Sat Sep 27 20:19:44 EDT 2025
Mon Jul 21 06:03:13 EDT 2025
Tue Nov 18 21:06:26 EST 2025
Sat Nov 29 05:31:33 EST 2025
Fri Feb 23 02:29:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cornea
3D bioprinting
Bio-ink
Tissue engineering
Keratocytes
Collagen
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c521t-87ef4ea0c91dd099f2043b4fde369fe1d75288e70f050e9197cec759e66270223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8264-6531
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6083436
PMID 29772228
PQID 2041628069
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6083436
proquest_miscellaneous_2041628069
pubmed_primary_29772228
crossref_citationtrail_10_1016_j_exer_2018_05_010
crossref_primary_10_1016_j_exer_2018_05_010
elsevier_sciencedirect_doi_10_1016_j_exer_2018_05_010
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Experimental eye research
PublicationTitleAlternate Exp Eye Res
PublicationYear 2018
Publisher Elsevier Ltd
Academic Press
Publisher_xml – name: Elsevier Ltd
– name: Academic Press
References Whitcher, Srinivasan, Upadhyay (bib31) 2001; 79
Meek, Knupp (bib21) 2015; 49
Ozbolat, Yu (bib26) 2013; 60
FRESH Bioprinting Method. Allevi.
Gouveia, Connon (bib9) 2013; 54
Murphy, Atala (bib25) 2014; 32
Wright, Cave, Cook, Khutoryanskiy, Mi, Chen, Leyland, Connon (bib32) 2012; 7
Simonini, Pandolfi (bib30) 2015; 10
Farrell, McCally (bib7) 2000
Mironov, Reis, Derby (bib22) 2006; 12
Schneider, Rasband, Eliceiri (bib29) 2012; 9
Drury, Dennis, Mooney (bib5) 2004; 25
Gouveia, Koudouna, Jester, Figueiredo, Connon (bib10) 2017
Golchet, Carr, Harris (bib8) 2000; 71
Jakab, Marga, Norotte, Murphy, Vunjak-Novakovic, Forgacs (bib15) 2010; 2
Griffiths, Płociniczak, Schiesser (bib11) 2016; 77
(accessed 26 December 2017).
Eghrari, Riazuddin, Gottsch (bib6) 2015; 134
Muller, Pels, Vrensen (bib24) 2001; 85
Branco da Cunha, Klumpers, Li, Koshy, Weaver, Chaudhuri, Granja, Mooney (bib2) 2014; 35
Hinton, Jallerat, Palchesko, Park, Grodzicki, Shue, Ramadan, Hudson, Feinberg (bib13) 2015; 1
Rafat, Li, Fagerholm, Lagali, Watsky, Munger, Matsuura, Griffith (bib27) 2008; 29
Ruberti, Zieske (bib28) 2008; 27
Karamichos, Hutcheon, Zieske (bib16) 2014; 0
Chia, Wu (bib4) 2015; 9
Cen, Liu, Cui, Zhang, Cao (bib3) 2008; 63
Hogan, Alvarado, Weddell (bib14) 1971
Li, Carlsson, Lohmann, Suuronen, Vascotto, Kobuch, Sheardown, Munger, Nakamura, Griffith (bib19) 2003; 100
Zhang, Zhang (bib33) 2015; 72
Klöck, Pfeffermann, Ryser, Gröhn, Kuttler, Hahn, Zimmermann (bib17) 1997; 18
Mironov, Kasyanov, Markwald (bib23) 2011; 22
Lee, Mooney (bib18) 2012; 37
Guo, Phillip, Majumdar, Wu, Chen, Calderón-Colón, Schein, Smith, Trexler, Wirtz, Elisseeff (bib12) 2013; 34
Mandrycky, Wang, Kim, Kim (bib20) 2016; 34
10.1016/j.exer.2018.05.010_bib1
Hinton (10.1016/j.exer.2018.05.010_bib13) 2015; 1
Muller (10.1016/j.exer.2018.05.010_bib24) 2001; 85
Rafat (10.1016/j.exer.2018.05.010_bib27) 2008; 29
Hogan (10.1016/j.exer.2018.05.010_bib14) 1971
Meek (10.1016/j.exer.2018.05.010_bib21) 2015; 49
Branco da Cunha (10.1016/j.exer.2018.05.010_bib2) 2014; 35
Farrell (10.1016/j.exer.2018.05.010_bib7) 2000
Mironov (10.1016/j.exer.2018.05.010_bib23) 2011; 22
Griffiths (10.1016/j.exer.2018.05.010_bib11) 2016; 77
Klöck (10.1016/j.exer.2018.05.010_bib17) 1997; 18
Gouveia (10.1016/j.exer.2018.05.010_bib9) 2013; 54
Lee (10.1016/j.exer.2018.05.010_bib18) 2012; 37
Simonini (10.1016/j.exer.2018.05.010_bib30) 2015; 10
Guo (10.1016/j.exer.2018.05.010_bib12) 2013; 34
Chia (10.1016/j.exer.2018.05.010_bib4) 2015; 9
Mironov (10.1016/j.exer.2018.05.010_bib22) 2006; 12
Cen (10.1016/j.exer.2018.05.010_bib3) 2008; 63
Ruberti (10.1016/j.exer.2018.05.010_bib28) 2008; 27
Golchet (10.1016/j.exer.2018.05.010_bib8) 2000; 71
Li (10.1016/j.exer.2018.05.010_bib19) 2003; 100
Jakab (10.1016/j.exer.2018.05.010_bib15) 2010; 2
Zhang (10.1016/j.exer.2018.05.010_bib33) 2015; 72
Mandrycky (10.1016/j.exer.2018.05.010_bib20) 2016; 34
Gouveia (10.1016/j.exer.2018.05.010_bib10) 2017
Drury (10.1016/j.exer.2018.05.010_bib5) 2004; 25
Karamichos (10.1016/j.exer.2018.05.010_bib16) 2014; 0
Wright (10.1016/j.exer.2018.05.010_bib32) 2012; 7
Murphy (10.1016/j.exer.2018.05.010_bib25) 2014; 32
Eghrari (10.1016/j.exer.2018.05.010_bib6) 2015; 134
Ozbolat (10.1016/j.exer.2018.05.010_bib26) 2013; 60
Whitcher (10.1016/j.exer.2018.05.010_bib31) 2001; 79
Schneider (10.1016/j.exer.2018.05.010_bib29) 2012; 9
References_xml – volume: 29
  start-page: 3960
  year: 2008
  end-page: 3972
  ident: bib27
  article-title: PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering
  publication-title: Biomaterials
– volume: 10
  year: 2015
  ident: bib30
  article-title: Customized finite element modelling of the human cornea
  publication-title: PLoS One
– reference: (accessed 26 December 2017).
– volume: 134
  start-page: 7
  year: 2015
  end-page: 23
  ident: bib6
  article-title: Overview of the cornea: structure, function, and development
  publication-title: Prog. Mol. Biol. Transl. Sci.
– start-page: 55
  year: 1971
  end-page: 111
  ident: bib14
  article-title: The Cornea. Histology of the Human Eye
– volume: 85
  start-page: 437
  year: 2001
  end-page: 443
  ident: bib24
  article-title: The specific architecture of the anterior stroma accounts for maintenance of corneal curvature
  publication-title: Br. J. Ophthalmol.
– volume: 1
  start-page: e1500758
  year: 2015
  ident: bib13
  article-title: Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels
  publication-title: Sci. Adv.
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bib29
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– volume: 54
  start-page: 7483
  year: 2013
  end-page: 7491
  ident: bib9
  article-title: The effects of retinoic acid on human corneal stromal keratocytes cultured in vitro under serum- free conditions
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 71
  start-page: 318
  year: 2000
  end-page: 328
  ident: bib8
  article-title: Why don't we have enough cornea donors? A literature review and survey
  publication-title: Optometry
– volume: 7
  start-page: 295
  year: 2012
  end-page: 307
  ident: bib32
  article-title: Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel
  publication-title: Regen. Med.
– volume: 35
  start-page: 8927
  year: 2014
  end-page: 8936
  ident: bib2
  article-title: Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology
  publication-title: Biomaterials
– volume: 12
  start-page: 631
  year: 2006
  end-page: 634
  ident: bib22
  article-title: 3D bioprinting: a Beginning
  publication-title: Tissue Eng.
– volume: 27
  start-page: 549
  year: 2008
  end-page: 577
  ident: bib28
  article-title: Prelude to corneal tissue engineering - gaining control of collagen organization
  publication-title: Prog. Retin. Eye Res.
– volume: 77
  start-page: 274
  year: 2016
  end-page: 284
  ident: bib11
  article-title: Analysis of cornea curvature using radial basis functions - Part I: Methodology
  publication-title: Comput. Biol. Med.
– volume: 9
  start-page: 4
  year: 2015
  ident: bib4
  article-title: Recent advances in 3D printing of biomaterials
  publication-title: J. Biol. Eng.
– volume: 37
  start-page: 106
  year: 2012
  end-page: 126
  ident: bib18
  article-title: Alginate: properties and biomedical applications
  publication-title: Prog. Polym. Sci.
– volume: 2
  year: 2010
  ident: bib15
  article-title: Tissue engineering by self-assembly and bio-printing of living cells
  publication-title: Biofabrication
– volume: 49
  start-page: 1
  year: 2015
  end-page: 16
  ident: bib21
  article-title: Corneal structure and transparency
  publication-title: Prog. Retin. Eye Res.
– volume: 72
  start-page: 777
  year: 2015
  end-page: 782
  ident: bib33
  article-title: Tissue engineering applications of three-dimensional bioprinting
  publication-title: Cell Biochem. Biophys.
– volume: 34
  start-page: 9365
  year: 2013
  end-page: 9372
  ident: bib12
  article-title: Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair
  publication-title: Biomaterials
– volume: 0
  start-page: 31
  year: 2014
  end-page: 36
  ident: bib16
  article-title: Reversal of fibrosis by TGF-β3 in a 3D in vitro model
  publication-title: Exp. Eye Res.
– volume: 63
  start-page: 492
  year: 2008
  end-page: 496
  ident: bib3
  article-title: Collagen tissue engineering: development of novel biomaterials and applications
  publication-title: Pediatr. Res.
– volume: 25
  start-page: 3187
  year: 2004
  end-page: 3199
  ident: bib5
  article-title: The tensile properties of alginate hydrogels
  publication-title: Biomaterials
– year: 2017
  ident: bib10
  article-title: Template curvature influences cell alignment to create improved human corneal tissue equivalents
  publication-title: Adv. Biosys.
– volume: 18
  start-page: 707
  year: 1997
  end-page: 713
  ident: bib17
  article-title: Biocompatibility of mannuronic acid-rich alginates
  publication-title: Biomaterials
– volume: 22
  start-page: 667
  year: 2011
  end-page: 673
  ident: bib23
  article-title: Organ printing: from bioprinter to organ biofabrication line
  publication-title: Curr. Opin. Biotechnol.
– volume: 100
  start-page: 15346
  year: 2003
  end-page: 15351
  ident: bib19
  article-title: Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 629
  year: 2000
  end-page: 643
  ident: bib7
  article-title: Corneal transparency
  publication-title: Principles and Practice of Ophthalmology
– reference: FRESH Bioprinting Method. Allevi.
– volume: 34
  start-page: 422
  year: 2016
  end-page: 434
  ident: bib20
  article-title: 3D bioprinting for engineering complex tissues
  publication-title: Biotechnol. Adv.
– volume: 60
  start-page: 691
  year: 2013
  end-page: 699
  ident: bib26
  article-title: Bioprinting toward organ fabrication: challenges and future trends
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 32
  start-page: 773
  year: 2014
  end-page: 785
  ident: bib25
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat. Biotechnol.
– volume: 79
  start-page: 214
  year: 2001
  end-page: 221
  ident: bib31
  article-title: Corneal blindness: a global perspective
  publication-title: Bull. World Health Organ.
– volume: 1
  start-page: e1500758
  issue: 9
  year: 2015
  ident: 10.1016/j.exer.2018.05.010_bib13
  article-title: Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500758
– volume: 18
  start-page: 707
  issue: 10
  year: 1997
  ident: 10.1016/j.exer.2018.05.010_bib17
  article-title: Biocompatibility of mannuronic acid-rich alginates
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(96)00204-9
– start-page: 55
  year: 1971
  ident: 10.1016/j.exer.2018.05.010_bib14
– volume: 63
  start-page: 492
  issue: 5
  year: 2008
  ident: 10.1016/j.exer.2018.05.010_bib3
  article-title: Collagen tissue engineering: development of novel biomaterials and applications
  publication-title: Pediatr. Res.
  doi: 10.1203/PDR.0b013e31816c5bc3
– start-page: 629
  year: 2000
  ident: 10.1016/j.exer.2018.05.010_bib7
  article-title: Corneal transparency
– volume: 54
  start-page: 7483
  year: 2013
  ident: 10.1016/j.exer.2018.05.010_bib9
  article-title: The effects of retinoic acid on human corneal stromal keratocytes cultured in vitro under serum- free conditions
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.13-13092
– year: 2017
  ident: 10.1016/j.exer.2018.05.010_bib10
  article-title: Template curvature influences cell alignment to create improved human corneal tissue equivalents
  publication-title: Adv. Biosys.
– volume: 27
  start-page: 549
  issue: 5
  year: 2008
  ident: 10.1016/j.exer.2018.05.010_bib28
  article-title: Prelude to corneal tissue engineering - gaining control of collagen organization
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2008.08.001
– volume: 72
  start-page: 777
  issue: 3
  year: 2015
  ident: 10.1016/j.exer.2018.05.010_bib33
  article-title: Tissue engineering applications of three-dimensional bioprinting
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-015-0531-x
– volume: 35
  start-page: 8927
  issue: 32
  year: 2014
  ident: 10.1016/j.exer.2018.05.010_bib2
  article-title: Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.06.047
– volume: 100
  start-page: 15346
  issue: 26
  year: 2003
  ident: 10.1016/j.exer.2018.05.010_bib19
  article-title: Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2536767100
– volume: 10
  issue: 6
  year: 2015
  ident: 10.1016/j.exer.2018.05.010_bib30
  article-title: Customized finite element modelling of the human cornea
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130426
– volume: 49
  start-page: 1
  year: 2015
  ident: 10.1016/j.exer.2018.05.010_bib21
  article-title: Corneal structure and transparency
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2015.07.001
– volume: 34
  start-page: 9365
  year: 2013
  ident: 10.1016/j.exer.2018.05.010_bib12
  article-title: Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.08.061
– volume: 7
  start-page: 295
  issue: 3
  year: 2012
  ident: 10.1016/j.exer.2018.05.010_bib32
  article-title: Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel
  publication-title: Regen. Med.
  doi: 10.2217/rme.12.7
– volume: 22
  start-page: 667
  issue: 5
  year: 2011
  ident: 10.1016/j.exer.2018.05.010_bib23
  article-title: Organ printing: from bioprinter to organ biofabrication line
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2011.02.006
– volume: 29
  start-page: 3960
  year: 2008
  ident: 10.1016/j.exer.2018.05.010_bib27
  article-title: PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.06.017
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.exer.2018.05.010_bib29
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 71
  start-page: 318
  issue: 5
  year: 2000
  ident: 10.1016/j.exer.2018.05.010_bib8
  article-title: Why don't we have enough cornea donors? A literature review and survey
  publication-title: Optometry
– volume: 2
  issue: 2
  year: 2010
  ident: 10.1016/j.exer.2018.05.010_bib15
  article-title: Tissue engineering by self-assembly and bio-printing of living cells
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/2/2/022001
– volume: 34
  start-page: 422
  issue: 4
  year: 2016
  ident: 10.1016/j.exer.2018.05.010_bib20
  article-title: 3D bioprinting for engineering complex tissues
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2015.12.011
– volume: 134
  start-page: 7
  year: 2015
  ident: 10.1016/j.exer.2018.05.010_bib6
  article-title: Overview of the cornea: structure, function, and development
  publication-title: Prog. Mol. Biol. Transl. Sci.
  doi: 10.1016/bs.pmbts.2015.04.001
– volume: 60
  start-page: 691
  issue: 3
  year: 2013
  ident: 10.1016/j.exer.2018.05.010_bib26
  article-title: Bioprinting toward organ fabrication: challenges and future trends
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2243912
– volume: 32
  start-page: 773
  issue: 8
  year: 2014
  ident: 10.1016/j.exer.2018.05.010_bib25
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2958
– volume: 79
  start-page: 214
  issue: 3
  year: 2001
  ident: 10.1016/j.exer.2018.05.010_bib31
  article-title: Corneal blindness: a global perspective
  publication-title: Bull. World Health Organ.
– volume: 9
  start-page: 4
  year: 2015
  ident: 10.1016/j.exer.2018.05.010_bib4
  article-title: Recent advances in 3D printing of biomaterials
  publication-title: J. Biol. Eng.
  doi: 10.1186/s13036-015-0001-4
– volume: 25
  start-page: 3187
  issue: 16
  year: 2004
  ident: 10.1016/j.exer.2018.05.010_bib5
  article-title: The tensile properties of alginate hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.10.002
– volume: 77
  start-page: 274
  year: 2016
  ident: 10.1016/j.exer.2018.05.010_bib11
  article-title: Analysis of cornea curvature using radial basis functions - Part I: Methodology
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.08.011
– volume: 12
  start-page: 631
  issue: 4
  year: 2006
  ident: 10.1016/j.exer.2018.05.010_bib22
  article-title: 3D bioprinting: a Beginning
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2006.12.631
– volume: 85
  start-page: 437
  issue: 4
  year: 2001
  ident: 10.1016/j.exer.2018.05.010_bib24
  article-title: The specific architecture of the anterior stroma accounts for maintenance of corneal curvature
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo.85.4.437
– ident: 10.1016/j.exer.2018.05.010_bib1
– volume: 0
  start-page: 31
  year: 2014
  ident: 10.1016/j.exer.2018.05.010_bib16
  article-title: Reversal of fibrosis by TGF-β3 in a 3D in vitro model
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2014.04.020
– volume: 37
  start-page: 106
  issue: 1
  year: 2012
  ident: 10.1016/j.exer.2018.05.010_bib18
  article-title: Alginate: properties and biomedical applications
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2011.06.003
SSID ssj0003474
Score 2.6403382
Snippet Corneal transplantation constitutes one of the leading treatments for severe cases of loss of corneal function. Due to its limitations, a concerted effort has...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 188
SubjectTerms 3D bioprinting
Bio-ink
Bioartificial Organs
Bioprinting - methods
Collagen
Cornea
Corneal Keratocytes - cytology
Corneal Stroma - cytology
Equipment Design
Humans
Keratocytes
Printing, Three-Dimensional - instrumentation
Tissue Engineering
Tissue Scaffolds
Title 3D bioprinting of a corneal stroma equivalent
URI https://dx.doi.org/10.1016/j.exer.2018.05.010
https://www.ncbi.nlm.nih.gov/pubmed/29772228
https://www.proquest.com/docview/2041628069
https://pubmed.ncbi.nlm.nih.gov/PMC6083436
Volume 173
WOSCitedRecordID wos000441370500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003474
  issn: 0014-4835
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagRagXBC2P5VEZCXGJUiVxEsfHFS2CSlRIFGlvkZPYNAtN2u4utP-emdjxZrdqRQ9colU2cR7fxJ7HNzOEvCuEYjrjAh1V3I9TmfhCB9yXacR5UUY65KbZBD86yiYT8dX275x17QR402SXl-Lsv0IN-wBsTJ29A9xuUNgBvwF02ALssP0n4Nm-V9Qt-ut6RrP0wMRslMkMaU-lp84XNVyy57xMHR1vWexfXWE_lYGrqxMfKUuboTUu6h8Desa3P3X700RxLG_MBTewn7WN7CvvcG_oZggzR3JzU2cYI6DJytTJ2WDyC02DPruOhqbz4bUp2ngLpnvYUgqpdZmpnBosF6Q-CL-2Tjn2YE9Mm-Y4Ro5j5EGSd5l2mxFPBEzQm-PPB5NDtyaz2Nbjtg9h06cM02_9Tm5SUa6bIOtM2oFqcvyYPLI2BR0bWXhC7qlmm-yMGzlvT6_oe9qxfLvwyTZ5-MWSKXaIz_bpQFJoq6mkVlKokRS6lJSn5PvHg-MPn3zbPcMvsUkFLHNKx0oGpQirCuwAjVnQRawrxVKhVVjxJMoyxQMdJIESoeClKuHlKWwJAJode0Y2QD7UC0Lhs02Y5pJloAzGMFgFRgAvKlSfkyqtRiTsX1he2tLy2OHkV34zVCPiuXPOTGGVW49OehxyqxoalS8Hsbr1vLc9aDnMmxgMk41qFzM4CEwRpBWIEXluQHT3EYFRhJ7REeEr8LoDsCb76j9NfdLVZk_BpIlZ-vJOT_eKbC0_uddkY36xUG_Ig_L3vJ5d7JL7fJLtWon-C-rNqxI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+bioprinting+of+a+corneal+stroma+equivalent&rft.jtitle=Experimental+eye+research&rft.au=Isaacson%2C+Abigail&rft.au=Swioklo%2C+Stephen&rft.au=Connon%2C+Che+J.&rft.date=2018-08-01&rft.issn=0014-4835&rft.volume=173&rft.spage=188&rft.epage=193&rft_id=info:doi/10.1016%2Fj.exer.2018.05.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_exer_2018_05_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4835&client=summon