Large-scale computation of elementary flux modes with bit pattern trees

Motivation: Elementary flux modes (EFMs)—non-decomposable minimal pathways—are commonly accepted tools for metabolic network analysis under steady state conditions. Valid states of the network are linear superpositions of elementary modes shaping a polyhedral cone (the flux cone), which is a well-st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics Ročník 24; číslo 19; s. 2229 - 2235
Hlavní autoři: Terzer, Marco, Stelling, Jörg
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Oxford University Press 01.10.2008
Oxford Publishing Limited (England)
Témata:
ISSN:1367-4803, 1367-4811, 1460-2059, 1367-4811
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Motivation: Elementary flux modes (EFMs)—non-decomposable minimal pathways—are commonly accepted tools for metabolic network analysis under steady state conditions. Valid states of the network are linear superpositions of elementary modes shaping a polyhedral cone (the flux cone), which is a well-studied convex set in computational geometry. Computing EFMs is thus basically equivalent to extreme ray enumeration of polyhedral cones. This is a combinatorial problem with poorly scaling algorithms, preventing the large-scale analysis of metabolic networks so far. Results: Here, we introduce new algorithmic concepts that enable large-scale computation of EFMs. Distinguishing extreme rays from normal (composite) vectors is one critical aspect of the algorithm. We present a new recursive enumeration strategy with bit pattern trees for adjacent rays—the ancestors of extreme rays—that is roughly one order of magnitude faster than previous methods. Additionally, we introduce a rank updating method that is particularly well suited for parallel computation and a residue arithmetic method for matrix rank computations, which circumvents potential numerical instability problems. Multi-core architectures of modern CPUs can be exploited for further performance improvements. The methods are applied to a central metabolism network of Escherichia coli, resulting in ≈26 Mio. EFMs. Within the top 2% modes considering biomass production, most of the gain in flux variability is achieved. In addition, we compute ≈5 Mio. EFMs for the production of non-essential amino acids for a genome-scale metabolic network of Helicobacter pylori. Only large-scale EFM analysis reveals the >85% of modes that generate several amino acids simultaneously. Availability: An implementation in Java, with integration into MATLAB and support of various input formats, including SBML, is available at http://www.csb.ethz.ch in the tools section; sources are available from the authors upon request. Contact: joerg.stelling@inf.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online.
AbstractList Motivation: Elementary flux modes (EFMs)--non-decomposable minimal pathways--are commonly accepted tools for metabolic network analysis under steady state conditions. Valid states of the network are linear superpositions of elementary modes shaping a polyhedral cone (the flux cone), which is a well-studied convex set in computational geometry. Computing EFMs is thus basically equivalent to extreme ray enumeration of polyhedral cones. This is a combinatorial problem with poorly scaling algorithms, preventing the large-scale analysis of metabolic networks so far. Results: Here, we introduce new algorithmic concepts that enable large-scale computation of EFMs. Distinguishing extreme rays from normal (composite) vectors is one critical aspect of the algorithm. We present a new recursive enumeration strategy with bit pattern trees for adjacent rays--the ancestors of extreme rays--that is roughly one order of magnitude faster than previous methods. Additionally, we introduce a rank updating method that is particularly well suited for parallel computation and a residue arithmetic method for matrix rank computations, which circumvents potential numerical instability problems. Multi-core architectures of modern CPUs can be exploited for further performance improvements. The methods are applied to a central metabolism network of Escherichia coli, resulting in [approximate]26 Mio. EFMs. Within the top 2% modes considering biomass production, most of the gain in flux variability is achieved. In addition, we compute [approximate]5 Mio. EFMs for the production of non-essential amino acids for a genome-scale metabolic network of Helicobacter pylori. Only large-scale EFM analysis reveals the >85% of modes that generate several amino acids simultaneously. Availability: An implementation in Java, with integration into MATLAB and support of various input formats, including SBML, is available at http://www.csb.ethz.ch in the tools section; sources are available from the authors upon request. Contact: joerg.stelling@inf.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online.
Elementary flux modes (EFMs)--non-decomposable minimal pathways--are commonly accepted tools for metabolic network analysis under steady state conditions. Valid states of the network are linear superpositions of elementary modes shaping a polyhedral cone (the flux cone), which is a well-studied convex set in computational geometry. Computing EFMs is thus basically equivalent to extreme ray enumeration of polyhedral cones. This is a combinatorial problem with poorly scaling algorithms, preventing the large-scale analysis of metabolic networks so far. Here, we introduce new algorithmic concepts that enable large-scale computation of EFMs. Distinguishing extreme rays from normal (composite) vectors is one critical aspect of the algorithm. We present a new recursive enumeration strategy with bit pattern trees for adjacent rays--the ancestors of extreme rays--that is roughly one order of magnitude faster than previous methods. Additionally, we introduce a rank updating method that is particularly well suited for parallel computation and a residue arithmetic method for matrix rank computations, which circumvents potential numerical instability problems. Multi-core architectures of modern CPUs can be exploited for further performance improvements. The methods are applied to a central metabolism network of Escherichia coli, resulting in approximately 26 Mio. EFMs. Within the top 2% modes considering biomass production, most of the gain in flux variability is achieved. In addition, we compute approximately 5 Mio. EFMs for the production of non-essential amino acids for a genome-scale metabolic network of Helicobacter pylori. Only large-scale EFM analysis reveals the >85% of modes that generate several amino acids simultaneously. An implementation in Java, with integration into MATLAB and support of various input formats, including SBML, is available at http://www.csb.ethz.ch in the tools section; sources are available from the authors upon request.
Motivation: Elementary flux modes (EFMs)—non-decomposable minimal pathways—are commonly accepted tools for metabolic network analysis under steady state conditions. Valid states of the network are linear superpositions of elementary modes shaping a polyhedral cone (the flux cone), which is a well-studied convex set in computational geometry. Computing EFMs is thus basically equivalent to extreme ray enumeration of polyhedral cones. This is a combinatorial problem with poorly scaling algorithms, preventing the large-scale analysis of metabolic networks so far. Results: Here, we introduce new algorithmic concepts that enable large-scale computation of EFMs. Distinguishing extreme rays from normal (composite) vectors is one critical aspect of the algorithm. We present a new recursive enumeration strategy with bit pattern trees for adjacent rays—the ancestors of extreme rays—that is roughly one order of magnitude faster than previous methods. Additionally, we introduce a rank updating method that is particularly well suited for parallel computation and a residue arithmetic method for matrix rank computations, which circumvents potential numerical instability problems. Multi-core architectures of modern CPUs can be exploited for further performance improvements. The methods are applied to a central metabolism network of Escherichia coli, resulting in ≈26 Mio. EFMs. Within the top 2% modes considering biomass production, most of the gain in flux variability is achieved. In addition, we compute ≈5 Mio. EFMs for the production of non-essential amino acids for a genome-scale metabolic network of Helicobacter pylori. Only large-scale EFM analysis reveals the >85% of modes that generate several amino acids simultaneously. Availability: An implementation in Java, with integration into MATLAB and support of various input formats, including SBML, is available at http://www.csb.ethz.ch in the tools section; sources are available from the authors upon request. Contact: joerg.stelling@inf.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online.
Elementary flux modes (EFMs)--non-decomposable minimal pathways--are commonly accepted tools for metabolic network analysis under steady state conditions. Valid states of the network are linear superpositions of elementary modes shaping a polyhedral cone (the flux cone), which is a well-studied convex set in computational geometry. Computing EFMs is thus basically equivalent to extreme ray enumeration of polyhedral cones. This is a combinatorial problem with poorly scaling algorithms, preventing the large-scale analysis of metabolic networks so far.MOTIVATIONElementary flux modes (EFMs)--non-decomposable minimal pathways--are commonly accepted tools for metabolic network analysis under steady state conditions. Valid states of the network are linear superpositions of elementary modes shaping a polyhedral cone (the flux cone), which is a well-studied convex set in computational geometry. Computing EFMs is thus basically equivalent to extreme ray enumeration of polyhedral cones. This is a combinatorial problem with poorly scaling algorithms, preventing the large-scale analysis of metabolic networks so far.Here, we introduce new algorithmic concepts that enable large-scale computation of EFMs. Distinguishing extreme rays from normal (composite) vectors is one critical aspect of the algorithm. We present a new recursive enumeration strategy with bit pattern trees for adjacent rays--the ancestors of extreme rays--that is roughly one order of magnitude faster than previous methods. Additionally, we introduce a rank updating method that is particularly well suited for parallel computation and a residue arithmetic method for matrix rank computations, which circumvents potential numerical instability problems. Multi-core architectures of modern CPUs can be exploited for further performance improvements. The methods are applied to a central metabolism network of Escherichia coli, resulting in approximately 26 Mio. EFMs. Within the top 2% modes considering biomass production, most of the gain in flux variability is achieved. In addition, we compute approximately 5 Mio. EFMs for the production of non-essential amino acids for a genome-scale metabolic network of Helicobacter pylori. Only large-scale EFM analysis reveals the >85% of modes that generate several amino acids simultaneously.RESULTSHere, we introduce new algorithmic concepts that enable large-scale computation of EFMs. Distinguishing extreme rays from normal (composite) vectors is one critical aspect of the algorithm. We present a new recursive enumeration strategy with bit pattern trees for adjacent rays--the ancestors of extreme rays--that is roughly one order of magnitude faster than previous methods. Additionally, we introduce a rank updating method that is particularly well suited for parallel computation and a residue arithmetic method for matrix rank computations, which circumvents potential numerical instability problems. Multi-core architectures of modern CPUs can be exploited for further performance improvements. The methods are applied to a central metabolism network of Escherichia coli, resulting in approximately 26 Mio. EFMs. Within the top 2% modes considering biomass production, most of the gain in flux variability is achieved. In addition, we compute approximately 5 Mio. EFMs for the production of non-essential amino acids for a genome-scale metabolic network of Helicobacter pylori. Only large-scale EFM analysis reveals the >85% of modes that generate several amino acids simultaneously.An implementation in Java, with integration into MATLAB and support of various input formats, including SBML, is available at http://www.csb.ethz.ch in the tools section; sources are available from the authors upon request.AVAILABILITYAn implementation in Java, with integration into MATLAB and support of various input formats, including SBML, is available at http://www.csb.ethz.ch in the tools section; sources are available from the authors upon request.
Motivation: Elementary flux modes (EFMs)—non-decomposable minimal pathways—are commonly accepted tools for metabolic network analysis under steady state conditions. Valid states of the network are linear superpositions of elementary modes shaping a polyhedral cone (the flux cone), which is a well-studied convex set in computational geometry. Computing EFMs is thus basically equivalent to extreme ray enumeration of polyhedral cones. This is a combinatorial problem with poorly scaling algorithms, preventing the large-scale analysis of metabolic networks so far. Results: Here, we introduce new algorithmic concepts that enable large-scale computation of EFMs. Distinguishing extreme rays from normal (composite) vectors is one critical aspect of the algorithm. We present a new recursive enumeration strategy with bit pattern trees for adjacent rays—the ancestors of extreme rays—that is roughly one order of magnitude faster than previous methods. Additionally, we introduce a rank updating method that is particularly well suited for parallel computation and a residue arithmetic method for matrix rank computations, which circumvents potential numerical instability problems. Multi-core architectures of modern CPUs can be exploited for further performance improvements. The methods are applied to a central metabolism network of Escherichia coli, resulting in ≈26 Mio. EFMs. Within the top 2% modes considering biomass production, most of the gain in flux variability is achieved. In addition, we compute ≈5 Mio. EFMs for the production of non-essential amino acids for a genome-scale metabolic network of Helicobacter pylori. Only large-scale EFM analysis reveals the >85% of modes that generate several amino acids simultaneously. Availability: An implementation in Java, with integration into MATLAB and support of various input formats, including SBML, is available at http://www.csb.ethz.ch in the tools section; sources are available from the authors upon request. Contact:  joerg.stelling@inf.ethz.ch Supplementary information:  Supplementary data are available at Bioinformatics online.
Motivation: Elementary flux modes (EFMs)-non-decomposable minimal pathways-are commonly accepted tools for metabolic network analysis under steady state conditions. Valid states of the network are linear superpositions of elementary modes shaping a polyhedral cone (the flux cone), which is a well-studied convex set in computational geometry. Computing EFMs is thus basically equivalent to extreme ray enumeration of polyhedral cones. This is a combinatorial problem with poorly scaling algorithms, preventing the large-scale analysis of metabolic networks so far. Results: Here, we introduce new algorithmic concepts that enable large-scale computation of EFMs. Distinguishing extreme rays from normal (composite) vectors is one critical aspect of the algorithm. We present a new recursive enumeration strategy with bit pattern trees for adjacent rays-the ancestors of extreme rays-that is roughly one order of magnitude faster than previous methods. Additionally, we introduce a rank updating method that is particularly well suited for parallel computation and a residue arithmetic method for matrix rank computations, which circumvents potential numerical instability problems. Multi-core architectures of modern CPUs can be exploited for further performance improvements. The methods are applied to a central metabolism network of Escherichia coli, resulting in ≈26 Mio. EFMs. Within the top 2% modes considering biomass production, most of the gain in flux variability is achieved. In addition, we compute ≈5 Mio. EFMs for the production of non-essential amino acids for a genome-scale metabolic network of Helicobacter pylori. Only large-scale EFM analysis reveals the >85% of modes that generate several amino acids simultaneously. Availability: An implementation in Java, with integration into MATLAB and support of various input formats, including SBML, is available at http://www.csb.ethz.ch in the tools section; sources are available from the authors upon request. Contact: joerg.stelling@inf.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online.
Author Stelling, Jörg
Terzer, Marco
Author_xml – sequence: 1
  givenname: Marco
  surname: Terzer
  fullname: Terzer, Marco
  organization: Institute of Computational Science and Swiss Institute of Bioinformatics, ETH Zurich, 8092 Zurich, Switzerland
– sequence: 2
  givenname: Jörg
  surname: Stelling
  fullname: Stelling, Jörg
  organization: To whom correspondence should be addressed
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20686170$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18676417$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFTEQhoNU7If-BGUR9G7tZJNNdvFKim2VA1KoIL0J2ZyJpu4ma5LF-u9N2eMBe6NXmYvnmcy8c0wOfPBIyHMKbyj07HRwwXkb4qSzM-l0yJ4DfUSOKBdQN9D2B6VmQta8A3ZIjlO6BWgp5_wJOaSdkIJTeUQuNjp-xToZPWJlwjQvuTQMvgq2whEn9FnHX5Udl7tqCltM1U-Xv1WDy9Wsc8boqxwR01Py2Oox4bPde0I-n7-_PrusN58uPpy929SmbWiuJZcCQEjJhUbaaWG3g7RaD4xZpjkbzGBt06CxW8Ol7pHr3hg0wKCjRvfshLxe-84x_FgwZTW5ZHActcewJCV6AUx0ooAvH4C3YYm-zKZoX9aXEroCvdhByzDhVs3RTWVd9SefArzaAfo-Ihu1Ny7tuQbKV1RC4d6unIkhpYhWGbcGmaN2o6Kg7q-m_r6aWq9W7PaBvR_kHx6sXljm_1bqVXEp491e0vG7EpLJVl1-uVHn_RW9uYJr9ZH9BmC-xDQ
CODEN BOINFP
CitedBy_id crossref_primary_10_1186_1471_2105_12_236
crossref_primary_10_1186_1752_0509_7_125
crossref_primary_10_1016_j_ic_2020_104620
crossref_primary_10_1038_s41467_025_60787_1
crossref_primary_10_1186_1752_0509_4_45
crossref_primary_10_1155_2010_753904
crossref_primary_10_1016_j_ymben_2024_02_004
crossref_primary_10_1186_1752_0509_4_49
crossref_primary_10_1002_biot_201200233
crossref_primary_10_1186_s13068_017_0709_0
crossref_primary_10_7717_peerj_16726
crossref_primary_10_1007_s10529_013_1328_x
crossref_primary_10_1186_1752_0509_5_91
crossref_primary_10_1016_j_ifacol_2024_10_010
crossref_primary_10_1016_j_compchemeng_2017_02_013
crossref_primary_10_1186_1471_2105_10_181
crossref_primary_10_1016_j_biosystems_2013_02_003
crossref_primary_10_1186_s12918_015_0146_2
crossref_primary_10_1371_journal_pone_0129840
crossref_primary_10_1109_TCBB_2015_2394470
crossref_primary_10_3390_pr5020032
crossref_primary_10_1016_j_bej_2014_05_022
crossref_primary_10_1016_j_biosystems_2011_02_002
crossref_primary_10_1128_msystems_01027_22
crossref_primary_10_1186_1752_0509_3_103
crossref_primary_10_1016_j_mbs_2015_01_003
crossref_primary_10_3390_metabo10120489
crossref_primary_10_1016_j_watres_2023_121028
crossref_primary_10_1093_bib_bbu009
crossref_primary_10_1016_j_biosystems_2013_04_002
crossref_primary_10_1038_srep08930
crossref_primary_10_1186_1752_0509_7_29
crossref_primary_10_1016_j_biosystems_2014_06_011
crossref_primary_10_3390_pr9091577
crossref_primary_10_1016_j_ymben_2012_03_011
crossref_primary_10_1016_j_ymben_2015_12_001
crossref_primary_10_1016_j_biosystems_2010_12_001
crossref_primary_10_1016_j_jbiotec_2017_05_001
crossref_primary_10_1007_s40314_019_0862_0
crossref_primary_10_1111_1751_7915_13403
crossref_primary_10_1186_1752_0509_5_181
crossref_primary_10_1186_1752_0509_6_148
crossref_primary_10_1093_bib_bbz094
crossref_primary_10_1371_journal_pone_0313962
crossref_primary_10_1111_j_1742_4658_2012_08700_x
crossref_primary_10_1111_febs_12722
crossref_primary_10_1016_j_ymben_2022_12_001
crossref_primary_10_1186_1752_0509_5_189
crossref_primary_10_3390_e12081921
crossref_primary_10_1093_bib_bbs065
crossref_primary_10_1016_j_biosystems_2011_04_005
crossref_primary_10_1186_1752_0509_3_114
crossref_primary_10_3389_fenrg_2018_00106
crossref_primary_10_1111_1462_2920_13444
crossref_primary_10_1016_j_compbiomed_2013_08_017
crossref_primary_10_1016_j_ifacol_2016_12_146
crossref_primary_10_1371_journal_pcbi_1005409
crossref_primary_10_1002_cite_201200234
crossref_primary_10_3390_pr8050502
crossref_primary_10_1007_s00285_011_0453_1
crossref_primary_10_1371_journal_pone_0077617
crossref_primary_10_1016_j_biortech_2016_05_018
crossref_primary_10_1038_s41540_024_00360_6
crossref_primary_10_1126_science_1216882
crossref_primary_10_3389_fbioe_2020_00279
crossref_primary_10_1016_j_nbt_2015_03_017
crossref_primary_10_1002_celc_202200216
crossref_primary_10_1371_journal_pcbi_1002415
crossref_primary_10_1186_1752_0509_3_120
crossref_primary_10_1002_btpr_349
crossref_primary_10_1101_gr_090639_108
crossref_primary_10_1016_j_ifacol_2015_11_174
crossref_primary_10_1089_cmb_2022_0319
crossref_primary_10_1016_j_ymben_2015_10_005
crossref_primary_10_1088_0266_5611_25_12_123014
crossref_primary_10_1109_TCBB_2014_2343964
crossref_primary_10_1016_j_jprocont_2012_01_017
crossref_primary_10_1016_j_jtbi_2012_10_016
crossref_primary_10_1016_j_biosystems_2009_11_004
crossref_primary_10_1016_j_tibtech_2024_12_005
crossref_primary_10_1007_s00253_015_6743_6
crossref_primary_10_1016_j_watres_2022_119388
crossref_primary_10_1080_10556788_2020_1712600
crossref_primary_10_1186_1752_0509_5_25
crossref_primary_10_1186_s12918_014_0094_2
crossref_primary_10_1016_j_ymben_2012_01_009
crossref_primary_10_1371_journal_pone_0023026
crossref_primary_10_3390_pr10102084
crossref_primary_10_1186_s13015_015_0060_6
crossref_primary_10_1371_journal_pcbi_1009843
crossref_primary_10_1109_TCBB_2013_116
crossref_primary_10_1016_j_jbiosc_2010_01_015
crossref_primary_10_1016_j_jbiotec_2012_04_014
crossref_primary_10_1111_j_1574_6976_2008_00146_x
crossref_primary_10_1016_j_jtbi_2012_02_023
crossref_primary_10_1063_5_0280649
crossref_primary_10_3390_metabo3030673
crossref_primary_10_1002_pmic_201200566
crossref_primary_10_1186_gb_2011_12_5_r49
crossref_primary_10_1186_s12918_018_0589_3
crossref_primary_10_1371_journal_pone_0061648
crossref_primary_10_1186_s12934_024_02583_y
crossref_primary_10_1016_j_ymben_2015_09_014
crossref_primary_10_1002_wsbm_37
crossref_primary_10_1371_journal_pcbi_1003368
crossref_primary_10_1016_j_febslet_2009_10_074
crossref_primary_10_1016_j_jtbi_2016_07_024
crossref_primary_10_1093_nar_gku362
crossref_primary_10_1016_j_ijhydene_2017_01_043
crossref_primary_10_1186_1471_2105_14_318
crossref_primary_10_1007_s00285_014_0844_1
crossref_primary_10_1016_j_compbiolchem_2020_107309
crossref_primary_10_1186_1748_7188_7_17
crossref_primary_10_1002_biot_201000307
crossref_primary_10_1007_s00285_013_0731_1
crossref_primary_10_1371_journal_pcbi_1012472
crossref_primary_10_1002_bit_27705
crossref_primary_10_1101_gr_202648_115
crossref_primary_10_1186_1748_7188_7_15
crossref_primary_10_1186_1752_0509_6_10
crossref_primary_10_1186_s12934_016_0485_8
crossref_primary_10_1016_j_biosystems_2023_104981
crossref_primary_10_1016_j_ifacol_2022_07_449
crossref_primary_10_1371_journal_pone_0171440
crossref_primary_10_1186_1752_0509_6_103
crossref_primary_10_5936_csbj_201210009
crossref_primary_10_1080_00207543_2015_1106612
crossref_primary_10_1089_omi_2011_0089
crossref_primary_10_1186_s12859_014_0410_2
crossref_primary_10_1016_j_ymben_2022_08_005
crossref_primary_10_3390_computation9100111
crossref_primary_10_1016_j_jprocont_2022_09_002
crossref_primary_10_1038_s42003_024_05815_4
crossref_primary_10_1038_srep00580
crossref_primary_10_1016_j_jbiotec_2015_10_014
crossref_primary_10_1137_10081722X
crossref_primary_10_1002_bit_25498
crossref_primary_10_1038_s41540_022_00257_2
crossref_primary_10_1016_j_ymben_2015_03_008
crossref_primary_10_3233_ISB_140464
crossref_primary_10_3390_pr2040711
crossref_primary_10_1016_j_ymben_2010_12_004
crossref_primary_10_1371_journal_pcbi_1004235
crossref_primary_10_1016_j_bpj_2021_10_038
crossref_primary_10_1038_ncomms15956
crossref_primary_10_1016_j_endm_2010_05_021
crossref_primary_10_1186_s12934_016_0470_2
crossref_primary_10_1016_j_compchemeng_2018_06_014
crossref_primary_10_1016_j_jtbi_2012_08_042
crossref_primary_10_1016_j_ymben_2015_05_006
crossref_primary_10_1109_JPROC_2022_3158396
crossref_primary_10_1186_s12918_016_0347_3
crossref_primary_10_3390_pr6050038
crossref_primary_10_1016_j_bioelechem_2017_07_009
crossref_primary_10_1371_journal_pcbi_1003378
crossref_primary_10_1016_j_biosystems_2017_12_001
crossref_primary_10_1371_journal_pone_0104499
crossref_primary_10_1002_biot_201200269
crossref_primary_10_1042_BST20150149
crossref_primary_10_1128_MMBR_00014_15
crossref_primary_10_1002_bit_25942
crossref_primary_10_3390_ijms25010365
crossref_primary_10_1186_s12918_018_0632_4
crossref_primary_10_3390_pr8121649
crossref_primary_10_1042_BST20170260
crossref_primary_10_1186_s12859_021_04417_9
crossref_primary_10_1093_bioinformatics_btp564
crossref_primary_10_1016_j_ifacol_2021_08_318
crossref_primary_10_1016_j_parco_2011_04_002
crossref_primary_10_1007_s00253_010_2506_6
crossref_primary_10_1016_j_tcs_2021_06_030
crossref_primary_10_1016_j_jbiosc_2015_12_001
crossref_primary_10_1186_s12859_016_1063_0
Cites_doi 10.1093/bioinformatics/bti674
10.1145/361002.361007
10.1142/S0218339094000131
10.1038/nature01166
10.1529/biophysj.104.055129
10.7551/mitpress/9780262195485.003.0005
10.1038/nrmicro1023
10.1186/1471-2105-5-175
10.1021/jp034523f
10.1073/pnas.0306458101
10.1049/ip-syb:20050035
10.1038/msb4100162
ContentType Journal Article
Copyright The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2008
2008 INIST-CNRS
The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
Copyright_xml – notice: The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2008
– notice: 2008 INIST-CNRS
– notice: The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1093/bioinformatics/btn401
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1460-2059
1367-4811
EndPage 2235
ExternalDocumentID 1566232941
18676417
20686170
10_1093_bioinformatics_btn401
10.1093/bioinformatics/btn401
ark_67375_HXZ_F9Q1ZQ0T_J
Genre Journal Article
GroupedDBID -~X
.2P
.I3
482
48X
5GY
AAMVS
ABGNP
ABJNI
ABPTD
ACGFS
ACUFI
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BSCLL
CZ4
EE~
F5P
F9B
H5~
HAR
HW0
IOX
KSI
KSN
NGC
Q5Y
RD5
ROZ
RXO
TLC
TN5
TOX
WH7
~91
ADRIX
BCRHZ
KOP
ROX
---
-E4
.DC
0R~
1TH
23N
2WC
4.4
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABIXL
ABNGD
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EJD
EMOBN
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HVGLF
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
.-4
.GJ
ABEFU
AI.
AQDSO
ATTQO
ELUNK
IQODW
NTWIH
O~Y
RIG
RNI
RZF
RZO
VH1
ZGI
ABQTQ
CGR
CUY
CVF
ECM
EIF
M49
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c521t-74760067746ae18a6fdb7faab33f3a43bcbff22ecfdc47a9e4a9ccec03081ca93
IEDL.DBID TOX
ISICitedReferencesCount 238
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259581900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Thu Oct 02 09:19:54 EDT 2025
Fri Oct 03 09:50:20 EDT 2025
Thu Apr 03 07:07:51 EDT 2025
Mon Jul 21 09:15:29 EDT 2025
Sat Nov 29 05:33:37 EST 2025
Tue Nov 18 22:43:02 EST 2025
Wed Aug 28 03:24:16 EDT 2024
Sat Sep 20 11:02:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Flux
Tree
Large scale
Bioinformatics
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-74760067746ae18a6fdb7faab33f3a43bcbff22ecfdc47a9e4a9ccec03081ca93
Notes To whom correspondence should be addressed.
ArticleID:btn401
ark:/67375/HXZ-F9Q1ZQ0T-J
Associate Editor: John Quackenbush
istex:614326FB3DCDE329E4141F31445AAB09674824BB
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/bioinformatics/article-pdf/24/19/2229/49050673/bioinformatics_24_19_2229.pdf
PMID 18676417
PQID 198677708
PQPubID 36124
PageCount 7
ParticipantIDs proquest_miscellaneous_69603686
proquest_journals_198677708
pubmed_primary_18676417
pascalfrancis_primary_20686170
crossref_citationtrail_10_1093_bioinformatics_btn401
crossref_primary_10_1093_bioinformatics_btn401
oup_primary_10_1093_bioinformatics_btn401
istex_primary_ark_67375_HXZ_F9Q1ZQ0T_J
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2008
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Knuth (2023020211111611700_B7) 1997
Terzer (2023020211111611700_B15) 2006
Wagner (2023020211111611700_B17) 2004; 108
Urbanczik (2023020211111611700_B16) 2005; 21
Fukuda (2023020211111611700_B3) 1995
Klamt (2023020211111611700_B5) 2006
Schuetz (2023020211111611700_B11) 2007; 3
Segré (2023020211111611700_B13) 2002
Klamt (2023020211111611700_B6) 2005; 152
Stelling (2023020211111611700_B14) 2002; 420
Bentley (2023020211111611700_B2) 1975; 18
Price (2023020211111611700_B9) 2002; 12
Arita (2023020211111611700_B1) 2004; 101
Gagneur (2023020211111611700_B4) 2004; 5
Schuster (2023020211111611700_B12) 1994; 2
Price (2023020211111611700_B10) 2004; 2
Motzkin (2023020211111611700_B8) 1953
Wagner (2023020211111611700_B18) 2005; 89
References_xml – volume: 21
  start-page: 4176
  year: 2005
  ident: 2023020211111611700_B16
  article-title: Functional stoichiometric analysis of metabolic networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti674
– volume: 18
  start-page: 509
  year: 1975
  ident: 2023020211111611700_B2
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Commun. ACM
  doi: 10.1145/361002.361007
– volume: 2
  start-page: 165
  year: 1994
  ident: 2023020211111611700_B12
  article-title: On elementary flux modes in biochemical reaction systems at steady state
  publication-title: J. Biol. Syst
  doi: 10.1142/S0218339094000131
– volume: 420
  start-page: 190
  year: 2002
  ident: 2023020211111611700_B14
  article-title: Metabolic network structure determines key aspects of functionality and regulation
  publication-title: Nature
  doi: 10.1038/nature01166
– volume: 89
  start-page: 3837
  year: 2005
  ident: 2023020211111611700_B18
  article-title: The geometry of the flux cone of a metabolic network
  publication-title: Biophys. J
  doi: 10.1529/biophysj.104.055129
– start-page: 333
  volume-title: Lecture Notes in Computer Science.
  year: 2006
  ident: 2023020211111611700_B15
  article-title: Accelerating the computation of elementary modes using pattern trees
– start-page: 73
  volume-title: System Modeling in Cellular Biology.
  year: 2006
  ident: 2023020211111611700_B5
  article-title: Stoichiometric and constraint-based modeling
  doi: 10.7551/mitpress/9780262195485.003.0005
– volume: 2
  start-page: 886
  year: 2004
  ident: 2023020211111611700_B10
  article-title: Genome-scale models of microbial cells: evaluating the consequences of constraints
  publication-title: Nat. Rev. Microbiol
  doi: 10.1038/nrmicro1023
– volume: 5
  start-page: 175
  year: 2004
  ident: 2023020211111611700_B4
  article-title: Computation of elementary modes: a unifying framework and the new binary approach
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-175
– volume: 108
  start-page: 2425
  year: 2004
  ident: 2023020211111611700_B17
  article-title: Nullspace approach to determine the elementary modes of chemical reaction systems
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp034523f
– volume: 101
  start-page: 1543
  year: 2004
  ident: 2023020211111611700_B1
  article-title: The metabolic world ofEscherichia coliis not small
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0306458101
– start-page: 91
  volume-title: Combinatorics and Computer Science.
  year: 1995
  ident: 2023020211111611700_B3
  article-title: Double description method revisited
– volume: 12
  start-page: 760
  year: 2002
  ident: 2023020211111611700_B9
  article-title: Determination of redundancy and systems properties of the metabolic network ofHelicobacter Pyloriusing genome-scale extreme pathway analysis
  publication-title: Genetics Res
– start-page: 15112
  volume-title: Proc. Natl Acad. Sci. USA.
  year: 2002
  ident: 2023020211111611700_B13
  article-title: Analysis of optimality in natural and perturbed metabolic networks
– volume-title: The Art of Computer Programming3rd edn.
  year: 1997
  ident: 2023020211111611700_B7
  article-title: Seminumerical Algorithms
– volume: 152
  start-page: 249
  year: 2005
  ident: 2023020211111611700_B6
  article-title: Algorithmic approaches for computing elementary modes in large biochemical reaction networks
  publication-title: IEE Proc. Syst. Biol
  doi: 10.1049/ip-syb:20050035
– volume: 3
  year: 2007
  ident: 2023020211111611700_B11
  article-title: Systematic evaluation of objective functions for predicting intracellular fluxes inEscherichia coli
  publication-title: Mol. Syst. Biol
  doi: 10.1038/msb4100162
– start-page: 51
  volume-title: Contributions to the Theory of Games II of Annals of Math. Studies.
  year: 1953
  ident: 2023020211111611700_B8
  article-title: The double description method
SSID ssj0051444
ssj0005056
Score 2.4266112
Snippet Motivation: Elementary flux modes (EFMs)—non-decomposable minimal pathways—are commonly accepted tools for metabolic network analysis under steady state...
Motivation: Elementary flux modes (EFMs)-non-decomposable minimal pathways-are commonly accepted tools for metabolic network analysis under steady state...
Elementary flux modes (EFMs)--non-decomposable minimal pathways--are commonly accepted tools for metabolic network analysis under steady state conditions....
Motivation: Elementary flux modes (EFMs)--non-decomposable minimal pathways--are commonly accepted tools for metabolic network analysis under steady state...
SourceID proquest
pubmed
pascalfrancis
crossref
oup
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2229
SubjectTerms Algorithms
Amino acids
Bioinformatics
Biological and medical sciences
Cell Physiological Phenomena
Combinatorial analysis
Computational geometry
Computer applications
Computer architecture
Computer Simulation
E coli
Enumeration
Escherichia coli - genetics
Escherichia coli - metabolism
Fluctuations
Fundamental and applied biological sciences. Psychology
General aspects
Genomes
Geometry
Mathematics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Metabolic networks
Metabolism
Metabolites
Methods
Network analysis
Optimization techniques
Parallel processing
Proteome - analysis
Proteome - metabolism
Residue number systems
Systems Biology - methods
Title Large-scale computation of elementary flux modes with bit pattern trees
URI https://api.istex.fr/ark:/67375/HXZ-F9Q1ZQ0T-J/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/18676417
https://www.proquest.com/docview/198677708
https://www.proquest.com/docview/69603686
Volume 24
WOSCitedRecordID wos000259581900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66boPB6Lqt27xuqR7GYA9ubUu1rMdSmpVR-gOyYfoiJFmC0OKEOBntfz-dZaekUNY-GvuEfHfWSb677wP4xqpCab80xlbnScwYq2K_ObKx4FZrH35o1hbI_jnhp6dFWYrzNUj6Xpj7KXxB9_R40oGIInDxnp7XrG3YSvcLpCwYnZV3NR0JIsOEC78TYIHSFpG9i4T2_TsPDbkSmZ6jkm_6rrfXU9V4lbnAdfHwZrQNSsM3T3-dTdjoNqDkIHjMW1iz9Tt4GSgpb9_DzxMsDY9xHpaYlvKhtR2ZOGK7UvPZLXHXixuCLDoNwT-5RI_nZNpCddYE89zNFvweHo0Oj-OObCE2yGkQ-2NFjqGLs1zZtFC5qzR3yhuSOqoY1UY7l2XWuMowroRlShhjDeLdpEYJ-gHW60ltPwGp_Jmq8msoYiAzpSqdMZ1Zp02muBa5iYD1ipamQyJHQoxrGTLiVK7qSAYdRbC7FJsGKI7_CXxvrbh8Ws2usI6N78vj8lIOxUV6eZGM5K8IfngzP3bQwYozLKUybLZJeRLBdu8dslsPGpkKxA3kSRHBzvKu_5AxO6NqO1k0MvdnSeqHiOBjcKm7-XjZnKX88xOmuQ2vsh65N_0C6_PZwn6FF-bvfNzMBvCMl8Wg_Xb-AWtPHrU
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+computation+of+elementary+flux+modes+with+bit+pattern+trees&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Terzer%2C+Marco&rft.au=Stelling%2C+J%C3%B6rg&rft.date=2008-10-01&rft.eissn=1367-4811&rft.volume=24&rft.issue=19&rft.spage=2229&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtn401&rft_id=info%3Apmid%2F18676417&rft.externalDocID=18676417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon