MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking
Standardized benchmarks have been crucial in pushing the performance of computer vision algorithms, especially since the advent of deep learning. Although leaderboards should not be over-claimed, they often provide the most objective measure of performance and are therefore important guides for rese...
Uloženo v:
| Vydáno v: | International journal of computer vision Ročník 129; číslo 4; s. 845 - 881 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2021
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0920-5691, 1573-1405 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Standardized benchmarks have been crucial in pushing the performance of computer vision algorithms, especially since the advent of deep learning. Although leaderboards should not be over-claimed, they often provide the most objective measure of performance and are therefore important guides for research. We present
MOTChallenge
, a benchmark for single-camera Multiple Object Tracking (MOT) launched in late 2014, to collect existing and new data and create a framework for the standardized evaluation of multiple object tracking methods. The benchmark is focused on multiple people tracking, since pedestrians are by far the most studied object in the tracking community, with applications ranging from robot navigation to self-driving cars. This paper collects the first three releases of the benchmark: (i)
MOT15
, along with numerous state-of-the-art results that were submitted in the last years, (ii)
MOT16
, which contains new challenging videos, and (iii)
MOT17
, that extends
MOT16
sequences with more precise labels and evaluates tracking performance on three different object detectors. The second and third release not only offers a significant increase in the number of labeled boxes, but also provide labels for multiple object classes beside pedestrians, as well as the level of visibility for every single object of interest. We finally provide a categorization of state-of-the-art trackers and a broad error analysis. This will help newcomers understand the related work and research trends in the MOT community, and hopefully shed some light into potential future research directions. |
|---|---|
| AbstractList | Standardized benchmarks have been crucial in pushing the performance of computer vision algorithms, especially since the advent of deep learning. Although leaderboards should not be over-claimed, they often provide the most objective measure of performance and are therefore important guides for research. We present
MOTChallenge
, a benchmark for single-camera Multiple Object Tracking (MOT) launched in late 2014, to collect existing and new data and create a framework for the standardized evaluation of multiple object tracking methods. The benchmark is focused on multiple people tracking, since pedestrians are by far the most studied object in the tracking community, with applications ranging from robot navigation to self-driving cars. This paper collects the first three releases of the benchmark: (i)
MOT15
, along with numerous state-of-the-art results that were submitted in the last years, (ii)
MOT16
, which contains new challenging videos, and (iii)
MOT17
, that extends
MOT16
sequences with more precise labels and evaluates tracking performance on three different object detectors. The second and third release not only offers a significant increase in the number of labeled boxes, but also provide labels for multiple object classes beside pedestrians, as well as the level of visibility for every single object of interest. We finally provide a categorization of state-of-the-art trackers and a broad error analysis. This will help newcomers understand the related work and research trends in the MOT community, and hopefully shed some light into potential future research directions. Standardized benchmarks have been crucial in pushing the performance of computer vision algorithms, especially since the advent of deep learning. Although leaderboards should not be over-claimed, they often provide the most objective measure of performance and are therefore important guides for research. We present MOTChallenge, a benchmark for single-camera Multiple Object Tracking (MOT) launched in late 2014, to collect existing and new data and create a framework for the standardized evaluation of multiple object tracking methods. The benchmark is focused on multiple people tracking, since pedestrians are by far the most studied object in the tracking community, with applications ranging from robot navigation to self-driving cars. This paper collects the first three releases of the benchmark: (i) MOT15, along with numerous state-of-the-art results that were submitted in the last years, (ii) MOT16, which contains new challenging videos, and (iii) MOT17, that extends MOT16 sequences with more precise labels and evaluates tracking performance on three different object detectors. The second and third release not only offers a significant increase in the number of labeled boxes, but also provide labels for multiple object classes beside pedestrians, as well as the level of visibility for every single object of interest. We finally provide a categorization of state-of-the-art trackers and a broad error analysis. This will help newcomers understand the related work and research trends in the MOT community, and hopefully shed some light into potential future research directions. |
| Audience | Academic |
| Author | Roth, Stefan Cremers, Daniel Reid, Ian Milan, Anton Os̆ep, Aljos̆a Schindler, Konrad Dendorfer, Patrick Leal-Taixé, Laura |
| Author_xml | – sequence: 1 givenname: Patrick orcidid: 0000-0002-4623-8749 surname: Dendorfer fullname: Dendorfer, Patrick email: patrick.dendorfer@tum.de organization: Technical University Munich – sequence: 2 givenname: Aljos̆a surname: Os̆ep fullname: Os̆ep, Aljos̆a organization: Technical University Munich – sequence: 3 givenname: Anton surname: Milan fullname: Milan, Anton organization: Amazon Research – sequence: 4 givenname: Konrad surname: Schindler fullname: Schindler, Konrad organization: ETH Zürich – sequence: 5 givenname: Daniel surname: Cremers fullname: Cremers, Daniel organization: Technical University Munich – sequence: 6 givenname: Ian surname: Reid fullname: Reid, Ian organization: The University of Adelaide – sequence: 7 givenname: Stefan surname: Roth fullname: Roth, Stefan organization: Technical University of Darmstadt – sequence: 8 givenname: Laura surname: Leal-Taixé fullname: Leal-Taixé, Laura organization: Technical University Munich |
| BookMark | eNp9kE1PAjEQhhuDiYD-AU-beF6ctrQs3hA_EwgH8dwM3SkUll3sLgf_vcU1MfFgemgzfZ925umxTlmVxNg1hwEHGN3WnAstUxCQApfjeDpjXa5GMuVDUB3WhXG8UnrML1ivrrcAIDIhu-xhvlhON1gUVK7pLpkk91TazR7DLnFVSN58uS4oneKeAibzY9H4Q0HJEsOammQZ0O5i4pKdOyxquvrZ--z96XE5fUlni-fX6WSWWiV4k2oCRSuwuYaMVO4wlwpXeqi0WlmHmLsMObqVkDgSUnOnUFsd68CdJCdkn9207x5C9XGkujHb6hjK-KURCqSSKstUTA3a1BoLMr50VRP7jCunvbfRm_OxPtFKcz4SHCKQtYANVV0Hcsb6BhtflRH0heFgTpJNK9lEyeZbsjmh4g96CD7a-_wfki1Ux3DUHn7H-If6AuDnj_8 |
| CitedBy_id | crossref_primary_10_1016_j_cviu_2024_103978 crossref_primary_10_1117_1_JEI_32_5_053007 crossref_primary_10_1016_j_compag_2022_107513 crossref_primary_10_1016_j_neucom_2025_130182 crossref_primary_10_1007_s12273_025_1295_x crossref_primary_10_1007_s11263_022_01694_6 crossref_primary_10_3390_electronics14163187 crossref_primary_10_1016_j_imavis_2023_104737 crossref_primary_10_3390_jpm12050809 crossref_primary_10_1111_raq_13001 crossref_primary_10_3390_electronics12234720 crossref_primary_10_3390_electronics14010081 crossref_primary_10_1016_j_sigpro_2024_109551 crossref_primary_10_1109_TCSVT_2022_3182709 crossref_primary_10_1109_LSP_2025_3546896 crossref_primary_10_1016_j_imavis_2024_105317 crossref_primary_10_1109_TPAMI_2021_3119563 crossref_primary_10_1186_s13634_024_01144_0 crossref_primary_10_1016_j_compag_2024_109379 crossref_primary_10_1007_s11263_023_01937_0 crossref_primary_10_1002_int_22565 crossref_primary_10_3390_s25030931 crossref_primary_10_3390_s25051410 crossref_primary_10_1016_j_dib_2024_111205 crossref_primary_10_1109_ACCESS_2022_3170481 crossref_primary_10_1007_s10462_025_11212_y crossref_primary_10_1007_s11263_024_02302_5 crossref_primary_10_1109_TITS_2022_3147770 crossref_primary_10_1109_MTS_2023_3306539 crossref_primary_10_1016_j_eswa_2024_125653 crossref_primary_10_1007_s11263_022_01711_8 crossref_primary_10_3390_rs16091604 crossref_primary_10_1016_j_photonics_2024_101318 crossref_primary_10_1038_s41598_023_31806_2 crossref_primary_10_3390_rs15082088 crossref_primary_10_1007_s11263_024_02074_y crossref_primary_10_3390_app15136969 crossref_primary_10_1016_j_animal_2025_101503 crossref_primary_10_1145_3760525 crossref_primary_10_1007_s11042_024_19856_8 crossref_primary_10_3788_CJL241243 crossref_primary_10_1016_j_compeleceng_2022_108201 crossref_primary_10_1007_s00530_025_01911_5 crossref_primary_10_1109_ACCESS_2024_3524501 crossref_primary_10_1007_s00521_022_08079_3 crossref_primary_10_1007_s13748_022_00290_6 crossref_primary_10_1038_s41598_022_19697_1 crossref_primary_10_1007_s00138_025_01695_8 crossref_primary_10_1017_S1431927622007966 crossref_primary_10_1007_s11263_021_01455_x crossref_primary_10_3390_math12081245 crossref_primary_10_1109_ACCESS_2024_3411617 crossref_primary_10_1016_j_trc_2025_105205 crossref_primary_10_1186_s13640_024_00623_6 crossref_primary_10_3390_s25154603 crossref_primary_10_1117_1_OE_62_3_031209 crossref_primary_10_1007_s11042_024_18697_9 crossref_primary_10_3390_s23156887 crossref_primary_10_3390_electronics13173460 crossref_primary_10_3390_rs14163853 crossref_primary_10_1016_j_postharvbio_2023_112587 crossref_primary_10_1109_TAES_2023_3289164 crossref_primary_10_1007_s11042_023_17983_2 crossref_primary_10_3390_buildings14040859 crossref_primary_10_3390_mi13010072 crossref_primary_10_1007_s11334_023_00533_2 crossref_primary_10_32604_cmes_2024_050140 crossref_primary_10_1155_2022_2154463 crossref_primary_10_3390_s21227543 crossref_primary_10_1371_journal_pbio_3003002 crossref_primary_10_1007_s00371_024_03544_7 crossref_primary_10_1016_j_patcog_2022_109107 crossref_primary_10_1109_ACCESS_2025_3569732 crossref_primary_10_1007_s11042_024_20435_0 crossref_primary_10_1109_TMM_2023_3234822 crossref_primary_10_1016_j_neucom_2022_07_087 crossref_primary_10_3389_fpls_2022_1047356 crossref_primary_10_1016_j_pmcj_2024_101914 crossref_primary_10_3390_drones7060389 crossref_primary_10_1109_LSP_2023_3236262 crossref_primary_10_7467_KSAE_2025_33_9_755 crossref_primary_10_1016_j_neucom_2024_128906 crossref_primary_10_3390_app12199597 crossref_primary_10_1016_j_compag_2025_110856 crossref_primary_10_1016_j_displa_2024_102682 crossref_primary_10_61453_INTIj_202407 crossref_primary_10_3390_a15090313 crossref_primary_10_1016_j_compag_2024_109161 crossref_primary_10_1016_j_neunet_2023_09_047 crossref_primary_10_1109_TITS_2023_3290827 crossref_primary_10_1007_s11263_023_01943_2 crossref_primary_10_3389_fpls_2022_1003243 crossref_primary_10_1049_ipr2_12413 crossref_primary_10_1007_s00530_024_01351_7 crossref_primary_10_1109_TITS_2025_3565334 crossref_primary_10_1016_j_cviu_2024_103957 crossref_primary_10_23919_JSEE_2022_000001 crossref_primary_10_3390_electronics13010091 crossref_primary_10_1016_j_aej_2025_04_062 crossref_primary_10_3390_a16030154 crossref_primary_10_3390_jimaging8080210 crossref_primary_10_3390_s23010532 crossref_primary_10_1007_s11042_023_17397_0 crossref_primary_10_1109_LRA_2022_3199026 crossref_primary_10_1016_j_neucom_2024_127954 crossref_primary_10_1007_s11042_023_16094_2 crossref_primary_10_1109_ACCESS_2025_3551672 crossref_primary_10_1007_s11227_022_04776_x crossref_primary_10_1007_s10462_025_11348_x crossref_primary_10_3390_electronics10182319 crossref_primary_10_3390_rs14215513 crossref_primary_10_1007_s11263_024_02336_9 crossref_primary_10_1109_TIP_2023_3298538 crossref_primary_10_1109_TSMC_2022_3225252 crossref_primary_10_32604_cmc_2022_030016 crossref_primary_10_3390_machines13020162 crossref_primary_10_1109_ACCESS_2024_3358450 crossref_primary_10_1007_s00530_025_01679_8 crossref_primary_10_1007_s00530_025_01694_9 crossref_primary_10_3390_app12031225 crossref_primary_10_1007_s11760_024_03544_z crossref_primary_10_1007_s11263_023_01908_5 crossref_primary_10_1016_j_eswa_2023_121983 crossref_primary_10_1109_ACCESS_2021_3093526 crossref_primary_10_3389_fmars_2025_1524134 crossref_primary_10_1016_j_eswa_2025_127640 |
| Cites_doi | 10.1109/CVPR.2005.177 10.1109/WACV.2016.7477566 10.1109/ICCV.2017.41 10.1109/AVSS.2017.8078516 10.1109/TPAMI.2018.2876253 10.1109/CVPRW.2013.111 10.1109/TIP.2017.2745103 10.1109/AVSS.2017.8078552 10.1109/ICIP.2015.7351235 10.1364/JOSAA.34.000280 10.1109/CVPR.2006.100 10.1109/AVSS.2012.59 10.1109/UV.2018.8642156 10.1007/978-3-319-48881-3_4 10.1109/CVPR.2015.7299178 10.1109/CVPR.2017.394 10.1109/CVPRW.2018.00192 10.1109/CVPR.2012.6248074 10.1109/CVPRW.2017.266 10.1109/CVPR.2018.00935 10.1109/CVPR.2011.5995604 10.1109/ICCV.2015.534 10.3390/s19030559 10.1109/TPAMI.2015.2505309 10.1007/s11263-016-0960-z 10.1109/AVSS.2016.7738059 10.1049/iet-cvi.2016.0068 10.1109/ICRA.2016.7487371 10.1007/978-3-030-58558-7_26 10.1109/ACCESS.2019.2921975 10.1007/s11263-006-7899-4 10.1109/CVPR.2017.145 10.1007/978-3-319-46448-0_45 10.1007/s11263-014-0733-5 10.1109/ACCESS.2020.2975912 10.1007/s11263-010-0390-2 10.1007/978-3-030-01237-3_13 10.1109/CVPR.2016.234 10.1109/TCSVT.2018.2881123 10.1109/ICCV.2017.518 10.1109/ACCESS.2018.2889442 10.1007/978-3-319-48881-3_2 10.1109/CVPR42600.2020.00628 10.1109/ICCV.2019.00409 10.5220/0006564504290438 10.1109/ICCV.2011.6126532 10.1109/ICIP.2019.8803140 10.1016/j.cviu.2016.05.003 10.1023/A:1014573219977 10.1109/CVPR.2014.453 10.1109/CVPR.2008.4587584 10.1007/978-3-319-46484-8_47 10.1109/CVPR.2011.5995347 10.1109/ICCV.2019.00627 10.1109/CVPR.2017.206 10.1109/TCSVT.2020.2975842 10.1016/j.neucom.2019.08.008 10.1109/CVPR.2019.00895 10.1109/CVPR.2008.4587581 10.1109/CVPR.2014.283 10.14569/IJACSA.2017.081129 10.1007/978-3-319-10593-2_47 10.1109/WACV.2015.12 10.1109/AVSS.2018.8639078 10.1609/aaai.v31i1.11194 10.1109/CVPR.2014.167 10.1109/TPAMI.2014.2300479 10.1109/CVPR.2019.00477 10.1109/ACCESS.2018.2879535 10.1109/TITS.2019.2892413 10.1109/ICRA.2016.7487180 10.1109/TCSVT.2018.2825679 10.1109/ICCV.2015.169 10.1007/978-3-030-01228-1_23 10.1109/WACV.2015.17 10.1109/CVPRW.2016.55 10.1109/AVSS.2017.8078481 10.1109/CVPR.2015.7299138 10.1109/CVPR.2014.159 10.1109/ICCV.2019.00103 10.1109/CVPR.2018.00542 10.1109/ICCV.2011.6126516 10.1109/ACCESS.2019.2932301 10.1109/TCSVT.2018.2882192 10.1109/CVPR.2005.453 10.1145/3343031.3350853 10.1109/TIP.2018.2843129 10.1109/ACCESS.2019.2953276 10.1109/CVPRW.2009.5206631 10.1109/SITIS.2018.00021 10.1016/j.patcog.2019.04.018 10.1109/ICCV.2013.286 10.1109/ACCESS.2018.2881019 10.1007/978-3-319-48881-3_5 10.1109/ICCV.2015.349 10.1109/PETS-WINTER.2009.5399556 10.1109/CVPR.2016.155 10.1109/CVPR.2017.403 10.1109/TAC.1979.1102177 10.1109/TIP.2020.2993073 10.1016/j.jvcir.2019.01.026 10.1109/AVSS.2010.90 10.1109/TPAMI.2017.2691769 10.1109/ACCESS.2018.2816805 10.1109/CVPR.2015.7299036 10.1109/TPAMI.2013.103 10.1109/ICCVW.2011.6130233 10.1109/CVPRW.2016.59 10.1002/nav.3800020109 10.1109/TMM.2019.2902480 10.1007/978-3-319-48881-3_7 10.1109/ICCV.2015.533 10.1109/WACV.2018.00057 10.1109/CVPR42600.2020.00252 10.1007/s11263-015-0816-y 10.1155/2008/246309 10.1007/s11263-018-01147-z 10.1109/CVPR.2010.5540156 10.1109/ICME.2018.8486454 10.1109/LSP.2019.2940922 10.1016/j.cviu.2020.102907 10.1109/ICIP.2016.7533003 10.1109/TPAMI.2013.185 10.1007/978-3-030-20890-5_39 10.1109/ICCE-Asia.2016.7804800 10.1109/AVSS.2017.8078517 10.1109/CVPR.2006.19 10.1109/CVPR42600.2020.00682 10.1109/WACV.2019.00023 10.1109/ICCE-ASIA.2018.8552105 10.1109/CVPR42600.2020.00250 10.1109/ICCV.2015.347 10.1109/TSP.2008.920469 10.1007/978-3-319-48881-3_8 10.1109/CVPRW.2019.00105 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2021 Springer The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2021 Springer – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PYYUZ Q9U |
| DOI | 10.1007/s11263-020-01393-0 |
| DatabaseName | Springer Nature Link CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Complete ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1573-1405 |
| EndPage | 881 |
| ExternalDocumentID | A656117210 10_1007_s11263_020_01393_0 |
| GrantInformation_xml | – fundername: Technische Universität München (1025) |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c521t-6e05eb0cd608e5dfad35ab64565bcfaadf8a1afb23a72361f5a6c6aad01f3ef23 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 199 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000601485200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-5691 |
| IngestDate | Wed Nov 05 01:28:14 EST 2025 Sat Nov 29 10:08:41 EST 2025 Tue Nov 18 21:42:58 EST 2025 Sat Nov 29 06:42:28 EST 2025 Fri Feb 21 02:49:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Evaluation Computer vision MOTA MOTChallenge Multi-object-tracking |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c521t-6e05eb0cd608e5dfad35ab64565bcfaadf8a1afb23a72361f5a6c6aad01f3ef23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4623-8749 |
| OpenAccessLink | https://link.springer.com/10.1007/s11263-020-01393-0 |
| PQID | 2503535885 |
| PQPubID | 1456341 |
| PageCount | 37 |
| ParticipantIDs | proquest_journals_2503535885 gale_infotracacademiconefile_A656117210 crossref_citationtrail_10_1007_s11263_020_01393_0 crossref_primary_10_1007_s11263_020_01393_0 springer_journals_10_1007_s11263_020_01393_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of computer vision |
| PublicationTitleAbbrev | Int J Comput Vis |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | Chu, P., Fan, H., Tan, C. C., & Ling, H. (2019). Online multi-object tracking with instance-aware tracker and dynamic model refreshment. In Winter conference on applications of computer vision. Baisa, N. L. (2018). Online multi-target visual tracking using a HISP filter. In International joint conference on computer vision, imaging and computer graphics theory and applications. Ess, A., Leibe, B., Schindler, K., & Van Gool, L. (2008). A mobile vision system for robust multi-person tracking. In Conference on computer vision and pattern recognition. Bae, S.-H., & Yoon, K.-J. (2014). Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In Conference on computer vision and pattern recognition. Dehghan, A., Assari, S. M., & Shah, M. (2015) GMMCP-tracker: Globally optimal generalized maximum multi clique problem for multiple object tracking. In Conference on computer vision and pattern recognition workshops. Milan, A., Rezatofighi, S. H., Dick, A., Reid, I., & Schindler, K. (2017). Online multi-target tracking using recurrent neural networks. In Conference on artificial on intelligence. BaisaNLWallaceADevelopment of a n-type GM-PHD filter for multiple target, multiple type visual trackingJournal of Visual Communication and Image Representation20195925727110.1016/j.jvcir.2019.01.026 MahgoubHMostafaKWassifKTFaragIMulti-target tracking using hierarchical convolutional features and motion cuesInternational Journal of Advanced Computer Science & Applications201781121722210.14569/IJACSA.2017.081129 Leal-Taixé, L., Pons-Moll, G., & Rosenhahn, B. (2011). Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker. In International conference on computer vision workshops. Ferryman, J., & Shahrokni, A. (2009). PETS2009: Dataset and challenge. In International workshop on performance evaluation of tracking and surveillance. Zhang, L., Li, Y., & Nevatia, R. (2008). Global data association for multi-object tracking using network flows. In Conference on computer vision and pattern recognition. Chen, W., Chen, X., Zhang, J., & Huang, K. (2017b). Beyond triplet loss: A deep quadruplet network for person re-identification. In Conference on computer vision and pattern recognition. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., & Caine, B., et al. (2020). Scalability in perception for autonomous driving: Waymo open dataset. In Conference on computer vision and pattern recognition. Wang, B., Wang, L., Shuai, B., Zuo, Z., Liu, T., et al. (2016). Joint learning of convolutional neural networks and temporally constrained metrics for tracklet association. In Conference on computer vision and pattern recognition. Felzenszwalb, P. F., & Huttenlocher, D. P. (2006) Efficient belief propagation for early vision. In Conference on computer vision and pattern recognition. Yoon, J. H., Lee, C. R., Yang, M. H., & Yoon, K. J. (2016). Online multi-object tracking via structural constraint event aggregation. In International conference on computer vision and pattern recognition. YangMWuYJiaYA hybrid data association framework for robust online multi-object trackingTransactions on Image Processing201710.1109/TIP.2017.27451031409.94704 Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin Markov networks. In Advances in neural information processing systems. Fagot-Bouquet, L., Audigier, R., Dhome, Y., & Lerasle, F. (2015). Online multi-person tracking based on global sparse collaborative representations. In International conference on image processing. Ristani, E., Solera, F., Zou, R., Cucchiara, R., & Tomasi, C. (2016). Performance measures and a data set for multi-target, multi-camera tracking. In European conference on computer vision. Girshick, R. (2015). Fast R-CNN. In International conference on computer vision. RussakovskyODengJSuHKrauseJSatheeshSMaSImageNet large scale visual recognition challengeInternational Journal of Computer Vision20151153211252342248210.1007/s11263-015-0816-y ShengHZhangYChenJXiongZZhangJHeterogeneous association graph fusion for target association in multiple object trackingTransactions on Circuits and Systems for Video Technology201829113269328010.1109/TCSVT.2018.2882192 Stiefelhagen, R., Bernardin, K., Bowers, R., Garofolo, J. S., Mostefa, D., & Soundararajan, P. (2006). The clear 2006 evaluation. In Multimodal technologies for perception of humans. Chu, Q., Ouyang, W., Li, H., Wang, X., Liu, B., & Yu, N. (2017). Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism. In International conference on computer vision. Wang, G., Wang, Y., Zhang, H., Gu, R., & Hwang, J.-N. (2019). Exploit the connectivity: Multi-object tracking with trackletnet. In International conference on multimedia. Kesten, R., Usman, M., Houston, J., Pandya, T., Nadhamuni, K., et al. (2019) Lyft level 5 av dataset 2019. https://level5.lyft.com/dataset/. Benfold, B., & Reid, I. (2011). Unsupervised learning of a scene-specific coarse gaze estimator. In International conference on computer vision. Tao, Y., Chen, J., Fang, Y., Masaki, I., & Horn, B. K. (2018). Adaptive spatio-temporal model based multiple object tracking in video sequences considering a moving camera. In International conference on universal village. Ma, C., Yang, C., Yang, F., Zhuang, Y., Zhang, Z., Jia, H., & Xie, X. (2018a). Trajectory factory: Tracklet cleaving and re-connection by deep Siamese bi-GRU for multiple object tracking. In International conference on multimedia and expo. WuHHuYWangKLiHNieLChengHInstance-aware representation learning and association for online multi-person trackingPattern Recognition201994253410.1016/j.patcog.2019.04.018 Yoon, Y.-C., Song, Y.-M., Yoon, K., & Jeon, M. (2018). Online multi-object tracking using selective deep appearance matching. In International conference on consumer electronics Asia. Kieritz, H., Becker, S., Häbner, W., & Arens, M. (2016). Online multi-person tracking using integral channel features. In International conference on advanced video and signal based surveillance. MilanASchindlerKRothSMulti-target tracking by discrete-continuous energy minimizationTransactions on Pattern Analysis and Machine Intelligence201638102054206810.1109/TPAMI.2015.2505309 BabaeeMLiZRigollGA dual CNN-RNN for multiple people trackingNeurocomputing2019368698310.1016/j.neucom.2019.08.008 Pedersen, M., Haurum, J. B., Bengtson, S. H., & Moeslund, T. B. (June 2020). 3D-ZEF: A 3D zebrafish tracking benchmark dataset. In Conference on computer vision and pattern recognition. Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., & Leal-Taixé, L. (2020). MOT20: A benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003. Baisa, N. L. (2019c). Robust online multi-target visual tracking using a HISP filter with discriminative deep appearance learning. arXiv preprint arXiv:1908.03945. Maksai, A., & Fua, P. (2019). Eliminating exposure bias and metric mismatch in multiple object tracking. In Conference on computer vision and pattern recognition. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems. TianWLauerMChenLOnline multi-object tracking using joint domain information in traffic scenariosTransactions on Intelligent Transportation Systems201921137438410.1109/TITS.2019.2892413 Chu, P., & Ling, H. (2019). FAMNet: Joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking. In International conference on computer vision. Son, J., Baek, M., Cho, M., & Han, B. (2017). Multi-object tracking with quadruplet convolutional neural networks. In Conference on computer vision and pattern recognition. Le, N., Heili, A., & Odobez, J.-M. (2016). Long-term time-sensitive costs for CRF-based tracking by detection. In European conference on computer vision workshops. SongYYoonKYoonYYowKJeonMOnline multi-object tracking with GMPHD filter and occlusion group managementAccess2019716510316512110.1109/ACCESS.2019.2953276 Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Conference on computer vision and pattern recognition. Xu, J., Cao, Y., Zhang, Z., & Hu, H. (2019). Spatial-temporal relation networks for multi-object tracking. In International conference on computer vision. Zamir, A. R., Dehghan, A., & Shah, M. (2012). GMCP-Tracker: Global multi-object tracking using generalized minimum clique graphs. In European conference on computer vision. Geiger, A., Lenz, P., & Urtasun, R. (2012) Are we ready for autonomous driving? The KITTI vision benchmark suite. In Conference on computer vision and pattern recognition. Mathias, M., Benenson, R., Pedersoli, M., & Gool, L. V. (2014). Face detection without bells and whistles. In European conference on computer vision workshops. Bewley, A., Ott, L., Ramos, F., & Upcroft, B. (2016b). Alextrac: Affinity learning by exploring temporal reinforcement within association chains. In International conference on robotics and automation. Yoon, Y., Kim, D. Y., Yoon, K., Song, Y., & Jeon, M. (2019b). Online multiple pedestrian tracking using deep temporal appearance matching association. arXiv preprint arXiv:1907.00831. JuJKimDKuBHanDKoHOnline multi-object tracking with efficient track drift and fragmentation handlingJournal of the Optical Society of America A201734228029310.1364/JOSAA.34.000280 Boragule, A., & Jeon, M. (2017). Joint cost minimization for multi-object tracking. International conference on advanced video and signal based surveillance. Chang, M.-F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D., Carr, P., Lucey, S., Ramanan, D., & Hays, J. (2019). Argoverse: 3D tracking and forecasting with rich maps. 1393_CR29 1393_CR28 Y Zhang (1393_CR154) 2020; 29 L Wen (1393_CR133) 2020; 193 1393_CR21 1393_CR20 1393_CR23 1393_CR22 1393_CR24 1393_CR27 A Milan (1393_CR95) 2016; 38 1393_CR26 H Mahgoub (1393_CR86) 2017; 8 1393_CR39 K Yoon (1393_CR147) 2020; 8 1393_CR156 1393_CR157 1393_CR32 S Wang (1393_CR132) 2016; 122 1393_CR31 1393_CR34 1393_CR33 1393_CR36 1393_CR35 1393_CR38 A Geiger (1393_CR50) 2014; 36 1393_CR30 S Thrun (1393_CR127) 2005 1393_CR105 1393_CR106 H Wu (1393_CR137) 2019; 94 Q Liu (1393_CR80) 2019; 7 1393_CR101 D Scharstein (1393_CR107) 2002; 47 1393_CR102 O Russakovsky (1393_CR103) 2015; 115 S Baker (1393_CR12) 2011; 92 1393_CR104 1393_CR43 1393_CR42 1393_CR45 1393_CR44 1393_CR47 1393_CR109 K Yoon (1393_CR148) 2019; 19 1393_CR46 H Karunasekera (1393_CR61) 2019 1393_CR40 J Ju (1393_CR60) 2017; 11 L Lan (1393_CR70) 2018; 27 1393_CR111 S-H Bae (1393_CR6) 2018; 40 D Schuhmacher (1393_CR108) 2008; 56 W Tian (1393_CR128) 2019; 21 P Dollár (1393_CR37) 2014; 36 1393_CR54 S-H Lee (1393_CR76) 2018; 6 1393_CR53 M Everingham (1393_CR41) 2015; 111 1393_CR56 1393_CR55 1393_CR58 1393_CR57 M Keuper (1393_CR63) 2018 H Sheng (1393_CR113) 2018; 29 H Zhou (1393_CR155) 2018 1393_CR52 H Sheng (1393_CR110) 2018; 29 1393_CR51 1393_CR100 1393_CR129 J Xiang (1393_CR138) 2020 J Ju (1393_CR59) 2017; 34 1393_CR123 1393_CR124 Z Fu (1393_CR49) 2018; 6 1393_CR125 1393_CR126 1393_CR65 1393_CR64 1393_CR67 Z Fu (1393_CR48) 2019; 21 1393_CR66 1393_CR69 NL Baisa (1393_CR11) 2019; 59 1393_CR8 1393_CR9 1393_CR7 1393_CR5 1393_CR2 1393_CR3 1393_CR62 K Bernardin (1393_CR17) 2008 1393_CR130 1393_CR131 A Milan (1393_CR93) 2014; 36 1393_CR116 1393_CR117 1393_CR118 M Yang (1393_CR144) 2017 1393_CR115 1393_CR1 1393_CR78 DB Reid (1393_CR99) 1979; 24 1393_CR77 HW Kuhn (1393_CR68) 1955; 2 M Babaee (1393_CR4) 2019; 368 1393_CR79 1393_CR72 1393_CR71 1393_CR74 1393_CR73 H Sheng (1393_CR112) 2018; 7 Y Song (1393_CR119) 2019; 7 1393_CR120 1393_CR121 1393_CR122 1393_CR149 1393_CR145 1393_CR146 1393_CR87 1393_CR89 1393_CR88 1393_CR81 1393_CR83 1393_CR82 1393_CR85 1393_CR84 M Yang (1393_CR143) 2016 1393_CR152 1393_CR153 1393_CR150 L Chen (1393_CR25) 2019; 26 1393_CR151 1393_CR18 1393_CR139 1393_CR19 1393_CR134 1393_CR135 1393_CR136 1393_CR10 1393_CR98 1393_CR97 1393_CR14 1393_CR13 1393_CR16 1393_CR15 1393_CR90 S Lee (1393_CR75) 2019; 7 1393_CR92 1393_CR91 1393_CR94 1393_CR96 1393_CR141 1393_CR142 X Shi (1393_CR114) 2018; 127 1393_CR140 |
| References_xml | – reference: Chang, M.-F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D., Carr, P., Lucey, S., Ramanan, D., & Hays, J. (2019). Argoverse: 3D tracking and forecasting with rich maps. In Conference on computer vision and pattern recognition. – reference: Bewley, A., Ott, L., Ramos, F., & Upcroft, B. (2016b). Alextrac: Affinity learning by exploring temporal reinforcement within association chains. In International conference on robotics and automation. – reference: Zhou, X., Jiang, P., Wei, Z., Dong, H., & Wang, F. (2018b). Online multi-object tracking with structural invariance constraint. In British machine vision conference. – reference: Le, N., Heili, A., & Odobez, J.-M. (2016). Long-term time-sensitive costs for CRF-based tracking by detection. In European conference on computer vision workshops. – reference: MahgoubHMostafaKWassifKTFaragIMulti-target tracking using hierarchical convolutional features and motion cuesInternational Journal of Advanced Computer Science & Applications201781121722210.14569/IJACSA.2017.081129 – reference: Stiefelhagen, R., Bernardin, K., Bowers, R., Garofolo, J. S., Mostefa, D., & Soundararajan, P. (2006). The clear 2006 evaluation. In Multimodal technologies for perception of humans. – reference: Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachussetts, Amherst. – reference: DollárPAppelRBelongieSPeronaPFast feature pyramids for object detectionTransactions on Pattern Analysis and Machine Intelligence20143681532154510.1109/TPAMI.2014.2300479 – reference: BaeS-HYoonK-JConfidence-based data association and discriminative deep appearance learning for robust online multi-object trackingTransactions on Pattern Analysis and Machine Intelligence201840359561010.1109/TPAMI.2017.2691769 – reference: Eiselein, V., Arp, D., Pätzold, M., & Sikora, T. (2012). Real-time multi-human tracking using a probability hypothesis density filter and multiple detectors. In International conference on advanced video and signal-based surveillance. – reference: Ess, A., Leibe, B., Schindler, K., & Van Gool, L. (2008). A mobile vision system for robust multi-person tracking. In Conference on computer vision and pattern recognition. – reference: MilanARothSSchindlerKContinuous energy minimization for multitarget trackingTransactions on Pattern Analysis and Machine Intelligence2014361587210.1109/TPAMI.2013.103 – reference: Leal-Taixé, L., Pons-Moll, G., & Rosenhahn, B. (2011). Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker. In International conference on computer vision workshops. – reference: Yoon, Y., Boragule, A., Song, Y., Yoon, K., & Jeon, M. (2018a). Online multi-object tracking with historical appearance matching and scene adaptive detection filtering. In International conference on advanced video and signal based surveillance. – reference: Wang, B., Wang, L., Shuai, B., Zuo, Z., Liu, T., et al. (2016). Joint learning of convolutional neural networks and temporally constrained metrics for tracklet association. In Conference on computer vision and pattern recognition. – reference: Ma, L., Tang, S., Black, M. J., & Van Gool, L. (2018b). Customized multi-person tracker. In Asian conference on computer vision. – reference: Battaglia, P., Pascanu, R., Lai, M., Rezende, D. J., et al. (2016). Interaction networks for learning about objects, relations and physics. In Advances in neural information processing systems. – reference: ScharsteinDSzeliskiRA taxonomy and evaluation of dense two-frame stereo correspondence algorithmsInternational Journal of Computer Vision200247174210.1023/A:1014573219977 – reference: Ferryman, J., & Ellis, A. (2010) PETS2010: Dataset and challenge. In International conference on advanced video and signal based surveillance. – reference: McLaughlin, N., Martinez Del Rincon, J., Miller, P. (2015). Enhancing linear programming with motion modeling for multi-target tracking. In Winter conference on applications of computer vision. – reference: Ban, Y., Ba, S., Alameda-Pineda, X., & Horaud, R. (2016). Tracking multiple persons based on a variational Bayesian model. In European conference on computer vision workshops. – reference: Sadeghian, A., Alahi, A., Savarese, S. (2017). Tracking the untrackable: Learning to track multiple cues with long-term dependencies. In International conference on computer vision. – reference: ShengHZhangXZhangYWuYChenJEnhanced association with supervoxels in multiple hypothesis trackingAccess201872107211710.1109/ACCESS.2018.2881019 – reference: Sanchez-Matilla, R., Cavallaro, A. (2019). A predictor of moving objects for first-person vision. In International conference on image processing. – reference: Milan, A., Rezatofighi, S. H., Dick, A., Reid, I., & Schindler, K. (2017). Online multi-target tracking using recurrent neural networks. In Conference on artificial on intelligence. – reference: Son, J., Baek, M., Cho, M., & Han, B. (2017). Multi-object tracking with quadruplet convolutional neural networks. In Conference on computer vision and pattern recognition. – reference: BernardinKStiefelhagenREvaluating multiple object tracking performance: The CLEAR MOT metricsImage and Video Processing200810.1155/2008/246309 – reference: LeeS-HKimM-YBaeS-HLearning discriminative appearance models for online multi-object tracking with appearance discriminability measuresAccess20186673166732810.1109/ACCESS.2018.2879535 – reference: Tang, S., Andriluka, M., Andres, B., & Schiele, B. (2017). Multiple people tracking with lifted multicut and person re-identification. In Conference on computer vision and pattern recognition. – reference: Yoon, J. H., Lee, C. R., Yang, M. H., & Yoon, K. J. (2016). Online multi-object tracking via structural constraint event aggregation. In International conference on computer vision and pattern recognition. – reference: Yoon, Y.-C., Song, Y.-M., Yoon, K., & Jeon, M. (2018). Online multi-object tracking using selective deep appearance matching. In International conference on consumer electronics Asia. – reference: Dave, A., Khurana, T., Tokmakov, P., Schmid, C., & Ramanan, D. (2020) Tao: A large-scale benchmark for tracking any object. In European conference on computer vision. – reference: YoonKKimDYYoonY-CJeonMData association for multi-object tracking via deep neural networksSensors20191955910.3390/s19030559 – reference: Nguyen Thi Lan Anh, F. N., Khan, Furqan, & Bremond, F. (2017). Multi-object tracking using multi-channel part appearance representation. In International conference on advanced video and signal based surveillance. – reference: SongYYoonKYoonYYowKJeonMOnline multi-object tracking with GMPHD filter and occlusion group managementAccess2019716510316512110.1109/ACCESS.2019.2953276 – reference: Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin Markov networks. In Advances in neural information processing systems. – reference: Andriluka, M., Roth, S., & Schiele, B. (2010). Monocular 3D pose estimation and tracking by detection. In Conference on computer vision and pattern recognition. – reference: Henschel, R., Leal-Taixé, L., Cremers, D., & Rosenhahn, B. (2018). Fusion of head and full-body detectors for multi-object tracking. In Conference on computer vision and pattern recognition workshops. – reference: Dehghan, A., Assari, S. M., & Shah, M. (2015) GMMCP-tracker: Globally optimal generalized maximum multi clique problem for multiple object tracking. In Conference on computer vision and pattern recognition workshops. – reference: ShengHZhangYChenJXiongZZhangJHeterogeneous association graph fusion for target association in multiple object trackingTransactions on Circuits and Systems for Video Technology201829113269328010.1109/TCSVT.2018.2882192 – reference: KarunasekeraHWangHZhangHMultiple object tracking with attention to appearance, structure, motion and sizeAccess201910.1109/ACCESS.2019.2932301 – reference: Ristani, E., Solera, F., Zou, R., Cucchiara, R., & Tomasi, C. (2016). Performance measures and a data set for multi-target, multi-camera tracking. In European conference on computer vision. – reference: Manen, S., Timofte, R., Dai, D., & Gool, L. V. (2016). Leveraging single for multi-target tracking using a novel trajectory overlap affinity measure. In Winter conference on applications of computer vision. – reference: Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., & Leal-Taixé, L. (2020). MOT20: A benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003. – reference: Smith, K., Gatica-Perez, D., Odobez, J.-M., & Ba, S. (2005). Evaluating multi-object tracking. In Workshop on empirical evaluation methods in computer vision. – reference: BabaeeMLiZRigollGA dual CNN-RNN for multiple people trackingNeurocomputing2019368698310.1016/j.neucom.2019.08.008 – reference: Baisa, N. L. (2019a). Online multi-object visual tracking using a GM-PHD filter with deep appearance learning. In International conference on information fusion. – reference: Kesten, R., Usman, M., Houston, J., Pandya, T., Nadhamuni, K., et al. (2019) Lyft level 5 av dataset 2019. https://level5.lyft.com/dataset/. – reference: XiangJXuGMaCHouJEnd-to-end learning deep CRF models for multi-object trackingTransactions on Circuits and Systems for Video Technology202010.1109/TCSVT.2020.2975842 – reference: Sheng, H., Hao, L., Chen, J., et al. (2017). Robust local effective matching model for multi-target tracking. In Advances in multimedia information processing (Vol. 127, No. 8). – reference: Zhu, J., Yang, H., Liu, N., Kim, M., Zhang, W., & Yang, M.-H. (2018). Online multi-object tracking with dual matching attention networks. In European conference on computer vision workshops. – reference: Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Conference on computer vision and pattern recognition workshops. – reference: WangSFowlkesCLearning optimal parameters for multi-target tracking with contextual interactionsInternational Journal of Computer Vision20161223484501363602210.1007/s11263-016-0960-z – reference: Henschel, R., Zou, Y., & Rosenhahn, B. (2019). Multiple people tracking using body and joint detections. In Conference on computer vision and pattern recognition workshops. – reference: Felzenszwalb, P. F., & Huttenlocher, D. P. (2006) Efficient belief propagation for early vision. In Conference on computer vision and pattern recognition. – reference: Henriques, J. a., Caseiro, R., & Batista, J. (2011). Globally optimal solution to multi-object tracking with merged measurements. In International conference on computer vision. – reference: ShiXLingHPangYYHuWChuPXingJRank-1 tensor approximation for high-order association in multi-target trackingInternational Journal of Computer Vision201812710631083397760010.1007/s11263-018-01147-z – reference: Baisa, N. L. (2018). Online multi-target visual tracking using a HISP filter. In International joint conference on computer vision, imaging and computer graphics theory and applications. – reference: Bochinski, E., Eiselein, V., & Sikora, T. (2017). High-speed tracking-by-detection without using image information. In International conference on advanced video and signal based surveillance. – reference: ReidDBAn algorithm for tracking multiple targetsTransactions on Automatic Control197924684385410.1109/TAC.1979.1102177 – reference: FuZAngeliniFChambersJNaqviSMMulti-level cooperative fusion of GM-PHD filters for online multiple human trackingTransactions on Multimedia20192192277229110.1109/TMM.2019.2902480 – reference: YoonKGwakJSongYYoonYJeonMOneShotDa: Online multi-object tracker with one-shot-learning-based data associationAccess20208380603807210.1109/ACCESS.2020.2975912 – reference: Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., & Leal-Taixe, L. (2019). Cvpr19 tracking and detection challenge: How crowded can it get? arXiv preprint arXiv:1906.04567. – reference: GeigerALauerMWojekCStillerCUrtasunR3D traffic scene understanding from movable platformsTransactions on Pattern Analysis and Machine Intelligence20143651012102510.1109/TPAMI.2013.185 – reference: TianWLauerMChenLOnline multi-object tracking using joint domain information in traffic scenariosTransactions on Intelligent Transportation Systems201921137438410.1109/TITS.2019.2892413 – reference: Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., & Caine, B., et al. (2020). Scalability in perception for autonomous driving: Waymo open dataset. In Conference on computer vision and pattern recognition. – reference: ZhangYShengHWuYWangSLyuWKeWLong-term tracking with deep tracklet associationTransactions on Image Processing2020296694670610.1109/TIP.2020.2993073 – reference: Dicle, C., Camps, O., & Sznaier, M. (2013) The way they move: Tracking targets with similar appearance. In International conference on computer vision. – reference: Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Conference on computer vision and pattern recognition. – reference: Wojke, N., & Paulus, D. (2016). Global data association for the probability hypothesis density filter using network flows. International conference on robotics and automation. – reference: Kristan, M., et al. (2014). The visual object tracking VOT2014 challenge results. In European conference on computer vision workshops. – reference: LeeSKimEMultiple object tracking via feature pyramid Siamese networksAccess201978181819410.1109/ACCESS.2018.2889442 – reference: Levinkov, E., Uhrig, J., Tang, S., Omran, M., Insafutdinov, E., Kirillov, A., Rother, C., Brox, T., Schiele, B., & Andres, B. (2017). Joint graph decomposition and node labeling: Problem, algorithms, applications. In Conference on computer vision and pattern recognition. – reference: KeuperMTangSAndresBBroxTSchieleBMotion segmentation and multiple object tracking by correlation co-clusteringTransactions on Pattern Analysis and Machine Intelligence201810.1109/TPAMI.2018.2876253 – reference: Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems. – reference: Chu, P., & Ling, H. (2019). FAMNet: Joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking. In International conference on computer vision. – reference: Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality reduction by learning an invariant mapping. In Conference on computer vision and pattern recognition. – reference: Mathias, M., Benenson, R., Pedersoli, M., & Gool, L. V. (2014). Face detection without bells and whistles. In European conference on computer vision workshops. – reference: LiuQLiuBWuYLiWYuNReal-time online multi-object tracking in compressed domainAccess20197764897649910.1109/ACCESS.2019.2921975 – reference: BakerSScharsteinDLewisJPRothSBlackMJSzeliskiRA database and evaluation methodology for optical flowInternational Journal of Computer Vision201192113110.1007/s11263-010-0390-2 – reference: Li, B., Yan, J., Wu, W., Zhu, Z., & Hu, X. (2018). High performance visual tracking with Siamese region proposal network. In Conference on computer vision and pattern recognition. – reference: Chu, Q., Ouyang, W., Li, H., Wang, X., Liu, B., & Yu, N. (2017). Online multi-object tracking using CNN-based single object tracker with spatial-temporal attention mechanism. In International conference on computer vision. – reference: Held, D., Thrun, S., & Savarese, S. (2016). Learning to track at 100 fps with deep regression networks. In European conference on computer vision. – reference: JuJKimDKuBHanDKKoHOnline multi-person tracking with two-stage data association and online appearance model learningIET Computer Vision2017111879510.1049/iet-cvi.2016.0068 – reference: Maksai, A., & Fua, P. (2019). Eliminating exposure bias and metric mismatch in multiple object tracking. In Conference on computer vision and pattern recognition. – reference: Xu, J., Cao, Y., Zhang, Z., & Hu, H. (2019). Spatial-temporal relation networks for multi-object tracking. In International conference on computer vision. – reference: FuZFengPAngeliniFChambersJANaqviSMParticle PHD filter based multiple human tracking using online group-structured dictionary learningAccess20186147641477810.1109/ACCESS.2018.2816805 – reference: Leal-Taixé, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., & Savarese, S. (2014). Learning an image-based motion context for multiple people tracking. In Conference on computer vision and pattern recognition. – reference: Chen, W., Chen, X., Zhang, J., & Huang, K. (2017b). Beyond triplet loss: A deep quadruplet network for person re-identification. In Conference on computer vision and pattern recognition. – reference: JuJKimDKuBHanDKoHOnline multi-object tracking with efficient track drift and fragmentation handlingJournal of the Optical Society of America A201734228029310.1364/JOSAA.34.000280 – reference: Baisa, N. L. (2019b). Occlusion-robust online multi-object visual tracking using a GM-PHD filter with a CNN-based re-identification. arXiv preprint arXiv:1912.05949. – reference: Zamir, A. R., Dehghan, A., & Shah, M. (2012). GMCP-Tracker: Global multi-object tracking using generalized minimum clique graphs. In European conference on computer vision. – reference: Choi, W. (2015). Near-online multi-target tracking with aggregated local flow descriptor. In International conference on computer vision. – reference: Alahi, A., Ramanathan, V., & Fei-Fei, L. (2014). Socially-aware large-scale crowd forecasting. In Conference on computer vision and pattern recognition. – reference: SchuhmacherDVoB-TVoB-NA consistent metric for performance evaluation of multi-object filtersTransactions on Signal Processing200856834473457251695510.1109/TSP.2008.920469 – reference: BaisaNLWallaceADevelopment of a n-type GM-PHD filter for multiple target, multiple type visual trackingJournal of Visual Communication and Image Representation20195925727110.1016/j.jvcir.2019.01.026 – reference: ThrunSBurgardWFoxDProbabilistic robotics (intelligent robotics and autonomous agents)2005CambridgeThe MIT Press1081.68703 – reference: Kieritz, H., Becker, S., Häbner, W., & Arens, M. (2016). Online multi-person tracking using integral channel features. In International conference on advanced video and signal based surveillance. – reference: WenLDuDCaiZLeiZChangMQiHUA-DETRAC: A new benchmark and protocol for multi-object detection and trackingComputer Vision and Image Understanding202019310290710.1016/j.cviu.2020.102907 – reference: Boragule, A., & Jeon, M. (2017). Joint cost minimization for multi-object tracking. International conference on advanced video and signal based surveillance. – reference: Pirsiavash, H., Ramanan, D., & Fowlkes, C. C. (2011). Globally-optimal greedy algorithms for tracking a variable number of objects. In Conference on computer vision and pattern recognition. – reference: Benfold, B., & Reid, I. (2011). Unsupervised learning of a scene-specific coarse gaze estimator. In International conference on computer vision. – reference: Geiger, A., Lenz, P., & Urtasun, R. (2012) Are we ready for autonomous driving? The KITTI vision benchmark suite. In Conference on computer vision and pattern recognition. – reference: Tang, S., Andres, B., Andriluka, M., & Schiele, B. (2015). Subgraph decomposition for multi-target tracking. In Conference on computer vision and pattern recognition. – reference: Kim, C., Li, F., & Rehg, J. M. (2018). Multi-object tracking with neural gating using bilinear LSTM. In European conference on computer vision. – reference: Milan, A., Schindler, K., & Roth, S. (2013). Challenges of ground truth evaluation of multi-target tracking. In Conference on computer vision and pattern recognition workshops. – reference: EveringhamMEslamiSAVan GoolLWilliamsCKWinnJZissermanAThe Pascal visual object classes challenge: A retrospectiveInternational Journal of Computer Vision201511119813610.1007/s11263-014-0733-5 – reference: RussakovskyODengJSuHKrauseJSatheeshSMaSImageNet large scale visual recognition challengeInternational Journal of Computer Vision20151153211252342248210.1007/s11263-015-0816-y – reference: Kim, C., Li, F., Ciptadi, A., & Rehg, J. M. (2015). Multiple hypothesis tracking revisited. In International conference on computer vision. – reference: Wang, G., Wang, Y., Zhang, H., Gu, R., & Hwang, J.-N. (2019). Exploit the connectivity: Multi-object tracking with trackletnet. In International conference on multimedia. – reference: YangMWuYJiaYA hybrid data association framework for robust online multi-object trackingTransactions on Image Processing201710.1109/TIP.2017.27451031409.94704 – reference: Yoon, Y., Kim, D. Y., Yoon, K., Song, Y., & Jeon, M. (2019b). Online multiple pedestrian tracking using deep temporal appearance matching association. arXiv preprint arXiv:1907.00831. – reference: WuHHuYWangKLiHNieLChengHInstance-aware representation learning and association for online multi-person trackingPattern Recognition201994253410.1016/j.patcog.2019.04.018 – reference: Tao, Y., Chen, J., Fang, Y., Masaki, I., & Horn, B. K. (2018). Adaptive spatio-temporal model based multiple object tracking in video sequences considering a moving camera. In International conference on universal village. – reference: Xu, Y., Osep, A., Ban, Y., Horaud, R., Leal-Taixe, L., & Alameda-Pineda, X. (2020). How to train your deep multi-object tracker. In Conference on computer vision and pattern recognition. – reference: Li, Y., Huang, C., & Nevatia, R. (2009). Learning to associate: Hybrid boosted multi-target tracker for crowded scene. In Conference on computer vision and pattern recognition. – reference: Wu, B., & Nevatia, R. (2006). Tracking of multiple, partially occluded humans based on static body part detection. In Conference on computer vision and pattern recognition. – reference: Baisa, N. L. (2019c). Robust online multi-target visual tracking using a HISP filter with discriminative deep appearance learning. arXiv preprint arXiv:1908.03945. – reference: LanLWangXZhangSTaoDGaoWHuangTSInteracting tracklets for multi-object trackingTransactions on Image Processing201827945854597381868210.1109/TIP.2018.2843129 – reference: Torralba, A., & Efros, A. A. (2011). Unbiased look at dataset bias. In Conference on computer vision and pattern recognition. – reference: Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016a). Simple online and realtime tracking. In International conference on image processing. – reference: Ferryman, J., & Shahrokni, A. (2009). PETS2009: Dataset and challenge. In International workshop on performance evaluation of tracking and surveillance. – reference: KuhnHWYawBThe Hungarian method for the assignment problemNaval Research Logistics Quarterly1955283977551010.1002/nav.3800020109 – reference: Song, Y., Yoon, Y., Yoon, K., & Jeon, M. (2018). Online and real-time tracking with the GMPHD filter using group management and relative motion analysis. In International conference on advanced video and signal based surveillance. – reference: YangMJiaYTemporal dynamic appearance modeling for online multi-person trackingComputer Vision and Image Understanding201610.1016/j.cviu.2016.05.003 – reference: Fang, K., Xiang, Y., Li, X., & Savarese, S. (2018). Recurrent autoregressive networks for online multi-object tracking. In Winter conference on applications of computer vision. – reference: Andriluka, M., Iqbal, U., Insafutdinov, E., Pishchulin, L., Milan, A., Gall, J., & Schiele, B. (2018). Posetrack: A benchmark for human pose estimation and tracking. In Conference on computer vision and pattern recognition. – reference: Ma, C., Yang, C., Yang, F., Zhuang, Y., Zhang, Z., Jia, H., & Xie, X. (2018a). Trajectory factory: Tracklet cleaving and re-connection by deep Siamese bi-GRU for multiple object tracking. In International conference on multimedia and expo. – reference: Zhang, L., Li, Y., & Nevatia, R. (2008). Global data association for multi-object tracking using network flows. In Conference on computer vision and pattern recognition. – reference: Dollár, P., Wojek, C., Schiele, B., & Perona, P. (2009) Pedestrian detection: A benchmark. In Conference on computer vision and pattern recognition workshops. – reference: Long, C., Haizhou, A., Zijie, Z., & Chong, S. (2018) Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In International conference on multimedia and expo. – reference: Brasó, G., & Leal-Taixé, L. (2020). Learning a neural solver for multiple object tracking. In Conference on computer vision and pattern recognition. – reference: Kutschbach, T., Bochinski, E., Eiselein, V., & Sikora, T. (2017). Sequential sensor fusion combining probability hypothesis density and kernelized correlation filters for multi-object tracking in video data. In International conference on advanced video and signal based surveillance. – reference: Song, Y., & Jeon, M. (2016). Online multiple object tracking with the hierarchically adopted GM-PHD filter using motion and appearance. In International conference on consumer electronics. – reference: Long, C., Haizhou, A., Chong, S., Zijie, Z., & Bo, B. (2017). Online multi-object tracking with convolutional neural networks. In International conference on image processing. – reference: Fagot-Bouquet, L., Audigier, R., Dhome, Y., & Lerasle, F. (2016). Improving multi-frame data association with sparse representations for robust near-online multi-object tracking. In European conference on computer vision workshops. – reference: Loumponias, K., Dimou, A., Vretos, N., & Daras, P. (2018). Adaptive tobit Kalman-based tracking. In International conference on signal-image technology & internet-based systems. – reference: ShengHChenJZhangYKeWXiongZYuJIterative multiple hypothesis tracking with tracklet-level associationTransactions on Circuits and Systems for Video Technology201829123660367210.1109/TCSVT.2018.2881123 – reference: Leal-Taixe, L., Canton-Ferrer, C., & Schindler, K. (2016). Learning by tracking: Siamese CNN for robust target association. In Conference on computer vision and pattern recognition workshops. – reference: Pedersen, M., Haurum, J. B., Bengtson, S. H., & Moeslund, T. B. (June 2020). 3D-ZEF: A 3D zebrafish tracking benchmark dataset. In Conference on computer vision and pattern recognition. – reference: Fagot-Bouquet, L., Audigier, R., Dhome, Y., & Lerasle, F. (2015). Online multi-person tracking based on global sparse collaborative representations. In International conference on image processing. – reference: Wen, L., Li, W., Yan, J., Lei, Z., Yi, D., & Li, S. Z. (2014). Multiple target tracking based on undirected hierarchical relation hypergraph. In Conference on computer vision and pattern recognition. – reference: Milan, A., Leal-Taixé, L., Schindler, K., & Reid, I. (2015). Joint tracking and segmentation of multiple targets. In Conference on computer vision and pattern recognition. – reference: Xiang, Y., Alahi, A., & Savarese, S. (2015). Learning to track: Online multi-object tracking by decision making. In International conference on computer vision. – reference: ZhouHOuyangWChengJWangXLiHDeep continuous conditional random fields with asymmetric inter-object constraints for online multi-object trackingTransactions on Circuits and Systems for Video Technology201810.1109/TCSVT.2018.2825679 – reference: Chen, J., Sheng, H., Zhang, Y., & Xiong, Z. (2017a). Enhancing detection model for multiple hypothesis tracking. In Conference on computer vision and pattern recognition workshops. – reference: Yang, F., Choi, W., & Lin, Y. (2016). Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In Conference on computer vision and pattern recognition. – reference: Chu, P., Fan, H., Tan, C. C., & Ling, H. (2019). Online multi-object tracking with instance-aware tracker and dynamic model refreshment. In Winter conference on applications of computer vision. – reference: ChenLAiHChenRZhuangZAggregate tracklet appearance features for multi-object trackingSignal Processing Letters201926111613161710.1109/LSP.2019.2940922 – reference: Tang, S., Andres, B., Andriluka, M., & Schiele, B. (2016). Multi-person tracking by multicuts and deep matching. In European conference on computer vision workshops. – reference: Bae, S.-H., & Yoon, K.-J. (2014). Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In Conference on computer vision and pattern recognition. – reference: Bergmann, P., Meinhardt, T., & Leal-Taixé, L. (2019). Tracking without bells and whistles. In International conference on computer vision. – reference: Girshick, R. (2015). Fast R-CNN. In International conference on computer vision. – reference: Yoon, J., Yang, H., Lim, J., & Yoon, K. (2015). Bayesian multi-object tracking using motion context from multiple objects. In Winter conference on applications of computer vision. – reference: MilanASchindlerKRothSMulti-target tracking by discrete-continuous energy minimizationTransactions on Pattern Analysis and Machine Intelligence201638102054206810.1109/TPAMI.2015.2505309 – reference: Rezatofighi, H., Milan, A., Zhang, Z., Shi, Q., Dick, A., & Reid, I. (2015). Joint probabilistic data association revisited. In International conference on computer vision. – reference: Sanchez-Matilla, R., Poiesi, F., & Cavallaro, A. (2016). Online multi-target tracking with strong and weak detections. In European conference on computer vision workshops. – ident: 1393_CR31 doi: 10.1109/CVPR.2005.177 – ident: 1393_CR88 doi: 10.1109/WACV.2016.7477566 – ident: 1393_CR104 doi: 10.1109/ICCV.2017.41 – ident: 1393_CR20 doi: 10.1109/AVSS.2017.8078516 – year: 2018 ident: 1393_CR63 publication-title: Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2018.2876253 – ident: 1393_CR94 doi: 10.1109/CVPRW.2013.111 – year: 2017 ident: 1393_CR144 publication-title: Transactions on Image Processing doi: 10.1109/TIP.2017.2745103 – ident: 1393_CR96 doi: 10.1109/AVSS.2017.8078552 – ident: 1393_CR42 doi: 10.1109/ICIP.2015.7351235 – volume: 34 start-page: 280 issue: 2 year: 2017 ident: 1393_CR59 publication-title: Journal of the Optical Society of America A doi: 10.1364/JOSAA.34.000280 – ident: 1393_CR53 doi: 10.1109/CVPR.2006.100 – ident: 1393_CR39 doi: 10.1109/AVSS.2012.59 – ident: 1393_CR136 – ident: 1393_CR125 doi: 10.1109/UV.2018.8642156 – ident: 1393_CR71 doi: 10.1007/978-3-319-48881-3_4 – ident: 1393_CR91 doi: 10.1109/CVPR.2015.7299178 – ident: 1393_CR124 doi: 10.1109/CVPR.2017.394 – ident: 1393_CR56 doi: 10.1109/CVPRW.2018.00192 – ident: 1393_CR51 doi: 10.1109/CVPR.2012.6248074 – ident: 1393_CR24 doi: 10.1109/CVPRW.2017.266 – ident: 1393_CR78 doi: 10.1109/CVPR.2018.00935 – ident: 1393_CR98 doi: 10.1109/CVPR.2011.5995604 – ident: 1393_CR139 doi: 10.1109/ICCV.2015.534 – volume: 19 start-page: 559 year: 2019 ident: 1393_CR148 publication-title: Sensors doi: 10.3390/s19030559 – volume: 38 start-page: 2054 issue: 10 year: 2016 ident: 1393_CR95 publication-title: Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2015.2505309 – volume: 122 start-page: 484 issue: 3 year: 2016 ident: 1393_CR132 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-016-0960-z – ident: 1393_CR64 doi: 10.1109/AVSS.2016.7738059 – volume: 11 start-page: 87 issue: 1 year: 2017 ident: 1393_CR60 publication-title: IET Computer Vision doi: 10.1049/iet-cvi.2016.0068 – ident: 1393_CR19 doi: 10.1109/ICRA.2016.7487371 – ident: 1393_CR32 doi: 10.1007/978-3-030-58558-7_26 – volume: 7 start-page: 76489 year: 2019 ident: 1393_CR80 publication-title: Access doi: 10.1109/ACCESS.2019.2921975 – ident: 1393_CR45 doi: 10.1007/s11263-006-7899-4 – ident: 1393_CR26 doi: 10.1109/CVPR.2017.145 – ident: 1393_CR79 – ident: 1393_CR54 doi: 10.1007/978-3-319-46448-0_45 – volume: 111 start-page: 98 issue: 1 year: 2015 ident: 1393_CR41 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-014-0733-5 – volume: 8 start-page: 38060 year: 2020 ident: 1393_CR147 publication-title: Access doi: 10.1109/ACCESS.2020.2975912 – volume: 92 start-page: 1 issue: 1 year: 2011 ident: 1393_CR12 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-010-0390-2 – ident: 1393_CR62 – ident: 1393_CR66 doi: 10.1007/978-3-030-01237-3_13 – ident: 1393_CR142 doi: 10.1109/CVPR.2016.234 – volume: 29 start-page: 3660 issue: 12 year: 2018 ident: 1393_CR110 publication-title: Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2018.2881123 – ident: 1393_CR30 doi: 10.1109/ICCV.2017.518 – volume: 7 start-page: 8181 year: 2019 ident: 1393_CR75 publication-title: Access doi: 10.1109/ACCESS.2018.2889442 – ident: 1393_CR102 doi: 10.1007/978-3-319-48881-3_2 – ident: 1393_CR22 doi: 10.1109/CVPR42600.2020.00628 – ident: 1393_CR140 doi: 10.1109/ICCV.2019.00409 – ident: 1393_CR7 doi: 10.5220/0006564504290438 – ident: 1393_CR111 – ident: 1393_CR34 – ident: 1393_CR82 – ident: 1393_CR55 doi: 10.1109/ICCV.2011.6126532 – ident: 1393_CR105 doi: 10.1109/ICIP.2019.8803140 – year: 2016 ident: 1393_CR143 publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2016.05.003 – ident: 1393_CR120 – volume: 47 start-page: 7 issue: 1 year: 2002 ident: 1393_CR107 publication-title: International Journal of Computer Vision doi: 10.1023/A:1014573219977 – ident: 1393_CR67 – ident: 1393_CR73 doi: 10.1109/CVPR.2014.453 – ident: 1393_CR100 – ident: 1393_CR153 doi: 10.1109/CVPR.2008.4587584 – ident: 1393_CR9 doi: 10.5220/0006564504290438 – ident: 1393_CR43 doi: 10.1007/978-3-319-46484-8_47 – ident: 1393_CR129 doi: 10.1109/CVPR.2011.5995347 – ident: 1393_CR29 doi: 10.1109/ICCV.2019.00627 – ident: 1393_CR77 doi: 10.1109/CVPR.2017.206 – volume-title: Probabilistic robotics (intelligent robotics and autonomous agents) year: 2005 ident: 1393_CR127 – year: 2020 ident: 1393_CR138 publication-title: Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2020.2975842 – volume: 368 start-page: 69 year: 2019 ident: 1393_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.008 – ident: 1393_CR23 doi: 10.1109/CVPR.2019.00895 – ident: 1393_CR40 doi: 10.1109/CVPR.2008.4587581 – ident: 1393_CR1 doi: 10.1109/CVPR.2014.283 – volume: 8 start-page: 217 issue: 11 year: 2017 ident: 1393_CR86 publication-title: International Journal of Advanced Computer Science & Applications doi: 10.14569/IJACSA.2017.081129 – ident: 1393_CR89 doi: 10.1007/978-3-319-10593-2_47 – ident: 1393_CR145 doi: 10.1109/WACV.2015.12 – ident: 1393_CR149 doi: 10.1109/AVSS.2018.8639078 – ident: 1393_CR92 doi: 10.1609/aaai.v31i1.11194 – ident: 1393_CR134 doi: 10.1109/CVPR.2014.167 – volume: 36 start-page: 1532 issue: 8 year: 2014 ident: 1393_CR37 publication-title: Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2014.2300479 – ident: 1393_CR87 doi: 10.1109/CVPR.2019.00477 – volume: 6 start-page: 67316 year: 2018 ident: 1393_CR76 publication-title: Access doi: 10.1109/ACCESS.2018.2879535 – ident: 1393_CR14 – ident: 1393_CR156 – volume: 21 start-page: 374 issue: 1 year: 2019 ident: 1393_CR128 publication-title: Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2019.2892413 – ident: 1393_CR135 doi: 10.1109/ICRA.2016.7487180 – year: 2018 ident: 1393_CR155 publication-title: Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2018.2825679 – ident: 1393_CR52 doi: 10.1109/ICCV.2015.169 – ident: 1393_CR157 doi: 10.1007/978-3-030-01228-1_23 – ident: 1393_CR90 doi: 10.1109/WACV.2015.17 – ident: 1393_CR130 doi: 10.1109/CVPRW.2016.55 – ident: 1393_CR21 doi: 10.1109/AVSS.2017.8078481 – ident: 1393_CR122 doi: 10.1109/CVPR.2015.7299138 – ident: 1393_CR5 doi: 10.1109/CVPR.2014.159 – ident: 1393_CR16 doi: 10.1109/ICCV.2019.00103 – ident: 1393_CR3 doi: 10.1109/CVPR.2018.00542 – ident: 1393_CR126 – ident: 1393_CR15 doi: 10.1109/ICCV.2011.6126516 – year: 2019 ident: 1393_CR61 publication-title: Access doi: 10.1109/ACCESS.2019.2932301 – volume: 29 start-page: 3269 issue: 11 year: 2018 ident: 1393_CR113 publication-title: Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2018.2882192 – ident: 1393_CR115 doi: 10.1109/CVPR.2005.453 – ident: 1393_CR131 doi: 10.1145/3343031.3350853 – volume: 27 start-page: 4585 issue: 9 year: 2018 ident: 1393_CR70 publication-title: Transactions on Image Processing doi: 10.1109/TIP.2018.2843129 – volume: 7 start-page: 165103 year: 2019 ident: 1393_CR119 publication-title: Access doi: 10.1109/ACCESS.2019.2953276 – ident: 1393_CR10 doi: 10.5220/0006564504290438 – ident: 1393_CR38 doi: 10.1109/CVPRW.2009.5206631 – ident: 1393_CR83 doi: 10.1109/SITIS.2018.00021 – volume: 94 start-page: 25 year: 2019 ident: 1393_CR137 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2019.04.018 – ident: 1393_CR36 doi: 10.1109/ICCV.2013.286 – volume: 7 start-page: 2107 year: 2018 ident: 1393_CR112 publication-title: Access doi: 10.1109/ACCESS.2018.2881019 – ident: 1393_CR13 doi: 10.1007/978-3-319-48881-3_5 – ident: 1393_CR101 doi: 10.1109/ICCV.2015.349 – ident: 1393_CR47 doi: 10.1109/PETS-WINTER.2009.5399556 – ident: 1393_CR146 doi: 10.1109/CVPR.2016.155 – ident: 1393_CR116 doi: 10.1109/CVPR.2017.403 – volume: 24 start-page: 843 issue: 6 year: 1979 ident: 1393_CR99 publication-title: Transactions on Automatic Control doi: 10.1109/TAC.1979.1102177 – ident: 1393_CR150 – volume: 29 start-page: 6694 year: 2020 ident: 1393_CR154 publication-title: Transactions on Image Processing doi: 10.1109/TIP.2020.2993073 – volume: 59 start-page: 257 year: 2019 ident: 1393_CR11 publication-title: Journal of Visual Communication and Image Representation doi: 10.1016/j.jvcir.2019.01.026 – ident: 1393_CR46 doi: 10.1109/AVSS.2010.90 – volume: 40 start-page: 595 issue: 3 year: 2018 ident: 1393_CR6 publication-title: Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2017.2691769 – volume: 6 start-page: 14764 year: 2018 ident: 1393_CR49 publication-title: Access doi: 10.1109/ACCESS.2018.2816805 – ident: 1393_CR33 doi: 10.1109/CVPR.2015.7299036 – volume: 36 start-page: 58 issue: 1 year: 2014 ident: 1393_CR93 publication-title: Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2013.103 – ident: 1393_CR74 doi: 10.1109/ICCVW.2011.6130233 – ident: 1393_CR58 – ident: 1393_CR81 – ident: 1393_CR72 doi: 10.1109/CVPRW.2016.59 – volume: 2 start-page: 83 year: 1955 ident: 1393_CR68 publication-title: Naval Research Logistics Quarterly doi: 10.1002/nav.3800020109 – volume: 21 start-page: 2277 issue: 9 year: 2019 ident: 1393_CR48 publication-title: Transactions on Multimedia doi: 10.1109/TMM.2019.2902480 – ident: 1393_CR106 doi: 10.1007/978-3-319-48881-3_7 – ident: 1393_CR65 doi: 10.1109/ICCV.2015.533 – ident: 1393_CR44 doi: 10.1109/WACV.2018.00057 – ident: 1393_CR118 – ident: 1393_CR8 doi: 10.5220/0006564504290438 – ident: 1393_CR121 doi: 10.1109/CVPR42600.2020.00252 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 1393_CR103 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-015-0816-y – year: 2008 ident: 1393_CR17 publication-title: Image and Video Processing doi: 10.1155/2008/246309 – volume: 127 start-page: 1063 year: 2018 ident: 1393_CR114 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-018-01147-z – ident: 1393_CR2 doi: 10.1109/CVPR.2010.5540156 – ident: 1393_CR84 doi: 10.1109/ICME.2018.8486454 – volume: 26 start-page: 1613 issue: 11 year: 2019 ident: 1393_CR25 publication-title: Signal Processing Letters doi: 10.1109/LSP.2019.2940922 – volume: 193 start-page: 102907 year: 2020 ident: 1393_CR133 publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2020.102907 – ident: 1393_CR18 doi: 10.1109/ICIP.2016.7533003 – volume: 36 start-page: 1012 issue: 5 year: 2014 ident: 1393_CR50 publication-title: Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2013.185 – ident: 1393_CR85 doi: 10.1007/978-3-030-20890-5_39 – ident: 1393_CR117 doi: 10.1109/ICCE-Asia.2016.7804800 – ident: 1393_CR152 – ident: 1393_CR69 doi: 10.1109/AVSS.2017.8078517 – ident: 1393_CR109 doi: 10.1109/CVPR.2006.19 – ident: 1393_CR141 doi: 10.1109/CVPR42600.2020.00682 – ident: 1393_CR28 doi: 10.1109/WACV.2019.00023 – ident: 1393_CR151 doi: 10.1109/ICCE-ASIA.2018.8552105 – ident: 1393_CR97 doi: 10.1109/CVPR42600.2020.00250 – ident: 1393_CR27 doi: 10.1109/ICCV.2015.347 – ident: 1393_CR35 – volume: 56 start-page: 3447 issue: 8 year: 2008 ident: 1393_CR108 publication-title: Transactions on Signal Processing doi: 10.1109/TSP.2008.920469 – ident: 1393_CR123 doi: 10.1007/978-3-319-48881-3_8 – ident: 1393_CR57 doi: 10.1109/CVPRW.2019.00105 |
| SSID | ssj0002823 |
| Score | 2.7025945 |
| Snippet | Standardized benchmarks have been crucial in pushing the performance of computer vision algorithms, especially since the advent of deep learning. Although... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 845 |
| SubjectTerms | Algorithms Artificial Intelligence Autonomous cars Benchmarks Cameras Computer Imaging Computer Science Computer vision Error analysis Image Processing and Computer Vision Labels Machine learning Machine vision Multiple target tracking Pattern Recognition Pattern Recognition and Graphics Pedestrians Performance evaluation Special Issue on Performance Evaluation in Computer Vision Visibility Vision |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhECZaPXixPmO1Gg4mHnST3aWwu95qtfFgq7G16Y0AC9FYq2mrv9-Bsm18JnodZlkyMMwA38wgdBiynOSUmADsj4YDSioDaRIZ1JiUtSTJjHZgzN5V0m6n_X5244PCxgXavXiSdDv1PNgtit2bowVSEYs6W0RLYO5Sq463nd5s_4VDxLSAPHBSlkU-VOb7Pj6Yo8-b8pfXUWd0muX_DXcNrXonE9enq2IdLejhBip7hxN7dR4DqajpUNA20XnrutsoCqyc4jo-A_r9kxg9YnBvcQeGMNBBQ9i7LNzyaETcdXhyDIZP2av3LXTXvOg2LgNfaSFQtqBBwHRItQxVzsJU09yInFAhmfX2pDJC5CYVkTAyJiKx2VoMFUwxoIeRIdrEZBuVhs9DvYOwVJlOFLQQpWoqk0LKMFFxCo6WDGMlKygqBM6VT0Nuq2EM-DyBspUcB8lxJzkeVtDx7JuXaRKOX7mP7Dxyq6HQsxI-0ADGZ3Nd8Tq4sJE9-QJntZhq7lV3zMEnJJTQNKUVdFJM7bz55__u_o19D63EFh_jUEBVVJqMXvU-WlZvk4fx6MAt6XePv-4x priority: 102 providerName: Springer Nature |
| Title | MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking |
| URI | https://link.springer.com/article/10.1007/s11263-020-01393-0 https://www.proquest.com/docview/2503535885 |
| Volume | 129 |
| WOSCitedRecordID | wos000601485200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1405 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002823 issn: 0920-5691 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RlgOXllfVQIl8qMShWHjX8XqXC0pDKySaNGpDKb1YttdWESUtSeH3M7PxNgJEL1x8mPV6rZ2x5-HxfAA7oqhlrWTkqH8COiil4y5qx3uFcz2tqxiaZMzTQz0alWdn1TgF3OYprbLdE5uNur7yFCN_japaKqnKUr29_s4JNYpOVxOExgqsZXmekZx_0Px2J0Z3YgEljy6SKqosXZpZXJ3L8uYEk9KyJOWw_aaY_tye_zonbdTPwcb_TvwhrCfDk_UXkvII7oXpY9hIRihLS3yOpBbnoaU9gXfDo8mgBV15w_psD-kX3-zsK0OTl53ghC8DH1iKb7FhylBkkybHnKEy9BSOfwofD_Yng_c8oS9wTyAHvAhCBSd8XYgyqDraWirrCrIAnY_W1rG0mY0ul1ZTBZeobOELpIssyhBzuQmr06tp2ALmfBW0xyfS-56vnHVOaJ-XaHw5kXvXgaz99can0uSEkHFplkWViV0G2WUadhnRgd3bd64XhTnu7P2SOGpo1eLI3qbLBzg_qn9l-mjWZuQNY8_tlo0mLee5WfKwA69aQVg-_vd3n9092nN4kFOOTJMJtA2rN7Mf4QXc9z9vvsxnXVjRnz53YW1vfzQ-7jaije1QDLAdq3Nsj09OfwE3iP21 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLVK5UB5FLC3gA4gDRDhxnAcSQsuWqlV3FyS2qDdjO7aoWrZlt4D4U_xGZhK7q4LorQeutuMk9ud52J9nAB7zohGNFD5B_ePQQalMYnxpkrwwJi_L2ruWjPlxWI7H1cFB_X4JfsW7MESrjDKxFdTNiaU98heoqoUUsqrk69OvCWWNotPVmEKjg8We-_kDXbb5q90tnN8nWbb9djLYSUJWgcRS8P6kcFw6w21T8MrJxutGSG0KsmyM9Vo3vtKp9iYTuqTIJF7qwhZYzlMvnKdAByjyV_IclwNRBfngXPKj-9KlrkeXTBZ1Gi7pdFf10qw9MSUamCDO3AVF-Kc6-OtctlV322v_20DdhBvBsGb9biXcgiU3vQ1rwchmQYTNsSjmsYhld2Br9G4yiEllXrI-e4Pln7_o2RFDk559wAE6dslA0_4dGwUGJpu0HHqGyt7SccM67F_J792F5enJ1N0DZmztSos1wtrc1kYbw0ubVWhcGp5Z04M0TrWyIfQ6ZQA5Voug0QQPhfBQLTwU78Gz82dOu8Ajl7Z-SghSJJWwZ6vD5Qr8Porvpfpotqfk7WPLzQgbFcTVXC0w04PnEXiL6n-_9_7lvT2C1Z3JaKiGu-O9DbieER-oZT1twvLZ7Jt7ANfs97PD-exhu5AYfLpqQP4G5FJZhw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VbYW4UMpDhBbwAcQBrO6u430gVSgkRFRpQyUC6s21vbZAtGmbFFD_Gr-OmV27ESB664Gr7fXu2p_nYX-eAXia5LWopfAc9Y9DB6U03PjC8G5uTLcoKu8aMuan3WI8Lg8Oqv0l-BnvwhCtMsrERlDXJ5b2yLdQVQspZFnKLR9oEfuD4evTM04ZpOikNabTaCEychc_0H2bb-8McK6fZdnw7aT_jocMA9xSIH-eu0Q6k9g6T0ona69rIbXJycox1mtd-1Kn2ptM6IKilHipc5tjeZJ64TwFPUDxv4JaWNIaGxX8UgugK9OmsUf3TOZVGi7stNf20qw5PSVKmCD-3G9K8U_V8NcZbaP6hmv_86DdhlvB4Ga9doWsw5Kb3oG1YHyzINrmWBTzW8SyuzDYez_px2Qzr1iPvcHyz8d69pWhqc8-4GAdOd7XtK_H9gIzk00abj1DI8DSMcQ9-Hgtv3cflqcnU_cAmLGVKyzWCGu7tjLamKSwWYlGp0kyazqQxmlXNoRkp8wgR2oRTJqgohAqqoGKSjrw4vKZ0zYgyZWtnxOaFEkr7NnqcOkCv4_ifqkemvMp7QJgy80IIRXE2Fwt8NOBlxGEi-p_v_fh1b09gRuIQ7W7Mx5twM2MaEINGWoTls9n39wjWLXfz7_MZ4-bNcXg8Lrx-AuA5WIt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOTChallenge%3A+A+Benchmark+for+Single-Camera+Multiple+Target+Tracking&rft.jtitle=International+journal+of+computer+vision&rft.au=Dendorfer%2C+Patrick&rft.au=Os%CC%86ep+Aljos%CC%86a&rft.au=Anton%2C+Milan&rft.au=Schindler%2C+Konrad&rft.date=2021-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=129&rft.issue=4&rft.spage=845&rft.epage=881&rft_id=info:doi/10.1007%2Fs11263-020-01393-0&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |