Inference of biochemical network models in S-system using multiobjective optimization approach

Motivation: The inference of biochemical networks, such as gene regulatory networks, protein–protein interaction networks, and metabolic pathway networks, from time-course data is one of the main challenges in systems biology. The ultimate goal of inferred modeling is to obtain expressions that quan...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bioinformatics Ročník 24; číslo 8; s. 1085 - 1092
Hlavní autori: Liu, Pang-Kai, Wang, Feng-Sheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Oxford University Press 15.04.2008
Oxford Publishing Limited (England)
Predmet:
ISSN:1367-4803, 1367-4811, 1460-2059, 1367-4811
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Motivation: The inference of biochemical networks, such as gene regulatory networks, protein–protein interaction networks, and metabolic pathway networks, from time-course data is one of the main challenges in systems biology. The ultimate goal of inferred modeling is to obtain expressions that quantitatively understand every detail and principle of biological systems. To infer a realizable S-system structure, most articles have applied sums of magnitude of kinetic orders as a penalty term in the fitness evaluation. How to tune a penalty weight to yield a realizable model structure is the main issue for the inverse problem. No guideline has been published for tuning a suitable penalty weight to infer a suitable model structure of biochemical networks. Results: We introduce an interactive inference algorithm to infer a realizable S-system structure for biochemical networks. The inference problem is formulated as a multiobjective optimization problem to minimize simultaneously the concentration error, slope error and interaction measure in order to find a suitable S-system model structure and its corresponding model parameters. The multiobjective optimization problem is solved by the ε-constraint method to minimize the interaction measure subject to the expectation constraints for the concentration and slope error criteria. The theorems serve to guarantee the minimum solution for the ε-constrained problem to achieve the minimum interaction network for the inference problem. The approach could avoid assigning a penalty weight for sums of magnitude of kinetic orders. Contact: chmfsw@ccu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online.
AbstractList Motivation: The inference of biochemical networks, such as gene regulatory networks, protein–protein interaction networks, and metabolic pathway networks, from time-course data is one of the main challenges in systems biology. The ultimate goal of inferred modeling is to obtain expressions that quantitatively understand every detail and principle of biological systems. To infer a realizable S-system structure, most articles have applied sums of magnitude of kinetic orders as a penalty term in the fitness evaluation. How to tune a penalty weight to yield a realizable model structure is the main issue for the inverse problem. No guideline has been published for tuning a suitable penalty weight to infer a suitable model structure of biochemical networks. Results: We introduce an interactive inference algorithm to infer a realizable S-system structure for biochemical networks. The inference problem is formulated as a multiobjective optimization problem to minimize simultaneously the concentration error, slope error and interaction measure in order to find a suitable S-system model structure and its corresponding model parameters. The multiobjective optimization problem is solved by the ε-constraint method to minimize the interaction measure subject to the expectation constraints for the concentration and slope error criteria. The theorems serve to guarantee the minimum solution for the ε-constrained problem to achieve the minimum interaction network for the inference problem. The approach could avoid assigning a penalty weight for sums of magnitude of kinetic orders. Contact: chmfsw@ccu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online.
The inference of biochemical networks, such as gene regulatory networks, protein-protein interaction networks, and metabolic pathway networks, from time-course data is one of the main challenges in systems biology. The ultimate goal of inferred modeling is to obtain expressions that quantitatively understand every detail and principle of biological systems. To infer a realizable S-system structure, most articles have applied sums of magnitude of kinetic orders as a penalty term in the fitness evaluation. How to tune a penalty weight to yield a realizable model structure is the main issue for the inverse problem. No guideline has been published for tuning a suitable penalty weight to infer a suitable model structure of biochemical networks.MOTIVATIONThe inference of biochemical networks, such as gene regulatory networks, protein-protein interaction networks, and metabolic pathway networks, from time-course data is one of the main challenges in systems biology. The ultimate goal of inferred modeling is to obtain expressions that quantitatively understand every detail and principle of biological systems. To infer a realizable S-system structure, most articles have applied sums of magnitude of kinetic orders as a penalty term in the fitness evaluation. How to tune a penalty weight to yield a realizable model structure is the main issue for the inverse problem. No guideline has been published for tuning a suitable penalty weight to infer a suitable model structure of biochemical networks.We introduce an interactive inference algorithm to infer a realizable S-system structure for biochemical networks. The inference problem is formulated as a multiobjective optimization problem to minimize simultaneously the concentration error, slope error and interaction measure in order to find a suitable S-system model structure and its corresponding model parameters. The multiobjective optimization problem is solved by the epsilon-constraint method to minimize the interaction measure subject to the expectation constraints for the concentration and slope error criteria. The theorems serve to guarantee the minimum solution for the epsilon-constrained problem to achieve the minimum interaction network for the inference problem. The approach could avoid assigning a penalty weight for sums of magnitude of kinetic orders.RESULTSWe introduce an interactive inference algorithm to infer a realizable S-system structure for biochemical networks. The inference problem is formulated as a multiobjective optimization problem to minimize simultaneously the concentration error, slope error and interaction measure in order to find a suitable S-system model structure and its corresponding model parameters. The multiobjective optimization problem is solved by the epsilon-constraint method to minimize the interaction measure subject to the expectation constraints for the concentration and slope error criteria. The theorems serve to guarantee the minimum solution for the epsilon-constrained problem to achieve the minimum interaction network for the inference problem. The approach could avoid assigning a penalty weight for sums of magnitude of kinetic orders.
Motivation: The inference of biochemical networks, such as gene regulatory networks, protein–protein interaction networks, and metabolic pathway networks, from time-course data is one of the main challenges in systems biology. The ultimate goal of inferred modeling is to obtain expressions that quantitatively understand every detail and principle of biological systems. To infer a realizable S-system structure, most articles have applied sums of magnitude of kinetic orders as a penalty term in the fitness evaluation. How to tune a penalty weight to yield a realizable model structure is the main issue for the inverse problem. No guideline has been published for tuning a suitable penalty weight to infer a suitable model structure of biochemical networks. Results: We introduce an interactive inference algorithm to infer a realizable S-system structure for biochemical networks. The inference problem is formulated as a multiobjective optimization problem to minimize simultaneously the concentration error, slope error and interaction measure in order to find a suitable S-system model structure and its corresponding model parameters. The multiobjective optimization problem is solved by the ε-constraint method to minimize the interaction measure subject to the expectation constraints for the concentration and slope error criteria. The theorems serve to guarantee the minimum solution for the ε-constrained problem to achieve the minimum interaction network for the inference problem. The approach could avoid assigning a penalty weight for sums of magnitude of kinetic orders. Contact:  chmfsw@ccu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online.
Motivation: The inference of biochemical networks, such as gene regulatory networks, protein-protein interaction networks, and metabolic pathway networks, from time-course data is one of the main challenges in systems biology. The ultimate goal of inferred modeling is to obtain expressions that quantitatively understand every detail and principle of biological systems. To infer a realizable S-system structure, most articles have applied sums of magnitude of kinetic orders as a penalty term in the fitness evaluation. How to tune a penalty weight to yield a realizable model structure is the main issue for the inverse problem. No guideline has been published for tuning a suitable penalty weight to infer a suitable model structure of biochemical networks. Results: We introduce an interactive inference algorithm to infer a realizable S-system structure for biochemical networks. The inference problem is formulated as a multiobjective optimization problem to minimize simultaneously the concentration error, slope error and interaction measure in order to find a suitable S-system model structure and its corresponding model parameters. The multiobjective optimization problem is solved by the ε-constraint method to minimize the interaction measure subject to the expectation constraints for the concentration and slope error criteria. The theorems serve to guarantee the minimum solution for the ε-constrained problem to achieve the minimum interaction network for the inference problem. The approach could avoid assigning a penalty weight for sums of magnitude of kinetic orders. Contact: chmfsw@ccu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online.
The inference of biochemical networks, such as gene regulatory networks, protein-protein interaction networks, and metabolic pathway networks, from time-course data is one of the main challenges in systems biology. The ultimate goal of inferred modeling is to obtain expressions that quantitatively understand every detail and principle of biological systems. To infer a realizable S-system structure, most articles have applied sums of magnitude of kinetic orders as a penalty term in the fitness evaluation. How to tune a penalty weight to yield a realizable model structure is the main issue for the inverse problem. No guideline has been published for tuning a suitable penalty weight to infer a suitable model structure of biochemical networks. We introduce an interactive inference algorithm to infer a realizable S-system structure for biochemical networks. The inference problem is formulated as a multiobjective optimization problem to minimize simultaneously the concentration error, slope error and interaction measure in order to find a suitable S-system model structure and its corresponding model parameters. The multiobjective optimization problem is solved by the epsilon-constraint method to minimize the interaction measure subject to the expectation constraints for the concentration and slope error criteria. The theorems serve to guarantee the minimum solution for the epsilon-constrained problem to achieve the minimum interaction network for the inference problem. The approach could avoid assigning a penalty weight for sums of magnitude of kinetic orders.
Motivation: The inference of biochemical networks, such as gene regulatory networks, protein-protein interaction networks, and metabolic pathway networks, from time-course data is one of the main challenges in systems biology. The ultimate goal of inferred modeling is to obtain expressions that quantitatively understand every detail and principle of biological systems. To infer a realizable S-system structure, most articles have applied sums of magnitude of kinetic orders as a penalty term in the fitness evaluation. How to tune a penalty weight to yield a realizable model structure is the main issue for the inverse problem. No guideline has been published for tuning a suitable penalty weight to infer a suitable model structure of biochemical networks. Results: We introduce an interactive inference algorithm to infer a realizable S-system structure for biochemical networks. The inference problem is formulated as a multiobjective optimization problem to minimize simultaneously the concentration error, slope error and interaction measure in order to find a suitable S-system model structure and its corresponding model parameters. The multiobjective optimization problem is solved by the [straight epsilon]-constraint method to minimize the interaction measure subject to the expectation constraints for the concentration and slope error criteria. The theorems serve to guarantee the minimum solution for the [straight epsilon]-constrained problem to achieve the minimum interaction network for the inference problem. The approach could avoid assigning a penalty weight for sums of magnitude of kinetic orders. Contact: chmfsw@ccu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online.
Author Wang, Feng-Sheng
Liu, Pang-Kai
Author_xml – sequence: 1
  givenname: Pang-Kai
  surname: Liu
  fullname: Liu, Pang-Kai
  organization: Department of Chemical Engineering, National Chung Cheng University, Chiayi 621-02, Taiwan, ROC
– sequence: 2
  givenname: Feng-Sheng
  surname: Wang
  fullname: Wang, Feng-Sheng
  organization: To whom correspondence should be addressed
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20281556$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18321886$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAURi3UirYDjwCKkMourR3HsSNWqAKm0kgsAAmxwPJfqKexHWynUJ4etxlGohtY2Ytz7v10vxNw4IM3ADxD8AzBHp9LG6wfQnQiW5XOZfaQkkfgGLUdrBtI-oPyxx2tWwbxEThJaQshQW3bPgZHiOEGMdYdg6-XfjDReGWqMFRlqLoyzioxVt7kHyFeVy5oM6bK-upDnW5TNq6ak_XfKjeP2Qa5NSrbm6JP2Tr7q8QJvhLTFINQV0_A4SDGZJ7u3hX49PbNx4t1vXn_7vLi9aZWpEG57jAehOypRi0ZmBaUluQMY611I7UwhCGIpFZSwYZp3EqBNJPUiL7TkrEGr8DLZW5Z-302KXNnkzLjKLwJc-IUEoibsmYFXjwAt2GOvmTjqGdd2_b3057voFk6o_kUrRPxlv85WwFOd4BI5VZDFF7ZtOeakhIRcse9WjgVQ0rRDFzZfH-hHIUdOYL8rkz-d5l8KbPY5IG9D_IPDy5emKf_VupFsaXgn3tJxGveUUwJX3_-wjekkJSteYd_A0XXzIY
CODEN BOINFP
CitedBy_id crossref_primary_10_1016_j_mbs_2009_03_002
crossref_primary_10_1016_j_ymeth_2016_08_001
crossref_primary_10_1109_TEVC_2012_2218610
crossref_primary_10_1002_wsbm_1391
crossref_primary_10_1016_j_jtice_2017_10_015
crossref_primary_10_4137_EBO_S8123
crossref_primary_10_3389_fbioe_2014_00062
crossref_primary_10_3389_fgene_2019_00549
crossref_primary_10_1155_2013_897658
crossref_primary_10_1186_1471_2105_15_S6_S1
crossref_primary_10_1186_1752_0509_3_5
crossref_primary_10_7717_peerj_9065
crossref_primary_10_1109_TCBB_2012_56
crossref_primary_10_1016_j_compbiolchem_2014_09_003
crossref_primary_10_1186_1752_0509_5_52
crossref_primary_10_1186_1471_2105_10_140
crossref_primary_10_1186_1752_0509_6_119
crossref_primary_10_1016_j_mbs_2013_07_019
crossref_primary_10_1093_bioinformatics_btp050
crossref_primary_10_1093_bioinformatics_btp072
crossref_primary_10_1186_1752_0509_3_94
crossref_primary_10_1016_j_mbs_2013_11_002
crossref_primary_10_1109_TCBB_2011_63
crossref_primary_10_1016_j_jtice_2011_06_007
crossref_primary_10_1016_j_jtice_2009_05_010
crossref_primary_10_1109_TCBB_2019_2892450
crossref_primary_10_1007_s40295_015_0059_8
crossref_primary_10_1186_1471_2105_15_256
crossref_primary_10_1016_j_compchemeng_2014_04_003
crossref_primary_10_1186_1752_0509_4_16
crossref_primary_10_1186_1752_0509_3_47
crossref_primary_10_1371_journal_pone_0083308
crossref_primary_10_1016_j_mbs_2011_11_008
crossref_primary_10_3389_fgene_2022_888786
crossref_primary_10_1002_ceat_200900513
crossref_primary_10_1016_j_compbiolchem_2019_05_003
crossref_primary_10_1007_s10489_020_01891_1
crossref_primary_10_1109_TCBB_2013_19
crossref_primary_10_1016_j_mbs_2013_01_004
crossref_primary_10_1016_j_ymben_2019_08_005
crossref_primary_10_1016_j_ymeth_2013_05_013
crossref_primary_10_1016_j_compchemeng_2009_05_008
crossref_primary_10_1016_j_eswa_2014_11_039
crossref_primary_10_1155_2017_3020326
crossref_primary_10_1109_TFUZZ_2012_2187212
crossref_primary_10_1089_cmb_2011_0269
crossref_primary_10_1109_TCBB_2015_2459686
crossref_primary_10_1016_j_mbs_2016_02_014
Cites_doi 10.1016/S0009-2509(00)00038-5
10.1016/S0098-1354(96)00362-6
10.1093/bioinformatics/bti099
10.1093/bioinformatics/btg027
10.1186/1742-4682-3-4
10.1093/bioinformatics/bti071
10.1007/978-1-4899-1633-4_4
10.1186/1471-2105-6-44
10.1016/S0098-1354(99)00290-2
10.1109/TCBB.2007.070203
10.1093/bioinformatics/btl522
10.1006/jmbi.1996.0011
10.1093/bioinformatics/bth140
10.1186/1742-4682-3-25
10.1049/sb:20045005
10.1101/gr.1262503
10.1109/CEC.2005.1554750
10.1093/bioinformatics/14.10.869
ContentType Journal Article
Copyright 2008 The Author(s) 2008
2008 INIST-CNRS
2008 The Author(s)
Copyright_xml – notice: 2008 The Author(s) 2008
– notice: 2008 INIST-CNRS
– notice: 2008 The Author(s)
DBID BSCLL
TOX
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1093/bioinformatics/btn075
DatabaseName Istex
Oxford Journals Open Access Collection
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 1092
ExternalDocumentID 1464265511
18321886
20281556
10_1093_bioinformatics_btn075
10.1093/bioinformatics/btn075
ark_67375_HXZ_L575378H_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -~X
.2P
.I3
482
48X
5GY
AAMVS
ABGNP
ABJNI
ABPTD
ACGFS
ACUFI
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BSCLL
CZ4
EE~
F5P
F9B
H5~
HAR
HW0
IOX
KSI
KSN
NGC
Q5Y
RD5
ROZ
RXO
TLC
TN5
TOX
WH7
~91
ADRIX
BCRHZ
KOP
ROX
---
-E4
.DC
0R~
1TH
23N
2WC
4.4
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABIXL
ABNGD
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EJD
EMOBN
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HVGLF
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
.-4
.GJ
ABEFU
AI.
AQDSO
ATTQO
ELUNK
IQODW
NTWIH
O~Y
RIG
RNI
RZF
RZO
VH1
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c521t-633fab97d145f8da77367833ddd2bdae58101bdcbc028d34ba1d8b7ea96db8823
IEDL.DBID TOX
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000254878500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Thu Oct 02 07:48:41 EDT 2025
Fri Oct 03 09:31:43 EDT 2025
Mon Jul 21 05:43:20 EDT 2025
Mon Jul 21 09:11:48 EDT 2025
Sat Nov 29 05:33:35 EST 2025
Tue Nov 18 21:52:33 EST 2025
Wed Aug 28 03:24:15 EDT 2024
Sat Sep 20 11:01:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Inference
Models
Bioinformatics
Optimization
Network
Language English
License http://creativecommons.org/licenses/by-nc/2.0/uk
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-633fab97d145f8da77367833ddd2bdae58101bdcbc028d34ba1d8b7ea96db8823
Notes istex:4F808BF6F597ED9C5A817F32CBDA8068203D192D
To whom correspondence should be addressed.
ArticleID:btn075
ark:/67375/HXZ-L575378H-6
Associate Editor: John Quackenbush
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btn075
PMID 18321886
PQID 198644982
PQPubID 36124
PageCount 8
ParticipantIDs proquest_miscellaneous_70503263
proquest_journals_198644982
pubmed_primary_18321886
pascalfrancis_primary_20281556
crossref_citationtrail_10_1093_bioinformatics_btn075
crossref_primary_10_1093_bioinformatics_btn075
oup_primary_10_1093_bioinformatics_btn075
istex_primary_ark_67375_HXZ_L575378H_6
PublicationCentury 2000
PublicationDate 2008-04-15
PublicationDateYYYYMMDD 2008-04-15
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-15
  day: 15
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2008
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Almeida (2023020210015678600_B1) 2003; 14
Ingalls (2023020210015678600_B12) 2004; 1
Bazaraa (2023020210015678600_B2) 1979
Mendes (2023020210015678600_B18) 1998; 14
Voit (2023020210015678600_B26) 2004; 20
Wang (2023020210015678600_B28) 2000; 55
Kimura (2023020210015678600_B14) 2004; 4
Wang (2023020210015678600_B27) 2000; 116
Noman (2023020210015678600_B20) 2005; 16
Gonzalez (2023020210015678600_B7) 2007; 23
Sakawa (2023020210015678600_B22) 1993
Ho (2023020210015678600_B10) 2005; 1
Chang (2023020210015678600_B3) 2005; 6
Polisetty (2023020210015678600_B21) 2006; 3
Voit (2023020210015678600_B24) 2000
Huang (2023020210015678600_B11) 2006
Moles (2023020210015678600_B19) 2003; 13
Hlavacek (2023020210015678600_B9) 1996; 255
Tsai (2023020210015678600_B23) 2005; 21
Edwards (2023020210015678600_B6) 1998; 22
Wang (2023020210015678600_B29) 2001; 40
Chiou (2023020210015678600_B4) 1999; 23
Handl (2023020210015678600_B8) 2007; 4
Kikuchi (2023020210015678600_B13) 2003; 19
Maki (2023020210015678600_B16) 2001; 6
Chou (2023020210015678600_B5) 2006; 3
Kimura (2023020210015678600_B15) 2005; 21
Maki (2023020210015678600_B17) 2002; 13
Voit (2023020210015678600_B25) 2003
References_xml – volume: 14
  start-page: 114
  year: 2003
  ident: 2023020210015678600_B1
  article-title: Neural-network-based parameter estimation in S-system models of biological networks
  publication-title: Genome Inform.
– volume: 55
  start-page: 3685
  year: 2000
  ident: 2023020210015678600_B28
  article-title: Multiobjective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(00)00038-5
– volume: 22
  start-page: 239
  year: 1998
  ident: 2023020210015678600_B6
  article-title: Kinetic model reduction using genetic algorithms
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(96)00362-6
– volume: 21
  start-page: 1180
  year: 2005
  ident: 2023020210015678600_B23
  article-title: Evolutionary optimization with data collocation for reverse engineering of biological networks,
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti099
– start-page: 9
  year: 2006
  ident: 2023020210015678600_B11
  article-title: Reverse engineering for embryonic gene regulatory network in zebrafish via evolutionary optimization with data collocation
– volume: 19
  start-page: 643
  year: 2003
  ident: 2023020210015678600_B13
  article-title: Dynamic modeling of genetic algorithm and S-system
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg027
– volume: 3
  start-page: 1
  year: 2006
  ident: 2023020210015678600_B21
  article-title: Identification of metabolic system parameters using global optimization methods,
  publication-title: Theor. Biol. Med. Model.
  doi: 10.1186/1742-4682-3-4
– volume: 4
  start-page: 1
  year: 2004
  ident: 2023020210015678600_B14
  article-title: Inference of S-system models of genetic networks from noisy time-series data
  publication-title: Chem-BioInformatics J.
– volume: 21
  start-page: 1154
  year: 2005
  ident: 2023020210015678600_B15
  article-title: Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti071
– start-page: 91
  volume-title: Fuzzy Sets and Interactive Multiobjective Optimization
  year: 1993
  ident: 2023020210015678600_B22
  doi: 10.1007/978-1-4899-1633-4_4
– volume: 6
  start-page: 1
  year: 2005
  ident: 2023020210015678600_B3
  article-title: Quantitative inference of dynamic regulatory pathways via microarray data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-44
– volume: 40
  start-page: 2876
  year: 2001
  ident: 2023020210015678600_B29
  article-title: Hybrid differential evolution for problems of kinetic parameter estimation and dynamic optimization of an ethanol fermentation process
  publication-title: Chem. Eng. Sci.
– volume: 23
  start-page: 1277
  year: 1999
  ident: 2023020210015678600_B4
  article-title: Hybrid method of evolution algorithms for static and dynamic optimization problems with application to a fedbatch fermentation process
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(99)00290-2
– volume: 116
  start-page: 257
  year: 2000
  ident: 2023020210015678600_B27
  article-title: A modified collocation method for solving differential-algebraic equations
  publication-title: Appl. Math. Comput.
– start-page: 37
  volume-title: Computational analysis of biochemical systems
  year: 2000
  ident: 2023020210015678600_B24
– volume: 4
  start-page: 279
  year: 2007
  ident: 2023020210015678600_B8
  article-title: Multiobjective optimization in bioinformatics and computational biology
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2007.070203
– volume: 13
  start-page: 382
  year: 2002
  ident: 2023020210015678600_B17
  article-title: Inference of genetic network using the expression profile time course data of mouse P19 cells
  publication-title: Chem-BioInformatics J.
– volume: 23
  start-page: 480
  year: 2007
  ident: 2023020210015678600_B7
  article-title: Parameter estimation using simulated annealing for S-system models of biochemical networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl522
– volume: 255
  start-page: 121
  year: 1996
  ident: 2023020210015678600_B9
  article-title: Rules for coupled expression of regulator and effector genes in inducible circuits
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0011
– volume: 20
  start-page: 1670
  year: 2004
  ident: 2023020210015678600_B26
  article-title: Decoupling dynamic systems for pathway identification from metabolic profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth140
– start-page: 125
  volume-title: Metabolite Profiling: Its Role in Biomarker Discovery and Gene Function Analysis
  year: 2003
  ident: 2023020210015678600_B25
  article-title: Dynamic profiling and canonical modeling: powerful partners in metabolic pathway identification
– volume: 3
  start-page: 1
  year: 2006
  ident: 2023020210015678600_B5
  article-title: Parameter estimation in biochemical systems models with alternating regression
  publication-title: Theor. Biol. Med. Model.
  doi: 10.1186/1742-4682-3-25
– start-page: 336
  volume-title: Nonlinear Programming. Theory and Algorithms
  year: 1979
  ident: 2023020210015678600_B2
– volume: 1
  start-page: 62
  year: 2004
  ident: 2023020210015678600_B12
  article-title: Autonomously oscillating biochemical systems: parametric sensi-tivities of extrema and period
  publication-title: IEE Syst. Biol.
  doi: 10.1049/sb:20045005
– volume: 13
  start-page: 2467
  year: 2003
  ident: 2023020210015678600_B19
  article-title: Parameter estimation in biochemical pathways: a comparison of global optimization methods
  publication-title: Genome Res.
  doi: 10.1101/gr.1262503
– volume: 6
  start-page: 446
  year: 2001
  ident: 2023020210015678600_B16
  article-title: Development of a system for the inference of large scale genetic networks
  publication-title: Pac. Symp. Biocomput.
– volume: 1
  start-page: 691
  year: 2005
  ident: 2023020210015678600_B10
  article-title: Evolutionary divide-and-conquer approach to inferring S-system models of genetic networks
  publication-title: Proceedings of the 2005 IEEE Congress on Evolutionary Computation.
  doi: 10.1109/CEC.2005.1554750
– volume: 16
  start-page: 205
  year: 2005
  ident: 2023020210015678600_B20
  article-title: Reverse engineering genetic networks using evolutionary computation
  publication-title: Genome Inform.
– volume: 14
  start-page: 869
  year: 1998
  ident: 2023020210015678600_B18
  article-title: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation,
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.10.869
SSID ssj0051444
ssj0005056
Score 2.2202728
Snippet Motivation: The inference of biochemical networks, such as gene regulatory networks, protein–protein interaction networks, and metabolic pathway networks, from...
Motivation: The inference of biochemical networks, such as gene regulatory networks, protein-protein interaction networks, and metabolic pathway networks, from...
The inference of biochemical networks, such as gene regulatory networks, protein-protein interaction networks, and metabolic pathway networks, from time-course...
SourceID proquest
pubmed
pascalfrancis
crossref
oup
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1085
SubjectTerms Algorithms
Bioinformatics
Biological and medical sciences
Computer Simulation
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Biological
Models, Statistical
Protein Interaction Mapping - methods
Proteome - metabolism
Signal Transduction - physiology
Software
Title Inference of biochemical network models in S-system using multiobjective optimization approach
URI https://api.istex.fr/ark:/67375/HXZ-L575378H-6/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/18321886
https://www.proquest.com/docview/198644982
https://www.proquest.com/docview/70503263
Volume 24
WOSCitedRecordID wos000254878500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFD6sq4Ig3i91dcyDCD7EnTZpkzyKuIywrIIrFB8MuTQyXtplOiv67z1p2llGWHQfS5tD--Xk5JSc830Az4JQVWkVpyYIR3lTWWosK6m0Bn_EHHMhHxqFD8XRkaxr9X4H5lMvzN9H-Irt22U3kohG4uJ9u25xm8Ogm5cyOvbxu_qspmMemWHSBWYCPEnaRmZvOWdT_855Jrd2pssR5F9T19v1E9MjZCFpXZyfjA6b0sHNi3_OLbgxJqDkVfKY27DTtHfgapKk_H0XPr-dOgBJFwhacSOjAGlTwTgZtHN6smzJB5p4oEksnv9ChtrEzn5NIZR0GIx-jF2eZKIuvwcfD94cv17QUYOBuih1QCvGgrFK-JyXQXojBMIpGfPeF9abpowEYdY76zBR8Yxbk3tpRWNU5S1m7-w-7LZd2zwE4vIi-CqSC8mGB5_Hdi-LZrxTKihmMuAT_tqNBOVRJ-O7TgflTG9DpxN0GbzcDDtJDB3_GvB8mNzN02b1LZa3iVIv6k_6EBNYJuRCVxm8wNn_X6OzLR_ZjCoQF8zZ0Nje5DR6DBO9ziM5PleyyODp5i6u73hoY9qmO-21iIQ9RcUyeJA87ex9osiUlNWjC7zmHlxLBS-c5uVj2F2vTpsncMX9XC_71QwuiVrOhiX1B5GvJ-M
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inference+of+biochemical+network+models+in+S-system+using+multiobjective+optimization+approach&rft.jtitle=Bioinformatics&rft.au=Liu%2C+Pang-Kai&rft.au=Wang%2C+Feng-Sheng&rft.date=2008-04-15&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=24&rft.issue=8&rft.spage=1085&rft.epage=1092&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtn075&rft.externalDocID=10.1093%2Fbioinformatics%2Fbtn075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon