ML: Early Breast Cancer Diagnosis

Breast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to the formation of lumps or tumors that can be detected through medical imaging such as X-rays. Distinguishing between benign and malignant tumors presen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Current problems in cancer. Case reports Ročník 13; s. 100278
Hlavní autoři: Malakouti, Seyed Matin, Menhaj, Mohammad Bagher, Suratgar, Amir Abolfazl
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.03.2024
Elsevier
Témata:
ISSN:2666-6219, 2666-6219
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Breast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to the formation of lumps or tumors that can be detected through medical imaging such as X-rays. Distinguishing between benign and malignant tumors presents a significant challenge in the diagnosis of breast cancer. In this study, machine learning methods, including Logistic Regression, Gradient Boosting, Ada Boost, Random Forest, and Gaussian NB with Grid Search, were employed to differentiate between healthy individuals and those with malignancies. The results revealed that the Random Forest algorithm exhibited the highest performance in predicting breast cancer, accurately identifying 99 % of both healthy and affected individuals. Additionally, both Gradient Boosting and Ada Boost demonstrated a similar level of accuracy, correctly distinguishing 98 % of healthy and affected individuals. Conversely, Gaussian NB performed the least effectively, with an accuracy of 91 % in differentiating between healthy and affected individuals, highlighting its comparatively lower predictive capability for breast cancer.
AbstractList AbstractBreast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to the formation of lumps or tumors that can be detected through medical imaging such as X-rays. Distinguishing between benign and malignant tumors presents a significant challenge in the diagnosis of breast cancer. In this study, machine learning methods, including Logistic Regression, Gradient Boosting, Ada Boost, Random Forest, and Gaussian NB with Grid Search, were employed to differentiate between healthy individuals and those with malignancies. The results revealed that the Random Forest algorithm exhibited the highest performance in predicting breast cancer, accurately identifying 99% of both healthy and affected individuals. Additionally, both Gradient Boosting and Ada Boost demonstrated a similar level of accuracy, correctly distinguishing 98% of healthy and affected individuals. Conversely, Gaussian NB performed the least effectively, with an accuracy of 91% in differentiating between healthy and affected individuals, highlighting its comparatively lower predictive capability for breast cancer.
Breast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to the formation of lumps or tumors that can be detected through medical imaging such as X-rays. Distinguishing between benign and malignant tumors presents a significant challenge in the diagnosis of breast cancer.In this study, machine learning methods, including Logistic Regression, Gradient Boosting, Ada Boost, Random Forest, and Gaussian NB with Grid Search, were employed to differentiate between healthy individuals and those with malignancies. The results revealed that the Random Forest algorithm exhibited the highest performance in predicting breast cancer, accurately identifying 99 % of both healthy and affected individuals. Additionally, both Gradient Boosting and Ada Boost demonstrated a similar level of accuracy, correctly distinguishing 98 % of healthy and affected individuals.Conversely, Gaussian NB performed the least effectively, with an accuracy of 91 % in differentiating between healthy and affected individuals, highlighting its comparatively lower predictive capability for breast cancer.
Breast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to the formation of lumps or tumors that can be detected through medical imaging such as X-rays. Distinguishing between benign and malignant tumors presents a significant challenge in the diagnosis of breast cancer. In this study, machine learning methods, including Logistic Regression, Gradient Boosting, Ada Boost, Random Forest, and Gaussian NB with Grid Search, were employed to differentiate between healthy individuals and those with malignancies. The results revealed that the Random Forest algorithm exhibited the highest performance in predicting breast cancer, accurately identifying 99 % of both healthy and affected individuals. Additionally, both Gradient Boosting and Ada Boost demonstrated a similar level of accuracy, correctly distinguishing 98 % of healthy and affected individuals. Conversely, Gaussian NB performed the least effectively, with an accuracy of 91 % in differentiating between healthy and affected individuals, highlighting its comparatively lower predictive capability for breast cancer.
ArticleNumber 100278
Author Suratgar, Amir Abolfazl
Menhaj, Mohammad Bagher
Malakouti, Seyed Matin
Author_xml – sequence: 1
  givenname: Seyed Matin
  orcidid: 0000-0003-3585-253X
  surname: Malakouti
  fullname: Malakouti, Seyed Matin
  email: matin.malakouti@aut.ac.ir
– sequence: 2
  givenname: Mohammad Bagher
  surname: Menhaj
  fullname: Menhaj, Mohammad Bagher
  email: menhaj@aut.ac.ir
– sequence: 3
  givenname: Amir Abolfazl
  surname: Suratgar
  fullname: Suratgar, Amir Abolfazl
BookMark eNqFkVFLHDEQx4NY0Fo_QV_OD3DXJJtNLpYW6tVW4cSHts_D7GRWst3uSrIK9-2b8xSKUH1KGPL_zeQ3b8X-MA4sxHslF0oq-6Fb0C1RWmipTalI7ZZ74lBba-dWK7__z_1AHOfcyfKmVso7cyhOrtans3NM_WZ2lhjzNFvhQJxmXyPeDGOO-Z1402Kf-fjxPBK_vp3_XF3M19ffL1df1nOqtZrmtlLoEI32LRvnDVvVsm-MrYJWoXVWNcFjcOgdKdOwU60jsg51aCUHVx2Jyx03jNjBbYp_MG1gxAgPhTHdAKYpUs9gWlU3roB9XRoxL9GTD8tqiVXdMPnC8jsWpTHnxC1QnHCK4zAljD0oCVt10MGDOtiqg526kq2eZZ9meTn1aZfioug-coJMkYvJEBPTVP4QX8l_fpanPg6RsP_NG87deJeGYh8UZA0SfmxXut2oNmWbUukC-Ph_wKvt_wLeiLF_
CitedBy_id crossref_primary_10_1111_coin_70018
Cites_doi 10.1038/s41586-021-04278-5
10.1016/j.ctarc.2021.100465
10.1007/s00432-023-05388-5
10.1016/j.mex.2023.102337
10.31661/jbpe.v0i0.2109-1403
10.1007/978-981-15-0978-0_43
10.1007/978-3-030-05318-5_8
10.11591/ijece.v10i5.pp5235-5242
10.3390/s17071572
10.1016/j.cmpb.2017.12.012
10.1016/j.bspc.2021.103141
10.1109/TSMCB.2012.2214209
10.1016/j.crad.2019.02.006
10.1177/0309524X221113013
10.1016/j.cscee.2023.100351
10.1038/s41598-023-32029-1
10.1088/1757-899X/928/7/072098
10.1016/j.pacs.2019.05.001
10.1111/cge.13514
10.1177/01445987221138135
10.1007/s00521-012-1324-4
10.1088/1402-4896/acc1b2
10.1007/s00521-015-2103-9
10.1016/j.cscee.2023.100312
10.1007/s00521-012-0927-0
10.1007/s00521-015-2036-3
10.3390/diagnostics11020241
10.1016/j.ejor.2017.12.001
10.1007/s00521-012-1196-7
10.1007/978-981-15-7205-0_10
10.1016/j.neucom.2015.12.030
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.cpccr.2024.100278
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2666-6219
EndPage 100278
ExternalDocumentID oai_doaj_org_article_4f15b73d29594eee8a9c9d838a35bec9
10_1016_j_cpccr_2024_100278
S2666621924000012
1_s2_0_S2666621924000012
GroupedDBID .1-
.FO
0R~
1P~
AAEDW
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
Z5R
AAHOK
AFCTW
6I.
AAFTH
AAYXX
CITATION
ID FETCH-LOGICAL-c521t-631a7aa429fe4794e61fe9b463d21df761bd9ad7a97c14be71f7cc67a2df0ed73
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001166207900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2666-6219
IngestDate Fri Oct 03 12:23:06 EDT 2025
Tue Nov 18 22:12:44 EST 2025
Thu Nov 20 00:40:01 EST 2025
Sat Mar 30 16:20:51 EDT 2024
Tue Feb 25 19:54:51 EST 2025
Tue Aug 26 16:31:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Grid search
Women worldwide
Breast cancer
Machine learning methods
machine learning methods
women worldwide
Grid Search
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-631a7aa429fe4794e61fe9b463d21df761bd9ad7a97c14be71f7cc67a2df0ed73
ORCID 0000-0003-3585-253X
OpenAccessLink https://doaj.org/article/4f15b73d29594eee8a9c9d838a35bec9
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_4f15b73d29594eee8a9c9d838a35bec9
crossref_citationtrail_10_1016_j_cpccr_2024_100278
crossref_primary_10_1016_j_cpccr_2024_100278
elsevier_sciencedirect_doi_10_1016_j_cpccr_2024_100278
elsevier_clinicalkeyesjournals_1_s2_0_S2666621924000012
elsevier_clinicalkey_doi_10_1016_j_cpccr_2024_100278
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Current problems in cancer. Case reports
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Nazari, Naderi, Tabadkani (bib0041) 2023
Olson, Moore (bib0040) 2019
Seyed Matin (bib0028) 2023
Azar, El-Metwally (bib0013) 2013; 23
Farhan, Kamil (bib0006) 1530
Steinberg, Huland, Vermesh, Frostig, Tummers, Gambhir (bib0007) 2019; 14
Malakouti, Ghiasi, Ghavifekr (bib0027) 2022; 2
Azar, El-Said (bib0015) 2014; 24
Malakouti, Ghiasi, Ghavifekr, Emami (bib0029) 2022; 46
Montgomery (bib0037) 2017
Senapati, Dash (bib0014) 2013; 22
Farhan, Kamil (bib0001) 2020; 928
Malakouti, Menhaj, Suratgar (bib0024) 2023; 15
Manikandan, Durga, Ponnuraja (bib0044) 2023; 13
Wang, Zheng, Yoon, Ko (bib0017) 2018; 267
Lahoura (bib0019) 2021; 11
Alshayeji, Ellethy, Abed, Gupta (bib0005) 2022; 71
Zeidan, Townsend, Garbis, Copson, Cutress (bib0004) 2015; 13
Malakouti (bib0031) 2023; 8
Kamil (bib0002) 2020; 10
Malakouti (bib0034) 2023; 98
Aličković, Subasi (bib0016) 2017; 28
Sammut, Crispin-Ortuzar, Chin, Provenzano, Bardwell, Ma, Cope, Dariush, Dawson, Abraham, Dunn (bib0043) 2022; 601
Tavoosi, Suratgar, Menhaj (bib0021) 2016; 182
Tavoosi, Suratgar, Menhaj (bib0023) 2017; 28
Pandey, Saini, Sapre, Kulkarni, Tiwari (bib0003) 2021; 29
Alimirzaie, Bagherzadeh, Akbari (bib0008) 2019; 95
Malakouti (bib0035) 2023; 14
Salehizadeh, Yadmellat, Menhaj (bib0020) 2009
Mahdavi, Menhaj, Kurths, Lu (bib0022) 2013; 43
Malakouti, Menhaj, Suratgar (bib0036) 2023
Mohammed, Darrab, Noaman, Saake (bib0045) 2020; 1234
Malakouti (bib0032) 2023; 41
Rabiei, Ayyoubzadeh, Sohrabei, Esmaeili, Atashi (bib0042) 2022; 12
Le, Wang, Huang, Hickman, Gilbert (bib0010) 2019; 74
Liessner, Schmitt, Dietermann, aker (bib0039) 2019
Malakouti (bib0026) 2023; 84
Radhi, Kamil (bib0011) 2021; 14
Bergstra, Bengio (bib0038) 2012; 13
Malakouti (bib0033) 2023; 8
Malakouti (bib0025) 2023
Wang (bib0009) 2017; 17
Yassin, Omran, El Houby, Allam (bib0012) 2018; 156
Malakouti, Ghiasi (bib0030) 2022
Kumar, Mishra, Mazzara, Thanh, Verma (bib0018) 2020; 37
Mohammed (10.1016/j.cpccr.2024.100278_bib0045) 2020; 1234
Aličković (10.1016/j.cpccr.2024.100278_bib0016) 2017; 28
Alshayeji (10.1016/j.cpccr.2024.100278_bib0005) 2022; 71
Malakouti (10.1016/j.cpccr.2024.100278_bib0034) 2023; 98
Bergstra (10.1016/j.cpccr.2024.100278_bib0038) 2012; 13
Rabiei (10.1016/j.cpccr.2024.100278_bib0042) 2022; 12
Alimirzaie (10.1016/j.cpccr.2024.100278_bib0008) 2019; 95
Farhan (10.1016/j.cpccr.2024.100278_bib0001) 2020; 928
Malakouti (10.1016/j.cpccr.2024.100278_bib0025) 2023
Kamil (10.1016/j.cpccr.2024.100278_bib0002) 2020; 10
Senapati (10.1016/j.cpccr.2024.100278_bib0014) 2013; 22
Lahoura (10.1016/j.cpccr.2024.100278_bib0019) 2021; 11
Radhi (10.1016/j.cpccr.2024.100278_bib0011) 2021; 14
Olson (10.1016/j.cpccr.2024.100278_bib0040) 2019
Malakouti (10.1016/j.cpccr.2024.100278_bib0024) 2023; 15
Nazari (10.1016/j.cpccr.2024.100278_bib0041) 2023
Malakouti (10.1016/j.cpccr.2024.100278_bib0030) 2022
Yassin (10.1016/j.cpccr.2024.100278_bib0012) 2018; 156
Azar (10.1016/j.cpccr.2024.100278_bib0013) 2013; 23
Malakouti (10.1016/j.cpccr.2024.100278_bib0027) 2022; 2
Malakouti (10.1016/j.cpccr.2024.100278_bib0035) 2023; 14
Zeidan (10.1016/j.cpccr.2024.100278_bib0004) 2015; 13
Kumar (10.1016/j.cpccr.2024.100278_bib0018) 2020; 37
Farhan (10.1016/j.cpccr.2024.100278_bib0006) 1530
Malakouti (10.1016/j.cpccr.2024.100278_bib0032) 2023; 41
Mahdavi (10.1016/j.cpccr.2024.100278_bib0022) 2013; 43
Malakouti (10.1016/j.cpccr.2024.100278_bib0026) 2023; 84
Seyed Matin (10.1016/j.cpccr.2024.100278_bib0028) 2023
Tavoosi (10.1016/j.cpccr.2024.100278_bib0021) 2016; 182
Wang (10.1016/j.cpccr.2024.100278_bib0017) 2018; 267
Steinberg (10.1016/j.cpccr.2024.100278_bib0007) 2019; 14
Montgomery (10.1016/j.cpccr.2024.100278_bib0037) 2017
Azar (10.1016/j.cpccr.2024.100278_bib0015) 2014; 24
Malakouti (10.1016/j.cpccr.2024.100278_bib0029) 2022; 46
Liessner (10.1016/j.cpccr.2024.100278_bib0039) 2019
Pandey (10.1016/j.cpccr.2024.100278_bib0003) 2021; 29
Malakouti (10.1016/j.cpccr.2024.100278_bib0033) 2023; 8
Le (10.1016/j.cpccr.2024.100278_bib0010) 2019; 74
Tavoosi (10.1016/j.cpccr.2024.100278_bib0023) 2017; 28
Malakouti (10.1016/j.cpccr.2024.100278_bib0036) 2023
Malakouti (10.1016/j.cpccr.2024.100278_bib0031) 2023; 8
Salehizadeh (10.1016/j.cpccr.2024.100278_bib0020) 2009
Wang (10.1016/j.cpccr.2024.100278_bib0009) 2017; 17
Manikandan (10.1016/j.cpccr.2024.100278_bib0044) 2023; 13
Sammut (10.1016/j.cpccr.2024.100278_bib0043) 2022; 601
References_xml – volume: 8
  start-page: 35
  year: 2023
  end-page: 40
  ident: bib0033
  article-title: Prediction of wind speed and power with lightgbm and grid search: case study based on Scada system in Turkey
  publication-title: Int. J. Energy Prod. Manag.
– volume: 601
  start-page: 623
  year: 2022
  end-page: 629
  ident: bib0043
  article-title: Multi-omic machine learning predictor of breast cancer therapy response
  publication-title: Nature
– year: 2023
  ident: bib0036
  article-title: Machine learning techniques for classifying dangerous asteroids
  publication-title: MethodsX
– volume: 23
  start-page: 2387
  year: 2013
  end-page: 2403
  ident: bib0013
  article-title: Decision tree classifiers for automated medical diagnosis
  publication-title: Neural. Comput. Appl.
– volume: 71
  year: 2022
  ident: bib0005
  article-title: Computer-aided detection of breast cancer on the Wisconsin dataset: an artificial neural networks approach
  publication-title: Biomed. Signal Process. Control
– volume: 1234
  start-page: 108
  year: 2020
  end-page: 117
  ident: bib0045
  article-title: Analysis of breast cancer detection using different machine learning techniques
  publication-title: Data Min. Big Data
– volume: 14
  start-page: 561
  year: 2021
  end-page: 570
  ident: bib0011
  article-title: Breast tumor detection via active contour technique
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 8
  year: 2023
  ident: bib0031
  article-title: Improving the prediction of wind speed and power production of SCADA system with ensemble method and 10-fold cross-validation
  publication-title: Case Stud. Chem. Environ. Eng.
– volume: 156
  start-page: 25
  year: 2018
  end-page: 45
  ident: bib0012
  article-title: Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review
  publication-title: Comput. Methods Programs Biomed.
– year: 2023
  ident: bib0025
  article-title: Utilizing time series data from 1961 to 2019 recorded around the world and machine learning to create a global temperature change prediction model
  publication-title: Case Stud. Chem. Environ. Eng.
– year: 2023
  ident: bib0041
  article-title: Breast cancer prediction using different machine learning methods applying multi factors
  publication-title: J. Cancer Res. Clin. Oncol.
– volume: 2
  year: 2022
  ident: bib0027
  article-title: AERO2022-flying danger reduction for quadcopters by using machine learning to estimate current, voltage, and flight area
  publication-title: e-Prime-Adv. Electric. Eng., Electron. Energy
– volume: 12
  start-page: 297
  year: 2022
  end-page: 308
  ident: bib0042
  article-title: Prediction of breast cancer using machine learning approaches
  publication-title: J. Biomed. Phys. Eng.
– volume: 28
  start-page: 753
  year: 2017
  end-page: 763
  ident: bib0016
  article-title: Breast cancer diagnosis using GA feature selection and rotation forest
  publication-title: Neural. Comput. Appl.
– volume: 95
  start-page: 643
  year: 2019
  end-page: 660
  ident: bib0008
  article-title: Liquid biopsy in breast cancer: a comprehensive review
  publication-title: Clin. Genet.
– volume: 43
  start-page: 648
  year: 2013
  end-page: 659
  ident: bib0022
  article-title: Fuzzy complex dynamical networks and its synchronization
  publication-title: IEEE Trans. Cybern.
– year: 2017
  ident: bib0037
  article-title: Design and Analysis of Experiments
– volume: 13
  start-page: 271
  year: 2015
  end-page: 278
  ident: bib0004
  article-title: Clinical proteomics and breast cancer
  publication-title: surg.
– volume: 13
  year: 2012
  ident: bib0038
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn Res.
– start-page: 16
  year: 2009
  end-page: 21
  ident: bib0020
  article-title: Local optima avoidable particle swarm optimization
  publication-title: In2009 IEEE Swarm Intelligence Symposium
– volume: 22
  start-page: 1591
  year: 2013
  end-page: 1598
  ident: bib0014
  article-title: Local linear wavelet neural network based breast tumor classification using firefly algorithm
  publication-title: Neural. Comput. Appl.
– start-page: 134
  year: 2019
  end-page: 144
  ident: bib0039
  article-title: Hyperparameter optimization for deep reinforcement learning in vehicle energy management
  publication-title: Proceedings of the 11th International Conference on Agents and Artificial Intelligence
– volume: 15
  year: 2023
  ident: bib0024
  article-title: The usage of 10-fold cross-validation and grid search to enhance ML methods performance in solar farm power generation prediction
  publication-title: Clean. Eng. Technol.
– volume: 17
  year: 2017
  ident: bib0009
  article-title: Early diagnosis of breast cancer
  publication-title: Sensors (Switzerland)
– volume: 24
  start-page: 1163
  year: 2014
  end-page: 1177
  ident: bib0015
  article-title: Performance analysis of support vector machines classifiers in breast cancer mammography recognition
  publication-title: Neural. Comput. Appl.
– start-page: 31
  year: 2022
  end-page: 36
  ident: bib0030
  article-title: Evaluation of the application of computational model machine learning methods to simulate wind speed in predicting the production capacity of the Swiss basel wind farm
  publication-title: 2022 26th International Electrical Power Distribution Conference (EPDC)
– volume: 46
  start-page: 1853
  year: 2022
  end-page: 1869
  ident: bib0029
  article-title: Predicting wind power generation using machine learning and CNN-LSTM approaches
  publication-title: Wind Eng.
– volume: 14
  start-page: 77
  year: 2019
  end-page: 98
  ident: bib0007
  article-title: Photoacoustic clinical imaging
  publication-title: Photoacoustics
– volume: 41
  start-page: 836
  year: 2023
  end-page: 857
  ident: bib0032
  article-title: Use machine learning algorithms to predict turbine power generation to replace renewable energy with fossil fuels
  publication-title: Energy Explor. Exploit.
– start-page: 2020
  year: 1530
  ident: bib0006
  article-title: Texture analysis of mammogram using local binary pattern method
  publication-title: J. Phys. Conf. Ser.
– volume: 37
  start-page: 435
  year: 2020
  end-page: 442
  ident: bib0018
  article-title: Prediction of malignant and benign breast cancer: a data mining approach in healthcare applications
  publication-title: Lect. Notes Data Eng. Commun. Technol.
– volume: 84
  year: 2023
  ident: bib0026
  article-title: Heart disease classification based on ECG using machine learning models
  publication-title: Biomed. Signal Process. Control
– volume: 98
  year: 2023
  ident: bib0034
  article-title: Discriminate primary gammas (signal) from the images of hadronic showers by cosmic rays in the upper atmosphere (background) with machine learning
  publication-title: Phys. Scr.
– volume: 74
  start-page: 357
  year: 2019
  end-page: 366
  ident: bib0010
  article-title: Artificial intelligence in breast imaging
  publication-title: Clin. Radiol.
– volume: 14
  year: 2023
  ident: bib0035
  article-title: Cancer risk assessment based on family history and smoking habits
  publication-title: Systemat. Rev. Pharm.
– volume: 11
  year: 2021
  ident: bib0019
  article-title: Cloud computing-based framework for breast cancer diagnosis using extreme learning machine
  publication-title: Diagnostics
– volume: 928
  year: 2020
  ident: bib0001
  article-title: Texture analysis of breast cancer via LBP, HOG, and GLCM techniques
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 182
  start-page: 235
  year: 2016
  end-page: 246
  ident: bib0021
  article-title: Stable ANFIS2 for nonlinear system identification
  publication-title: Neurocomputing
– volume: 10
  start-page: 5235
  year: 2020
  end-page: 5242
  ident: bib0002
  article-title: Computer-aided diagnosis system for breast cancer based on the Gabor filter technique
  publication-title: Int. J. Electric. Comput. Eng.
– volume: 13
  start-page: 5362
  year: 2023
  ident: bib0044
  article-title: An integrative machine learning framework for classifying SEER breast cancer
  publication-title: Sci. Rep.
– year: 2019
  ident: bib0040
  article-title: TPOT: a tree-based pipeline optimization tool for automating machine learning
  publication-title: Automated Machine Learning. The Springer Series on Challenges in Machine Learning
– volume: 267
  start-page: 687
  year: 2018
  end-page: 699
  ident: bib0017
  article-title: A support vector machine-based ensemble algorithm for breast cancer diagnosis
  publication-title: Eur. J. Oper. Res.
– volume: 28
  start-page: 47
  year: 2017
  end-page: 56
  ident: bib0023
  article-title: Stability analysis of recurrent type-2 TSK fuzzy systems with nonlinear consequent part
  publication-title: Neural. Comput. Appl.
– volume: 29
  year: 2021
  ident: bib0003
  article-title: Prioritising breast cancer theranostics: a current medical longing in oncology
  publication-title: Cancer Treatment Res. Commun.
– year: 2023
  ident: bib0028
  article-title: Estimating the output power and wind speed with ML methods: a case study in Texas
  publication-title: Case Stud. Chem. Environ. Eng.
– volume: 601
  start-page: 623
  issue: 7894
  year: 2022
  ident: 10.1016/j.cpccr.2024.100278_bib0043
  article-title: Multi-omic machine learning predictor of breast cancer therapy response
  publication-title: Nature
  doi: 10.1038/s41586-021-04278-5
– volume: 2
  year: 2022
  ident: 10.1016/j.cpccr.2024.100278_bib0027
  article-title: AERO2022-flying danger reduction for quadcopters by using machine learning to estimate current, voltage, and flight area
– volume: 29
  year: 2021
  ident: 10.1016/j.cpccr.2024.100278_bib0003
  article-title: Prioritising breast cancer theranostics: a current medical longing in oncology
  publication-title: Cancer Treatment Res. Commun.
  doi: 10.1016/j.ctarc.2021.100465
– year: 2023
  ident: 10.1016/j.cpccr.2024.100278_bib0041
  article-title: Breast cancer prediction using different machine learning methods applying multi factors
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-023-05388-5
– volume: 15
  year: 2023
  ident: 10.1016/j.cpccr.2024.100278_bib0024
  article-title: The usage of 10-fold cross-validation and grid search to enhance ML methods performance in solar farm power generation prediction
  publication-title: Clean. Eng. Technol.
– start-page: 31
  year: 2022
  ident: 10.1016/j.cpccr.2024.100278_bib0030
  article-title: Evaluation of the application of computational model machine learning methods to simulate wind speed in predicting the production capacity of the Swiss basel wind farm
– year: 2023
  ident: 10.1016/j.cpccr.2024.100278_bib0036
  article-title: Machine learning techniques for classifying dangerous asteroids
  publication-title: MethodsX
  doi: 10.1016/j.mex.2023.102337
– volume: 12
  start-page: 297
  issue: 3
  year: 2022
  ident: 10.1016/j.cpccr.2024.100278_bib0042
  article-title: Prediction of breast cancer using machine learning approaches
  publication-title: J. Biomed. Phys. Eng.
  doi: 10.31661/jbpe.v0i0.2109-1403
– volume: 37
  start-page: 435
  year: 2020
  ident: 10.1016/j.cpccr.2024.100278_bib0018
  article-title: Prediction of malignant and benign breast cancer: a data mining approach in healthcare applications
  publication-title: Lect. Notes Data Eng. Commun. Technol.
  doi: 10.1007/978-981-15-0978-0_43
– year: 2019
  ident: 10.1016/j.cpccr.2024.100278_bib0040
  article-title: TPOT: a tree-based pipeline optimization tool for automating machine learning
  doi: 10.1007/978-3-030-05318-5_8
– start-page: 134
  year: 2019
  ident: 10.1016/j.cpccr.2024.100278_bib0039
  article-title: Hyperparameter optimization for deep reinforcement learning in vehicle energy management
– volume: 10
  start-page: 5235
  issue: 5
  year: 2020
  ident: 10.1016/j.cpccr.2024.100278_bib0002
  article-title: Computer-aided diagnosis system for breast cancer based on the Gabor filter technique
  publication-title: Int. J. Electric. Comput. Eng.
  doi: 10.11591/ijece.v10i5.pp5235-5242
– volume: 17
  issue: 7
  year: 2017
  ident: 10.1016/j.cpccr.2024.100278_bib0009
  article-title: Early diagnosis of breast cancer
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s17071572
– volume: 156
  start-page: 25
  year: 2018
  ident: 10.1016/j.cpccr.2024.100278_bib0012
  article-title: Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.12.012
– volume: 71
  year: 2022
  ident: 10.1016/j.cpccr.2024.100278_bib0005
  article-title: Computer-aided detection of breast cancer on the Wisconsin dataset: an artificial neural networks approach
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103141
– volume: 43
  start-page: 648
  issue: 2
  year: 2013
  ident: 10.1016/j.cpccr.2024.100278_bib0022
  article-title: Fuzzy complex dynamical networks and its synchronization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2214209
– start-page: 2020
  issue: 1
  year: 1530
  ident: 10.1016/j.cpccr.2024.100278_bib0006
  article-title: Texture analysis of mammogram using local binary pattern method
  publication-title: J. Phys. Conf. Ser.
– volume: 74
  start-page: 357
  issue: 5
  year: 2019
  ident: 10.1016/j.cpccr.2024.100278_bib0010
  article-title: Artificial intelligence in breast imaging
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2019.02.006
– volume: 46
  start-page: 1853
  issue: 6
  year: 2022
  ident: 10.1016/j.cpccr.2024.100278_bib0029
  article-title: Predicting wind power generation using machine learning and CNN-LSTM approaches
  publication-title: Wind Eng.
  doi: 10.1177/0309524X221113013
– volume: 8
  year: 2023
  ident: 10.1016/j.cpccr.2024.100278_bib0031
  article-title: Improving the prediction of wind speed and power production of SCADA system with ensemble method and 10-fold cross-validation
  publication-title: Case Stud. Chem. Environ. Eng.
  doi: 10.1016/j.cscee.2023.100351
– volume: 13
  start-page: 5362
  issue: 1
  year: 2023
  ident: 10.1016/j.cpccr.2024.100278_bib0044
  article-title: An integrative machine learning framework for classifying SEER breast cancer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-32029-1
– volume: 14
  start-page: 561
  issue: 4
  year: 2021
  ident: 10.1016/j.cpccr.2024.100278_bib0011
  article-title: Breast tumor detection via active contour technique
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 928
  issue: 7
  year: 2020
  ident: 10.1016/j.cpccr.2024.100278_bib0001
  article-title: Texture analysis of breast cancer via LBP, HOG, and GLCM techniques
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
  doi: 10.1088/1757-899X/928/7/072098
– volume: 84
  year: 2023
  ident: 10.1016/j.cpccr.2024.100278_bib0026
  article-title: Heart disease classification based on ECG using machine learning models
  publication-title: Biomed. Signal Process. Control
– volume: 14
  start-page: 77
  year: 2019
  ident: 10.1016/j.cpccr.2024.100278_bib0007
  article-title: Photoacoustic clinical imaging
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2019.05.001
– volume: 95
  start-page: 643
  issue: 6
  year: 2019
  ident: 10.1016/j.cpccr.2024.100278_bib0008
  article-title: Liquid biopsy in breast cancer: a comprehensive review
  publication-title: Clin. Genet.
  doi: 10.1111/cge.13514
– volume: 41
  start-page: 836
  issue: 2
  year: 2023
  ident: 10.1016/j.cpccr.2024.100278_bib0032
  article-title: Use machine learning algorithms to predict turbine power generation to replace renewable energy with fossil fuels
  publication-title: Energy Explor. Exploit.
  doi: 10.1177/01445987221138135
– volume: 14
  issue: 6
  year: 2023
  ident: 10.1016/j.cpccr.2024.100278_bib0035
  article-title: Cancer risk assessment based on family history and smoking habits
  publication-title: Systemat. Rev. Pharm.
– volume: 24
  start-page: 1163
  issue: 5
  year: 2014
  ident: 10.1016/j.cpccr.2024.100278_bib0015
  article-title: Performance analysis of support vector machines classifiers in breast cancer mammography recognition
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-012-1324-4
– volume: 98
  issue: 4
  year: 2023
  ident: 10.1016/j.cpccr.2024.100278_bib0034
  article-title: Discriminate primary gammas (signal) from the images of hadronic showers by cosmic rays in the upper atmosphere (background) with machine learning
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/acc1b2
– volume: 28
  start-page: 753
  issue: 4
  year: 2017
  ident: 10.1016/j.cpccr.2024.100278_bib0016
  article-title: Breast cancer diagnosis using GA feature selection and rotation forest
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-015-2103-9
– year: 2017
  ident: 10.1016/j.cpccr.2024.100278_bib0037
– year: 2023
  ident: 10.1016/j.cpccr.2024.100278_bib0025
  article-title: Utilizing time series data from 1961 to 2019 recorded around the world and machine learning to create a global temperature change prediction model
  publication-title: Case Stud. Chem. Environ. Eng.
  doi: 10.1016/j.cscee.2023.100312
– volume: 8
  start-page: 35
  issue: 1
  year: 2023
  ident: 10.1016/j.cpccr.2024.100278_bib0033
  article-title: Prediction of wind speed and power with lightgbm and grid search: case study based on Scada system in Turkey
  publication-title: Int. J. Energy Prod. Manag.
– volume: 22
  start-page: 1591
  issue: 7–8
  year: 2013
  ident: 10.1016/j.cpccr.2024.100278_bib0014
  article-title: Local linear wavelet neural network based breast tumor classification using firefly algorithm
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-012-0927-0
– volume: 28
  start-page: 47
  year: 2017
  ident: 10.1016/j.cpccr.2024.100278_bib0023
  article-title: Stability analysis of recurrent type-2 TSK fuzzy systems with nonlinear consequent part
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-015-2036-3
– volume: 11
  issue: 2
  year: 2021
  ident: 10.1016/j.cpccr.2024.100278_bib0019
  article-title: Cloud computing-based framework for breast cancer diagnosis using extreme learning machine
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11020241
– start-page: 16
  year: 2009
  ident: 10.1016/j.cpccr.2024.100278_bib0020
  article-title: Local optima avoidable particle swarm optimization
– volume: 13
  start-page: 271
  issue: 5
  year: 2015
  ident: 10.1016/j.cpccr.2024.100278_bib0004
  article-title: Clinical proteomics and breast cancer
  publication-title: surg.
– volume: 267
  start-page: 687
  issue: 2
  year: 2018
  ident: 10.1016/j.cpccr.2024.100278_bib0017
  article-title: A support vector machine-based ensemble algorithm for breast cancer diagnosis
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.12.001
– year: 2023
  ident: 10.1016/j.cpccr.2024.100278_bib0028
  article-title: Estimating the output power and wind speed with ML methods: a case study in Texas
  publication-title: Case Stud. Chem. Environ. Eng.
– volume: 13
  issue: 2
  year: 2012
  ident: 10.1016/j.cpccr.2024.100278_bib0038
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn Res.
– volume: 23
  start-page: 2387
  issue: 7–8
  year: 2013
  ident: 10.1016/j.cpccr.2024.100278_bib0013
  article-title: Decision tree classifiers for automated medical diagnosis
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-012-1196-7
– volume: 1234
  start-page: 108
  year: 2020
  ident: 10.1016/j.cpccr.2024.100278_bib0045
  article-title: Analysis of breast cancer detection using different machine learning techniques
  publication-title: Data Min. Big Data
  doi: 10.1007/978-981-15-7205-0_10
– volume: 182
  start-page: 235
  year: 2016
  ident: 10.1016/j.cpccr.2024.100278_bib0021
  article-title: Stable ANFIS2 for nonlinear system identification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.030
SSID ssj0002511974
Score 2.377675
Snippet Breast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to the...
AbstractBreast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100278
SubjectTerms Breast cancer
Grid search
Hematology, Oncology, and Palliative Medicine
Machine learning methods
Women worldwide
Title ML: Early Breast Cancer Diagnosis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2666621924000012
https://www.clinicalkey.es/playcontent/1-s2.0-S2666621924000012
https://dx.doi.org/10.1016/j.cpccr.2024.100278
https://doaj.org/article/4f15b73d29594eee8a9c9d838a35bec9
Volume 13
WOSCitedRecordID wos001166207900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2666-6219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511974
  issn: 2666-6219
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-6219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511974
  issn: 2666-6219
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iIl7ET5xfVPBosUnTpPHm5oYHNwQVdgtpPmAic6zTo3-7L2k7epDt4qWHkrzXvNfk_UJefg-ha4D0GuZfEXNq05g6lsS542mc5YljQkEAcyoUm-CjUT4ei-dWqS-fE1bRA1eGu6UOZwVPDRGZoNbaXAktTJ7mKs1Af7i6B6intZnyazAJx2O0oRkKCV16prVnACU08I76wmqtUBQY-1sRqRVlBntot4aH0X31Wftow04P0PawPgA_RFfDp7sokBJHXZ9Ovoh63m3z6KFKmZuUR-ht0H_tPcZ1lYNY-2ICMUux4kpBXHDW071bhp0VBWUwZmwcZ7gwQhmuBNeYFpZjx7VmXBHjEmt4eow2p59Te4IigCKA_50iIBOCTlFog40VmTOJpuCTDiLNgKWuKcB9JYoP2eR6vctgJemtJCsrddDNstOsYsBY3bzrLbls6umrwwtwqqydKtc5tYNo4wfZ3BCFNQ0ETVbr5n91s2U9L0uJZUlkIl8AljBG_OYzHG-QDmLLnjX0qCDFOpWn_zHcM7TjRVapbedoczH_shdoS38vJuX8MvzZ8Bz-9H8Bfwz7uA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ML%3A+Early+Breast+Cancer+Diagnosis&rft.jtitle=Current+problems+in+cancer.+Case+reports&rft.au=Malakouti%2C+Seyed+Matin&rft.au=Menhaj%2C+Mohammad+Bagher&rft.au=Suratgar%2C+Amir+Abolfazl&rft.date=2024-03-01&rft.issn=2666-6219&rft.eissn=2666-6219&rft.spage=100278&rft.epage=100278&rft_id=info:doi/10.1016%2Fj.cpccr.2024.100278&rft.externalDBID=ECK1-s2.0-S2666621924000012&rft.externalDocID=1_s2_0_S2666621924000012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-6219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-6219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-6219&client=summon