ML: Early Breast Cancer Diagnosis
Breast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to the formation of lumps or tumors that can be detected through medical imaging such as X-rays. Distinguishing between benign and malignant tumors presen...
Uložené v:
| Vydané v: | Current problems in cancer. Case reports Ročník 13; s. 100278 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.03.2024
Elsevier |
| Predmet: | |
| ISSN: | 2666-6219, 2666-6219 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Breast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to the formation of lumps or tumors that can be detected through medical imaging such as X-rays. Distinguishing between benign and malignant tumors presents a significant challenge in the diagnosis of breast cancer.
In this study, machine learning methods, including Logistic Regression, Gradient Boosting, Ada Boost, Random Forest, and Gaussian NB with Grid Search, were employed to differentiate between healthy individuals and those with malignancies. The results revealed that the Random Forest algorithm exhibited the highest performance in predicting breast cancer, accurately identifying 99 % of both healthy and affected individuals. Additionally, both Gradient Boosting and Ada Boost demonstrated a similar level of accuracy, correctly distinguishing 98 % of healthy and affected individuals.
Conversely, Gaussian NB performed the least effectively, with an accuracy of 91 % in differentiating between healthy and affected individuals, highlighting its comparatively lower predictive capability for breast cancer. |
|---|---|
| AbstractList | AbstractBreast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to the formation of lumps or tumors that can be detected through medical imaging such as X-rays. Distinguishing between benign and malignant tumors presents a significant challenge in the diagnosis of breast cancer. In this study, machine learning methods, including Logistic Regression, Gradient Boosting, Ada Boost, Random Forest, and Gaussian NB with Grid Search, were employed to differentiate between healthy individuals and those with malignancies. The results revealed that the Random Forest algorithm exhibited the highest performance in predicting breast cancer, accurately identifying 99% of both healthy and affected individuals. Additionally, both Gradient Boosting and Ada Boost demonstrated a similar level of accuracy, correctly distinguishing 98% of healthy and affected individuals. Conversely, Gaussian NB performed the least effectively, with an accuracy of 91% in differentiating between healthy and affected individuals, highlighting its comparatively lower predictive capability for breast cancer. Breast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to the formation of lumps or tumors that can be detected through medical imaging such as X-rays. Distinguishing between benign and malignant tumors presents a significant challenge in the diagnosis of breast cancer. In this study, machine learning methods, including Logistic Regression, Gradient Boosting, Ada Boost, Random Forest, and Gaussian NB with Grid Search, were employed to differentiate between healthy individuals and those with malignancies. The results revealed that the Random Forest algorithm exhibited the highest performance in predicting breast cancer, accurately identifying 99 % of both healthy and affected individuals. Additionally, both Gradient Boosting and Ada Boost demonstrated a similar level of accuracy, correctly distinguishing 98 % of healthy and affected individuals. Conversely, Gaussian NB performed the least effectively, with an accuracy of 91 % in differentiating between healthy and affected individuals, highlighting its comparatively lower predictive capability for breast cancer. Breast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to the formation of lumps or tumors that can be detected through medical imaging such as X-rays. Distinguishing between benign and malignant tumors presents a significant challenge in the diagnosis of breast cancer.In this study, machine learning methods, including Logistic Regression, Gradient Boosting, Ada Boost, Random Forest, and Gaussian NB with Grid Search, were employed to differentiate between healthy individuals and those with malignancies. The results revealed that the Random Forest algorithm exhibited the highest performance in predicting breast cancer, accurately identifying 99 % of both healthy and affected individuals. Additionally, both Gradient Boosting and Ada Boost demonstrated a similar level of accuracy, correctly distinguishing 98 % of healthy and affected individuals.Conversely, Gaussian NB performed the least effectively, with an accuracy of 91 % in differentiating between healthy and affected individuals, highlighting its comparatively lower predictive capability for breast cancer. |
| ArticleNumber | 100278 |
| Author | Suratgar, Amir Abolfazl Menhaj, Mohammad Bagher Malakouti, Seyed Matin |
| Author_xml | – sequence: 1 givenname: Seyed Matin orcidid: 0000-0003-3585-253X surname: Malakouti fullname: Malakouti, Seyed Matin email: matin.malakouti@aut.ac.ir – sequence: 2 givenname: Mohammad Bagher surname: Menhaj fullname: Menhaj, Mohammad Bagher email: menhaj@aut.ac.ir – sequence: 3 givenname: Amir Abolfazl surname: Suratgar fullname: Suratgar, Amir Abolfazl |
| BookMark | eNqFkVFLHDEQx4NY0Fo_QV_OD3DXJJtNLpYW6tVW4cSHts_D7GRWst3uSrIK9-2b8xSKUH1KGPL_zeQ3b8X-MA4sxHslF0oq-6Fb0C1RWmipTalI7ZZ74lBba-dWK7__z_1AHOfcyfKmVso7cyhOrtans3NM_WZ2lhjzNFvhQJxmXyPeDGOO-Z1402Kf-fjxPBK_vp3_XF3M19ffL1df1nOqtZrmtlLoEI32LRvnDVvVsm-MrYJWoXVWNcFjcOgdKdOwU60jsg51aCUHVx2Jyx03jNjBbYp_MG1gxAgPhTHdAKYpUs9gWlU3roB9XRoxL9GTD8tqiVXdMPnC8jsWpTHnxC1QnHCK4zAljD0oCVt10MGDOtiqg526kq2eZZ9meTn1aZfioug-coJMkYvJEBPTVP4QX8l_fpanPg6RsP_NG87deJeGYh8UZA0SfmxXut2oNmWbUukC-Ph_wKvt_wLeiLF_ |
| CitedBy_id | crossref_primary_10_1111_coin_70018 |
| Cites_doi | 10.1038/s41586-021-04278-5 10.1016/j.ctarc.2021.100465 10.1007/s00432-023-05388-5 10.1016/j.mex.2023.102337 10.31661/jbpe.v0i0.2109-1403 10.1007/978-981-15-0978-0_43 10.1007/978-3-030-05318-5_8 10.11591/ijece.v10i5.pp5235-5242 10.3390/s17071572 10.1016/j.cmpb.2017.12.012 10.1016/j.bspc.2021.103141 10.1109/TSMCB.2012.2214209 10.1016/j.crad.2019.02.006 10.1177/0309524X221113013 10.1016/j.cscee.2023.100351 10.1038/s41598-023-32029-1 10.1088/1757-899X/928/7/072098 10.1016/j.pacs.2019.05.001 10.1111/cge.13514 10.1177/01445987221138135 10.1007/s00521-012-1324-4 10.1088/1402-4896/acc1b2 10.1007/s00521-015-2103-9 10.1016/j.cscee.2023.100312 10.1007/s00521-012-0927-0 10.1007/s00521-015-2036-3 10.3390/diagnostics11020241 10.1016/j.ejor.2017.12.001 10.1007/s00521-012-1196-7 10.1007/978-981-15-7205-0_10 10.1016/j.neucom.2015.12.030 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.cpccr.2024.100278 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2666-6219 |
| EndPage | 100278 |
| ExternalDocumentID | oai_doaj_org_article_4f15b73d29594eee8a9c9d838a35bec9 10_1016_j_cpccr_2024_100278 S2666621924000012 1_s2_0_S2666621924000012 |
| GroupedDBID | .1- .FO 0R~ 1P~ AAEDW AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL Z5R AAHOK AFCTW 6I. AAFTH AAYXX CITATION |
| ID | FETCH-LOGICAL-c521t-631a7aa429fe4794e61fe9b463d21df761bd9ad7a97c14be71f7cc67a2df0ed73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001166207900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2666-6219 |
| IngestDate | Fri Oct 03 12:23:06 EDT 2025 Tue Nov 18 22:12:44 EST 2025 Thu Nov 20 00:40:01 EST 2025 Sat Mar 30 16:20:51 EDT 2024 Tue Feb 25 19:54:51 EST 2025 Tue Aug 26 16:31:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Grid search Women worldwide Breast cancer Machine learning methods machine learning methods women worldwide Grid Search |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c521t-631a7aa429fe4794e61fe9b463d21df761bd9ad7a97c14be71f7cc67a2df0ed73 |
| ORCID | 0000-0003-3585-253X |
| OpenAccessLink | https://doaj.org/article/4f15b73d29594eee8a9c9d838a35bec9 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4f15b73d29594eee8a9c9d838a35bec9 crossref_citationtrail_10_1016_j_cpccr_2024_100278 crossref_primary_10_1016_j_cpccr_2024_100278 elsevier_sciencedirect_doi_10_1016_j_cpccr_2024_100278 elsevier_clinicalkeyesjournals_1_s2_0_S2666621924000012 elsevier_clinicalkey_doi_10_1016_j_cpccr_2024_100278 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Current problems in cancer. Case reports |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Nazari, Naderi, Tabadkani (bib0041) 2023 Olson, Moore (bib0040) 2019 Seyed Matin (bib0028) 2023 Azar, El-Metwally (bib0013) 2013; 23 Farhan, Kamil (bib0006) 1530 Steinberg, Huland, Vermesh, Frostig, Tummers, Gambhir (bib0007) 2019; 14 Malakouti, Ghiasi, Ghavifekr (bib0027) 2022; 2 Azar, El-Said (bib0015) 2014; 24 Malakouti, Ghiasi, Ghavifekr, Emami (bib0029) 2022; 46 Montgomery (bib0037) 2017 Senapati, Dash (bib0014) 2013; 22 Farhan, Kamil (bib0001) 2020; 928 Malakouti, Menhaj, Suratgar (bib0024) 2023; 15 Manikandan, Durga, Ponnuraja (bib0044) 2023; 13 Wang, Zheng, Yoon, Ko (bib0017) 2018; 267 Lahoura (bib0019) 2021; 11 Alshayeji, Ellethy, Abed, Gupta (bib0005) 2022; 71 Zeidan, Townsend, Garbis, Copson, Cutress (bib0004) 2015; 13 Malakouti (bib0031) 2023; 8 Kamil (bib0002) 2020; 10 Malakouti (bib0034) 2023; 98 Aličković, Subasi (bib0016) 2017; 28 Sammut, Crispin-Ortuzar, Chin, Provenzano, Bardwell, Ma, Cope, Dariush, Dawson, Abraham, Dunn (bib0043) 2022; 601 Tavoosi, Suratgar, Menhaj (bib0021) 2016; 182 Tavoosi, Suratgar, Menhaj (bib0023) 2017; 28 Pandey, Saini, Sapre, Kulkarni, Tiwari (bib0003) 2021; 29 Alimirzaie, Bagherzadeh, Akbari (bib0008) 2019; 95 Malakouti (bib0035) 2023; 14 Salehizadeh, Yadmellat, Menhaj (bib0020) 2009 Mahdavi, Menhaj, Kurths, Lu (bib0022) 2013; 43 Malakouti, Menhaj, Suratgar (bib0036) 2023 Mohammed, Darrab, Noaman, Saake (bib0045) 2020; 1234 Malakouti (bib0032) 2023; 41 Rabiei, Ayyoubzadeh, Sohrabei, Esmaeili, Atashi (bib0042) 2022; 12 Le, Wang, Huang, Hickman, Gilbert (bib0010) 2019; 74 Liessner, Schmitt, Dietermann, aker (bib0039) 2019 Malakouti (bib0026) 2023; 84 Radhi, Kamil (bib0011) 2021; 14 Bergstra, Bengio (bib0038) 2012; 13 Malakouti (bib0033) 2023; 8 Malakouti (bib0025) 2023 Wang (bib0009) 2017; 17 Yassin, Omran, El Houby, Allam (bib0012) 2018; 156 Malakouti, Ghiasi (bib0030) 2022 Kumar, Mishra, Mazzara, Thanh, Verma (bib0018) 2020; 37 Mohammed (10.1016/j.cpccr.2024.100278_bib0045) 2020; 1234 Aličković (10.1016/j.cpccr.2024.100278_bib0016) 2017; 28 Alshayeji (10.1016/j.cpccr.2024.100278_bib0005) 2022; 71 Malakouti (10.1016/j.cpccr.2024.100278_bib0034) 2023; 98 Bergstra (10.1016/j.cpccr.2024.100278_bib0038) 2012; 13 Rabiei (10.1016/j.cpccr.2024.100278_bib0042) 2022; 12 Alimirzaie (10.1016/j.cpccr.2024.100278_bib0008) 2019; 95 Farhan (10.1016/j.cpccr.2024.100278_bib0001) 2020; 928 Malakouti (10.1016/j.cpccr.2024.100278_bib0025) 2023 Kamil (10.1016/j.cpccr.2024.100278_bib0002) 2020; 10 Senapati (10.1016/j.cpccr.2024.100278_bib0014) 2013; 22 Lahoura (10.1016/j.cpccr.2024.100278_bib0019) 2021; 11 Radhi (10.1016/j.cpccr.2024.100278_bib0011) 2021; 14 Olson (10.1016/j.cpccr.2024.100278_bib0040) 2019 Malakouti (10.1016/j.cpccr.2024.100278_bib0024) 2023; 15 Nazari (10.1016/j.cpccr.2024.100278_bib0041) 2023 Malakouti (10.1016/j.cpccr.2024.100278_bib0030) 2022 Yassin (10.1016/j.cpccr.2024.100278_bib0012) 2018; 156 Azar (10.1016/j.cpccr.2024.100278_bib0013) 2013; 23 Malakouti (10.1016/j.cpccr.2024.100278_bib0027) 2022; 2 Malakouti (10.1016/j.cpccr.2024.100278_bib0035) 2023; 14 Zeidan (10.1016/j.cpccr.2024.100278_bib0004) 2015; 13 Kumar (10.1016/j.cpccr.2024.100278_bib0018) 2020; 37 Farhan (10.1016/j.cpccr.2024.100278_bib0006) 1530 Malakouti (10.1016/j.cpccr.2024.100278_bib0032) 2023; 41 Mahdavi (10.1016/j.cpccr.2024.100278_bib0022) 2013; 43 Malakouti (10.1016/j.cpccr.2024.100278_bib0026) 2023; 84 Seyed Matin (10.1016/j.cpccr.2024.100278_bib0028) 2023 Tavoosi (10.1016/j.cpccr.2024.100278_bib0021) 2016; 182 Wang (10.1016/j.cpccr.2024.100278_bib0017) 2018; 267 Steinberg (10.1016/j.cpccr.2024.100278_bib0007) 2019; 14 Montgomery (10.1016/j.cpccr.2024.100278_bib0037) 2017 Azar (10.1016/j.cpccr.2024.100278_bib0015) 2014; 24 Malakouti (10.1016/j.cpccr.2024.100278_bib0029) 2022; 46 Liessner (10.1016/j.cpccr.2024.100278_bib0039) 2019 Pandey (10.1016/j.cpccr.2024.100278_bib0003) 2021; 29 Malakouti (10.1016/j.cpccr.2024.100278_bib0033) 2023; 8 Le (10.1016/j.cpccr.2024.100278_bib0010) 2019; 74 Tavoosi (10.1016/j.cpccr.2024.100278_bib0023) 2017; 28 Malakouti (10.1016/j.cpccr.2024.100278_bib0036) 2023 Malakouti (10.1016/j.cpccr.2024.100278_bib0031) 2023; 8 Salehizadeh (10.1016/j.cpccr.2024.100278_bib0020) 2009 Wang (10.1016/j.cpccr.2024.100278_bib0009) 2017; 17 Manikandan (10.1016/j.cpccr.2024.100278_bib0044) 2023; 13 Sammut (10.1016/j.cpccr.2024.100278_bib0043) 2022; 601 |
| References_xml | – volume: 8 start-page: 35 year: 2023 end-page: 40 ident: bib0033 article-title: Prediction of wind speed and power with lightgbm and grid search: case study based on Scada system in Turkey publication-title: Int. J. Energy Prod. Manag. – volume: 601 start-page: 623 year: 2022 end-page: 629 ident: bib0043 article-title: Multi-omic machine learning predictor of breast cancer therapy response publication-title: Nature – year: 2023 ident: bib0036 article-title: Machine learning techniques for classifying dangerous asteroids publication-title: MethodsX – volume: 23 start-page: 2387 year: 2013 end-page: 2403 ident: bib0013 article-title: Decision tree classifiers for automated medical diagnosis publication-title: Neural. Comput. Appl. – volume: 71 year: 2022 ident: bib0005 article-title: Computer-aided detection of breast cancer on the Wisconsin dataset: an artificial neural networks approach publication-title: Biomed. Signal Process. Control – volume: 1234 start-page: 108 year: 2020 end-page: 117 ident: bib0045 article-title: Analysis of breast cancer detection using different machine learning techniques publication-title: Data Min. Big Data – volume: 14 start-page: 561 year: 2021 end-page: 570 ident: bib0011 article-title: Breast tumor detection via active contour technique publication-title: Int. J. Intell. Eng. Syst. – volume: 8 year: 2023 ident: bib0031 article-title: Improving the prediction of wind speed and power production of SCADA system with ensemble method and 10-fold cross-validation publication-title: Case Stud. Chem. Environ. Eng. – volume: 156 start-page: 25 year: 2018 end-page: 45 ident: bib0012 article-title: Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review publication-title: Comput. Methods Programs Biomed. – year: 2023 ident: bib0025 article-title: Utilizing time series data from 1961 to 2019 recorded around the world and machine learning to create a global temperature change prediction model publication-title: Case Stud. Chem. Environ. Eng. – year: 2023 ident: bib0041 article-title: Breast cancer prediction using different machine learning methods applying multi factors publication-title: J. Cancer Res. Clin. Oncol. – volume: 2 year: 2022 ident: bib0027 article-title: AERO2022-flying danger reduction for quadcopters by using machine learning to estimate current, voltage, and flight area publication-title: e-Prime-Adv. Electric. Eng., Electron. Energy – volume: 12 start-page: 297 year: 2022 end-page: 308 ident: bib0042 article-title: Prediction of breast cancer using machine learning approaches publication-title: J. Biomed. Phys. Eng. – volume: 28 start-page: 753 year: 2017 end-page: 763 ident: bib0016 article-title: Breast cancer diagnosis using GA feature selection and rotation forest publication-title: Neural. Comput. Appl. – volume: 95 start-page: 643 year: 2019 end-page: 660 ident: bib0008 article-title: Liquid biopsy in breast cancer: a comprehensive review publication-title: Clin. Genet. – volume: 43 start-page: 648 year: 2013 end-page: 659 ident: bib0022 article-title: Fuzzy complex dynamical networks and its synchronization publication-title: IEEE Trans. Cybern. – year: 2017 ident: bib0037 article-title: Design and Analysis of Experiments – volume: 13 start-page: 271 year: 2015 end-page: 278 ident: bib0004 article-title: Clinical proteomics and breast cancer publication-title: surg. – volume: 13 year: 2012 ident: bib0038 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn Res. – start-page: 16 year: 2009 end-page: 21 ident: bib0020 article-title: Local optima avoidable particle swarm optimization publication-title: In2009 IEEE Swarm Intelligence Symposium – volume: 22 start-page: 1591 year: 2013 end-page: 1598 ident: bib0014 article-title: Local linear wavelet neural network based breast tumor classification using firefly algorithm publication-title: Neural. Comput. Appl. – start-page: 134 year: 2019 end-page: 144 ident: bib0039 article-title: Hyperparameter optimization for deep reinforcement learning in vehicle energy management publication-title: Proceedings of the 11th International Conference on Agents and Artificial Intelligence – volume: 15 year: 2023 ident: bib0024 article-title: The usage of 10-fold cross-validation and grid search to enhance ML methods performance in solar farm power generation prediction publication-title: Clean. Eng. Technol. – volume: 17 year: 2017 ident: bib0009 article-title: Early diagnosis of breast cancer publication-title: Sensors (Switzerland) – volume: 24 start-page: 1163 year: 2014 end-page: 1177 ident: bib0015 article-title: Performance analysis of support vector machines classifiers in breast cancer mammography recognition publication-title: Neural. Comput. Appl. – start-page: 31 year: 2022 end-page: 36 ident: bib0030 article-title: Evaluation of the application of computational model machine learning methods to simulate wind speed in predicting the production capacity of the Swiss basel wind farm publication-title: 2022 26th International Electrical Power Distribution Conference (EPDC) – volume: 46 start-page: 1853 year: 2022 end-page: 1869 ident: bib0029 article-title: Predicting wind power generation using machine learning and CNN-LSTM approaches publication-title: Wind Eng. – volume: 14 start-page: 77 year: 2019 end-page: 98 ident: bib0007 article-title: Photoacoustic clinical imaging publication-title: Photoacoustics – volume: 41 start-page: 836 year: 2023 end-page: 857 ident: bib0032 article-title: Use machine learning algorithms to predict turbine power generation to replace renewable energy with fossil fuels publication-title: Energy Explor. Exploit. – start-page: 2020 year: 1530 ident: bib0006 article-title: Texture analysis of mammogram using local binary pattern method publication-title: J. Phys. Conf. Ser. – volume: 37 start-page: 435 year: 2020 end-page: 442 ident: bib0018 article-title: Prediction of malignant and benign breast cancer: a data mining approach in healthcare applications publication-title: Lect. Notes Data Eng. Commun. Technol. – volume: 84 year: 2023 ident: bib0026 article-title: Heart disease classification based on ECG using machine learning models publication-title: Biomed. Signal Process. Control – volume: 98 year: 2023 ident: bib0034 article-title: Discriminate primary gammas (signal) from the images of hadronic showers by cosmic rays in the upper atmosphere (background) with machine learning publication-title: Phys. Scr. – volume: 74 start-page: 357 year: 2019 end-page: 366 ident: bib0010 article-title: Artificial intelligence in breast imaging publication-title: Clin. Radiol. – volume: 14 year: 2023 ident: bib0035 article-title: Cancer risk assessment based on family history and smoking habits publication-title: Systemat. Rev. Pharm. – volume: 11 year: 2021 ident: bib0019 article-title: Cloud computing-based framework for breast cancer diagnosis using extreme learning machine publication-title: Diagnostics – volume: 928 year: 2020 ident: bib0001 article-title: Texture analysis of breast cancer via LBP, HOG, and GLCM techniques publication-title: IOP Conf. Ser.: Mater. Sci. Eng. – volume: 182 start-page: 235 year: 2016 end-page: 246 ident: bib0021 article-title: Stable ANFIS2 for nonlinear system identification publication-title: Neurocomputing – volume: 10 start-page: 5235 year: 2020 end-page: 5242 ident: bib0002 article-title: Computer-aided diagnosis system for breast cancer based on the Gabor filter technique publication-title: Int. J. Electric. Comput. Eng. – volume: 13 start-page: 5362 year: 2023 ident: bib0044 article-title: An integrative machine learning framework for classifying SEER breast cancer publication-title: Sci. Rep. – year: 2019 ident: bib0040 article-title: TPOT: a tree-based pipeline optimization tool for automating machine learning publication-title: Automated Machine Learning. The Springer Series on Challenges in Machine Learning – volume: 267 start-page: 687 year: 2018 end-page: 699 ident: bib0017 article-title: A support vector machine-based ensemble algorithm for breast cancer diagnosis publication-title: Eur. J. Oper. Res. – volume: 28 start-page: 47 year: 2017 end-page: 56 ident: bib0023 article-title: Stability analysis of recurrent type-2 TSK fuzzy systems with nonlinear consequent part publication-title: Neural. Comput. Appl. – volume: 29 year: 2021 ident: bib0003 article-title: Prioritising breast cancer theranostics: a current medical longing in oncology publication-title: Cancer Treatment Res. Commun. – year: 2023 ident: bib0028 article-title: Estimating the output power and wind speed with ML methods: a case study in Texas publication-title: Case Stud. Chem. Environ. Eng. – volume: 601 start-page: 623 issue: 7894 year: 2022 ident: 10.1016/j.cpccr.2024.100278_bib0043 article-title: Multi-omic machine learning predictor of breast cancer therapy response publication-title: Nature doi: 10.1038/s41586-021-04278-5 – volume: 2 year: 2022 ident: 10.1016/j.cpccr.2024.100278_bib0027 article-title: AERO2022-flying danger reduction for quadcopters by using machine learning to estimate current, voltage, and flight area – volume: 29 year: 2021 ident: 10.1016/j.cpccr.2024.100278_bib0003 article-title: Prioritising breast cancer theranostics: a current medical longing in oncology publication-title: Cancer Treatment Res. Commun. doi: 10.1016/j.ctarc.2021.100465 – year: 2023 ident: 10.1016/j.cpccr.2024.100278_bib0041 article-title: Breast cancer prediction using different machine learning methods applying multi factors publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-023-05388-5 – volume: 15 year: 2023 ident: 10.1016/j.cpccr.2024.100278_bib0024 article-title: The usage of 10-fold cross-validation and grid search to enhance ML methods performance in solar farm power generation prediction publication-title: Clean. Eng. Technol. – start-page: 31 year: 2022 ident: 10.1016/j.cpccr.2024.100278_bib0030 article-title: Evaluation of the application of computational model machine learning methods to simulate wind speed in predicting the production capacity of the Swiss basel wind farm – year: 2023 ident: 10.1016/j.cpccr.2024.100278_bib0036 article-title: Machine learning techniques for classifying dangerous asteroids publication-title: MethodsX doi: 10.1016/j.mex.2023.102337 – volume: 12 start-page: 297 issue: 3 year: 2022 ident: 10.1016/j.cpccr.2024.100278_bib0042 article-title: Prediction of breast cancer using machine learning approaches publication-title: J. Biomed. Phys. Eng. doi: 10.31661/jbpe.v0i0.2109-1403 – volume: 37 start-page: 435 year: 2020 ident: 10.1016/j.cpccr.2024.100278_bib0018 article-title: Prediction of malignant and benign breast cancer: a data mining approach in healthcare applications publication-title: Lect. Notes Data Eng. Commun. Technol. doi: 10.1007/978-981-15-0978-0_43 – year: 2019 ident: 10.1016/j.cpccr.2024.100278_bib0040 article-title: TPOT: a tree-based pipeline optimization tool for automating machine learning doi: 10.1007/978-3-030-05318-5_8 – start-page: 134 year: 2019 ident: 10.1016/j.cpccr.2024.100278_bib0039 article-title: Hyperparameter optimization for deep reinforcement learning in vehicle energy management – volume: 10 start-page: 5235 issue: 5 year: 2020 ident: 10.1016/j.cpccr.2024.100278_bib0002 article-title: Computer-aided diagnosis system for breast cancer based on the Gabor filter technique publication-title: Int. J. Electric. Comput. Eng. doi: 10.11591/ijece.v10i5.pp5235-5242 – volume: 17 issue: 7 year: 2017 ident: 10.1016/j.cpccr.2024.100278_bib0009 article-title: Early diagnosis of breast cancer publication-title: Sensors (Switzerland) doi: 10.3390/s17071572 – volume: 156 start-page: 25 year: 2018 ident: 10.1016/j.cpccr.2024.100278_bib0012 article-title: Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.12.012 – volume: 71 year: 2022 ident: 10.1016/j.cpccr.2024.100278_bib0005 article-title: Computer-aided detection of breast cancer on the Wisconsin dataset: an artificial neural networks approach publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103141 – volume: 43 start-page: 648 issue: 2 year: 2013 ident: 10.1016/j.cpccr.2024.100278_bib0022 article-title: Fuzzy complex dynamical networks and its synchronization publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2214209 – start-page: 2020 issue: 1 year: 1530 ident: 10.1016/j.cpccr.2024.100278_bib0006 article-title: Texture analysis of mammogram using local binary pattern method publication-title: J. Phys. Conf. Ser. – volume: 74 start-page: 357 issue: 5 year: 2019 ident: 10.1016/j.cpccr.2024.100278_bib0010 article-title: Artificial intelligence in breast imaging publication-title: Clin. Radiol. doi: 10.1016/j.crad.2019.02.006 – volume: 46 start-page: 1853 issue: 6 year: 2022 ident: 10.1016/j.cpccr.2024.100278_bib0029 article-title: Predicting wind power generation using machine learning and CNN-LSTM approaches publication-title: Wind Eng. doi: 10.1177/0309524X221113013 – volume: 8 year: 2023 ident: 10.1016/j.cpccr.2024.100278_bib0031 article-title: Improving the prediction of wind speed and power production of SCADA system with ensemble method and 10-fold cross-validation publication-title: Case Stud. Chem. Environ. Eng. doi: 10.1016/j.cscee.2023.100351 – volume: 13 start-page: 5362 issue: 1 year: 2023 ident: 10.1016/j.cpccr.2024.100278_bib0044 article-title: An integrative machine learning framework for classifying SEER breast cancer publication-title: Sci. Rep. doi: 10.1038/s41598-023-32029-1 – volume: 14 start-page: 561 issue: 4 year: 2021 ident: 10.1016/j.cpccr.2024.100278_bib0011 article-title: Breast tumor detection via active contour technique publication-title: Int. J. Intell. Eng. Syst. – volume: 928 issue: 7 year: 2020 ident: 10.1016/j.cpccr.2024.100278_bib0001 article-title: Texture analysis of breast cancer via LBP, HOG, and GLCM techniques publication-title: IOP Conf. Ser.: Mater. Sci. Eng. doi: 10.1088/1757-899X/928/7/072098 – volume: 84 year: 2023 ident: 10.1016/j.cpccr.2024.100278_bib0026 article-title: Heart disease classification based on ECG using machine learning models publication-title: Biomed. Signal Process. Control – volume: 14 start-page: 77 year: 2019 ident: 10.1016/j.cpccr.2024.100278_bib0007 article-title: Photoacoustic clinical imaging publication-title: Photoacoustics doi: 10.1016/j.pacs.2019.05.001 – volume: 95 start-page: 643 issue: 6 year: 2019 ident: 10.1016/j.cpccr.2024.100278_bib0008 article-title: Liquid biopsy in breast cancer: a comprehensive review publication-title: Clin. Genet. doi: 10.1111/cge.13514 – volume: 41 start-page: 836 issue: 2 year: 2023 ident: 10.1016/j.cpccr.2024.100278_bib0032 article-title: Use machine learning algorithms to predict turbine power generation to replace renewable energy with fossil fuels publication-title: Energy Explor. Exploit. doi: 10.1177/01445987221138135 – volume: 14 issue: 6 year: 2023 ident: 10.1016/j.cpccr.2024.100278_bib0035 article-title: Cancer risk assessment based on family history and smoking habits publication-title: Systemat. Rev. Pharm. – volume: 24 start-page: 1163 issue: 5 year: 2014 ident: 10.1016/j.cpccr.2024.100278_bib0015 article-title: Performance analysis of support vector machines classifiers in breast cancer mammography recognition publication-title: Neural. Comput. Appl. doi: 10.1007/s00521-012-1324-4 – volume: 98 issue: 4 year: 2023 ident: 10.1016/j.cpccr.2024.100278_bib0034 article-title: Discriminate primary gammas (signal) from the images of hadronic showers by cosmic rays in the upper atmosphere (background) with machine learning publication-title: Phys. Scr. doi: 10.1088/1402-4896/acc1b2 – volume: 28 start-page: 753 issue: 4 year: 2017 ident: 10.1016/j.cpccr.2024.100278_bib0016 article-title: Breast cancer diagnosis using GA feature selection and rotation forest publication-title: Neural. Comput. Appl. doi: 10.1007/s00521-015-2103-9 – year: 2017 ident: 10.1016/j.cpccr.2024.100278_bib0037 – year: 2023 ident: 10.1016/j.cpccr.2024.100278_bib0025 article-title: Utilizing time series data from 1961 to 2019 recorded around the world and machine learning to create a global temperature change prediction model publication-title: Case Stud. Chem. Environ. Eng. doi: 10.1016/j.cscee.2023.100312 – volume: 8 start-page: 35 issue: 1 year: 2023 ident: 10.1016/j.cpccr.2024.100278_bib0033 article-title: Prediction of wind speed and power with lightgbm and grid search: case study based on Scada system in Turkey publication-title: Int. J. Energy Prod. Manag. – volume: 22 start-page: 1591 issue: 7–8 year: 2013 ident: 10.1016/j.cpccr.2024.100278_bib0014 article-title: Local linear wavelet neural network based breast tumor classification using firefly algorithm publication-title: Neural. Comput. Appl. doi: 10.1007/s00521-012-0927-0 – volume: 28 start-page: 47 year: 2017 ident: 10.1016/j.cpccr.2024.100278_bib0023 article-title: Stability analysis of recurrent type-2 TSK fuzzy systems with nonlinear consequent part publication-title: Neural. Comput. Appl. doi: 10.1007/s00521-015-2036-3 – volume: 11 issue: 2 year: 2021 ident: 10.1016/j.cpccr.2024.100278_bib0019 article-title: Cloud computing-based framework for breast cancer diagnosis using extreme learning machine publication-title: Diagnostics doi: 10.3390/diagnostics11020241 – start-page: 16 year: 2009 ident: 10.1016/j.cpccr.2024.100278_bib0020 article-title: Local optima avoidable particle swarm optimization – volume: 13 start-page: 271 issue: 5 year: 2015 ident: 10.1016/j.cpccr.2024.100278_bib0004 article-title: Clinical proteomics and breast cancer publication-title: surg. – volume: 267 start-page: 687 issue: 2 year: 2018 ident: 10.1016/j.cpccr.2024.100278_bib0017 article-title: A support vector machine-based ensemble algorithm for breast cancer diagnosis publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2017.12.001 – year: 2023 ident: 10.1016/j.cpccr.2024.100278_bib0028 article-title: Estimating the output power and wind speed with ML methods: a case study in Texas publication-title: Case Stud. Chem. Environ. Eng. – volume: 13 issue: 2 year: 2012 ident: 10.1016/j.cpccr.2024.100278_bib0038 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn Res. – volume: 23 start-page: 2387 issue: 7–8 year: 2013 ident: 10.1016/j.cpccr.2024.100278_bib0013 article-title: Decision tree classifiers for automated medical diagnosis publication-title: Neural. Comput. Appl. doi: 10.1007/s00521-012-1196-7 – volume: 1234 start-page: 108 year: 2020 ident: 10.1016/j.cpccr.2024.100278_bib0045 article-title: Analysis of breast cancer detection using different machine learning techniques publication-title: Data Min. Big Data doi: 10.1007/978-981-15-7205-0_10 – volume: 182 start-page: 235 year: 2016 ident: 10.1016/j.cpccr.2024.100278_bib0021 article-title: Stable ANFIS2 for nonlinear system identification publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.030 |
| SSID | ssj0002511974 |
| Score | 2.377675 |
| Snippet | Breast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to the... AbstractBreast cancer is the most common malignancy among women worldwide, often characterized by the uncontrolled proliferation of breast cells, leading to... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 100278 |
| SubjectTerms | Breast cancer Grid search Hematology, Oncology, and Palliative Medicine Machine learning methods Women worldwide |
| Title | ML: Early Breast Cancer Diagnosis |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2666621924000012 https://www.clinicalkey.es/playcontent/1-s2.0-S2666621924000012 https://dx.doi.org/10.1016/j.cpccr.2024.100278 https://doaj.org/article/4f15b73d29594eee8a9c9d838a35bec9 |
| Volume | 13 |
| WOSCitedRecordID | wos001166207900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2666-6219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511974 issn: 2666-6219 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2666-6219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511974 issn: 2666-6219 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iIl7ET5xfVPBosUnTpPHm5oYHNwQVdgtpPmAic6zTo3-7eWk7epDt4qWHkrw076V5L7yX3w-ha6NywjNLYuYEi6mgKlZYkzhxNgVGd8AUD2QTfDTKx2Px3KL6gpqwCh64UtwtdTgreGqIyAS11uZKaGHyNFdp5scPV_d81NM6TMEeTEJ6jDYwQ6GgS8-0BgRQQgPuKBCrtVxRQOxveaSWlxnsod06PIzuq8_aRxt2eoC2h3UC_BBdDZ_uogBKHHWhnHwR9cBs8-ihKpmblEfobdB_7T3GNctBrIFMIGYpVlwp7xecBbh3y7CzoqDMzxkbxxkujFCGK8E1poXl2HGtGVfEuMQanh6jzenn1J6giOeFl1RgrxtLFaMqcZjA4Zdim-Qm7yDSTFjqGgIcmCg-ZFPr9S6DliRoSVZa6qCbZadZhYCxunkXNLlsCvDV4YU3qqyNKtcZtYNoYwfZ3BD1e5oXNFk9Nv-rmy3r_7KUWJZEJvLFhyWMETh8hvQG6SC27FmHHlVIsW7I0_-Y7hnaAZFVads52lzMv-wF2tLfi0k5vwwr2z-HP_1fCQf7cw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ML%3A+Early+Breast+Cancer+Diagnosis&rft.jtitle=Current+problems+in+cancer.+Case+reports&rft.au=Malakouti%2C+Seyed+Matin&rft.au=Menhaj%2C+Mohammad+Bagher&rft.au=Suratgar%2C+Amir+Abolfazl&rft.date=2024-03-01&rft.pub=Elsevier+Inc&rft.issn=2666-6219&rft.eissn=2666-6219&rft.volume=13&rft_id=info:doi/10.1016%2Fj.cpccr.2024.100278&rft.externalDocID=S2666621924000012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-6219&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-6219&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-6219&client=summon |