Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies

During the past few years, various novel statistical methods have been developed for fine-mapping with the use of summary statistics from genome-wide association studies (GWASs). Although these approaches require information about the linkage disequilibrium (LD) between variants, there has not been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics Jg. 101; H. 4; S. 539
Hauptverfasser: Benner, Christian, Havulinna, Aki S, Järvelin, Marjo-Riitta, Salomaa, Veikko, Ripatti, Samuli, Pirinen, Matti
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 05.10.2017
Schlagworte:
ISSN:1537-6605, 1537-6605
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract During the past few years, various novel statistical methods have been developed for fine-mapping with the use of summary statistics from genome-wide association studies (GWASs). Although these approaches require information about the linkage disequilibrium (LD) between variants, there has not been a comprehensive evaluation of how estimation of the LD structure from reference genotype panels performs in comparison with that from the original individual-level GWAS data. Using population genotype data from Finland and the UK Biobank, we show here that a reference panel of 1,000 individuals from the target population is adequate for a GWAS cohort of up to 10,000 individuals, whereas smaller panels, such as those from the 1000 Genomes Project, should be avoided. We also show, both theoretically and empirically, that the size of the reference panel needs to scale with the GWAS sample size; this has important consequences for the application of these methods in ongoing GWAS meta-analyses and large biobank studies. We conclude by providing software tools and by recommending practices for sharing LD information to more efficiently exploit summary statistics in genetics research.
AbstractList During the past few years, various novel statistical methods have been developed for fine-mapping with the use of summary statistics from genome-wide association studies (GWASs). Although these approaches require information about the linkage disequilibrium (LD) between variants, there has not been a comprehensive evaluation of how estimation of the LD structure from reference genotype panels performs in comparison with that from the original individual-level GWAS data. Using population genotype data from Finland and the UK Biobank, we show here that a reference panel of 1,000 individuals from the target population is adequate for a GWAS cohort of up to 10,000 individuals, whereas smaller panels, such as those from the 1000 Genomes Project, should be avoided. We also show, both theoretically and empirically, that the size of the reference panel needs to scale with the GWAS sample size; this has important consequences for the application of these methods in ongoing GWAS meta-analyses and large biobank studies. We conclude by providing software tools and by recommending practices for sharing LD information to more efficiently exploit summary statistics in genetics research.
During the past few years, various novel statistical methods have been developed for fine-mapping with the use of summary statistics from genome-wide association studies (GWASs). Although these approaches require information about the linkage disequilibrium (LD) between variants, there has not been a comprehensive evaluation of how estimation of the LD structure from reference genotype panels performs in comparison with that from the original individual-level GWAS data. Using population genotype data from Finland and the UK Biobank, we show here that a reference panel of 1,000 individuals from the target population is adequate for a GWAS cohort of up to 10,000 individuals, whereas smaller panels, such as those from the 1000 Genomes Project, should be avoided. We also show, both theoretically and empirically, that the size of the reference panel needs to scale with the GWAS sample size; this has important consequences for the application of these methods in ongoing GWAS meta-analyses and large biobank studies. We conclude by providing software tools and by recommending practices for sharing LD information to more efficiently exploit summary statistics in genetics research.During the past few years, various novel statistical methods have been developed for fine-mapping with the use of summary statistics from genome-wide association studies (GWASs). Although these approaches require information about the linkage disequilibrium (LD) between variants, there has not been a comprehensive evaluation of how estimation of the LD structure from reference genotype panels performs in comparison with that from the original individual-level GWAS data. Using population genotype data from Finland and the UK Biobank, we show here that a reference panel of 1,000 individuals from the target population is adequate for a GWAS cohort of up to 10,000 individuals, whereas smaller panels, such as those from the 1000 Genomes Project, should be avoided. We also show, both theoretically and empirically, that the size of the reference panel needs to scale with the GWAS sample size; this has important consequences for the application of these methods in ongoing GWAS meta-analyses and large biobank studies. We conclude by providing software tools and by recommending practices for sharing LD information to more efficiently exploit summary statistics in genetics research.
Author Benner, Christian
Havulinna, Aki S
Ripatti, Samuli
Järvelin, Marjo-Riitta
Salomaa, Veikko
Pirinen, Matti
Author_xml – sequence: 1
  givenname: Christian
  surname: Benner
  fullname: Benner, Christian
  email: christian.benner@helsinki.fi
  organization: Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland; Department of Public Health, University of Helsinki, 00014 Helsinki, Finland. Electronic address: christian.benner@helsinki.fi
– sequence: 2
  givenname: Aki S
  surname: Havulinna
  fullname: Havulinna, Aki S
  organization: Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland; National Institute for Health and Welfare, 00271 Helsinki, Finland
– sequence: 3
  givenname: Marjo-Riitta
  surname: Järvelin
  fullname: Järvelin, Marjo-Riitta
  organization: Center for Life-Course Health Research and Northern Finland Cohort Center, Biocenter Oulu, University of Oulu, 90014 Oulu, Finland; Faculty of Medicine, University of Oulu, 90014 Oulu, Finland; Unit of Primary Care, Oulu University Hospital, 90220 Oulu, Finland; Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, W2 1PG, UK
– sequence: 4
  givenname: Veikko
  surname: Salomaa
  fullname: Salomaa, Veikko
  organization: National Institute for Health and Welfare, 00271 Helsinki, Finland
– sequence: 5
  givenname: Samuli
  surname: Ripatti
  fullname: Ripatti, Samuli
  organization: Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland; Department of Public Health, University of Helsinki, 00014 Helsinki, Finland; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, Cambridge, UK
– sequence: 6
  givenname: Matti
  surname: Pirinen
  fullname: Pirinen, Matti
  email: matti.pirinen@helsinki.fi
  organization: Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland; Department of Public Health, University of Helsinki, 00014 Helsinki, Finland; Helsinki Institute for Information Technology and Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland. Electronic address: matti.pirinen@helsinki.fi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28942963$$D View this record in MEDLINE/PubMed
BookMark eNpNkF9LwzAUxYNM3B_9Aj5IHn1pTdImbR7HcFOYKG57Lml6OzPWpjYpMvzydmwDn87l8DsH7hmjQW1rQOiekpASKp52odp9bUNGaBKSNCSUXaER5VESCEH44N89RGPndoRQmpLoBg1ZKmMmRTRCvx-tdQ1o77At8dzUELyppjH1Fq9bZXwwdc5qozwUeAG1rYzGn7A1tnY4P-CNO5KrrqpUe8Arr7xx3miHy9ZWpwAEP6YAfOnpkz3XFQbcLbou1d7B3VknaDN_Xs9eguX74nU2XQaaM-oDXmpIuFC8FFKrhIGMilipVFEhuKa69zmTUS5pKXMe93hCUiIJRElRsDRlE_R46m1a-92B81llnIb9XtVgO5fRfoyEkhP6cEa7vIIia1pz_Cy7DMb-ACIqcXs
CitedBy_id crossref_primary_10_1038_s41467_020_15022_4
crossref_primary_10_1186_s13073_019_0613_2
crossref_primary_10_1038_s41588_019_0481_0
crossref_primary_10_1038_s41588_019_0504_x
crossref_primary_10_1038_s41467_021_21823_y
crossref_primary_10_1186_s13073_022_01058_2
crossref_primary_10_1038_s41588_023_01392_0
crossref_primary_10_1038_s41537_021_00159_y
crossref_primary_10_1097_YPG_0000000000000334
crossref_primary_10_1016_j_neuroimage_2020_117347
crossref_primary_10_1038_s42003_022_03672_7
crossref_primary_10_1038_s41586_023_06798_8
crossref_primary_10_1038_s41467_022_31473_3
crossref_primary_10_1007_s00439_022_02434_z
crossref_primary_10_1038_s41467_022_34932_z
crossref_primary_10_1007_s00180_019_00942_7
crossref_primary_10_1016_j_isci_2022_104485
crossref_primary_10_1186_s13059_021_02361_8
crossref_primary_10_1038_s41467_021_25614_3
crossref_primary_10_1161_ATVBAHA_120_315300
crossref_primary_10_1146_annurev_genom_083117_021641
crossref_primary_10_1038_s41588_022_01025_y
crossref_primary_10_1038_s41588_023_01487_8
crossref_primary_10_1038_s43856_022_00226_0
crossref_primary_10_1534_genetics_118_301111
crossref_primary_10_1016_j_ajhg_2025_05_002
crossref_primary_10_1016_j_nbd_2021_105580
crossref_primary_10_1038_s41588_019_0407_x
crossref_primary_10_3389_fendo_2020_00243
crossref_primary_10_1186_s13059_022_02694_y
crossref_primary_10_3389_fgene_2021_713230
crossref_primary_10_1038_s41574_019_0282_7
crossref_primary_10_1038_s41586_022_04434_5
crossref_primary_10_1016_j_ajhg_2019_12_011
crossref_primary_10_3389_fimmu_2022_1065739
crossref_primary_10_1038_s41588_024_01870_z
crossref_primary_10_1016_j_csbj_2020_06_015
crossref_primary_10_1038_s41586_022_05165_3
crossref_primary_10_1038_s41590_018_0129_8
crossref_primary_10_1038_s41588_021_00880_5
crossref_primary_10_1371_journal_pgen_1011480
crossref_primary_10_1038_s41467_024_53602_w
crossref_primary_10_1038_s41588_020_00735_5
crossref_primary_10_1186_s13024_021_00449_0
crossref_primary_10_1038_s41588_021_00921_z
crossref_primary_10_1038_s10038_023_01167_9
crossref_primary_10_1371_journal_pgen_1011519
crossref_primary_10_1038_s41598_021_84070_7
crossref_primary_10_1111_1755_0998_13349
crossref_primary_10_1214_24_AOS2378
crossref_primary_10_1038_s41398_020_0769_y
crossref_primary_10_1016_j_xgen_2025_100855
crossref_primary_10_1038_s41467_020_15193_0
crossref_primary_10_7554_eLife_70382
crossref_primary_10_1038_s41588_023_01425_8
crossref_primary_10_1038_s41467_021_26888_3
crossref_primary_10_1186_s13024_025_00830_3
crossref_primary_10_1111_adb_13313
crossref_primary_10_1369_0022155418812879
crossref_primary_10_1038_s41586_023_06250_x
crossref_primary_10_1038_s41588_023_01648_9
crossref_primary_10_1371_journal_pgen_1011503
crossref_primary_10_1038_s41467_019_11664_1
crossref_primary_10_1371_journal_pgen_1011104
crossref_primary_10_1038_s41588_021_00868_1
crossref_primary_10_1038_s41588_023_01569_7
crossref_primary_10_1038_s42003_021_02764_0
crossref_primary_10_1016_j_ajhg_2023_12_007
crossref_primary_10_1016_j_cels_2022_05_007
crossref_primary_10_1038_s41380_019_0518_x
crossref_primary_10_1038_s41588_021_00924_w
crossref_primary_10_1016_j_ajhg_2022_04_001
crossref_primary_10_1038_s41598_022_06755_x
crossref_primary_10_1186_s13059_022_02759_y
crossref_primary_10_1093_hmg_ddaa148
crossref_primary_10_1007_s00401_022_02454_z
crossref_primary_10_1038_s41467_025_62126_w
crossref_primary_10_1002_jbmr_4147
crossref_primary_10_1038_s41467_023_43565_9
crossref_primary_10_1371_journal_pgen_1008720
crossref_primary_10_1111_2041_210X_13757
crossref_primary_10_1007_s00439_020_02222_7
crossref_primary_10_1007_s00439_019_02098_2
crossref_primary_10_1038_s42003_020_01497_w
crossref_primary_10_1126_science_abn8455
crossref_primary_10_1038_s41467_021_27438_7
crossref_primary_10_1002_gepi_22562
crossref_primary_10_1038_s41588_023_01443_6
crossref_primary_10_1038_s41467_019_09718_5
crossref_primary_10_1038_s41467_021_26364_y
crossref_primary_10_1038_s41588_019_0386_y
crossref_primary_10_1186_s13073_023_01255_7
crossref_primary_10_1371_journal_pcbi_1010172
crossref_primary_10_3390_nu13041150
crossref_primary_10_1038_s10038_022_01094_1
crossref_primary_10_1146_annurev_genet_021920_102037
crossref_primary_10_1038_s41588_019_0362_6
crossref_primary_10_1007_s00438_021_01817_7
crossref_primary_10_1038_s41467_019_12653_0
crossref_primary_10_1038_s41586_021_03446_x
crossref_primary_10_1016_j_ajhg_2025_04_004
crossref_primary_10_1093_hmg_ddab294
crossref_primary_10_1038_s41467_019_11576_0
crossref_primary_10_1038_s41576_025_00869_4
crossref_primary_10_1038_s41588_020_00757_z
crossref_primary_10_1038_s41467_023_43159_5
crossref_primary_10_1186_s13059_020_02252_4
crossref_primary_10_1093_jas_sky382
crossref_primary_10_1038_s41588_020_00776_w
crossref_primary_10_1126_science_adh7699
crossref_primary_10_1038_s41588_023_01597_3
crossref_primary_10_1534_genetics_118_300813
crossref_primary_10_1126_science_abg8289
crossref_primary_10_1038_s41380_024_02703_5
crossref_primary_10_1038_s41576_018_0016_z
crossref_primary_10_1016_j_ajhg_2025_02_020
crossref_primary_10_1038_s41588_021_00990_0
crossref_primary_10_1371_journal_pgen_1007856
crossref_primary_10_1038_s41598_024_57966_3
crossref_primary_10_1016_j_ajhg_2025_08_013
crossref_primary_10_1038_s41467_024_52296_4
crossref_primary_10_1038_s41467_020_20885_8
crossref_primary_10_1038_s41467_023_42532_8
crossref_primary_10_1371_journal_pgen_1010299
crossref_primary_10_1016_j_neuron_2021_12_019
crossref_primary_10_1038_s41588_022_01124_w
crossref_primary_10_1038_s41467_025_58686_6
crossref_primary_10_1038_s41591_024_02839_5
crossref_primary_10_1038_s41467_023_35974_7
crossref_primary_10_1038_s41588_025_02136_y
crossref_primary_10_1016_j_ebiom_2025_105671
crossref_primary_10_1093_humrep_deab250
ContentType Journal Article
Copyright Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ajhg.2017.08.012
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1537-6605
ExternalDocumentID 28942963
Genre Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_QA137853
GroupedDBID ---
--K
--Z
-~X
0R~
123
1~5
23M
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
85S
AAEDT
AAEDW
AAFWJ
AAKRW
AALRI
AAMRU
AAVLU
AAWTL
AAXUO
ABDGV
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AENEX
AEUPX
AEXQZ
AFPUW
AFRAH
AFTJW
AGCQF
AGKMS
AHMBA
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
D0L
DIK
E3Z
EBS
ECM
ECV
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
GX1
HVGLF
HYE
IH2
IHE
IXB
JIG
KQ8
L7B
M41
NPM
O-L
O9-
OK1
P2P
PQQKQ
RIG
RNS
ROL
RPM
RPZ
SES
SJN
SSZ
TN5
TR2
TWZ
UHB
UKR
UNMZH
UPT
WH7
ZCA
7X8
ABUFD
ID FETCH-LOGICAL-c521t-5fce756a5f69ca72e93d4aa8a1665c1c5f65293b91f9b545fc708090e37dd2882
IEDL.DBID 7X8
ISICitedReferencesCount 145
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412277300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1537-6605
IngestDate Sun Nov 09 11:40:53 EST 2025
Mon Jul 21 06:04:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-5fce756a5f69ca72e93d4aa8a1665c1c5f65293b91f9b545fc708090e37dd2882
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.ajhg.2017.08.012
PMID 28942963
PQID 1942710288
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1942710288
pubmed_primary_28942963
PublicationCentury 2000
PublicationDate 2017-10-05
PublicationDateYYYYMMDD 2017-10-05
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of human genetics
PublicationTitleAlternate Am J Hum Genet
PublicationYear 2017
SSID ssj0011803
Score 2.6082869
Snippet During the past few years, various novel statistical methods have been developed for fine-mapping with the use of summary statistics from genome-wide...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 539
SubjectTerms Adult
Aged
Biostatistics - methods
Chromosome Mapping - methods
Cohort Studies
Female
Finland
Genome, Human
Genome-Wide Association Study - methods
Genotype
Humans
Linkage Disequilibrium
Male
Middle Aged
Polymorphism, Single Nucleotide
Quantitative Trait Loci
Software
Title Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies
URI https://www.ncbi.nlm.nih.gov/pubmed/28942963
https://www.proquest.com/docview/1942710288
Volume 101
WOSCitedRecordID wos000412277300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_VhfRPAa3LRNk5xExNXLLosP2Ftp89D10K5bHyz-eSdJl_UiCF5aKATKTJL5kvlmPoTOCpoKBmGYSCYTkvBOQgoaWRIn2rBCUGqN8GITvN8Xw6EcNBdudUOrnO2JfqPWlXJ35Odw2I58NBQX41fiVKNcdrWR0FhErRigjFuYfDjPIlDhlZFhUXOSAm5vimYCvyt_eX5y1C7uW3g6RcrfIKYPNd31__7kBlprQCa-DLNiEy2YcgutBNnJ6Tb6GkwqX2FZ48riLuBM0stdn4YnDKFr9EZmPjMa3xhft4zvjCMu17iYYs8ywPeh6g07tBqaPWNXqhIGGPI50gb_8D1uCIs76LF7_XB1SxoRBqKc1gFhVhnO0pzZVKqcR0bGOslzkdM0ZYoq-M4AMhSSWlkAHLOKAwiVHRNzrcEQ0S5aKqvS7CMsAUx1Cqni1CU7RSyEijpcCwMvLRRto9OZVTOY5C5zkZemeq-zuV3baC-4JhuHbhwZnBghpqbxwR9GH6JV53FPxmNHqGVhiZtjtKw-wFKTEz974Nkf9L4Beq_OzA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospects+of+Fine-Mapping+Trait-Associated+Genomic+Regions+by+Using+Summary+Statistics+from+Genome-wide+Association+Studies&rft.jtitle=American+journal+of+human+genetics&rft.au=Benner%2C+Christian&rft.au=Havulinna%2C+Aki+S&rft.au=J%C3%A4rvelin%2C+Marjo-Riitta&rft.au=Salomaa%2C+Veikko&rft.date=2017-10-05&rft.issn=1537-6605&rft.eissn=1537-6605&rft.volume=101&rft.issue=4&rft.spage=539&rft_id=info:doi/10.1016%2Fj.ajhg.2017.08.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-6605&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-6605&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-6605&client=summon