Genome Architecture Mediates Transcriptional Control of Human Myogenic Reprogramming
Genome architecture has emerged as a critical element of transcriptional regulation, although its role in the control of cell identity is not well understood. Here we use transcription factor (TF)-mediated reprogramming to examine the interplay between genome architecture and transcriptional program...
Uložené v:
| Vydané v: | iScience Ročník 6; s. 232 - 246 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
31.08.2018
Elsevier |
| Predmet: | |
| ISSN: | 2589-0042, 2589-0042 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Genome architecture has emerged as a critical element of transcriptional regulation, although its role in the control of cell identity is not well understood. Here we use transcription factor (TF)-mediated reprogramming to examine the interplay between genome architecture and transcriptional programs that transition cells into the myogenic identity. We recently developed new methods for evaluating the topological features of genome architecture based on network centrality. Through integrated analysis of these features of genome architecture and transcriptome dynamics during myogenic reprogramming of human fibroblasts we find that significant architectural reorganization precedes activation of a myogenic transcriptional program. This interplay sets the stage for a critical transition observed at several genomic scales reflecting definitive adoption of the myogenic phenotype. Subsequently, TFs within the myogenic transcriptional program participate in entrainment of biological rhythms. These findings reveal a role for topological features of genome architecture in the initiation of transcriptional programs during TF-mediated human cellular reprogramming.
[Display omitted]
•4D Nucleome analysis of direct human fibroblast to muscle reprogramming•A space-time bifurcation marks transit to a new cell identity•Chromatin reorganization precedes significant transcriptional changes•Myogenic master regulators have a role in entraining biological rhythms
Molecular Structure; Integrative Aspects of Cell Biology; Systems Biology; Omics |
|---|---|
| AbstractList | Genome architecture has emerged as a critical element of transcriptional regulation, although its role in the control of cell identity is not well understood. Here we use transcription factor (TF)-mediated reprogramming to examine the interplay between genome architecture and transcriptional programs that transition cells into the myogenic identity. We recently developed new methods for evaluating the topological features of genome architecture based on network centrality. Through integrated analysis of these features of genome architecture and transcriptome dynamics during myogenic reprogramming of human fibroblasts we find that significant architectural reorganization precedes activation of a myogenic transcriptional program. This interplay sets the stage for a critical transition observed at several genomic scales reflecting definitive adoption of the myogenic phenotype. Subsequently, TFs within the myogenic transcriptional program participate in entrainment of biological rhythms. These findings reveal a role for topological features of genome architecture in the initiation of transcriptional programs during TF-mediated human cellular reprogramming. : Molecular Structure; Integrative Aspects of Cell Biology; Systems Biology; Omics Subject Areas: Molecular Structure, Integrative Aspects of Cell Biology, Systems Biology, Omics Genome architecture has emerged as a critical element of transcriptional regulation, although its role in the control of cell identity is not well understood. Here we use transcription factor (TF)-mediated reprogramming to examine the interplay between genome architecture and transcriptional programs that transition cells into the myogenic identity. We recently developed new methods for evaluating the topological features of genome architecture based on network centrality. Through integrated analysis of these features of genome architecture and transcriptome dynamics during myogenic reprogramming of human fibroblasts we find that significant architectural reorganization precedes activation of a myogenic transcriptional program. This interplay sets the stage for a critical transition observed at several genomic scales reflecting definitive adoption of the myogenic phenotype. Subsequently, TFs within the myogenic transcriptional program participate in entrainment of biological rhythms. These findings reveal a role for topological features of genome architecture in the initiation of transcriptional programs during TF-mediated human cellular reprogramming. Genome architecture has emerged as a critical element of transcriptional regulation, although its role in the control of cell identity is not well understood. Here we use transcription factor (TF)-mediated reprogramming to examine the interplay between genome architecture and transcriptional programs that transition cells into the myogenic identity. We recently developed new methods for evaluating the topological features of genome architecture based on network centrality. Through integrated analysis of these features of genome architecture and transcriptome dynamics during myogenic reprogramming of human fibroblasts we find that significant architectural reorganization precedes activation of a myogenic transcriptional program. This interplay sets the stage for a critical transition observed at several genomic scales reflecting definitive adoption of the myogenic phenotype. Subsequently, TFs within the myogenic transcriptional program participate in entrainment of biological rhythms. These findings reveal a role for topological features of genome architecture in the initiation of transcriptional programs during TF-mediated human cellular reprogramming.Genome architecture has emerged as a critical element of transcriptional regulation, although its role in the control of cell identity is not well understood. Here we use transcription factor (TF)-mediated reprogramming to examine the interplay between genome architecture and transcriptional programs that transition cells into the myogenic identity. We recently developed new methods for evaluating the topological features of genome architecture based on network centrality. Through integrated analysis of these features of genome architecture and transcriptome dynamics during myogenic reprogramming of human fibroblasts we find that significant architectural reorganization precedes activation of a myogenic transcriptional program. This interplay sets the stage for a critical transition observed at several genomic scales reflecting definitive adoption of the myogenic phenotype. Subsequently, TFs within the myogenic transcriptional program participate in entrainment of biological rhythms. These findings reveal a role for topological features of genome architecture in the initiation of transcriptional programs during TF-mediated human cellular reprogramming. Genome architecture has emerged as a critical element of transcriptional regulation, although its role in the control of cell identity is not well understood. Here we use transcription factor (TF)-mediated reprogramming to examine the interplay between genome architecture and transcriptional programs that transition cells into the myogenic identity. We recently developed new methods for evaluating the topological features of genome architecture based on network centrality. Through integrated analysis of these features of genome architecture and transcriptome dynamics during myogenic reprogramming of human fibroblasts we find that significant architectural reorganization precedes activation of a myogenic transcriptional program. This interplay sets the stage for a critical transition observed at several genomic scales reflecting definitive adoption of the myogenic phenotype. Subsequently, TFs within the myogenic transcriptional program participate in entrainment of biological rhythms. These findings reveal a role for topological features of genome architecture in the initiation of transcriptional programs during TF-mediated human cellular reprogramming. • 4D Nucleome analysis of direct human fibroblast to muscle reprogramming • A space-time bifurcation marks transit to a new cell identity • Chromatin reorganization precedes significant transcriptional changes • Myogenic master regulators have a role in entraining biological rhythms Molecular Structure; Integrative Aspects of Cell Biology; Systems Biology; Omics Genome architecture has emerged as a critical element of transcriptional regulation, although its role in the control of cell identity is not well understood. Here we use transcription factor (TF)-mediated reprogramming to examine the interplay between genome architecture and transcriptional programs that transition cells into the myogenic identity. We recently developed new methods for evaluating the topological features of genome architecture based on network centrality. Through integrated analysis of these features of genome architecture and transcriptome dynamics during myogenic reprogramming of human fibroblasts we find that significant architectural reorganization precedes activation of a myogenic transcriptional program. This interplay sets the stage for a critical transition observed at several genomic scales reflecting definitive adoption of the myogenic phenotype. Subsequently, TFs within the myogenic transcriptional program participate in entrainment of biological rhythms. These findings reveal a role for topological features of genome architecture in the initiation of transcriptional programs during TF-mediated human cellular reprogramming. [Display omitted] •4D Nucleome analysis of direct human fibroblast to muscle reprogramming•A space-time bifurcation marks transit to a new cell identity•Chromatin reorganization precedes significant transcriptional changes•Myogenic master regulators have a role in entraining biological rhythms Molecular Structure; Integrative Aspects of Cell Biology; Systems Biology; Omics |
| Author | Higgins, Gerald Seaman, Laura Smale, Steve Rajapakse, Indika Chen, Haiming Meixner, Walter Ronquist, Scott Muir, Lindsey A. Baldi, Pierre Chen, Pin-Yu Liu, Sijia Ceglia, Nicholas Hero, Alfred |
| AuthorAffiliation | 3 Department of Computer Science, University of California-Irvine, Irvine, CA 92697, USA 1 Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA 2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA 5 Department of Mathematics, City University of Hong Kong, Hong Kong 999077, China 7 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA 4 AI Foundations, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA 6 Department of Mathematics, University of California, Berkeley, CA 94720, USA |
| AuthorAffiliation_xml | – name: 2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA – name: 5 Department of Mathematics, City University of Hong Kong, Hong Kong 999077, China – name: 7 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA – name: 3 Department of Computer Science, University of California-Irvine, Irvine, CA 92697, USA – name: 4 AI Foundations, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA – name: 6 Department of Mathematics, University of California, Berkeley, CA 94720, USA – name: 1 Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA |
| Author_xml | – sequence: 1 givenname: Sijia surname: Liu fullname: Liu, Sijia organization: Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 2 givenname: Haiming surname: Chen fullname: Chen, Haiming organization: Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 3 givenname: Scott surname: Ronquist fullname: Ronquist, Scott organization: Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 4 givenname: Laura surname: Seaman fullname: Seaman, Laura organization: Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 5 givenname: Nicholas surname: Ceglia fullname: Ceglia, Nicholas organization: Department of Computer Science, University of California-Irvine, Irvine, CA 92697, USA – sequence: 6 givenname: Walter surname: Meixner fullname: Meixner, Walter organization: Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 7 givenname: Pin-Yu surname: Chen fullname: Chen, Pin-Yu organization: AI Foundations, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA – sequence: 8 givenname: Gerald surname: Higgins fullname: Higgins, Gerald organization: Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 9 givenname: Pierre surname: Baldi fullname: Baldi, Pierre organization: Department of Computer Science, University of California-Irvine, Irvine, CA 92697, USA – sequence: 10 givenname: Steve surname: Smale fullname: Smale, Steve organization: Department of Mathematics, City University of Hong Kong, Hong Kong 999077, China – sequence: 11 givenname: Alfred surname: Hero fullname: Hero, Alfred organization: Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 12 givenname: Lindsey A. surname: Muir fullname: Muir, Lindsey A. organization: Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 13 givenname: Indika surname: Rajapakse fullname: Rajapakse, Indika email: indikar@umich.edu organization: Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30240614$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UsFq3DAQFSWlSdP8QA_Fx152O5Jl2YZSCEubBBIKZXsW8njsaLGlrWQH8veRu0lJeogY0CC99wbpvffsyHlHjH3ksObA1Zfd2ka0awG8WkMqEG_YiSiqegUgxdGz_pidxbiDhEgla_WOHeepAcXlCdtekPMjZecBb-1EOM2BshtqrZkoZttgXMRg95P1zgzZxrsp-CHzXXY5j8ZlN_e-J2cx-0X74PtgxtG6_gN725kh0tnjfsp-__i-3Vyurn9eXG3Or1dYCD6tCmoFqJyqEkQl8qJtTI1lVVfApSFEMqRqaiTvgHM0ougwR65SNVCUOean7Oqg23qz0_tgRxPutTdW_z3wodcmTBYH0iWYRtSqVUrVMseiga4pO9GUClolYNH6dtDaz81ILVJ6qRleiL68cfZW9_5OK56XtYIk8PlRIPg_M8VJj8khGgbjyM9RC56WlDXIBP30fNa_IU-2JEB1AGDwMQbqNNrJLCak0XbQHPQSAr3TSwj0EgINqUAkqviP-qT-KunrgUTJrTtLQScEOUw5CCkT6Tvta_QHxv7Log |
| CitedBy_id | crossref_primary_10_1109_TNSE_2020_3002963 crossref_primary_10_1016_j_ydbio_2018_11_001 crossref_primary_10_1093_bfgp_elae014 crossref_primary_10_1038_s41421_022_00416_z crossref_primary_10_3390_ijms21010240 crossref_primary_10_7554_eLife_43017 crossref_primary_10_3390_cells11213435 crossref_primary_10_1016_j_neo_2020_12_010 crossref_primary_10_1124_pr_119_017681 crossref_primary_10_1080_19491034_2021_1910437 crossref_primary_10_1101_gr_277206_122 crossref_primary_10_1016_j_molcel_2019_07_036 crossref_primary_10_1016_j_isci_2024_111218 crossref_primary_10_1038_s41598_023_44791_3 crossref_primary_10_1186_s13395_022_00303_x |
| Cites_doi | 10.1016/j.cels.2016.12.001 10.1038/nature14222 10.1038/nature11082 10.1177/0748730410379711 10.1101/gad.2027911 10.1073/pnas.1419272111 10.1093/hmg/ddn151 10.1016/j.stem.2016.01.007 10.1016/j.stemcr.2016.10.002 10.1097/JES.0b013e31821c01e1 10.1083/jcb.201010129 10.1038/srep25944 10.1371/journal.pone.0108858 10.1038/cddis.2015.190 10.1111/febs.12188 10.1101/cshperspect.a008342 10.1093/bioinformatics/btw221 10.1073/pnas.1014523107 10.1101/gad.1209304 10.15252/embr.201745130 10.1186/s13059-015-0741-y 10.1016/0092-8674(80)90408-0 10.1126/scisignal.2005482 10.1038/sj.emboj.7601635 10.1371/journal.pone.0010232 10.1073/pnas.86.14.5434 10.1126/science.1846704 10.1186/s13395-015-0046-6 10.1186/1471-2105-12-495 10.1073/pnas.0602831103 10.1016/j.cell.2013.09.053 10.1126/science.1181369 10.1016/0092-8674(93)90610-3 10.1093/nar/gkr1297 10.1016/j.ydbio.2013.12.028 10.1016/j.cell.2007.11.019 10.1073/pnas.1505822112 10.1093/bioinformatics/btp616 |
| ContentType | Journal Article |
| Copyright | 2018 Copyright © 2018. Published by Elsevier Inc. 2018. 2018 |
| Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Inc. – notice: 2018. 2018 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.isci.2018.08.002 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2589-0042 |
| EndPage | 246 |
| ExternalDocumentID | oai_doaj_org_article_70ab296d666943c5b0fb7f2b760d620c PMC6137960 30240614 10_1016_j_isci_2018_08_002 S2589004218301147 |
| Genre | Journal Article |
| GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c521t-5ed2063e87028235dba9c7898014aecceae69eb41f011ca25fc3c16c16b0573c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449733900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2589-0042 |
| IngestDate | Fri Oct 03 12:50:48 EDT 2025 Tue Sep 30 16:46:09 EDT 2025 Thu Jul 10 22:21:17 EDT 2025 Thu Apr 03 06:58:47 EDT 2025 Thu Nov 13 04:31:14 EST 2025 Tue Nov 18 22:45:15 EST 2025 Wed May 17 01:07:07 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Molecular Structure Systems Biology Integrative Aspects of Cell Biology Omics |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c521t-5ed2063e87028235dba9c7898014aecceae69eb41f011ca25fc3c16c16b0573c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
| OpenAccessLink | https://doaj.org/article/70ab296d666943c5b0fb7f2b760d620c |
| PMID | 30240614 |
| PQID | 2111144904 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_70ab296d666943c5b0fb7f2b760d620c pubmedcentral_primary_oai_pubmedcentral_nih_gov_6137960 proquest_miscellaneous_2111144904 pubmed_primary_30240614 crossref_citationtrail_10_1016_j_isci_2018_08_002 crossref_primary_10_1016_j_isci_2018_08_002 elsevier_sciencedirect_doi_10_1016_j_isci_2018_08_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-31 |
| PublicationDateYYYYMMDD | 2018-08-31 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | iScience |
| PublicationTitleAlternate | iScience |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Joliot, Ait-Mohamed, Battisti, Pontis, Philipot, Robin, Ito, Ait-Si-Ali (bib17) 2014; 9 Ferrán, Martí-Pàmies, Alonso, Rodríguez-Calvo, Aguiló, Vidal, Rodríguez, Martínez-González (bib11) 2016; 6 Fortin, Hansen (bib12) 2015; 16 Newman (bib26) 2010 Del Vecchio, Abdallah, Qian, Collins (bib7) 2017; 4 Takahashi, Tanabe, Ohnuki, Narita, Ichisaka, Tomoda, Yamanaka (bib33) 2007; 131 Chen, Hero, Rajapakse (bib5) 2016; 32 Schiaffino, Rossi, Smerdu, Leinwand, Reggiani (bib31) 2015; 5 Chen, Chen, Muir, Ronquist, Meixner, Ljungman, Ried, Smale, Rajapakse (bib4) 2015; 112 Weintraub, Davis, Tapscott, Thayer, Krause, Benezra, Blackwell, Turner, Rupp, Hollenberg (bib36) 1991; 251 Juan, Derfoul, Feng, Ryall, Dell’Orso, Pasut, Zare, Simone, Rudnicki, Sartorelli (bib18) 2011; 25 Daily, Patel, Rigor, Xie, Baldi (bib6) 2011; 12 Lohmann, Margulies, Horstmann, Pleger, Lepsien, Goldhahn, Schloegl, Stumvoll, Villringer, Turner (bib23) 2010; 5 Hughes, Hogenesch, Kornacker (bib15) 2010; 25 Robinson, McCarthy, Smyth (bib30) 2010; 26 Zeng, Jiang, Kong, El-Ali, Ball, Christopher, Ma, Hashimoto, Yokomori, Mortazavi (bib39) 2016; 44 Rao, Kumar, Farkhondeh, Baskerville, Lodish (bib29) 2006; 103 Meeson, Shi, Alexander, Williams, Allen, Jiang, Adham, Goetsch, Hammer, Garry (bib25) 2007; 26 Jang, Kim, Kim, An, Johnson, Song, Rhee, Choi (bib16) 2015; 6 Bentzinger, Wang, Rudnicki (bib2) 2012; 4 Krijger, Di Stefano, de Wit, Limone, van Oevelen, de Laat, Graf (bib21) 2016; 18 Weintraub, Tapscott, Davis, Thayer, Adam, Lassar, Miller (bib37) 1989; 86 Dierickx, Van Laake, Geijsen (bib8) 2018; 19 Kimura, Han, Li, Fall, Ra, Haraguchi, Tapscott, Chamberlain (bib19) 2008; 17 Rajapakse, Groudine (bib28) 2011; 192 Weintraub (bib35) 1993; 75 Andrews, Zhang, McCarthy, McDearmon, Hornberger, Russell, Campbell, Arbogast, Reid, Walker (bib1) 2010; 107 Zhang, Patel, McCarthy, Rabchevsky, Goldhamer, Esser (bib40) 2012; 40 Singh, Dilworth (bib32) 2013; 280 Gard, Lazarides (bib13) 1980; 19 Böck, Hinley, Schmitt, Wahlicht, Kramer, Southgate (bib3) 2014; 386 Pacheco-Leyva, Matias, Oliveira, Santos, Nascimento, Guerreiro, Michell, van De Vrugt, Machado-Oliveira, Ferreira (bib27) 2016; 7 Kosak, Groudine (bib20) 2004; 18 Hnisz, Abraham, Lee, Lau, Saint-André, Sigova, Hoke, Young (bib14) 2013; 155 Xie, Jin, Merenick, Ding, Fetalvero, Wagner, Mai, Gleim, Tucker, Birnbaum (bib38) 2015; 8 Dixon, Jung, Selvaraj, Shen, Antosiewicz-Bourget, Lee, Ye, Kim, Rajagopal, Xie (bib9) 2015; 518 McCarthy (bib24) 2011; 39 Umemura, Koike, Matsumoto, Yoo, Chen, Yasuhara, Takahashi, Yagita (bib34) 2014; 111 Dixon, Selvaraj, Yue, Kim, Li, Shen, Hu, Liu, Ren (bib10) 2012; 485 Lieberman-Aiden, van Berkum, Williams, Imakaev, Ragoczy, Telling, Amit, Lajoie, Sabo (bib22) 2009; 326 Fortin (10.1016/j.isci.2018.08.002_bib12) 2015; 16 Zhang (10.1016/j.isci.2018.08.002_bib40) 2012; 40 Umemura (10.1016/j.isci.2018.08.002_bib34) 2014; 111 Rajapakse (10.1016/j.isci.2018.08.002_bib28) 2011; 192 Chen (10.1016/j.isci.2018.08.002_bib5) 2016; 32 Daily (10.1016/j.isci.2018.08.002_bib6) 2011; 12 Meeson (10.1016/j.isci.2018.08.002_bib25) 2007; 26 Hughes (10.1016/j.isci.2018.08.002_bib15) 2010; 25 Juan (10.1016/j.isci.2018.08.002_bib18) 2011; 25 Robinson (10.1016/j.isci.2018.08.002_bib30) 2010; 26 Rao (10.1016/j.isci.2018.08.002_bib29) 2006; 103 Jang (10.1016/j.isci.2018.08.002_bib16) 2015; 6 Dixon (10.1016/j.isci.2018.08.002_bib10) 2012; 485 Xie (10.1016/j.isci.2018.08.002_bib38) 2015; 8 Pacheco-Leyva (10.1016/j.isci.2018.08.002_bib27) 2016; 7 Newman (10.1016/j.isci.2018.08.002_bib26) 2010 McCarthy (10.1016/j.isci.2018.08.002_bib24) 2011; 39 Schiaffino (10.1016/j.isci.2018.08.002_bib31) 2015; 5 Zeng (10.1016/j.isci.2018.08.002_bib39) 2016; 44 Weintraub (10.1016/j.isci.2018.08.002_bib35) 1993; 75 Lieberman-Aiden (10.1016/j.isci.2018.08.002_bib22) 2009; 326 Takahashi (10.1016/j.isci.2018.08.002_bib33) 2007; 131 Ferrán (10.1016/j.isci.2018.08.002_bib11) 2016; 6 Böck (10.1016/j.isci.2018.08.002_bib3) 2014; 386 Hnisz (10.1016/j.isci.2018.08.002_bib14) 2013; 155 Singh (10.1016/j.isci.2018.08.002_bib32) 2013; 280 Lohmann (10.1016/j.isci.2018.08.002_bib23) 2010; 5 Andrews (10.1016/j.isci.2018.08.002_bib1) 2010; 107 Joliot (10.1016/j.isci.2018.08.002_bib17) 2014; 9 Kosak (10.1016/j.isci.2018.08.002_bib20) 2004; 18 Bentzinger (10.1016/j.isci.2018.08.002_bib2) 2012; 4 Weintraub (10.1016/j.isci.2018.08.002_bib36) 1991; 251 Kimura (10.1016/j.isci.2018.08.002_bib19) 2008; 17 Weintraub (10.1016/j.isci.2018.08.002_bib37) 1989; 86 Dixon (10.1016/j.isci.2018.08.002_bib9) 2015; 518 Chen (10.1016/j.isci.2018.08.002_bib4) 2015; 112 Gard (10.1016/j.isci.2018.08.002_bib13) 1980; 19 Krijger (10.1016/j.isci.2018.08.002_bib21) 2016; 18 Del Vecchio (10.1016/j.isci.2018.08.002_bib7) 2017; 4 Dierickx (10.1016/j.isci.2018.08.002_bib8) 2018; 19 |
| References_xml | – volume: 18 start-page: 1371 year: 2004 end-page: 1384 ident: bib20 article-title: Form follows function: the genomic organization of cellular differentiation publication-title: Genes Dev. – volume: 75 start-page: 1241 year: 1993 end-page: 1244 ident: bib35 article-title: The MyoD family and myogenesis: redundancy, networks, and thresholds publication-title: Cell – volume: 251 start-page: 761 year: 1991 end-page: 766 ident: bib36 article-title: The myoD gene family: nodal point during specification of the muscle cell lineage publication-title: Science – volume: 4 start-page: 109 year: 2017 end-page: 120.e11 ident: bib7 article-title: A blueprint for a synthetic genetic feedback controller to reprogram cell fate publication-title: Cell Syst. – volume: 131 start-page: 861 year: 2007 end-page: 872 ident: bib33 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: bib30 article-title: edger: a bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 7 start-page: 1037 year: 2016 end-page: 1049 ident: bib27 article-title: CITED2 cooperates with isl1 and promotes cardiac differentiation of mouse embryonic stem cells publication-title: Stem Cell Rep. – volume: 4 start-page: 1 year: 2012 end-page: 16 ident: bib2 article-title: Building muscle: molecular regulation of myogenesis publication-title: Cold Spring Harb. Perspect. Biol. – volume: 112 start-page: 8002 year: 2015 end-page: 8007 ident: bib4 article-title: Functional organization of the human 4d nucleome publication-title: Proc. Natl. Acad. Sci. USA – volume: 326 start-page: 289 year: 2009 end-page: 293 ident: bib22 article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome publication-title: Science – volume: 6 start-page: 1 year: 2015 end-page: 11 ident: bib16 article-title: KAT5-mediated SOX4 acetylation orchestrates chromatin remodeling during myoblast differentiation publication-title: Cell Death Dis. – volume: 8 start-page: 1 year: 2015 end-page: 27 ident: bib38 article-title: Phosphorylation of gata-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition publication-title: Sci. Signal. – volume: 386 start-page: 321 year: 2014 end-page: 330 ident: bib3 article-title: Identification of ELF3 as an early transcriptional regulator of human urothelium publication-title: Dev. Biol. – volume: 26 start-page: 1902 year: 2007 end-page: 1912 ident: bib25 article-title: Sox15 and fhl3 transcriptionally coactivate Foxk1 and regulate myogenic progenitor cells publication-title: EMBO J. – volume: 40 start-page: 3419 year: 2012 end-page: 3430 ident: bib40 article-title: A non-canonical e-box within the MyoD core enhancer is necessary for circadian expression in skeletal muscle publication-title: Nucleic Acids Res. – volume: 107 start-page: 19090 year: 2010 end-page: 19095 ident: bib1 article-title: CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function publication-title: Proc. Natl. Acad. Sci. USA – volume: 19 start-page: 263 year: 1980 end-page: 275 ident: bib13 article-title: The synthesis and distribution of desmin and vimentin during myogenesis in vitro publication-title: Cell – volume: 25 start-page: 789 year: 2011 end-page: 794 ident: bib18 article-title: Polycomb ezh2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells publication-title: Genes Dev. – volume: 280 start-page: 3991 year: 2013 end-page: 4003 ident: bib32 article-title: Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors publication-title: FEBS J. – volume: 39 start-page: 150 year: 2011 ident: bib24 article-title: The MyomiR network in skeletal muscle plasticity publication-title: Exerc. Sport Sci. Rev. – volume: 32 start-page: 2151 year: 2016 end-page: 2158 ident: bib5 article-title: Spectral identification of topological domains publication-title: Bioinformatics – volume: 155 start-page: 934 year: 2013 end-page: 947 ident: bib14 article-title: Super-enhancers in the control of cell identity and disease publication-title: Cell – volume: 12 start-page: 495 year: 2011 ident: bib6 article-title: MotifMap: integrative genome-wide maps of regulatory motif sites for model species publication-title: BMC Bioinformatics – year: 2010 ident: bib26 article-title: Networks: An Introduction – volume: 18 start-page: 597 year: 2016 end-page: 610 ident: bib21 article-title: Cell-of-origin-specific 3d genome structure acquired during somatic cell reprogramming publication-title: Cell Stem Cell – volume: 5 start-page: 1 year: 2010 end-page: 8 ident: bib23 article-title: Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain publication-title: PLoS One – volume: 103 start-page: 8721 year: 2006 end-page: 8726 ident: bib29 article-title: Myogenic factors that regulate expression of muscle-specific microRNAs publication-title: Proc. Natl. Acad. Sci. USA – volume: 86 start-page: 5434 year: 1989 end-page: 5438 ident: bib37 article-title: Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 180 year: 2015 ident: bib12 article-title: Reconstructing a/b compartments as revealed by Hi-C using long-range correlations in epigenetic data publication-title: Genome Biol. – volume: 19 start-page: 18 year: 2018 end-page: 28 ident: bib8 article-title: Circadian clocks: from stem cells to tissue homeostasis and regeneration publication-title: EMBO Rep. – volume: 17 start-page: 2507 year: 2008 end-page: 2517 ident: bib19 article-title: Cell-lineage regulated myogenesis for dystrophin replacement: a novel therapeutic approach for treatment of muscular dystrophy publication-title: Hum. Mol. Genet. – volume: 192 start-page: 711 year: 2011 end-page: 721 ident: bib28 article-title: On emerging nuclear order publication-title: J. Cell Biol. – volume: 518 start-page: 331 year: 2015 end-page: 336 ident: bib9 article-title: Chromatin architecture reorganization during stem cell differentiation publication-title: Nature – volume: 9 start-page: 1 year: 2014 end-page: 11 ident: bib17 article-title: The SWI/SNF subunit/tumor suppressor BAF47/INI1 is essential in cell cycle arrest upon skeletal muscle terminal differentiation publication-title: PloS One – volume: 44 start-page: e158 year: 2016 ident: bib39 article-title: Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity publication-title: Nucleic Acids Res. – volume: 485 start-page: 376 year: 2012 end-page: 380 ident: bib10 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature – volume: 6 start-page: 1 year: 2016 end-page: 11 ident: bib11 article-title: The nuclear receptor NOR-1 regulates the small muscle protein, X-linked (SMPX) and myotube differentiation publication-title: Sci. Rep. – volume: 5 start-page: 22 year: 2015 ident: bib31 article-title: Developmental myosins: expression patterns and functional significance publication-title: Skelet. Muscle – volume: 25 start-page: 372 year: 2010 end-page: 380 ident: bib15 article-title: Jtk_cycle: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets publication-title: J. Biol. Rhythms – volume: 111 start-page: 5039 year: 2014 end-page: 5048 ident: bib34 article-title: Transcriptional program of Kpna2/importin- publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 109 year: 2017 ident: 10.1016/j.isci.2018.08.002_bib7 article-title: A blueprint for a synthetic genetic feedback controller to reprogram cell fate publication-title: Cell Syst. doi: 10.1016/j.cels.2016.12.001 – volume: 518 start-page: 331 year: 2015 ident: 10.1016/j.isci.2018.08.002_bib9 article-title: Chromatin architecture reorganization during stem cell differentiation publication-title: Nature doi: 10.1038/nature14222 – volume: 485 start-page: 376 year: 2012 ident: 10.1016/j.isci.2018.08.002_bib10 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature doi: 10.1038/nature11082 – volume: 25 start-page: 372 year: 2010 ident: 10.1016/j.isci.2018.08.002_bib15 article-title: Jtk_cycle: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets publication-title: J. Biol. Rhythms doi: 10.1177/0748730410379711 – volume: 25 start-page: 789 year: 2011 ident: 10.1016/j.isci.2018.08.002_bib18 article-title: Polycomb ezh2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells publication-title: Genes Dev. doi: 10.1101/gad.2027911 – volume: 111 start-page: 5039 year: 2014 ident: 10.1016/j.isci.2018.08.002_bib34 article-title: Transcriptional program of Kpna2/importin-α2 regulates cellular differentiation-coupled circadian clock development in mammalian cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1419272111 – volume: 17 start-page: 2507 year: 2008 ident: 10.1016/j.isci.2018.08.002_bib19 article-title: Cell-lineage regulated myogenesis for dystrophin replacement: a novel therapeutic approach for treatment of muscular dystrophy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddn151 – volume: 18 start-page: 597 year: 2016 ident: 10.1016/j.isci.2018.08.002_bib21 article-title: Cell-of-origin-specific 3d genome structure acquired during somatic cell reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.01.007 – volume: 7 start-page: 1037 year: 2016 ident: 10.1016/j.isci.2018.08.002_bib27 article-title: CITED2 cooperates with isl1 and promotes cardiac differentiation of mouse embryonic stem cells publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2016.10.002 – volume: 39 start-page: 150 year: 2011 ident: 10.1016/j.isci.2018.08.002_bib24 article-title: The MyomiR network in skeletal muscle plasticity publication-title: Exerc. Sport Sci. Rev. doi: 10.1097/JES.0b013e31821c01e1 – volume: 192 start-page: 711 year: 2011 ident: 10.1016/j.isci.2018.08.002_bib28 article-title: On emerging nuclear order publication-title: J. Cell Biol. doi: 10.1083/jcb.201010129 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.isci.2018.08.002_bib11 article-title: The nuclear receptor NOR-1 regulates the small muscle protein, X-linked (SMPX) and myotube differentiation publication-title: Sci. Rep. doi: 10.1038/srep25944 – volume: 9 start-page: 1 year: 2014 ident: 10.1016/j.isci.2018.08.002_bib17 article-title: The SWI/SNF subunit/tumor suppressor BAF47/INI1 is essential in cell cycle arrest upon skeletal muscle terminal differentiation publication-title: PloS One doi: 10.1371/journal.pone.0108858 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.isci.2018.08.002_bib16 article-title: KAT5-mediated SOX4 acetylation orchestrates chromatin remodeling during myoblast differentiation publication-title: Cell Death Dis. doi: 10.1038/cddis.2015.190 – volume: 280 start-page: 3991 year: 2013 ident: 10.1016/j.isci.2018.08.002_bib32 article-title: Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors publication-title: FEBS J. doi: 10.1111/febs.12188 – volume: 4 start-page: 1 year: 2012 ident: 10.1016/j.isci.2018.08.002_bib2 article-title: Building muscle: molecular regulation of myogenesis publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a008342 – volume: 32 start-page: 2151 year: 2016 ident: 10.1016/j.isci.2018.08.002_bib5 article-title: Spectral identification of topological domains publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw221 – volume: 107 start-page: 19090 year: 2010 ident: 10.1016/j.isci.2018.08.002_bib1 article-title: CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1014523107 – volume: 18 start-page: 1371 year: 2004 ident: 10.1016/j.isci.2018.08.002_bib20 article-title: Form follows function: the genomic organization of cellular differentiation publication-title: Genes Dev. doi: 10.1101/gad.1209304 – volume: 19 start-page: 18 year: 2018 ident: 10.1016/j.isci.2018.08.002_bib8 article-title: Circadian clocks: from stem cells to tissue homeostasis and regeneration publication-title: EMBO Rep. doi: 10.15252/embr.201745130 – volume: 16 start-page: 180 year: 2015 ident: 10.1016/j.isci.2018.08.002_bib12 article-title: Reconstructing a/b compartments as revealed by Hi-C using long-range correlations in epigenetic data publication-title: Genome Biol. doi: 10.1186/s13059-015-0741-y – volume: 19 start-page: 263 year: 1980 ident: 10.1016/j.isci.2018.08.002_bib13 article-title: The synthesis and distribution of desmin and vimentin during myogenesis in vitro publication-title: Cell doi: 10.1016/0092-8674(80)90408-0 – volume: 8 start-page: 1 year: 2015 ident: 10.1016/j.isci.2018.08.002_bib38 article-title: Phosphorylation of gata-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition publication-title: Sci. Signal. doi: 10.1126/scisignal.2005482 – volume: 26 start-page: 1902 year: 2007 ident: 10.1016/j.isci.2018.08.002_bib25 article-title: Sox15 and fhl3 transcriptionally coactivate Foxk1 and regulate myogenic progenitor cells publication-title: EMBO J. doi: 10.1038/sj.emboj.7601635 – volume: 5 start-page: 1 year: 2010 ident: 10.1016/j.isci.2018.08.002_bib23 article-title: Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain publication-title: PLoS One doi: 10.1371/journal.pone.0010232 – volume: 86 start-page: 5434 year: 1989 ident: 10.1016/j.isci.2018.08.002_bib37 article-title: Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.86.14.5434 – volume: 251 start-page: 761 year: 1991 ident: 10.1016/j.isci.2018.08.002_bib36 article-title: The myoD gene family: nodal point during specification of the muscle cell lineage publication-title: Science doi: 10.1126/science.1846704 – volume: 5 start-page: 22 year: 2015 ident: 10.1016/j.isci.2018.08.002_bib31 article-title: Developmental myosins: expression patterns and functional significance publication-title: Skelet. Muscle doi: 10.1186/s13395-015-0046-6 – volume: 12 start-page: 495 year: 2011 ident: 10.1016/j.isci.2018.08.002_bib6 article-title: MotifMap: integrative genome-wide maps of regulatory motif sites for model species publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-495 – volume: 44 start-page: e158 year: 2016 ident: 10.1016/j.isci.2018.08.002_bib39 article-title: Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity publication-title: Nucleic Acids Res. – year: 2010 ident: 10.1016/j.isci.2018.08.002_bib26 – volume: 103 start-page: 8721 year: 2006 ident: 10.1016/j.isci.2018.08.002_bib29 article-title: Myogenic factors that regulate expression of muscle-specific microRNAs publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0602831103 – volume: 155 start-page: 934 year: 2013 ident: 10.1016/j.isci.2018.08.002_bib14 article-title: Super-enhancers in the control of cell identity and disease publication-title: Cell doi: 10.1016/j.cell.2013.09.053 – volume: 326 start-page: 289 year: 2009 ident: 10.1016/j.isci.2018.08.002_bib22 article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome publication-title: Science doi: 10.1126/science.1181369 – volume: 75 start-page: 1241 year: 1993 ident: 10.1016/j.isci.2018.08.002_bib35 article-title: The MyoD family and myogenesis: redundancy, networks, and thresholds publication-title: Cell doi: 10.1016/0092-8674(93)90610-3 – volume: 40 start-page: 3419 year: 2012 ident: 10.1016/j.isci.2018.08.002_bib40 article-title: A non-canonical e-box within the MyoD core enhancer is necessary for circadian expression in skeletal muscle publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1297 – volume: 386 start-page: 321 year: 2014 ident: 10.1016/j.isci.2018.08.002_bib3 article-title: Identification of ELF3 as an early transcriptional regulator of human urothelium publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2013.12.028 – volume: 131 start-page: 861 year: 2007 ident: 10.1016/j.isci.2018.08.002_bib33 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 112 start-page: 8002 year: 2015 ident: 10.1016/j.isci.2018.08.002_bib4 article-title: Functional organization of the human 4d nucleome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1505822112 – volume: 26 start-page: 139 year: 2010 ident: 10.1016/j.isci.2018.08.002_bib30 article-title: edger: a bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 |
| SSID | ssj0002002496 |
| Score | 2.211893 |
| Snippet | Genome architecture has emerged as a critical element of transcriptional regulation, although its role in the control of cell identity is not well understood.... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 232 |
| SubjectTerms | Integrative Aspects of Cell Biology Molecular Structure Omics Systems Biology |
| Title | Genome Architecture Mediates Transcriptional Control of Human Myogenic Reprogramming |
| URI | https://dx.doi.org/10.1016/j.isci.2018.08.002 https://www.ncbi.nlm.nih.gov/pubmed/30240614 https://www.proquest.com/docview/2111144904 https://pubmed.ncbi.nlm.nih.gov/PMC6137960 https://doaj.org/article/70ab296d666943c5b0fb7f2b760d620c |
| Volume | 6 |
| WOSCitedRecordID | wos000449733900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELboikMvFYg-tgVkpN6qtE4cx_ERVlAOgHqg1d4sxw91UUkQC0j8e2bsZLUpEr1UyinOy-OZzOf4yzeEfHYAA3hRhyxwCRMU73mmDHMZCwHl1XLhYhWFX2fy4qKez9WPtVJfyAlL8sDJcN8kM02hKgcwW5XcioaFRoaikRVzVcEsvn0B9axNpq7i8hpK4cXKcgI5QeCa_R8zidyFf7wir6v-mriUo6wUxftHyek5-PybQ7mWlE62yJseTdLD1IttsuHbHXL53bfdtaeHa2sE9DyW5PBLGpPT8KqAc2eJq067QOMHfXr-2IFTLSwFbJ7IW9eQ3t6SnyfHl7PTrC-ekFmsUZAJ7wqAHx7iEWZVXLjGKCtrhWoxBsbNG18p35R5gAi3phDBcptXsDWokWj5OzJpu9Z_IBTiVBkhoDm3pXO54ZxLX4bKBysBgk1JPhhP215ZHAtc_NEDhexKo8E1Glxj1UtWTMmX1Tk3SVfjxaOPcExWR6ImdtwBnqJ7T9H_8pQpEcOI6h5eJNgAl1q8ePODYfg1xB4uqJjWd_dLXWC-KUvFwATvkzusHpGziJWgRY4cZdSHcUu7-B31vQFhSZhYfvwfnf5EXmNX0lfwXTK5u733e2TTPtwtlrf75JWc1_sxdJ4A5PsbiA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome+Architecture+Mediates+Transcriptional+Control+of+Human+Myogenic+Reprogramming&rft.jtitle=iScience&rft.au=Liu%2C+Sijia&rft.au=Chen%2C+Haiming&rft.au=Ronquist%2C+Scott&rft.au=Seaman%2C+Laura&rft.date=2018-08-31&rft.pub=Elsevier&rft.eissn=2589-0042&rft.volume=6&rft.spage=232&rft.epage=246&rft_id=info:doi/10.1016%2Fj.isci.2018.08.002&rft_id=info%3Apmid%2F30240614&rft.externalDocID=PMC6137960 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |