Information Metamaterial Systems

Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience Jg. 23; H. 8; S. 101403
Hauptverfasser: Cui, Tie Jun, Li, Lianlin, Liu, Shuo, Ma, Qian, Zhang, Lei, Wan, Xiang, Jiang, Wei Xiang, Cheng, Qiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 21.08.2020
Elsevier
Schlagworte:
ISSN:2589-0042, 2589-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be fixed. To control the EM waves dynamically, active devices are integrated into the meta-atoms, yielding active metamaterials. Traditionally, the active metamaterials include tunable metamaterials and reconfigurable metamaterials, which have either small-range tunability or a few numbers of reconfigurability. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, have been presented, which can realize a large number of distinct functionalities and switch them in real time with the aid of field programmable gate array (FPGA). More importantly, the digital coding representations of metamaterials make it possible to bridge the digital world and physical world using the metamaterial platform and make the metamaterials process digital information directly, resulting in information metamaterials. In this review article, we firstly introduce the evolution of metamaterials and then present the concepts and basic principles of digital coding metamaterials and information metamaterials. With more details, we discuss a series of information metamaterial systems, including the programmable metamaterial systems, software metamaterial systems, intelligent metamaterial systems, and space-time-coding metamaterial systems. Finally, we introduce the current progress and predict the future trends of information metamaterials. [Display omitted] Electromagnetic Waves; Information Systems; Metamaterials
AbstractList Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be fixed. To control the EM waves dynamically, active devices are integrated into the meta-atoms, yielding active metamaterials. Traditionally, the active metamaterials include tunable metamaterials and reconfigurable metamaterials, which have either small-range tunability or a few numbers of reconfigurability. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, have been presented, which can realize a large number of distinct functionalities and switch them in real time with the aid of field programmable gate array (FPGA). More importantly, the digital coding representations of metamaterials make it possible to bridge the digital world and physical world using the metamaterial platform and make the metamaterials process digital information directly, resulting in information metamaterials. In this review article, we firstly introduce the evolution of metamaterials and then present the concepts and basic principles of digital coding metamaterials and information metamaterials. With more details, we discuss a series of information metamaterial systems, including the programmable metamaterial systems, software metamaterial systems, intelligent metamaterial systems, and space-time-coding metamaterial systems. Finally, we introduce the current progress and predict the future trends of information metamaterials.
Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be fixed. To control the EM waves dynamically, active devices are integrated into the meta-atoms, yielding active metamaterials. Traditionally, the active metamaterials include tunable metamaterials and reconfigurable metamaterials, which have either small-range tunability or a few numbers of reconfigurability. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, have been presented, which can realize a large number of distinct functionalities and switch them in real time with the aid of field programmable gate array (FPGA). More importantly, the digital coding representations of metamaterials make it possible to bridge the digital world and physical world using the metamaterial platform and make the metamaterials process digital information directly, resulting in information metamaterials. In this review article, we firstly introduce the evolution of metamaterials and then present the concepts and basic principles of digital coding metamaterials and information metamaterials. With more details, we discuss a series of information metamaterial systems, including the programmable metamaterial systems, software metamaterial systems, intelligent metamaterial systems, and space-time-coding metamaterial systems. Finally, we introduce the current progress and predict the future trends of information metamaterials. Electromagnetic Waves; Information Systems; Metamaterials
Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be fixed. To control the EM waves dynamically, active devices are integrated into the meta-atoms, yielding active metamaterials. Traditionally, the active metamaterials include tunable metamaterials and reconfigurable metamaterials, which have either small-range tunability or a few numbers of reconfigurability. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, have been presented, which can realize a large number of distinct functionalities and switch them in real time with the aid of field programmable gate array (FPGA). More importantly, the digital coding representations of metamaterials make it possible to bridge the digital world and physical world using the metamaterial platform and make the metamaterials process digital information directly, resulting in information metamaterials. In this review article, we firstly introduce the evolution of metamaterials and then present the concepts and basic principles of digital coding metamaterials and information metamaterials. With more details, we discuss a series of information metamaterial systems, including the programmable metamaterial systems, software metamaterial systems, intelligent metamaterial systems, and space-time-coding metamaterial systems. Finally, we introduce the current progress and predict the future trends of information metamaterials. [Display omitted] Electromagnetic Waves; Information Systems; Metamaterials
Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be fixed. To control the EM waves dynamically, active devices are integrated into the meta-atoms, yielding active metamaterials. Traditionally, the active metamaterials include tunable metamaterials and reconfigurable metamaterials, which have either small-range tunability or a few numbers of reconfigurability. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, have been presented, which can realize a large number of distinct functionalities and switch them in real time with the aid of field programmable gate array (FPGA). More importantly, the digital coding representations of metamaterials make it possible to bridge the digital world and physical world using the metamaterial platform and make the metamaterials process digital information directly, resulting in information metamaterials. In this review article, we firstly introduce the evolution of metamaterials and then present the concepts and basic principles of digital coding metamaterials and information metamaterials. With more details, we discuss a series of information metamaterial systems, including the programmable metamaterial systems, software metamaterial systems, intelligent metamaterial systems, and space-time-coding metamaterial systems. Finally, we introduce the current progress and predict the future trends of information metamaterials.Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be fixed. To control the EM waves dynamically, active devices are integrated into the meta-atoms, yielding active metamaterials. Traditionally, the active metamaterials include tunable metamaterials and reconfigurable metamaterials, which have either small-range tunability or a few numbers of reconfigurability. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, have been presented, which can realize a large number of distinct functionalities and switch them in real time with the aid of field programmable gate array (FPGA). More importantly, the digital coding representations of metamaterials make it possible to bridge the digital world and physical world using the metamaterial platform and make the metamaterials process digital information directly, resulting in information metamaterials. In this review article, we firstly introduce the evolution of metamaterials and then present the concepts and basic principles of digital coding metamaterials and information metamaterials. With more details, we discuss a series of information metamaterial systems, including the programmable metamaterial systems, software metamaterial systems, intelligent metamaterial systems, and space-time-coding metamaterial systems. Finally, we introduce the current progress and predict the future trends of information metamaterials.
ArticleNumber 101403
Author Cheng, Qiang
Jiang, Wei Xiang
Li, Lianlin
Ma, Qian
Wan, Xiang
Cui, Tie Jun
Zhang, Lei
Liu, Shuo
Author_xml – sequence: 1
  givenname: Tie Jun
  surname: Cui
  fullname: Cui, Tie Jun
  email: tjcui@seu.edu.cn
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
– sequence: 2
  givenname: Lianlin
  surname: Li
  fullname: Li, Lianlin
  organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University, Beijing 100871, China
– sequence: 3
  givenname: Shuo
  surname: Liu
  fullname: Liu, Shuo
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
– sequence: 4
  givenname: Qian
  surname: Ma
  fullname: Ma, Qian
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
– sequence: 5
  givenname: Lei
  orcidid: 0000-0002-8791-6374
  surname: Zhang
  fullname: Zhang, Lei
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
– sequence: 6
  givenname: Xiang
  surname: Wan
  fullname: Wan, Xiang
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
– sequence: 7
  givenname: Wei Xiang
  orcidid: 0000-0002-3122-5937
  surname: Jiang
  fullname: Jiang, Wei Xiang
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
– sequence: 8
  givenname: Qiang
  surname: Cheng
  fullname: Cheng, Qiang
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32777776$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtrVDEUDlKxD_sHXMgs3cyYd25ABClqB1pctK5DbnJSM9x7U5NMof_ezNxW2i6aTQ7nfA_4vmN0MKUJEPpA8IpgIj9vVrG4uKKY7hccszfoiIpOLzHm9ODJfIhOS9lg3JCYci3foUNG1e7JI7RYTyHl0daYpsUlVNtGyNEOi6v7UmEs79HbYIcCpw__Cfr94_v12fny4tfP9dm3i6UTlNSl4BoLLyXo4KQSCpzGqg-9F8wS8CpQwN4TqqlU3GsMSmCmvA6dV1IHyk7Qetb1yW7MbY6jzfcm2Wj2i5RvjM01ugGM9MJ3DBilQXBvXQ_Ni9s-aOkckappfZ21brf9CN7BVLMdnok-v0zxj7lJd0ZxIjreNYFPDwI5_d1CqWZsacMw2AnSthjKGe2EYhI36MenXv9NHiNugG4GuJxKyRCMi3Wfd7OOgyHY7Ao1G7Mr1OwKNXOhjUpfUB_VXyV9mUnQ2rqLkE1DwOTAxwyutjjja_R_sHy4KA
CitedBy_id crossref_primary_10_1080_02726343_2024_2313971
crossref_primary_10_1109_TAP_2024_3368230
crossref_primary_10_1002_lpor_202402014
crossref_primary_10_1016_j_optcom_2022_129196
crossref_primary_10_1002_adom_202002155
crossref_primary_10_1039_D5NH00011D
crossref_primary_10_1088_1361_665X_ad1268
crossref_primary_10_1002_mop_70028
crossref_primary_10_1016_j_optcom_2023_129506
crossref_primary_10_1093_nsr_nwab134
crossref_primary_10_3390_nano11102709
crossref_primary_10_1016_j_mtcomm_2024_110027
crossref_primary_10_1002_adom_202201900
crossref_primary_10_1002_adfm_202310234
crossref_primary_10_1016_j_trac_2025_118342
crossref_primary_10_1002_lpor_202000449
crossref_primary_10_1515_nanoph_2021_0657
crossref_primary_10_1109_TAP_2022_3221840
crossref_primary_10_3390_photonics11010069
crossref_primary_10_1007_s13320_025_0743_7
crossref_primary_10_1103_PhysRevApplied_21_040502
crossref_primary_10_29026_oea_2025_240315
crossref_primary_10_1364_PRJ_412052
crossref_primary_10_1002_eng2_12658
crossref_primary_10_1515_nanoph_2022_0764
crossref_primary_10_1063_5_0093424
crossref_primary_10_1063_5_0198211
crossref_primary_10_1109_TVT_2024_3383824
crossref_primary_10_1155_2021_9951644
crossref_primary_10_1063_5_0258161
crossref_primary_10_1515_nanoph_2023_0490
crossref_primary_10_3390_mi12080988
crossref_primary_10_1002_adem_202300750
crossref_primary_10_1088_2515_7647_acadc1
crossref_primary_10_1002_adfm_202203120
crossref_primary_10_1002_eng2_70088
crossref_primary_10_1063_5_0076022
crossref_primary_10_1002_adfm_202403577
crossref_primary_10_1016_j_optmat_2021_111892
crossref_primary_10_1038_s41598_021_86588_2
crossref_primary_10_1016_j_isci_2024_111364
crossref_primary_10_1002_adom_202203114
crossref_primary_10_1038_s41467_025_56209_x
crossref_primary_10_1063_5_0064675
crossref_primary_10_1364_PRJ_537749
crossref_primary_10_3389_fmats_2022_932773
crossref_primary_10_1093_nsr_nwad299
crossref_primary_10_1080_15376494_2024_2400243
crossref_primary_10_1088_1361_6463_acc40d
crossref_primary_10_1002_aisy_202300565
crossref_primary_10_1088_1402_4896_ad78c5
crossref_primary_10_1103_PhysRevApplied_17_034017
crossref_primary_10_1049_ell2_13178
crossref_primary_10_1515_nanoph_2025_0050
crossref_primary_10_1002_advs_202403624
crossref_primary_10_1109_TAP_2022_3187645
crossref_primary_10_1002_admt_202400850
crossref_primary_10_1016_j_isci_2025_113313
crossref_primary_10_1109_JPROC_2022_3186087
crossref_primary_10_1002_adfm_202421498
crossref_primary_10_1063_5_0175769
crossref_primary_10_1021_acsphotonics_5c00938
crossref_primary_10_3390_app122211780
crossref_primary_10_1016_j_optcom_2023_129714
crossref_primary_10_1063_5_0168561
crossref_primary_10_1109_TIM_2025_3576952
crossref_primary_10_1002_adom_202202527
crossref_primary_10_1007_s00339_021_04800_6
crossref_primary_10_1051_epjam_2020007
crossref_primary_10_1007_s11468_024_02538_4
crossref_primary_10_1103_PhysRevApplied_19_054086
crossref_primary_10_1002_admt_202301629
crossref_primary_10_1002_advs_202306181
crossref_primary_10_1109_TAP_2022_3187137
crossref_primary_10_1109_JSAC_2023_3288231
crossref_primary_10_1002_adom_202202081
crossref_primary_10_1038_s41467_025_57137_6
crossref_primary_10_1038_s41467_023_41679_8
crossref_primary_10_1109_MAP_2022_3169397
crossref_primary_10_1109_TAP_2023_3340769
crossref_primary_10_1093_nsr_nwaf017
crossref_primary_10_1038_s41928_022_00719_9
crossref_primary_10_1109_LAWP_2024_3378227
crossref_primary_10_1002_sstr_202500352
crossref_primary_10_1051_epjam_2020017
crossref_primary_10_1002_adfm_202314110
crossref_primary_10_1002_andp_202200229
crossref_primary_10_1109_JPROC_2022_3170498
crossref_primary_10_1109_TAP_2021_3130108
crossref_primary_10_1002_adma_202007966
crossref_primary_10_1007_s00419_023_02515_z
crossref_primary_10_1038_s41467_025_55940_9
crossref_primary_10_1016_j_optmat_2023_114777
crossref_primary_10_1002_smll_202203871
crossref_primary_10_1002_adom_202201382
crossref_primary_10_1016_j_measurement_2022_110738
crossref_primary_10_1109_MCOM_004_2200052
crossref_primary_10_1093_nsr_nwaa237
crossref_primary_10_1515_nanoph_2023_0050
crossref_primary_10_3390_cryst15040374
crossref_primary_10_1557_s43579_024_00520_z
crossref_primary_10_3390_mi15020219
crossref_primary_10_1002_adom_202202186
crossref_primary_10_1016_j_isci_2024_111688
crossref_primary_10_1049_cmu2_12571
crossref_primary_10_1002_admt_202301006
crossref_primary_10_1002_aisy_202200083
crossref_primary_10_3390_polym17182559
crossref_primary_10_1109_TMTT_2021_3054662
crossref_primary_10_1002_advs_202105056
crossref_primary_10_1038_s41467_025_61934_4
crossref_primary_10_1364_PRJ_416287
crossref_primary_10_1088_1361_6463_ac7e04
crossref_primary_10_1002_adfm_202107557
crossref_primary_10_1002_lpor_202400617
crossref_primary_10_1109_JIOT_2023_3252587
crossref_primary_10_1093_nsr_nwad013
crossref_primary_10_1038_s41467_024_47865_6
crossref_primary_10_29026_oea_2022_210147
crossref_primary_10_1002_adfm_202007620
crossref_primary_10_1063_5_0260203
crossref_primary_10_3389_fphy_2022_1069722
crossref_primary_10_3390_electronics12132996
crossref_primary_10_1002_lpor_202400062
crossref_primary_10_1088_1361_6463_ac8207
crossref_primary_10_1515_nanoph_2021_0799
crossref_primary_10_3390_nano12213849
crossref_primary_10_1088_2515_7647_ad1a3b
crossref_primary_10_1002_adts_202100046
crossref_primary_10_1088_1361_6463_abdb0c
crossref_primary_10_1109_LAWP_2021_3050808
crossref_primary_10_1002_admt_202001254
crossref_primary_10_3390_math10152589
crossref_primary_10_1103_PhysRevApplied_19_054096
crossref_primary_10_1063_5_0132635
crossref_primary_10_3389_fmats_2022_946163
crossref_primary_10_1016_j_mechmat_2024_105217
crossref_primary_10_1002_adom_202001609
crossref_primary_10_1109_TMAG_2021_3064938
crossref_primary_10_1109_TWC_2025_3554769
Cites_doi 10.1038/ncomms1023
10.1145/584091.584093
10.1103/PhysRevLett.85.3966
10.1021/acsphotonics.7b01114
10.1038/lsa.2018.8
10.1016/j.patter.2020.100006
10.1038/srep26959
10.1021/nl300204s
10.1126/science.1210713
10.1063/1.5043520
10.1109/LAWP.2015.2510818
10.1038/lsa.2016.76
10.1038/s41377-019-0205-3
10.1002/adom.201500588
10.1364/OE.22.013403
10.1126/science.1231758
10.23919/j.cc.2019.05.004
10.1103/PhysRevE.71.036609
10.1021/acsami.7b12468
10.1038/nature07247
10.1126/science.aaf6644
10.1063/1.4870809
10.1109/TAP.2018.2885437
10.1364/JOSAA.30.001603
10.3390/nano9070965
10.1002/adom.201400185
10.1103/PhysRevLett.101.203901
10.1021/acsphotonics.6b00515
10.1002/adma.201700733
10.1002/adma.201606422
10.1126/science.1214686
10.1002/adom.201801086
10.1002/adma.201504924
10.1126/science.1166949
10.1038/nmat3839
10.1103/PhysRevLett.93.197401
10.1364/OME.5.002459
10.1093/nsr/nwy135
10.1021/acsphotonics.8b00276
10.1126/science.1133628
10.1038/nphoton.2015.247
10.1038/s41467-017-00164-9
10.1038/ncomms1126
10.1109/TAP.2019.2952460
10.1002/adma.201904069
10.1021/nl503104n
10.1002/admt.201900044
10.1038/nnano.2015.2
10.1038/s41467-018-06802-0
10.1049/el.2019.0400
10.1002/adom.201700548
10.1021/nl403811d
10.1002/adom.201700624
10.1073/pnas.1517363113
10.1002/adma.201504532
10.1103/PhysRevLett.102.253902
10.1002/advs.201600156
10.1038/nature05343
10.1038/lsa.2014.99
10.1002/adom.201901285
10.1109/TEMC.2005.853719
10.1186/s43074-020-00006-w
10.1063/1.3590203
10.1038/srep23731
10.1063/1.5096321
10.1103/PhysRevLett.84.4184
10.1002/advs.201801028
10.1126/science.1186351
10.1126/science.1058847
10.1126/science.1230054
10.1002/adma.201501943
10.1038/s41928-020-0380-5
10.1063/1.3257375
10.1038/s41467-019-09103-2
10.1126/science.1125907
10.1103/PhysRevApplied.13.021003
10.1038/ncomms3807
10.1038/nmat3292
10.1038/srep20663
10.1038/lsa.2016.172
10.1038/s41377-018-0092-z
10.1021/acsnano.5b05954
10.1039/C7TC00548B
10.1021/nl303031j
10.1109/TAP.2003.817560
10.1002/advs.201903382
10.1109/MAP.2012.6230714
10.1063/1.3622596
10.1126/science.1108759
10.1103/PhysRevB.92.100304
10.1002/advs.201700098
10.1103/PhysRevApplied.11.054051
10.1103/PhysRevLett.76.4773
10.1038/s41377-019-0169-3
10.1002/adom.201700485
10.1002/adom.201701236
10.1093/nsr/nwx133
10.1126/science.1235399
10.1002/adom.201500068
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
2020 The Author(s) 2020
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2020 The Author(s) 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2020.101403
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_6d5d83e322f54dacbe9074abf96cc167
PMC7415848
32777776
10_1016_j_isci_2020_101403
S2589004220305939
Genre Journal Article
Review
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-54905d66e9fc6757ec907bfbd53a1ed7f2e0dd1292674d90e75037d9f8d769f23
IEDL.DBID DOA
ISICitedReferencesCount 188
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564159100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-0042
IngestDate Fri Oct 03 12:52:54 EDT 2025
Tue Sep 30 16:50:29 EDT 2025
Thu Oct 02 05:47:56 EDT 2025
Thu Jan 02 22:46:37 EST 2025
Thu Nov 13 04:32:36 EST 2025
Tue Nov 18 21:39:00 EST 2025
Tue Jul 25 21:03:56 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Information Systems
Metamaterials
Electromagnetic Waves
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-54905d66e9fc6757ec907bfbd53a1ed7f2e0dd1292674d90e75037d9f8d769f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Lead Contact
ORCID 0000-0002-8791-6374
0000-0002-3122-5937
OpenAccessLink https://doaj.org/article/6d5d83e322f54dacbe9074abf96cc167
PMID 32777776
PQID 2432857360
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_6d5d83e322f54dacbe9074abf96cc167
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7415848
proquest_miscellaneous_2432857360
pubmed_primary_32777776
crossref_citationtrail_10_1016_j_isci_2020_101403
crossref_primary_10_1016_j_isci_2020_101403
elsevier_sciencedirect_doi_10_1016_j_isci_2020_101403
PublicationCentury 2000
PublicationDate 2020-08-21
PublicationDateYYYYMMDD 2020-08-21
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Li, Wang, Teixeira, Liu, Nehora, Cui (bib4b) 2019; 67
Hadad, Soric, Alu (bib94) 2016; 113
Liu, Cui, Xu, Bao, Du, Wan, Tang, Ouyang, Zhou, Yuan (bib9a) 2016; 5
Liu, Cui, Zhang, Xu, Wang, Wan, Gu, Tang, Qi, Han (bib8d) 2016; 3
Wang, Li, Li, Zhang, Cui (bib75) 2016; 6
Dai, Tang, Zhao, Li, Cheng, Ke, Chen, Jin, Cui (bib85) 2019; 4
Shannon (bib60) 2001; 5
Khorasaninejad, Chen, Devlin, Oh, Zhu, Capasso (bib36) 2016; 352
Tang, Dai, Chen, Li, Cheng, Jin, Wong, Cui (bib11b) 2019; 55
Wu, Wang, Fu, Liu, Zhang, Bai, Zhang, Jiang, Jiang, Wu (bib108) 2018; 6
Yu, Capasso (bib26) 2014; 13
Liu, Fan, Padilla, Powell, Zhang, Shadrivov (bib5) 2016; 28
Wang, Zhang, Guo, Chen, Liang, Hao, Hou, Kou, Zhao, Zhou (bib47) 2019; 9
Cong, Pitchappa, Lee, Singh (bib39) 2017; 29
Hadad, Sounas, Alu (bib92) 2015; 92
Lipworth, Mrozack, Hunt, Marks, Driscoll, Brady, Smith (bib72) 2013; 30
Cui, Liu, Bai, Ma (bib78) 2019
Luo, Xiao, He, Sun, Zhou (bib31) 2015; 3
Aieta, Genevet, Yu, Kats, Gaburro, Capasso (bib27) 2012; 12
Cui, Liu, Li (bib61) 2016; 5
Zhao, Zhang, Shi, Liang, Huang, Kou, Yang (bib46) 2018; 5
Huang, Chen, Mühlenbernd, Li, Bai, Tan, Jin, Zentgraf, Zhang (bib28) 2012; 12
Liu, Ji, Mock, Chin, Cui, Smith (bib10) 2009; 323
Zhang, Chen, Shao, Dai, Cheng, Castaldi, Galdi, Cui (bib18a) 2019; 31
Li, Li, Xu, Wu, Wu, Wan, Cheng, Cui (bib74) 2016; 6
Li, Hurtado, Xu, Zhang, Jin, Cui, Stevanovic, Nehorai (bib76) 2018; 12
Pendry, Schurig, Smith (bib7) 2006; 312
Ma, Shi, Bai, Chen, Noor, Cui (bib106) 2017; 5
Shaltout, Kildishev, Shalaev (bib93) 2015; 5
Fang, Lee, Sun, Zhang (bib6a) 2005; 308
Ma, Cui (bib99) 2020; 1
Ma, Bai, Jing, Yang, Li, Cui (bib96) 2019; 8
Dai, Tang, Yang, Li, Chen, Ke, Cheng, Jin, Cui (bib88) 2020; 68
Ma, Cui (bib11) 2010; 1
Zheng, Mühlenbernd, Kenney, Li, Zentgraf, Zhang (bib35) 2015; 10
Luo, Ma, Jing, Bai, Wu, Bao, Cui (bib110) 2019; 126
Correas-Serrano, Gomez-Diaz, Sounas, Hadad, Alvarez-Melcon, Alu (bib95) 2016; 15
Shuang, Zhao, Ji, Cui, Li (bib67) 2020; 10
Holloway, Kuester, Gordon, O'Hara, Booth, Smith (bib25) 2012; 54
Zhang, Wang, Shao, Shen, Chen, Wan, Cheng, Cui (bib19b) 2019; 68
Pendry, Holden, Stewart, Youngs (bib1a) 1996; 76
Ma, Chen, Jing, Hong, Cui, Liu, Li, Cui (bib102) 2019; 7
Li (bib80) 2019; 8
Li, Zhao, Wei, Ruan, Shuang, Cui, Li (bib81) 2020; 1
Wu, Bai, Liu, Li, Wan, Cheng, Cui (bib62) 2019; 7
Wu, Shi, Liu, Wu, Cui (bib65) 2018; 6
Liu, Xu, Zhang, Cui (bib40) 2014; 22
Ni, Kildishev, Shalaev (bib33) 2013; 4
Liu, Cui, Noor, Tao, Zhang, Bai, Yang, Zhou (bib104) 2018; 7
Yin, Ye, Rho, Wang, Zhang (bib30) 2013; 339
Zhang, Chen, Liu, Zhang, Zhao, Dai, Bai, Wan, Cheng, Castaldi (bib17b) 2018; 9
Li, Ruan, Liu, Li, Shuang, Alù, Qiu, Cui (bib3a) 2019; 10
Smith, Mock, Starr, Schurig (bib15) 2005; 71
Tang, Li, Dai, Jin, Zeng, Cheng, Cui (bib10a) 2019; 16
Wan, Jiang, Ma, Cui (bib19) 2014; 104
Chen, Ma, Zou, Jiang, Cui (bib18) 2011; 110
Liu, Noor, Du, Zhang, Xu, Luan, Wang, Tian, Tang, Han (bib7c) 2016; 3
Chen, Yang, Wang, Huang, Sun, Chiang, Liao, Hsu, Lin, Sun (bib34) 2014; 14
Valentine, Zhang, Zentgraf, Ulin-Avila, Genov, Bartal, Zhang (bib5A) 2008; 455
Ni, Emani, Kildishev, Boltasseva, Shalaev (bib24) 2012; 335
Cui, Qi, Wan, Zhao, Cheng (bib55) 2014; 3
Ma, Hong, Bai, Jing, Wu, Bao, Cheng, Cui (bib105) 2020; 13
Bao, Ma, Bai, Jing, Wu, Yang, Wu, Fu, Cui (bib109) 2018; 113
Kuester, Mohamed, Piket-May, Holloway (bib20) 2003; 51
Liu, Cui (bib98) 2017; 5
Liu, Cui, Xu, Bao, Du, Wan, Tang, Ouyang, Zhou, Yuan (bib6) 2016; 5
Mehmood, Mei, Hussain, Huang, Siew, Zhang, Zhang, Ling, Liu, Teng (bib29) 2016; 28
Chen, Ma, Jing, Cui, Liu, Cui (bib101) 2019; 11
Wan, Zhang, Chen, Zhang, Xu, Huang, Xiao, Xiao, Cui (bib68) 2019; 8
Zhang, Liu, Li, Cui (bib15a) 2017; 9
Gutruf, Zou, Withayachumnankul, Bhaskaran, Sriram, Fumeaux (bib44) 2016; 10
Huang, Zhang, Yang, Sun, Zhao, Luo (bib1w) 2017; 5
Wu, Liu, Wan, Zhang, Wang, Li, Cui (bib107) 2017; 4
Schurig, Mock, Justice, Cummer, Pendry, Starr, Smith (bib8) 2006; 314
Wan, Qi, Chen, Cui (bib66) 2016; 6
Zhang, Yang, Yang, Ke, Chen, Cao, Chen, Wu, Chen, Cheng, Cui (bib14c) 2020
Wang, Rogers, Gholipour, Wang, Yuan, Teng, Zheludev (bib48) 2015; 10
Li, Cui, Jing, Liu, Ding, Wan, Li, Jiang, Qiu, Zhang (bib77) 2017; 8
Grady, Heyes, Chowdhury, Zeng, Reiten, Azad, Taylor, Dalvit, Chen (bib32) 2013; 340
Jiang, Cui, Yang, Ma, Cheng (bib14) 2011; 98
Ma, Cui (bib17) 2010; 1
Yao, Shankar, Kats, Song, Kong, Loncar, Capasso (bib41) 2014; 14
Falcone, Lopetegi, Laso, Baena, Bonache, Beruete, Marqués, Martín, Sorolla (bib21) 2004; 93
Hunt, Driscoll, Mrozack, Lipworth, Reynolds, Brady, Smith (bib73) 2013; 339
Sun, He, Xiao, Xu, Li, Zhou (bib37) 2012; 11
Pitchappa, Ho, Cong, Singh, Singh, Lee (bib51) 2016; 4
Holloway, Mohamed, Kuester, Dienstfrey (bib22) 2005; 47
Dai, Zhao, Cheng, Cui (bib83) 2018; 7
Yu, Genevet, Kats, Aieta, Tetienne, Capasso, Gaburro (bib23) 2011; 334
Pendry (bib3) 2000; 85
Lee, Jung, Chen, Lu, Demmerle, Boehm, Amann, Alù, Belkin (bib42) 2014; 2
Zhao, Yang, Dai, Cheng, Li, Qi, Ke, Bai, Liu, Jin, Alù (bib82) 2019; 6
Chen, Feng, Monticone, Zhao, Zhu, Jiang, Zhang, Kim, Ding, Zhang (bib54) 2017; 29
Cui, Liu, Zhang (bib58) 2017; 5
Shelby, Smith, Schultz (bib4) 2001; 292
Chen, O’Hara, Azad, Shrekenhamer, Padilla, Zide, Gossard, Averitt, Taylor (bib38) 2006; 444
Miao, Wu, Li, He, Ding, An, Zhang, Zhou (bib43) 2015; 5
Smith, Padilla, Vier, Nemat-Nasser, Schultz (bib2) 2000; 84
Cheng, Ma, Cui (bib16) 2009; 95
Zhang, Yu, Jiang, Sun, Bai, Wang, Qiu, Cui (bib13b) 2020; 7
Cui (bib97) 2018; 5
Zhang, Tang, Jiang, Bai, Tang, Bai, Qiu, Cui (bib16a) 2018; 5
Zhu, Song, Yan, Zhang, Wu, Chin, Cai, Tsai, Shen, Deng (bib49) 2015; 27
Lai, Ng, Chen, Han, Xiao, Zhang, Chan (bib13) 2009; 102
Zhang, Jiang, Jiang, Wang, Tian, Bai, Luo, Sun, Luo, Qiu, Cui (bib12a) 2020; 3
Ergin, Stenger, Brenner, Pendry, Wegener (bib12) 2010; 328
Li, Pendry (bib9) 2008; 101
Oliveri, Werner, Massa (bib50) 2015; 103
Cui (bib100) 2017; 19
Huang, Yang, Wu, Song, Pu, Wang, Luo (bib2b) 2017; 5
Zhang (10.1016/j.isci.2020.101403_bib19b) 2019; 68
Bao (10.1016/j.isci.2020.101403_bib109) 2018; 113
Zhang (10.1016/j.isci.2020.101403_bib16a) 2018; 5
Mehmood (10.1016/j.isci.2020.101403_bib29) 2016; 28
Cui (10.1016/j.isci.2020.101403_bib100) 2017; 19
Ma (10.1016/j.isci.2020.101403_bib102) 2019; 7
Oliveri (10.1016/j.isci.2020.101403_bib50) 2015; 103
Zhang (10.1016/j.isci.2020.101403_bib14c) 2020
Shelby (10.1016/j.isci.2020.101403_bib4) 2001; 292
Ergin (10.1016/j.isci.2020.101403_bib12) 2010; 328
Cui (10.1016/j.isci.2020.101403_bib58) 2017; 5
Li (10.1016/j.isci.2020.101403_bib74) 2016; 6
Huang (10.1016/j.isci.2020.101403_bib28) 2012; 12
Li (10.1016/j.isci.2020.101403_bib9) 2008; 101
Zheng (10.1016/j.isci.2020.101403_bib35) 2015; 10
Luo (10.1016/j.isci.2020.101403_bib31) 2015; 3
Yao (10.1016/j.isci.2020.101403_bib41) 2014; 14
Tang (10.1016/j.isci.2020.101403_bib11b) 2019; 55
Kuester (10.1016/j.isci.2020.101403_bib20) 2003; 51
Fang (10.1016/j.isci.2020.101403_bib6a) 2005; 308
Cui (10.1016/j.isci.2020.101403_bib97) 2018; 5
Pitchappa (10.1016/j.isci.2020.101403_bib51) 2016; 4
Grady (10.1016/j.isci.2020.101403_bib32) 2013; 340
Yu (10.1016/j.isci.2020.101403_bib26) 2014; 13
Schurig (10.1016/j.isci.2020.101403_bib8) 2006; 314
Cui (10.1016/j.isci.2020.101403_bib78) 2019
Pendry (10.1016/j.isci.2020.101403_bib1a) 1996; 76
Shannon (10.1016/j.isci.2020.101403_bib60) 2001; 5
Ni (10.1016/j.isci.2020.101403_bib33) 2013; 4
Cui (10.1016/j.isci.2020.101403_bib61) 2016; 5
Liu (10.1016/j.isci.2020.101403_bib8d) 2016; 3
Chen (10.1016/j.isci.2020.101403_bib101) 2019; 11
Li (10.1016/j.isci.2020.101403_bib77) 2017; 8
Sun (10.1016/j.isci.2020.101403_bib37) 2012; 11
Yu (10.1016/j.isci.2020.101403_bib23) 2011; 334
Zhang (10.1016/j.isci.2020.101403_bib13b) 2020; 7
Zhang (10.1016/j.isci.2020.101403_bib15a) 2017; 9
Valentine (10.1016/j.isci.2020.101403_bib5A) 2008; 455
Liu (10.1016/j.isci.2020.101403_bib104) 2018; 7
Huang (10.1016/j.isci.2020.101403_bib2b) 2017; 5
Shuang (10.1016/j.isci.2020.101403_bib67) 2020; 10
Wang (10.1016/j.isci.2020.101403_bib48) 2015; 10
Zhao (10.1016/j.isci.2020.101403_bib82) 2019; 6
Zhu (10.1016/j.isci.2020.101403_bib49) 2015; 27
Correas-Serrano (10.1016/j.isci.2020.101403_bib95) 2016; 15
Zhang (10.1016/j.isci.2020.101403_bib17b) 2018; 9
Luo (10.1016/j.isci.2020.101403_bib110) 2019; 126
Aieta (10.1016/j.isci.2020.101403_bib27) 2012; 12
Lee (10.1016/j.isci.2020.101403_bib42) 2014; 2
Smith (10.1016/j.isci.2020.101403_bib15) 2005; 71
Li (10.1016/j.isci.2020.101403_bib76) 2018; 12
Ma (10.1016/j.isci.2020.101403_bib106) 2017; 5
Chen (10.1016/j.isci.2020.101403_bib18) 2011; 110
Wang (10.1016/j.isci.2020.101403_bib47) 2019; 9
Wang (10.1016/j.isci.2020.101403_bib75) 2016; 6
Liu (10.1016/j.isci.2020.101403_bib98) 2017; 5
Ma (10.1016/j.isci.2020.101403_bib99) 2020; 1
Miao (10.1016/j.isci.2020.101403_bib43) 2015; 5
Khorasaninejad (10.1016/j.isci.2020.101403_bib36) 2016; 352
Ma (10.1016/j.isci.2020.101403_bib11) 2010; 1
Zhang (10.1016/j.isci.2020.101403_bib12a) 2020; 3
Cui (10.1016/j.isci.2020.101403_bib55) 2014; 3
Liu (10.1016/j.isci.2020.101403_bib10) 2009; 323
Li (10.1016/j.isci.2020.101403_bib4b) 2019; 67
Cheng (10.1016/j.isci.2020.101403_bib16) 2009; 95
Pendry (10.1016/j.isci.2020.101403_bib7) 2006; 312
Yin (10.1016/j.isci.2020.101403_bib30) 2013; 339
Chen (10.1016/j.isci.2020.101403_bib38) 2006; 444
Ni (10.1016/j.isci.2020.101403_bib24) 2012; 335
Liu (10.1016/j.isci.2020.101403_bib7c) 2016; 3
Holloway (10.1016/j.isci.2020.101403_bib22) 2005; 47
Gutruf (10.1016/j.isci.2020.101403_bib44) 2016; 10
Li (10.1016/j.isci.2020.101403_bib81) 2020; 1
Wu (10.1016/j.isci.2020.101403_bib107) 2017; 4
Dai (10.1016/j.isci.2020.101403_bib83) 2018; 7
Hadad (10.1016/j.isci.2020.101403_bib94) 2016; 113
Wu (10.1016/j.isci.2020.101403_bib65) 2018; 6
Huang (10.1016/j.isci.2020.101403_bib1w) 2017; 5
Shaltout (10.1016/j.isci.2020.101403_bib93) 2015; 5
Wan (10.1016/j.isci.2020.101403_bib68) 2019; 8
Jiang (10.1016/j.isci.2020.101403_bib14) 2011; 98
Liu (10.1016/j.isci.2020.101403_bib9a) 2016; 5
Ma (10.1016/j.isci.2020.101403_bib105) 2020; 13
Pendry (10.1016/j.isci.2020.101403_bib3) 2000; 85
Lipworth (10.1016/j.isci.2020.101403_bib72) 2013; 30
Liu (10.1016/j.isci.2020.101403_bib6) 2016; 5
Li (10.1016/j.isci.2020.101403_bib3a) 2019; 10
Zhao (10.1016/j.isci.2020.101403_bib46) 2018; 5
Li (10.1016/j.isci.2020.101403_bib80) 2019; 8
Wu (10.1016/j.isci.2020.101403_bib62) 2019; 7
Lai (10.1016/j.isci.2020.101403_bib13) 2009; 102
Chen (10.1016/j.isci.2020.101403_bib34) 2014; 14
Liu (10.1016/j.isci.2020.101403_bib40) 2014; 22
Holloway (10.1016/j.isci.2020.101403_bib25) 2012; 54
Wan (10.1016/j.isci.2020.101403_bib66) 2016; 6
Wu (10.1016/j.isci.2020.101403_bib108) 2018; 6
Ma (10.1016/j.isci.2020.101403_bib96) 2019; 8
Cong (10.1016/j.isci.2020.101403_bib39) 2017; 29
Wan (10.1016/j.isci.2020.101403_bib19) 2014; 104
Hunt (10.1016/j.isci.2020.101403_bib73) 2013; 339
Smith (10.1016/j.isci.2020.101403_bib2) 2000; 84
Tang (10.1016/j.isci.2020.101403_bib10a) 2019; 16
Chen (10.1016/j.isci.2020.101403_bib54) 2017; 29
Zhang (10.1016/j.isci.2020.101403_bib18a) 2019; 31
Dai (10.1016/j.isci.2020.101403_bib85) 2019; 4
Liu (10.1016/j.isci.2020.101403_bib5) 2016; 28
Ma (10.1016/j.isci.2020.101403_bib17) 2010; 1
Falcone (10.1016/j.isci.2020.101403_bib21) 2004; 93
Hadad (10.1016/j.isci.2020.101403_bib92) 2015; 92
Dai (10.1016/j.isci.2020.101403_bib88) 2020; 68
References_xml – volume: 5
  start-page: 134
  year: 2018
  end-page: 136
  ident: bib97
  article-title: Microwave metamaterials
  publication-title: Nat. Sci. Rev.
– volume: 29
  start-page: 1700733
  year: 2017
  ident: bib39
  article-title: Active phase transition via loss engineering in a terahertz MEMS metamaterial
  publication-title: Adv. Mat.
– volume: 6
  start-page: 20663
  year: 2016
  ident: bib66
  article-title: Field-programmable beam reconfiguring based on digitally-controlled coding metasurface
  publication-title: Sci. Rep.
– volume: 68
  start-page: 1618
  year: 2020
  end-page: 1627
  ident: bib88
  article-title: Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface
  publication-title: IEEE T. Antenn. Propag.
– volume: 5
  start-page: 3
  year: 2001
  ident: bib60
  article-title: A mathematical theory of communication
  publication-title: ACM Sigmobile Mobile Comput. Commun. Rev.
– volume: 5
  start-page: e16076
  year: 2016
  ident: bib9a
  article-title: Anisotropic coding metamaterials and their powerful manipulation to differently polarized terahertz waves
  publication-title: Light.: Sci. Appl.
– volume: 6
  start-page: 26959
  year: 2016
  ident: bib75
  article-title: Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface
  publication-title: Sci. Rep.
– volume: 5
  start-page: 3040
  year: 2018
  end-page: 3050
  ident: bib46
  article-title: Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures
  publication-title: ACS Photon.
– volume: 6
  start-page: 23731
  year: 2016
  ident: bib74
  article-title: Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging
  publication-title: Sci. Rep.
– volume: 5
  start-page: 1700485
  year: 2017
  ident: bib1w
  article-title: Reconfigurable metasurface for multifunctional control of electromagnetic waves
  publication-title: Adv. Opt. Mater.
– volume: 27
  start-page: 4739
  year: 2015
  end-page: 4743
  ident: bib49
  article-title: A flat lens with tunable phase gradient by using random access reconfigurable metamaterial
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2459
  year: 2015
  end-page: 2467
  ident: bib93
  article-title: Time-varying metasurfaces and Lorentz non-reciprocity
  publication-title: Opt. Mater. Express
– volume: 340
  start-page: 1304
  year: 2013
  end-page: 1307
  ident: bib32
  article-title: Terahertz metamaterials for linear polarization conversion and anomalous refraction
  publication-title: Science
– volume: 51
  start-page: 2641
  year: 2003
  end-page: 2651
  ident: bib20
  article-title: Averaged transition conditions for electromagnetic fields at a metafilm
  publication-title: IEEE T. Antenn. Propag.
– volume: 103
  start-page: 1034
  year: 2015
  end-page: 1056
  ident: bib50
  article-title: Reconfigurable electromagnetics through metamaterials-A review
  publication-title: P. IEEE
– volume: 31
  start-page: e1904069
  year: 2019
  ident: bib18a
  article-title: Breaking reciprocity with space-time-coding digital metasurfaces
  publication-title: Adv. Mater.
– volume: 308
  start-page: 534
  year: 2005
  end-page: 537
  ident: bib6a
  article-title: Sub-diffraction-limited optical imaging with a silver superlens
  publication-title: Science
– volume: 8
  start-page: 97
  year: 2019
  ident: bib80
  article-title: Shuang, Intelligent metasurface imager and recognizer, Light
  publication-title: Sci. Appl.
– volume: 7
  start-page: nwz195
  year: 2019
  ident: bib62
  article-title: Information theory of metasurfaces
  publication-title: Natl. Sci. Rev.
– volume: 102
  start-page: 253902
  year: 2009
  ident: bib13
  article-title: Illusion optics: the optical transformation of an object into another object
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 041027
  year: 2015
  ident: bib43
  article-title: Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces
  publication-title: Phys. Rev. X
– volume: 5
  start-page: 1700548
  year: 2017
  ident: bib106
  article-title: Beam-editing coding metasurfaces based on polarization bit and OAM-mode bit
  publication-title: Adv. Opt. Mater.
– volume: 334
  start-page: 333
  year: 2011
  end-page: 337
  ident: bib23
  article-title: Light propagation with phase discontinuities: generalized laws of reflection and refraction
  publication-title: Science
– volume: 1
  start-page: 21
  year: 2010
  ident: bib11
  article-title: Three-dimensional broadband ground-plane cloak made of metamaterials
  publication-title: Na. Commun.
– volume: 2
  start-page: 1057
  year: 2014
  end-page: 1063
  ident: bib42
  article-title: Ultrafast electrically tunable polaritonic metasurfaces
  publication-title: Adv. Opt. Mater.
– volume: 126
  start-page: 113102
  year: 2019
  ident: bib110
  article-title: 2-bit amplitude- modulated coding metasurfaces based on indium tin oxide films
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: e16172
  year: 2016
  ident: bib61
  article-title: Information entropy of coding metasurface
  publication-title: Light.: Sci. Appl.
– volume: 113
  start-page: 063502
  year: 2018
  ident: bib109
  article-title: Design of digital coding metasurfaces with independent controls of phase and amplitude responses
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 1801086
  year: 2018
  ident: bib108
  article-title: Space-frequency-domain gradient metamaterials
  publication-title: Adv. Opt. Mater.
– volume: 9
  start-page: 4334
  year: 2018
  ident: bib17b
  article-title: Space-time-coding digital metasurfaces
  publication-title: Nat. Commun.
– volume: 10
  start-page: 133
  year: 2016
  end-page: 141
  ident: bib44
  article-title: Mechanically tunable dielectric resonator metasurfaces at visible frequencies
  publication-title: ACS Nano
– volume: 12
  start-page: 1702
  year: 2012
  end-page: 1706
  ident: bib27
  article-title: Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities
  publication-title: Nano Lett.
– volume: 7
  start-page: e18008
  year: 2018
  ident: bib104
  article-title: Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves
  publication-title: Light.: Sci. Appl.
– volume: 6
  start-page: 1701236
  year: 2018
  ident: bib65
  article-title: Addition theorem for digital coding metamaterials
  publication-title: Adv. Opt. Mater.
– volume: 110
  start-page: 044904
  year: 2011
  ident: bib18
  article-title: Three-dimensional broadband and high-directivity lens antenna made of metamaterials
  publication-title: J. Appl. Phys.
– volume: 339
  start-page: 1405
  year: 2013
  end-page: 1407
  ident: bib30
  article-title: Photonic spin Hall effect at metasurfaces
  publication-title: Science
– volume: 19
  start-page: 084004
  year: 2017
  ident: bib100
  article-title: Microwave metamaterials – from passive to digital and programmable controls of electromagnetic waves
  publication-title: J. Opt.
– volume: 16
  start-page: 46
  year: 2019
  end-page: 61
  ident: bib10a
  article-title: Wireless communications with programmable metasurface: transceiver design and experimental results
  publication-title: China Commun.
– volume: 3
  start-page: 165
  year: 2020
  end-page: 171
  ident: bib12a
  article-title: An optically driven digital metasurface for programming electromagnetic functions
  publication-title: Nat. Electron.
– volume: 5
  start-page: 1801028
  year: 2018
  ident: bib16a
  article-title: Light-controllable digital coding metasurfaces
  publication-title: Adv. Sci.
– volume: 11
  start-page: 054051
  year: 2019
  ident: bib101
  article-title: Spatial-energy digital coding metasurface based on active amplifier
  publication-title: Phys. Rev. Appl.
– volume: 30
  start-page: 1603
  year: 2013
  end-page: 1612
  ident: bib72
  article-title: Metamaterial apertures for coherent computational imaging on the physical layer
  publication-title: J. Opt. Soc. Am. A.
– volume: 85
  start-page: 3966
  year: 2000
  end-page: 3969
  ident: bib3
  article-title: Negative refraction makes a perfect lens
  publication-title: Phys. Rev. Lett.
– volume: 328
  start-page: 337
  year: 2010
  end-page: 339
  ident: bib12
  article-title: Three-dimensional invisibility cloak at optical wavelengths
  publication-title: Science
– volume: 95
  start-page: 181901
  year: 2009
  ident: bib16
  article-title: Broadband planar Luneburg lens based on complementary metamaterials
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: e218
  year: 2014
  ident: bib55
  article-title: Coding metamaterials, digital metamaterials and programmable metamaterials
  publication-title: Light.: Sci. Appl.
– volume: 7
  start-page: 1901285
  year: 2019
  ident: bib102
  article-title: Controllable and programmable nonreciprocity based on detachable digital coding metasurface
  publication-title: Adv. Opt. Mater.
– volume: 3
  start-page: 1968
  year: 2016
  end-page: 1977
  ident: bib7c
  article-title: Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces
  publication-title: ACS Photon.
– volume: 1
  start-page: 124
  year: 2010
  ident: bib17
  article-title: Three-dimensional broadband and broad-angle transformation-optics lens
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1700098
  year: 2017
  ident: bib107
  article-title: Controlling energy radiations of electromagnetic waves via frequency coding metamaterials
  publication-title: Adv. Sci.
– volume: 4
  start-page: 1900044
  year: 2019
  ident: bib85
  article-title: Wireless communications through a simplified architecture based on time-domain digital coding metasurface
  publication-title: Adv. Mater. Technol.
– volume: 9
  start-page: 36447
  year: 2017
  ident: bib15a
  article-title: Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces
  publication-title: ACS Appl. Mater. Inter.
– volume: 84
  start-page: 4184
  year: 2000
  end-page: 4187
  ident: bib2
  article-title: Composite medium with simultaneously negative permeability and permittivity
  publication-title: Phys. Rev. Lett.
– volume: 323
  start-page: 366
  year: 2009
  end-page: 369
  ident: bib10
  article-title: Broadband ground-plane cloak
  publication-title: Science
– volume: 4
  start-page: 2807
  year: 2013
  ident: bib33
  article-title: Metasurface holograms for visible light
  publication-title: Nat. Commun.
– volume: 312
  start-page: 1780
  year: 2006
  end-page: 1782
  ident: bib7
  article-title: Controlling electromagnetic fields
  publication-title: Science
– volume: 68
  start-page: 1
  year: 2019
  ident: bib19b
  article-title: Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface
  publication-title: IEEE T. Antenn. Propag.
– volume: 28
  start-page: 2533
  year: 2016
  end-page: 2539
  ident: bib29
  article-title: Visible-frequency metasurface for structuring and spatially multiplexing optical vortices
  publication-title: Adv. Mater.
– volume: 352
  start-page: 1190
  year: 2016
  end-page: 1194
  ident: bib36
  article-title: Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging
  publication-title: Science
– volume: 8
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib96
  article-title: Smart metasurface with self-adaptively reprogrammable functions
  publication-title: Light.: Sci. Appl.
– volume: 15
  start-page: 1529
  year: 2016
  end-page: 1532
  ident: bib95
  article-title: Nonreciprocal graphene devices and antennas based on spatiotemporal modulation
  publication-title: IEEE Antenn. Wirel. Pr.
– volume: 6
  start-page: 231
  year: 2019
  end-page: 238
  ident: bib82
  article-title: Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems
  publication-title: Natl. Sci. Rev.
– volume: 93
  start-page: 197401
  year: 2004
  ident: bib21
  article-title: Babinet principle applied to the design of metasurfaces and metamaterials
  publication-title: Phys. Rev. Lett.
– volume: 455
  start-page: 376
  year: 2008
  end-page: 379
  ident: bib5A
  article-title: Three-dimensional optical metamaterial with a negative refractive index
  publication-title: Nature
– volume: 76
  start-page: 4773
  year: 1996
  ident: bib1a
  article-title: Extremely low frequency plasmons in metallic mesostructures
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib83
  article-title: Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface
  publication-title: Light.: Sci.Appl.
– volume: 10
  start-page: 60
  year: 2015
  end-page: 65
  ident: bib48
  article-title: Optically reconfigurable metasurfaces and photonic devices based on phase change materials
  publication-title: Nat. Photon.
– volume: 14
  start-page: 225
  year: 2014
  end-page: 230
  ident: bib34
  article-title: High-efficiency broadband meta-hologram with polarization-controlled dual images
  publication-title: Nano Lett.
– volume: 4
  start-page: 391
  year: 2016
  end-page: 398
  ident: bib51
  article-title: Reconfigurable digital metamaterial for dynamic switching of terahertz Anisotropy
  publication-title: Adv. Opt. Mater.
– year: 2020
  ident: bib14c
  article-title: Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics
  publication-title: Nanophotonics
– volume: 314
  start-page: 977
  year: 2006
  end-page: 980
  ident: bib8
  article-title: Metamaterial electromagnetic cloak at microwave frequencies
  publication-title: Science
– volume: 9
  start-page: 965
  year: 2019
  ident: bib47
  article-title: A review of THz modulators with dynamic tunable
  publication-title: Metasurfaces. Nanomater.
– volume: 12
  start-page: 107
  year: 2018
  end-page: 199
  ident: bib76
  article-title: A survey on the low-dimensional-model-based electromagnetic imaging
  publication-title: Found. Trends. Inf. Ret.
– volume: 54
  start-page: 10
  year: 2012
  end-page: 35
  ident: bib25
  article-title: An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials
  publication-title: IEEE Antenn. Propag. M
– volume: 5
  start-page: 1700624
  year: 2017
  ident: bib98
  article-title: Concepts, working principles, and applications of coding and programmable metamaterials
  publication-title: Adv. Opt. Mater.
– volume: 292
  start-page: 77
  year: 2001
  end-page: 79
  ident: bib4
  article-title: Experimental verification of a negative index of refraction
  publication-title: Science
– volume: 14
  start-page: 6526
  year: 2014
  end-page: 6532
  ident: bib41
  article-title: Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators
  publication-title: Nano Lett.
– volume: 5
  start-page: 16076
  year: 2016
  ident: bib6
  article-title: Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves
  publication-title: Light.: Sci. Appl.
– volume: 98
  start-page: 204101
  year: 2011
  ident: bib14
  article-title: Shrinking an arbitrary object as one desires using metamaterials
  publication-title: Appl. Phys. Lett.
– volume: 104
  start-page: 151601
  year: 2014
  ident: bib19
  article-title: A broadband transformation-optics metasurface lens
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 5750
  year: 2012
  end-page: 5755
  ident: bib28
  article-title: Dispersionless phase discontinuities for controlling light propagation
  publication-title: Nano Lett.
– volume: 1
  start-page: 100006
  year: 2020
  ident: bib81
  article-title: Intelligent electromagnetic sensing with learnable data acquisition and processing
  publication-title: Patterns
– volume: 5
  start-page: 3644
  year: 2017
  end-page: 3668
  ident: bib58
  article-title: Information metamaterials and metasurfaces
  publication-title: J. Mater. Chem. C
– volume: 339
  start-page: 310
  year: 2013
  end-page: 313
  ident: bib73
  article-title: Metamaterial apertures for computational imaging
  publication-title: Science
– volume: 10
  start-page: 29
  year: 2020
  end-page: 37
  ident: bib67
  article-title: Programmable high-order OAM-carrying beams for direct-modulation wireless communications
  publication-title: IEEE J. Em. Sel. Top. C
– volume: 7
  start-page: 1903382
  year: 2020
  ident: bib13b
  article-title: Polarization-controlled dual-programmable metasurfaces
  publication-title: Adv. Sci.
– volume: 3
  start-page: 1600156
  year: 2016
  ident: bib8d
  article-title: Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams
  publication-title: Adv. Sci.
– volume: 335
  start-page: 427
  year: 2012
  ident: bib24
  article-title: Broadband light bending with plasmonic nanoantennas
  publication-title: Science
– volume: 8
  start-page: 197
  year: 2017
  ident: bib77
  article-title: Electromagnetic reprogrammable coding metasurface holograms
  publication-title: Nat. Commun.
– volume: 444
  start-page: 597
  year: 2006
  end-page: 600
  ident: bib38
  article-title: Active terahertz metamaterial devices
  publication-title: Nature
– volume: 71
  start-page: 036609
  year: 2005
  ident: bib15
  article-title: Gradient index metamaterials
  publication-title: Phys. Rev. E
– volume: 3
  start-page: 1102
  year: 2015
  end-page: 1108
  ident: bib31
  article-title: Photonic spin Hall effect with nearly 100% efficiency
  publication-title: Adv. Opt. Mater.
– volume: 47
  start-page: 853
  year: 2005
  end-page: 865
  ident: bib22
  article-title: Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles
  publication-title: IEEE T. Electromagn. C
– volume: 10
  start-page: 308
  year: 2015
  end-page: 312
  ident: bib35
  article-title: Metasurface holograms reaching 80% efficiency
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 021003
  year: 2020
  ident: bib105
  article-title: Editing arbitrarily linear polarizations using programmable metasurface
  publication-title: Phys. Rev. Appl.
– volume: 113
  start-page: 3471
  year: 2016
  end-page: 3475
  ident: bib94
  article-title: Breaking temporal symmetries for emission and absorption
  publication-title: Proc. Natl. Acad. Sci.
– volume: 101
  start-page: 203901
  year: 2008
  ident: bib9
  article-title: Hiding under the carpet: a new strategy for cloaking
  publication-title: Phys. Rev. Lett.
– volume: 92
  start-page: 10
  year: 2015
  ident: bib92
  article-title: Space-time gradient metasurfaces
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 1718
  year: 2017
  end-page: 1725
  ident: bib2b
  article-title: Reconfigurable metasurface cloak for dynamical electromagnetic illusions
  publication-title: ACS Photon.
– volume: 1
  start-page: 1
  year: 2020
  ident: bib99
  article-title: Information metamaterials: bridging the physical world and digital world
  publication-title: PhotoniX
– volume: 67
  start-page: 1819
  year: 2019
  end-page: 1825
  ident: bib4b
  article-title: Deepnis: deep neural network for nonlinear electromagnetic inverse scattering
  publication-title: IEEE T. Antenn. Propag.
– volume: 11
  start-page: 426
  year: 2012
  end-page: 431
  ident: bib37
  article-title: Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves
  publication-title: Nat. Mater.
– volume: 29
  start-page: 1606422
  year: 2017
  ident: bib54
  article-title: A reconfigurable active Huygens' Metalens
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1082
  year: 2019
  ident: bib3a
  article-title: Machine-learning reprogrammable metasurface imager
  publication-title: Nat. Commun.
– volume: 22
  start-page: 13403
  year: 2014
  end-page: 13417
  ident: bib40
  article-title: Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface
  publication-title: Opt. Express
– volume: 55
  start-page: 417
  year: 2019
  end-page: 420
  ident: bib11b
  article-title: Programmable metasurface-based RF chain-free 8PSK wireless transmitter
  publication-title: Electron. Lett.
– volume: 8
  start-page: 60
  year: 2019
  ident: bib68
  article-title: Multichannel direct transmissions of near-field information
  publication-title: Light.: Sci. Appl.
– volume: 28
  start-page: 1553
  year: 2016
  end-page: 1558
  ident: bib5
  article-title: Tunable meta-liquid crystals
  publication-title: Adv. Mater.
– start-page: 2584509
  year: 2019
  ident: bib78
  article-title: Direct transmission of digital message via programmable coding metasurface
  publication-title: Research
– volume: 13
  start-page: 139
  year: 2014
  end-page: 150
  ident: bib26
  article-title: Flat optics with designer metasurfaces
  publication-title: Nat. Mater.
– volume: 1
  start-page: 21
  year: 2010
  ident: 10.1016/j.isci.2020.101403_bib11
  article-title: Three-dimensional broadband ground-plane cloak made of metamaterials
  publication-title: Na. Commun.
  doi: 10.1038/ncomms1023
– volume: 5
  start-page: 3
  year: 2001
  ident: 10.1016/j.isci.2020.101403_bib60
  article-title: A mathematical theory of communication
  publication-title: ACM Sigmobile Mobile Comput. Commun. Rev.
  doi: 10.1145/584091.584093
– volume: 85
  start-page: 3966
  year: 2000
  ident: 10.1016/j.isci.2020.101403_bib3
  article-title: Negative refraction makes a perfect lens
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3966
– volume: 5
  start-page: 1718
  year: 2017
  ident: 10.1016/j.isci.2020.101403_bib2b
  article-title: Reconfigurable metasurface cloak for dynamical electromagnetic illusions
  publication-title: ACS Photon.
  doi: 10.1021/acsphotonics.7b01114
– volume: 7
  start-page: e18008
  year: 2018
  ident: 10.1016/j.isci.2020.101403_bib104
  article-title: Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves
  publication-title: Light.: Sci. Appl.
  doi: 10.1038/lsa.2018.8
– volume: 1
  start-page: 100006
  year: 2020
  ident: 10.1016/j.isci.2020.101403_bib81
  article-title: Intelligent electromagnetic sensing with learnable data acquisition and processing
  publication-title: Patterns
  doi: 10.1016/j.patter.2020.100006
– volume: 6
  start-page: 26959
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib75
  article-title: Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface
  publication-title: Sci. Rep.
  doi: 10.1038/srep26959
– volume: 12
  start-page: 1702
  year: 2012
  ident: 10.1016/j.isci.2020.101403_bib27
  article-title: Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities
  publication-title: Nano Lett.
  doi: 10.1021/nl300204s
– volume: 334
  start-page: 333
  year: 2011
  ident: 10.1016/j.isci.2020.101403_bib23
  article-title: Light propagation with phase discontinuities: generalized laws of reflection and refraction
  publication-title: Science
  doi: 10.1126/science.1210713
– volume: 113
  start-page: 063502
  year: 2018
  ident: 10.1016/j.isci.2020.101403_bib109
  article-title: Design of digital coding metasurfaces with independent controls of phase and amplitude responses
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5043520
– volume: 15
  start-page: 1529
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib95
  article-title: Nonreciprocal graphene devices and antennas based on spatiotemporal modulation
  publication-title: IEEE Antenn. Wirel. Pr.
  doi: 10.1109/LAWP.2015.2510818
– volume: 12
  start-page: 107
  year: 2018
  ident: 10.1016/j.isci.2020.101403_bib76
  article-title: A survey on the low-dimensional-model-based electromagnetic imaging
  publication-title: Found. Trends. Inf. Ret.
– volume: 5
  start-page: e16076
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib9a
  article-title: Anisotropic coding metamaterials and their powerful manipulation to differently polarized terahertz waves
  publication-title: Light.: Sci. Appl.
  doi: 10.1038/lsa.2016.76
– volume: 7
  start-page: nwz195
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib62
  article-title: Information theory of metasurfaces
  publication-title: Natl. Sci. Rev.
– volume: 8
  start-page: 1
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib96
  article-title: Smart metasurface with self-adaptively reprogrammable functions
  publication-title: Light.: Sci. Appl.
  doi: 10.1038/s41377-019-0205-3
– volume: 4
  start-page: 391
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib51
  article-title: Reconfigurable digital metamaterial for dynamic switching of terahertz Anisotropy
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500588
– volume: 22
  start-page: 13403
  year: 2014
  ident: 10.1016/j.isci.2020.101403_bib40
  article-title: Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface
  publication-title: Opt. Express
  doi: 10.1364/OE.22.013403
– volume: 339
  start-page: 1405
  year: 2013
  ident: 10.1016/j.isci.2020.101403_bib30
  article-title: Photonic spin Hall effect at metasurfaces
  publication-title: Science
  doi: 10.1126/science.1231758
– volume: 16
  start-page: 46
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib10a
  article-title: Wireless communications with programmable metasurface: transceiver design and experimental results
  publication-title: China Commun.
  doi: 10.23919/j.cc.2019.05.004
– volume: 71
  start-page: 036609
  year: 2005
  ident: 10.1016/j.isci.2020.101403_bib15
  article-title: Gradient index metamaterials
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.036609
– volume: 9
  start-page: 36447
  year: 2017
  ident: 10.1016/j.isci.2020.101403_bib15a
  article-title: Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b12468
– volume: 455
  start-page: 376
  year: 2008
  ident: 10.1016/j.isci.2020.101403_bib5A
  article-title: Three-dimensional optical metamaterial with a negative refractive index
  publication-title: Nature
  doi: 10.1038/nature07247
– volume: 352
  start-page: 1190
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib36
  article-title: Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging
  publication-title: Science
  doi: 10.1126/science.aaf6644
– volume: 104
  start-page: 151601
  year: 2014
  ident: 10.1016/j.isci.2020.101403_bib19
  article-title: A broadband transformation-optics metasurface lens
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4870809
– volume: 67
  start-page: 1819
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib4b
  article-title: Deepnis: deep neural network for nonlinear electromagnetic inverse scattering
  publication-title: IEEE T. Antenn. Propag.
  doi: 10.1109/TAP.2018.2885437
– volume: 30
  start-page: 1603
  year: 2013
  ident: 10.1016/j.isci.2020.101403_bib72
  article-title: Metamaterial apertures for coherent computational imaging on the physical layer
  publication-title: J. Opt. Soc. Am. A.
  doi: 10.1364/JOSAA.30.001603
– volume: 9
  start-page: 965
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib47
  article-title: A review of THz modulators with dynamic tunable
  publication-title: Metasurfaces. Nanomater.
  doi: 10.3390/nano9070965
– volume: 2
  start-page: 1057
  year: 2014
  ident: 10.1016/j.isci.2020.101403_bib42
  article-title: Ultrafast electrically tunable polaritonic metasurfaces
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201400185
– volume: 101
  start-page: 203901
  year: 2008
  ident: 10.1016/j.isci.2020.101403_bib9
  article-title: Hiding under the carpet: a new strategy for cloaking
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.203901
– volume: 3
  start-page: 1968
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib7c
  article-title: Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces
  publication-title: ACS Photon.
  doi: 10.1021/acsphotonics.6b00515
– volume: 29
  start-page: 1700733
  year: 2017
  ident: 10.1016/j.isci.2020.101403_bib39
  article-title: Active phase transition via loss engineering in a terahertz MEMS metamaterial
  publication-title: Adv. Mat.
  doi: 10.1002/adma.201700733
– volume: 8
  start-page: 97
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib80
  article-title: Shuang, Intelligent metasurface imager and recognizer, Light
  publication-title: Sci. Appl.
– year: 2020
  ident: 10.1016/j.isci.2020.101403_bib14c
  article-title: Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics
  publication-title: Nanophotonics
– volume: 29
  start-page: 1606422
  year: 2017
  ident: 10.1016/j.isci.2020.101403_bib54
  article-title: A reconfigurable active Huygens' Metalens
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606422
– volume: 335
  start-page: 427
  year: 2012
  ident: 10.1016/j.isci.2020.101403_bib24
  article-title: Broadband light bending with plasmonic nanoantennas
  publication-title: Science
  doi: 10.1126/science.1214686
– volume: 6
  start-page: 1801086
  year: 2018
  ident: 10.1016/j.isci.2020.101403_bib108
  article-title: Space-frequency-domain gradient metamaterials
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801086
– volume: 28
  start-page: 1553
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib5
  article-title: Tunable meta-liquid crystals
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504924
– volume: 323
  start-page: 366
  year: 2009
  ident: 10.1016/j.isci.2020.101403_bib10
  article-title: Broadband ground-plane cloak
  publication-title: Science
  doi: 10.1126/science.1166949
– volume: 13
  start-page: 139
  year: 2014
  ident: 10.1016/j.isci.2020.101403_bib26
  article-title: Flat optics with designer metasurfaces
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3839
– volume: 93
  start-page: 197401
  year: 2004
  ident: 10.1016/j.isci.2020.101403_bib21
  article-title: Babinet principle applied to the design of metasurfaces and metamaterials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.197401
– volume: 5
  start-page: 2459
  year: 2015
  ident: 10.1016/j.isci.2020.101403_bib93
  article-title: Time-varying metasurfaces and Lorentz non-reciprocity
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.5.002459
– volume: 6
  start-page: 231
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib82
  article-title: Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwy135
– volume: 5
  start-page: 3040
  year: 2018
  ident: 10.1016/j.isci.2020.101403_bib46
  article-title: Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures
  publication-title: ACS Photon.
  doi: 10.1021/acsphotonics.8b00276
– volume: 103
  start-page: 1034
  year: 2015
  ident: 10.1016/j.isci.2020.101403_bib50
  article-title: Reconfigurable electromagnetics through metamaterials-A review
  publication-title: P. IEEE
– volume: 314
  start-page: 977
  year: 2006
  ident: 10.1016/j.isci.2020.101403_bib8
  article-title: Metamaterial electromagnetic cloak at microwave frequencies
  publication-title: Science
  doi: 10.1126/science.1133628
– volume: 10
  start-page: 60
  year: 2015
  ident: 10.1016/j.isci.2020.101403_bib48
  article-title: Optically reconfigurable metasurfaces and photonic devices based on phase change materials
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2015.247
– volume: 8
  start-page: 197
  year: 2017
  ident: 10.1016/j.isci.2020.101403_bib77
  article-title: Electromagnetic reprogrammable coding metasurface holograms
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00164-9
– volume: 1
  start-page: 124
  year: 2010
  ident: 10.1016/j.isci.2020.101403_bib17
  article-title: Three-dimensional broadband and broad-angle transformation-optics lens
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1126
– volume: 68
  start-page: 1618
  year: 2020
  ident: 10.1016/j.isci.2020.101403_bib88
  article-title: Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface
  publication-title: IEEE T. Antenn. Propag.
  doi: 10.1109/TAP.2019.2952460
– volume: 31
  start-page: e1904069
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib18a
  article-title: Breaking reciprocity with space-time-coding digital metasurfaces
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904069
– volume: 14
  start-page: 6526
  year: 2014
  ident: 10.1016/j.isci.2020.101403_bib41
  article-title: Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators
  publication-title: Nano Lett.
  doi: 10.1021/nl503104n
– volume: 4
  start-page: 1900044
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib85
  article-title: Wireless communications through a simplified architecture based on time-domain digital coding metasurface
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900044
– volume: 10
  start-page: 308
  year: 2015
  ident: 10.1016/j.isci.2020.101403_bib35
  article-title: Metasurface holograms reaching 80% efficiency
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.2
– volume: 9
  start-page: 4334
  year: 2018
  ident: 10.1016/j.isci.2020.101403_bib17b
  article-title: Space-time-coding digital metasurfaces
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06802-0
– volume: 55
  start-page: 417
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib11b
  article-title: Programmable metasurface-based RF chain-free 8PSK wireless transmitter
  publication-title: Electron. Lett.
  doi: 10.1049/el.2019.0400
– volume: 5
  start-page: 1700548
  year: 2017
  ident: 10.1016/j.isci.2020.101403_bib106
  article-title: Beam-editing coding metasurfaces based on polarization bit and OAM-mode bit
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700548
– volume: 14
  start-page: 225
  year: 2014
  ident: 10.1016/j.isci.2020.101403_bib34
  article-title: High-efficiency broadband meta-hologram with polarization-controlled dual images
  publication-title: Nano Lett.
  doi: 10.1021/nl403811d
– volume: 5
  start-page: 1700624
  year: 2017
  ident: 10.1016/j.isci.2020.101403_bib98
  article-title: Concepts, working principles, and applications of coding and programmable metamaterials
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700624
– volume: 113
  start-page: 3471
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib94
  article-title: Breaking temporal symmetries for emission and absorption
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517363113
– volume: 28
  start-page: 2533
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib29
  article-title: Visible-frequency metasurface for structuring and spatially multiplexing optical vortices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504532
– volume: 102
  start-page: 253902
  year: 2009
  ident: 10.1016/j.isci.2020.101403_bib13
  article-title: Illusion optics: the optical transformation of an object into another object
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.253902
– volume: 3
  start-page: 1600156
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib8d
  article-title: Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600156
– volume: 444
  start-page: 597
  year: 2006
  ident: 10.1016/j.isci.2020.101403_bib38
  article-title: Active terahertz metamaterial devices
  publication-title: Nature
  doi: 10.1038/nature05343
– volume: 3
  start-page: e218
  year: 2014
  ident: 10.1016/j.isci.2020.101403_bib55
  article-title: Coding metamaterials, digital metamaterials and programmable metamaterials
  publication-title: Light.: Sci. Appl.
  doi: 10.1038/lsa.2014.99
– volume: 7
  start-page: 1901285
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib102
  article-title: Controllable and programmable nonreciprocity based on detachable digital coding metasurface
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201901285
– volume: 47
  start-page: 853
  year: 2005
  ident: 10.1016/j.isci.2020.101403_bib22
  article-title: Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles
  publication-title: IEEE T. Electromagn. C
  doi: 10.1109/TEMC.2005.853719
– volume: 1
  start-page: 1
  year: 2020
  ident: 10.1016/j.isci.2020.101403_bib99
  article-title: Information metamaterials: bridging the physical world and digital world
  publication-title: PhotoniX
  doi: 10.1186/s43074-020-00006-w
– volume: 98
  start-page: 204101
  year: 2011
  ident: 10.1016/j.isci.2020.101403_bib14
  article-title: Shrinking an arbitrary object as one desires using metamaterials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3590203
– volume: 5
  start-page: 041027
  year: 2015
  ident: 10.1016/j.isci.2020.101403_bib43
  article-title: Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces
  publication-title: Phys. Rev. X
– volume: 6
  start-page: 23731
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib74
  article-title: Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging
  publication-title: Sci. Rep.
  doi: 10.1038/srep23731
– volume: 126
  start-page: 113102
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib110
  article-title: 2-bit amplitude- modulated coding metasurfaces based on indium tin oxide films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5096321
– volume: 84
  start-page: 4184
  year: 2000
  ident: 10.1016/j.isci.2020.101403_bib2
  article-title: Composite medium with simultaneously negative permeability and permittivity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.4184
– volume: 5
  start-page: 1801028
  year: 2018
  ident: 10.1016/j.isci.2020.101403_bib16a
  article-title: Light-controllable digital coding metasurfaces
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801028
– volume: 328
  start-page: 337
  year: 2010
  ident: 10.1016/j.isci.2020.101403_bib12
  article-title: Three-dimensional invisibility cloak at optical wavelengths
  publication-title: Science
  doi: 10.1126/science.1186351
– volume: 292
  start-page: 77
  year: 2001
  ident: 10.1016/j.isci.2020.101403_bib4
  article-title: Experimental verification of a negative index of refraction
  publication-title: Science
  doi: 10.1126/science.1058847
– volume: 339
  start-page: 310
  year: 2013
  ident: 10.1016/j.isci.2020.101403_bib73
  article-title: Metamaterial apertures for computational imaging
  publication-title: Science
  doi: 10.1126/science.1230054
– volume: 27
  start-page: 4739
  year: 2015
  ident: 10.1016/j.isci.2020.101403_bib49
  article-title: A flat lens with tunable phase gradient by using random access reconfigurable metamaterial
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501943
– volume: 3
  start-page: 165
  year: 2020
  ident: 10.1016/j.isci.2020.101403_bib12a
  article-title: An optically driven digital metasurface for programming electromagnetic functions
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0380-5
– volume: 95
  start-page: 181901
  year: 2009
  ident: 10.1016/j.isci.2020.101403_bib16
  article-title: Broadband planar Luneburg lens based on complementary metamaterials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3257375
– volume: 10
  start-page: 1082
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib3a
  article-title: Machine-learning reprogrammable metasurface imager
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09103-2
– volume: 312
  start-page: 1780
  year: 2006
  ident: 10.1016/j.isci.2020.101403_bib7
  article-title: Controlling electromagnetic fields
  publication-title: Science
  doi: 10.1126/science.1125907
– volume: 13
  start-page: 021003
  year: 2020
  ident: 10.1016/j.isci.2020.101403_bib105
  article-title: Editing arbitrarily linear polarizations using programmable metasurface
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.021003
– volume: 4
  start-page: 2807
  year: 2013
  ident: 10.1016/j.isci.2020.101403_bib33
  article-title: Metasurface holograms for visible light
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3807
– volume: 11
  start-page: 426
  year: 2012
  ident: 10.1016/j.isci.2020.101403_bib37
  article-title: Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3292
– volume: 6
  start-page: 20663
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib66
  article-title: Field-programmable beam reconfiguring based on digitally-controlled coding metasurface
  publication-title: Sci. Rep.
  doi: 10.1038/srep20663
– volume: 5
  start-page: e16172
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib61
  article-title: Information entropy of coding metasurface
  publication-title: Light.: Sci. Appl.
  doi: 10.1038/lsa.2016.172
– volume: 7
  start-page: 1
  year: 2018
  ident: 10.1016/j.isci.2020.101403_bib83
  article-title: Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface
  publication-title: Light.: Sci.Appl.
  doi: 10.1038/s41377-018-0092-z
– volume: 10
  start-page: 133
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib44
  article-title: Mechanically tunable dielectric resonator metasurfaces at visible frequencies
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05954
– volume: 5
  start-page: 3644
  year: 2017
  ident: 10.1016/j.isci.2020.101403_bib58
  article-title: Information metamaterials and metasurfaces
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC00548B
– volume: 12
  start-page: 5750
  year: 2012
  ident: 10.1016/j.isci.2020.101403_bib28
  article-title: Dispersionless phase discontinuities for controlling light propagation
  publication-title: Nano Lett.
  doi: 10.1021/nl303031j
– volume: 51
  start-page: 2641
  year: 2003
  ident: 10.1016/j.isci.2020.101403_bib20
  article-title: Averaged transition conditions for electromagnetic fields at a metafilm
  publication-title: IEEE T. Antenn. Propag.
  doi: 10.1109/TAP.2003.817560
– volume: 7
  start-page: 1903382
  year: 2020
  ident: 10.1016/j.isci.2020.101403_bib13b
  article-title: Polarization-controlled dual-programmable metasurfaces
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903382
– volume: 54
  start-page: 10
  year: 2012
  ident: 10.1016/j.isci.2020.101403_bib25
  article-title: An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials
  publication-title: IEEE Antenn. Propag. M
  doi: 10.1109/MAP.2012.6230714
– start-page: 2584509
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib78
  article-title: Direct transmission of digital message via programmable coding metasurface
  publication-title: Research
– volume: 5
  start-page: 16076
  year: 2016
  ident: 10.1016/j.isci.2020.101403_bib6
  article-title: Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves
  publication-title: Light.: Sci. Appl.
  doi: 10.1038/lsa.2016.76
– volume: 110
  start-page: 044904
  year: 2011
  ident: 10.1016/j.isci.2020.101403_bib18
  article-title: Three-dimensional broadband and high-directivity lens antenna made of metamaterials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3622596
– volume: 308
  start-page: 534
  year: 2005
  ident: 10.1016/j.isci.2020.101403_bib6a
  article-title: Sub-diffraction-limited optical imaging with a silver superlens
  publication-title: Science
  doi: 10.1126/science.1108759
– volume: 10
  start-page: 29
  year: 2020
  ident: 10.1016/j.isci.2020.101403_bib67
  article-title: Programmable high-order OAM-carrying beams for direct-modulation wireless communications
  publication-title: IEEE J. Em. Sel. Top. C
– volume: 92
  start-page: 10
  year: 2015
  ident: 10.1016/j.isci.2020.101403_bib92
  article-title: Space-time gradient metasurfaces
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.100304
– volume: 4
  start-page: 1700098
  year: 2017
  ident: 10.1016/j.isci.2020.101403_bib107
  article-title: Controlling energy radiations of electromagnetic waves via frequency coding metamaterials
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700098
– volume: 19
  start-page: 084004
  year: 2017
  ident: 10.1016/j.isci.2020.101403_bib100
  article-title: Microwave metamaterials – from passive to digital and programmable controls of electromagnetic waves
  publication-title: J. Opt.
– volume: 11
  start-page: 054051
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib101
  article-title: Spatial-energy digital coding metasurface based on active amplifier
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.054051
– volume: 76
  start-page: 4773
  year: 1996
  ident: 10.1016/j.isci.2020.101403_bib1a
  article-title: Extremely low frequency plasmons in metallic mesostructures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.4773
– volume: 8
  start-page: 60
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib68
  article-title: Multichannel direct transmissions of near-field information
  publication-title: Light.: Sci. Appl.
  doi: 10.1038/s41377-019-0169-3
– volume: 68
  start-page: 1
  year: 2019
  ident: 10.1016/j.isci.2020.101403_bib19b
  article-title: Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface
  publication-title: IEEE T. Antenn. Propag.
– volume: 5
  start-page: 1700485
  year: 2017
  ident: 10.1016/j.isci.2020.101403_bib1w
  article-title: Reconfigurable metasurface for multifunctional control of electromagnetic waves
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700485
– volume: 6
  start-page: 1701236
  year: 2018
  ident: 10.1016/j.isci.2020.101403_bib65
  article-title: Addition theorem for digital coding metamaterials
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201701236
– volume: 5
  start-page: 134
  year: 2018
  ident: 10.1016/j.isci.2020.101403_bib97
  article-title: Microwave metamaterials
  publication-title: Nat. Sci. Rev.
  doi: 10.1093/nsr/nwx133
– volume: 340
  start-page: 1304
  year: 2013
  ident: 10.1016/j.isci.2020.101403_bib32
  article-title: Terahertz metamaterials for linear polarization conversion and anomalous refraction
  publication-title: Science
  doi: 10.1126/science.1235399
– volume: 3
  start-page: 1102
  year: 2015
  ident: 10.1016/j.isci.2020.101403_bib31
  article-title: Photonic spin Hall effect with nearly 100% efficiency
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500068
SSID ssj0002002496
Score 2.5691304
SecondaryResourceType review_article
Snippet Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101403
SubjectTerms Electromagnetic Waves
Information Systems
Metamaterials
Review
Title Information Metamaterial Systems
URI https://dx.doi.org/10.1016/j.isci.2020.101403
https://www.ncbi.nlm.nih.gov/pubmed/32777776
https://www.proquest.com/docview/2432857360
https://pubmed.ncbi.nlm.nih.gov/PMC7415848
https://doaj.org/article/6d5d83e322f54dacbe9074abf96cc167
Volume 23
WOSCitedRecordID wos000564159100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B1QOXqogCoWUVpN6qiMRObOdYUCsOsOJQqr1ZfoqtqhS12_7-zjjOahek9kJOkeM8ZsbOfGPPA-AYJWnr4HmF4Lir2shDZYyrqyZa_GMahMhpTffyu5zP1WLR_9wo9UU-YWN64JFxn4XvvOIBx13sWm-cDWTOGRt74VwjUhw5op4NY-oqba9RKrxUWa4jnyAcmjliZnTuoohXNA5ZaminillZK6Xk_VvK6V_w-bcP5YZSOt-HvYwmy9ORitfwIgxvoMwhRsTy8kdYGTxN46zM6ckP4Nf52cXXb1UuhFA5qjdQoQ1Xd16I0EeHAF8Ghzyw0fqOmyZ4GVmovUfNzYRsfV8H2pyUvo_KS9FHxt_CznAzhPdQMlMLa6xSpjVt7bwNHqelMgjrpDGBF9BMjNAuZwmnYhXXenIHu9LEPE3M0yPzCjhZ3_NnzJHxZO8vxN91T8pvnRpQ6jpLXT8n9QK6STo6Q4URAuCjlk--_NMkSo3ziDZHzBBu7u80azlTneSiLuDdKNr1J3Im6RAFyC2hb9GwfWVY_k65ugmwqVZ9-B9EH8IrIoVWtFlzBDur2_vwEXbdw2p5dzuDl3KhZmkaPAIzgAoM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+Metamaterial+Systems&rft.jtitle=iScience&rft.au=Cui%2C+Tie+Jun&rft.au=Li%2C+Lianlin&rft.au=Liu%2C+Shuo&rft.au=Ma%2C+Qian&rft.date=2020-08-21&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=8&rft.spage=101403&rft_id=info:doi/10.1016%2Fj.isci.2020.101403&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2020_101403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon