Information Metamaterial Systems
Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be...
Gespeichert in:
| Veröffentlicht in: | iScience Jg. 23; H. 8; S. 101403 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
21.08.2020
Elsevier |
| Schlagworte: | |
| ISSN: | 2589-0042, 2589-0042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be fixed. To control the EM waves dynamically, active devices are integrated into the meta-atoms, yielding active metamaterials. Traditionally, the active metamaterials include tunable metamaterials and reconfigurable metamaterials, which have either small-range tunability or a few numbers of reconfigurability. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, have been presented, which can realize a large number of distinct functionalities and switch them in real time with the aid of field programmable gate array (FPGA). More importantly, the digital coding representations of metamaterials make it possible to bridge the digital world and physical world using the metamaterial platform and make the metamaterials process digital information directly, resulting in information metamaterials. In this review article, we firstly introduce the evolution of metamaterials and then present the concepts and basic principles of digital coding metamaterials and information metamaterials. With more details, we discuss a series of information metamaterial systems, including the programmable metamaterial systems, software metamaterial systems, intelligent metamaterial systems, and space-time-coding metamaterial systems. Finally, we introduce the current progress and predict the future trends of information metamaterials.
[Display omitted]
Electromagnetic Waves; Information Systems; Metamaterials |
|---|---|
| AbstractList | Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be fixed. To control the EM waves dynamically, active devices are integrated into the meta-atoms, yielding active metamaterials. Traditionally, the active metamaterials include tunable metamaterials and reconfigurable metamaterials, which have either small-range tunability or a few numbers of reconfigurability. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, have been presented, which can realize a large number of distinct functionalities and switch them in real time with the aid of field programmable gate array (FPGA). More importantly, the digital coding representations of metamaterials make it possible to bridge the digital world and physical world using the metamaterial platform and make the metamaterials process digital information directly, resulting in information metamaterials. In this review article, we firstly introduce the evolution of metamaterials and then present the concepts and basic principles of digital coding metamaterials and information metamaterials. With more details, we discuss a series of information metamaterial systems, including the programmable metamaterial systems, software metamaterial systems, intelligent metamaterial systems, and space-time-coding metamaterial systems. Finally, we introduce the current progress and predict the future trends of information metamaterials. Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be fixed. To control the EM waves dynamically, active devices are integrated into the meta-atoms, yielding active metamaterials. Traditionally, the active metamaterials include tunable metamaterials and reconfigurable metamaterials, which have either small-range tunability or a few numbers of reconfigurability. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, have been presented, which can realize a large number of distinct functionalities and switch them in real time with the aid of field programmable gate array (FPGA). More importantly, the digital coding representations of metamaterials make it possible to bridge the digital world and physical world using the metamaterial platform and make the metamaterials process digital information directly, resulting in information metamaterials. In this review article, we firstly introduce the evolution of metamaterials and then present the concepts and basic principles of digital coding metamaterials and information metamaterials. With more details, we discuss a series of information metamaterial systems, including the programmable metamaterial systems, software metamaterial systems, intelligent metamaterial systems, and space-time-coding metamaterial systems. Finally, we introduce the current progress and predict the future trends of information metamaterials. Electromagnetic Waves; Information Systems; Metamaterials Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be fixed. To control the EM waves dynamically, active devices are integrated into the meta-atoms, yielding active metamaterials. Traditionally, the active metamaterials include tunable metamaterials and reconfigurable metamaterials, which have either small-range tunability or a few numbers of reconfigurability. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, have been presented, which can realize a large number of distinct functionalities and switch them in real time with the aid of field programmable gate array (FPGA). More importantly, the digital coding representations of metamaterials make it possible to bridge the digital world and physical world using the metamaterial platform and make the metamaterials process digital information directly, resulting in information metamaterials. In this review article, we firstly introduce the evolution of metamaterials and then present the concepts and basic principles of digital coding metamaterials and information metamaterials. With more details, we discuss a series of information metamaterial systems, including the programmable metamaterial systems, software metamaterial systems, intelligent metamaterial systems, and space-time-coding metamaterial systems. Finally, we introduce the current progress and predict the future trends of information metamaterials. [Display omitted] Electromagnetic Waves; Information Systems; Metamaterials Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be fixed. To control the EM waves dynamically, active devices are integrated into the meta-atoms, yielding active metamaterials. Traditionally, the active metamaterials include tunable metamaterials and reconfigurable metamaterials, which have either small-range tunability or a few numbers of reconfigurability. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, have been presented, which can realize a large number of distinct functionalities and switch them in real time with the aid of field programmable gate array (FPGA). More importantly, the digital coding representations of metamaterials make it possible to bridge the digital world and physical world using the metamaterial platform and make the metamaterials process digital information directly, resulting in information metamaterials. In this review article, we firstly introduce the evolution of metamaterials and then present the concepts and basic principles of digital coding metamaterials and information metamaterials. With more details, we discuss a series of information metamaterial systems, including the programmable metamaterial systems, software metamaterial systems, intelligent metamaterial systems, and space-time-coding metamaterial systems. Finally, we introduce the current progress and predict the future trends of information metamaterials.Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and tailored in desired ways. However, once the structure-only metamaterials (i.e., passive metamaterials) are fabricated, their functions will be fixed. To control the EM waves dynamically, active devices are integrated into the meta-atoms, yielding active metamaterials. Traditionally, the active metamaterials include tunable metamaterials and reconfigurable metamaterials, which have either small-range tunability or a few numbers of reconfigurability. Recently, a special kind of active metamaterials, digital coding and programmable metamaterials, have been presented, which can realize a large number of distinct functionalities and switch them in real time with the aid of field programmable gate array (FPGA). More importantly, the digital coding representations of metamaterials make it possible to bridge the digital world and physical world using the metamaterial platform and make the metamaterials process digital information directly, resulting in information metamaterials. In this review article, we firstly introduce the evolution of metamaterials and then present the concepts and basic principles of digital coding metamaterials and information metamaterials. With more details, we discuss a series of information metamaterial systems, including the programmable metamaterial systems, software metamaterial systems, intelligent metamaterial systems, and space-time-coding metamaterial systems. Finally, we introduce the current progress and predict the future trends of information metamaterials. |
| ArticleNumber | 101403 |
| Author | Cheng, Qiang Jiang, Wei Xiang Li, Lianlin Ma, Qian Wan, Xiang Cui, Tie Jun Zhang, Lei Liu, Shuo |
| Author_xml | – sequence: 1 givenname: Tie Jun surname: Cui fullname: Cui, Tie Jun email: tjcui@seu.edu.cn organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China – sequence: 2 givenname: Lianlin surname: Li fullname: Li, Lianlin organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University, Beijing 100871, China – sequence: 3 givenname: Shuo surname: Liu fullname: Liu, Shuo organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China – sequence: 4 givenname: Qian surname: Ma fullname: Ma, Qian organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China – sequence: 5 givenname: Lei orcidid: 0000-0002-8791-6374 surname: Zhang fullname: Zhang, Lei organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China – sequence: 6 givenname: Xiang surname: Wan fullname: Wan, Xiang organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China – sequence: 7 givenname: Wei Xiang orcidid: 0000-0002-3122-5937 surname: Jiang fullname: Jiang, Wei Xiang organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China – sequence: 8 givenname: Qiang surname: Cheng fullname: Cheng, Qiang organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32777776$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UUtrVDEUDlKxD_sHXMgs3cyYd25ABClqB1pctK5DbnJSM9x7U5NMof_ezNxW2i6aTQ7nfA_4vmN0MKUJEPpA8IpgIj9vVrG4uKKY7hccszfoiIpOLzHm9ODJfIhOS9lg3JCYci3foUNG1e7JI7RYTyHl0daYpsUlVNtGyNEOi6v7UmEs79HbYIcCpw__Cfr94_v12fny4tfP9dm3i6UTlNSl4BoLLyXo4KQSCpzGqg-9F8wS8CpQwN4TqqlU3GsMSmCmvA6dV1IHyk7Qetb1yW7MbY6jzfcm2Wj2i5RvjM01ugGM9MJ3DBilQXBvXQ_Ni9s-aOkckappfZ21brf9CN7BVLMdnok-v0zxj7lJd0ZxIjreNYFPDwI5_d1CqWZsacMw2AnSthjKGe2EYhI36MenXv9NHiNugG4GuJxKyRCMi3Wfd7OOgyHY7Ao1G7Mr1OwKNXOhjUpfUB_VXyV9mUnQ2rqLkE1DwOTAxwyutjjja_R_sHy4KA |
| CitedBy_id | crossref_primary_10_1080_02726343_2024_2313971 crossref_primary_10_1109_TAP_2024_3368230 crossref_primary_10_1002_lpor_202402014 crossref_primary_10_1016_j_optcom_2022_129196 crossref_primary_10_1002_adom_202002155 crossref_primary_10_1039_D5NH00011D crossref_primary_10_1088_1361_665X_ad1268 crossref_primary_10_1002_mop_70028 crossref_primary_10_1016_j_optcom_2023_129506 crossref_primary_10_1093_nsr_nwab134 crossref_primary_10_3390_nano11102709 crossref_primary_10_1016_j_mtcomm_2024_110027 crossref_primary_10_1002_adom_202201900 crossref_primary_10_1002_adfm_202310234 crossref_primary_10_1016_j_trac_2025_118342 crossref_primary_10_1002_lpor_202000449 crossref_primary_10_1515_nanoph_2021_0657 crossref_primary_10_1109_TAP_2022_3221840 crossref_primary_10_3390_photonics11010069 crossref_primary_10_1007_s13320_025_0743_7 crossref_primary_10_1103_PhysRevApplied_21_040502 crossref_primary_10_29026_oea_2025_240315 crossref_primary_10_1364_PRJ_412052 crossref_primary_10_1002_eng2_12658 crossref_primary_10_1515_nanoph_2022_0764 crossref_primary_10_1063_5_0093424 crossref_primary_10_1063_5_0198211 crossref_primary_10_1109_TVT_2024_3383824 crossref_primary_10_1155_2021_9951644 crossref_primary_10_1063_5_0258161 crossref_primary_10_1515_nanoph_2023_0490 crossref_primary_10_3390_mi12080988 crossref_primary_10_1002_adem_202300750 crossref_primary_10_1088_2515_7647_acadc1 crossref_primary_10_1002_adfm_202203120 crossref_primary_10_1002_eng2_70088 crossref_primary_10_1063_5_0076022 crossref_primary_10_1002_adfm_202403577 crossref_primary_10_1016_j_optmat_2021_111892 crossref_primary_10_1038_s41598_021_86588_2 crossref_primary_10_1016_j_isci_2024_111364 crossref_primary_10_1002_adom_202203114 crossref_primary_10_1038_s41467_025_56209_x crossref_primary_10_1063_5_0064675 crossref_primary_10_1364_PRJ_537749 crossref_primary_10_3389_fmats_2022_932773 crossref_primary_10_1093_nsr_nwad299 crossref_primary_10_1080_15376494_2024_2400243 crossref_primary_10_1088_1361_6463_acc40d crossref_primary_10_1002_aisy_202300565 crossref_primary_10_1088_1402_4896_ad78c5 crossref_primary_10_1103_PhysRevApplied_17_034017 crossref_primary_10_1049_ell2_13178 crossref_primary_10_1515_nanoph_2025_0050 crossref_primary_10_1002_advs_202403624 crossref_primary_10_1109_TAP_2022_3187645 crossref_primary_10_1002_admt_202400850 crossref_primary_10_1016_j_isci_2025_113313 crossref_primary_10_1109_JPROC_2022_3186087 crossref_primary_10_1002_adfm_202421498 crossref_primary_10_1063_5_0175769 crossref_primary_10_1021_acsphotonics_5c00938 crossref_primary_10_3390_app122211780 crossref_primary_10_1016_j_optcom_2023_129714 crossref_primary_10_1063_5_0168561 crossref_primary_10_1109_TIM_2025_3576952 crossref_primary_10_1002_adom_202202527 crossref_primary_10_1007_s00339_021_04800_6 crossref_primary_10_1051_epjam_2020007 crossref_primary_10_1007_s11468_024_02538_4 crossref_primary_10_1103_PhysRevApplied_19_054086 crossref_primary_10_1002_admt_202301629 crossref_primary_10_1002_advs_202306181 crossref_primary_10_1109_TAP_2022_3187137 crossref_primary_10_1109_JSAC_2023_3288231 crossref_primary_10_1002_adom_202202081 crossref_primary_10_1038_s41467_025_57137_6 crossref_primary_10_1038_s41467_023_41679_8 crossref_primary_10_1109_MAP_2022_3169397 crossref_primary_10_1109_TAP_2023_3340769 crossref_primary_10_1093_nsr_nwaf017 crossref_primary_10_1038_s41928_022_00719_9 crossref_primary_10_1109_LAWP_2024_3378227 crossref_primary_10_1002_sstr_202500352 crossref_primary_10_1051_epjam_2020017 crossref_primary_10_1002_adfm_202314110 crossref_primary_10_1002_andp_202200229 crossref_primary_10_1109_JPROC_2022_3170498 crossref_primary_10_1109_TAP_2021_3130108 crossref_primary_10_1002_adma_202007966 crossref_primary_10_1007_s00419_023_02515_z crossref_primary_10_1038_s41467_025_55940_9 crossref_primary_10_1016_j_optmat_2023_114777 crossref_primary_10_1002_smll_202203871 crossref_primary_10_1002_adom_202201382 crossref_primary_10_1016_j_measurement_2022_110738 crossref_primary_10_1109_MCOM_004_2200052 crossref_primary_10_1093_nsr_nwaa237 crossref_primary_10_1515_nanoph_2023_0050 crossref_primary_10_3390_cryst15040374 crossref_primary_10_1557_s43579_024_00520_z crossref_primary_10_3390_mi15020219 crossref_primary_10_1002_adom_202202186 crossref_primary_10_1016_j_isci_2024_111688 crossref_primary_10_1049_cmu2_12571 crossref_primary_10_1002_admt_202301006 crossref_primary_10_1002_aisy_202200083 crossref_primary_10_3390_polym17182559 crossref_primary_10_1109_TMTT_2021_3054662 crossref_primary_10_1002_advs_202105056 crossref_primary_10_1038_s41467_025_61934_4 crossref_primary_10_1364_PRJ_416287 crossref_primary_10_1088_1361_6463_ac7e04 crossref_primary_10_1002_adfm_202107557 crossref_primary_10_1002_lpor_202400617 crossref_primary_10_1109_JIOT_2023_3252587 crossref_primary_10_1093_nsr_nwad013 crossref_primary_10_1038_s41467_024_47865_6 crossref_primary_10_29026_oea_2022_210147 crossref_primary_10_1002_adfm_202007620 crossref_primary_10_1063_5_0260203 crossref_primary_10_3389_fphy_2022_1069722 crossref_primary_10_3390_electronics12132996 crossref_primary_10_1002_lpor_202400062 crossref_primary_10_1088_1361_6463_ac8207 crossref_primary_10_1515_nanoph_2021_0799 crossref_primary_10_3390_nano12213849 crossref_primary_10_1088_2515_7647_ad1a3b crossref_primary_10_1002_adts_202100046 crossref_primary_10_1088_1361_6463_abdb0c crossref_primary_10_1109_LAWP_2021_3050808 crossref_primary_10_1002_admt_202001254 crossref_primary_10_3390_math10152589 crossref_primary_10_1103_PhysRevApplied_19_054096 crossref_primary_10_1063_5_0132635 crossref_primary_10_3389_fmats_2022_946163 crossref_primary_10_1016_j_mechmat_2024_105217 crossref_primary_10_1002_adom_202001609 crossref_primary_10_1109_TMAG_2021_3064938 crossref_primary_10_1109_TWC_2025_3554769 |
| Cites_doi | 10.1038/ncomms1023 10.1145/584091.584093 10.1103/PhysRevLett.85.3966 10.1021/acsphotonics.7b01114 10.1038/lsa.2018.8 10.1016/j.patter.2020.100006 10.1038/srep26959 10.1021/nl300204s 10.1126/science.1210713 10.1063/1.5043520 10.1109/LAWP.2015.2510818 10.1038/lsa.2016.76 10.1038/s41377-019-0205-3 10.1002/adom.201500588 10.1364/OE.22.013403 10.1126/science.1231758 10.23919/j.cc.2019.05.004 10.1103/PhysRevE.71.036609 10.1021/acsami.7b12468 10.1038/nature07247 10.1126/science.aaf6644 10.1063/1.4870809 10.1109/TAP.2018.2885437 10.1364/JOSAA.30.001603 10.3390/nano9070965 10.1002/adom.201400185 10.1103/PhysRevLett.101.203901 10.1021/acsphotonics.6b00515 10.1002/adma.201700733 10.1002/adma.201606422 10.1126/science.1214686 10.1002/adom.201801086 10.1002/adma.201504924 10.1126/science.1166949 10.1038/nmat3839 10.1103/PhysRevLett.93.197401 10.1364/OME.5.002459 10.1093/nsr/nwy135 10.1021/acsphotonics.8b00276 10.1126/science.1133628 10.1038/nphoton.2015.247 10.1038/s41467-017-00164-9 10.1038/ncomms1126 10.1109/TAP.2019.2952460 10.1002/adma.201904069 10.1021/nl503104n 10.1002/admt.201900044 10.1038/nnano.2015.2 10.1038/s41467-018-06802-0 10.1049/el.2019.0400 10.1002/adom.201700548 10.1021/nl403811d 10.1002/adom.201700624 10.1073/pnas.1517363113 10.1002/adma.201504532 10.1103/PhysRevLett.102.253902 10.1002/advs.201600156 10.1038/nature05343 10.1038/lsa.2014.99 10.1002/adom.201901285 10.1109/TEMC.2005.853719 10.1186/s43074-020-00006-w 10.1063/1.3590203 10.1038/srep23731 10.1063/1.5096321 10.1103/PhysRevLett.84.4184 10.1002/advs.201801028 10.1126/science.1186351 10.1126/science.1058847 10.1126/science.1230054 10.1002/adma.201501943 10.1038/s41928-020-0380-5 10.1063/1.3257375 10.1038/s41467-019-09103-2 10.1126/science.1125907 10.1103/PhysRevApplied.13.021003 10.1038/ncomms3807 10.1038/nmat3292 10.1038/srep20663 10.1038/lsa.2016.172 10.1038/s41377-018-0092-z 10.1021/acsnano.5b05954 10.1039/C7TC00548B 10.1021/nl303031j 10.1109/TAP.2003.817560 10.1002/advs.201903382 10.1109/MAP.2012.6230714 10.1063/1.3622596 10.1126/science.1108759 10.1103/PhysRevB.92.100304 10.1002/advs.201700098 10.1103/PhysRevApplied.11.054051 10.1103/PhysRevLett.76.4773 10.1038/s41377-019-0169-3 10.1002/adom.201700485 10.1002/adom.201701236 10.1093/nsr/nwx133 10.1126/science.1235399 10.1002/adom.201500068 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. 2020 The Author(s) 2020 |
| Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2020 The Author(s) 2020 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.isci.2020.101403 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2589-0042 |
| ExternalDocumentID | oai_doaj_org_article_6d5d83e322f54dacbe9074abf96cc167 PMC7415848 32777776 10_1016_j_isci_2020_101403 S2589004220305939 |
| Genre | Journal Article Review |
| GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c521t-54905d66e9fc6757ec907bfbd53a1ed7f2e0dd1292674d90e75037d9f8d769f23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 188 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564159100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2589-0042 |
| IngestDate | Fri Oct 03 12:52:54 EDT 2025 Tue Sep 30 16:50:29 EDT 2025 Thu Oct 02 05:47:56 EDT 2025 Thu Jan 02 22:46:37 EST 2025 Thu Nov 13 04:32:36 EST 2025 Tue Nov 18 21:39:00 EST 2025 Tue Jul 25 21:03:56 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Information Systems Metamaterials Electromagnetic Waves |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c521t-54905d66e9fc6757ec907bfbd53a1ed7f2e0dd1292674d90e75037d9f8d769f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Lead Contact |
| ORCID | 0000-0002-8791-6374 0000-0002-3122-5937 |
| OpenAccessLink | https://doaj.org/article/6d5d83e322f54dacbe9074abf96cc167 |
| PMID | 32777776 |
| PQID | 2432857360 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6d5d83e322f54dacbe9074abf96cc167 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7415848 proquest_miscellaneous_2432857360 pubmed_primary_32777776 crossref_citationtrail_10_1016_j_isci_2020_101403 crossref_primary_10_1016_j_isci_2020_101403 elsevier_sciencedirect_doi_10_1016_j_isci_2020_101403 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-21 |
| PublicationDateYYYYMMDD | 2020-08-21 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | iScience |
| PublicationTitleAlternate | iScience |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Li, Wang, Teixeira, Liu, Nehora, Cui (bib4b) 2019; 67 Hadad, Soric, Alu (bib94) 2016; 113 Liu, Cui, Xu, Bao, Du, Wan, Tang, Ouyang, Zhou, Yuan (bib9a) 2016; 5 Liu, Cui, Zhang, Xu, Wang, Wan, Gu, Tang, Qi, Han (bib8d) 2016; 3 Wang, Li, Li, Zhang, Cui (bib75) 2016; 6 Dai, Tang, Zhao, Li, Cheng, Ke, Chen, Jin, Cui (bib85) 2019; 4 Shannon (bib60) 2001; 5 Khorasaninejad, Chen, Devlin, Oh, Zhu, Capasso (bib36) 2016; 352 Tang, Dai, Chen, Li, Cheng, Jin, Wong, Cui (bib11b) 2019; 55 Wu, Wang, Fu, Liu, Zhang, Bai, Zhang, Jiang, Jiang, Wu (bib108) 2018; 6 Yu, Capasso (bib26) 2014; 13 Liu, Fan, Padilla, Powell, Zhang, Shadrivov (bib5) 2016; 28 Wang, Zhang, Guo, Chen, Liang, Hao, Hou, Kou, Zhao, Zhou (bib47) 2019; 9 Cong, Pitchappa, Lee, Singh (bib39) 2017; 29 Hadad, Sounas, Alu (bib92) 2015; 92 Lipworth, Mrozack, Hunt, Marks, Driscoll, Brady, Smith (bib72) 2013; 30 Cui, Liu, Bai, Ma (bib78) 2019 Luo, Xiao, He, Sun, Zhou (bib31) 2015; 3 Aieta, Genevet, Yu, Kats, Gaburro, Capasso (bib27) 2012; 12 Cui, Liu, Li (bib61) 2016; 5 Zhao, Zhang, Shi, Liang, Huang, Kou, Yang (bib46) 2018; 5 Huang, Chen, Mühlenbernd, Li, Bai, Tan, Jin, Zentgraf, Zhang (bib28) 2012; 12 Liu, Ji, Mock, Chin, Cui, Smith (bib10) 2009; 323 Zhang, Chen, Shao, Dai, Cheng, Castaldi, Galdi, Cui (bib18a) 2019; 31 Li, Li, Xu, Wu, Wu, Wan, Cheng, Cui (bib74) 2016; 6 Li, Hurtado, Xu, Zhang, Jin, Cui, Stevanovic, Nehorai (bib76) 2018; 12 Pendry, Schurig, Smith (bib7) 2006; 312 Ma, Shi, Bai, Chen, Noor, Cui (bib106) 2017; 5 Shaltout, Kildishev, Shalaev (bib93) 2015; 5 Fang, Lee, Sun, Zhang (bib6a) 2005; 308 Ma, Cui (bib99) 2020; 1 Ma, Bai, Jing, Yang, Li, Cui (bib96) 2019; 8 Dai, Tang, Yang, Li, Chen, Ke, Cheng, Jin, Cui (bib88) 2020; 68 Ma, Cui (bib11) 2010; 1 Zheng, Mühlenbernd, Kenney, Li, Zentgraf, Zhang (bib35) 2015; 10 Luo, Ma, Jing, Bai, Wu, Bao, Cui (bib110) 2019; 126 Correas-Serrano, Gomez-Diaz, Sounas, Hadad, Alvarez-Melcon, Alu (bib95) 2016; 15 Shuang, Zhao, Ji, Cui, Li (bib67) 2020; 10 Holloway, Kuester, Gordon, O'Hara, Booth, Smith (bib25) 2012; 54 Zhang, Wang, Shao, Shen, Chen, Wan, Cheng, Cui (bib19b) 2019; 68 Pendry, Holden, Stewart, Youngs (bib1a) 1996; 76 Ma, Chen, Jing, Hong, Cui, Liu, Li, Cui (bib102) 2019; 7 Li (bib80) 2019; 8 Li, Zhao, Wei, Ruan, Shuang, Cui, Li (bib81) 2020; 1 Wu, Bai, Liu, Li, Wan, Cheng, Cui (bib62) 2019; 7 Wu, Shi, Liu, Wu, Cui (bib65) 2018; 6 Liu, Xu, Zhang, Cui (bib40) 2014; 22 Ni, Kildishev, Shalaev (bib33) 2013; 4 Liu, Cui, Noor, Tao, Zhang, Bai, Yang, Zhou (bib104) 2018; 7 Yin, Ye, Rho, Wang, Zhang (bib30) 2013; 339 Zhang, Chen, Liu, Zhang, Zhao, Dai, Bai, Wan, Cheng, Castaldi (bib17b) 2018; 9 Li, Ruan, Liu, Li, Shuang, Alù, Qiu, Cui (bib3a) 2019; 10 Smith, Mock, Starr, Schurig (bib15) 2005; 71 Tang, Li, Dai, Jin, Zeng, Cheng, Cui (bib10a) 2019; 16 Wan, Jiang, Ma, Cui (bib19) 2014; 104 Chen, Ma, Zou, Jiang, Cui (bib18) 2011; 110 Liu, Noor, Du, Zhang, Xu, Luan, Wang, Tian, Tang, Han (bib7c) 2016; 3 Chen, Yang, Wang, Huang, Sun, Chiang, Liao, Hsu, Lin, Sun (bib34) 2014; 14 Valentine, Zhang, Zentgraf, Ulin-Avila, Genov, Bartal, Zhang (bib5A) 2008; 455 Ni, Emani, Kildishev, Boltasseva, Shalaev (bib24) 2012; 335 Cui, Qi, Wan, Zhao, Cheng (bib55) 2014; 3 Ma, Hong, Bai, Jing, Wu, Bao, Cheng, Cui (bib105) 2020; 13 Bao, Ma, Bai, Jing, Wu, Yang, Wu, Fu, Cui (bib109) 2018; 113 Kuester, Mohamed, Piket-May, Holloway (bib20) 2003; 51 Liu, Cui (bib98) 2017; 5 Liu, Cui, Xu, Bao, Du, Wan, Tang, Ouyang, Zhou, Yuan (bib6) 2016; 5 Mehmood, Mei, Hussain, Huang, Siew, Zhang, Zhang, Ling, Liu, Teng (bib29) 2016; 28 Chen, Ma, Jing, Cui, Liu, Cui (bib101) 2019; 11 Wan, Zhang, Chen, Zhang, Xu, Huang, Xiao, Xiao, Cui (bib68) 2019; 8 Zhang, Liu, Li, Cui (bib15a) 2017; 9 Gutruf, Zou, Withayachumnankul, Bhaskaran, Sriram, Fumeaux (bib44) 2016; 10 Huang, Zhang, Yang, Sun, Zhao, Luo (bib1w) 2017; 5 Wu, Liu, Wan, Zhang, Wang, Li, Cui (bib107) 2017; 4 Schurig, Mock, Justice, Cummer, Pendry, Starr, Smith (bib8) 2006; 314 Wan, Qi, Chen, Cui (bib66) 2016; 6 Zhang, Yang, Yang, Ke, Chen, Cao, Chen, Wu, Chen, Cheng, Cui (bib14c) 2020 Wang, Rogers, Gholipour, Wang, Yuan, Teng, Zheludev (bib48) 2015; 10 Li, Cui, Jing, Liu, Ding, Wan, Li, Jiang, Qiu, Zhang (bib77) 2017; 8 Grady, Heyes, Chowdhury, Zeng, Reiten, Azad, Taylor, Dalvit, Chen (bib32) 2013; 340 Jiang, Cui, Yang, Ma, Cheng (bib14) 2011; 98 Ma, Cui (bib17) 2010; 1 Yao, Shankar, Kats, Song, Kong, Loncar, Capasso (bib41) 2014; 14 Falcone, Lopetegi, Laso, Baena, Bonache, Beruete, Marqués, Martín, Sorolla (bib21) 2004; 93 Hunt, Driscoll, Mrozack, Lipworth, Reynolds, Brady, Smith (bib73) 2013; 339 Sun, He, Xiao, Xu, Li, Zhou (bib37) 2012; 11 Pitchappa, Ho, Cong, Singh, Singh, Lee (bib51) 2016; 4 Holloway, Mohamed, Kuester, Dienstfrey (bib22) 2005; 47 Dai, Zhao, Cheng, Cui (bib83) 2018; 7 Yu, Genevet, Kats, Aieta, Tetienne, Capasso, Gaburro (bib23) 2011; 334 Pendry (bib3) 2000; 85 Lee, Jung, Chen, Lu, Demmerle, Boehm, Amann, Alù, Belkin (bib42) 2014; 2 Zhao, Yang, Dai, Cheng, Li, Qi, Ke, Bai, Liu, Jin, Alù (bib82) 2019; 6 Chen, Feng, Monticone, Zhao, Zhu, Jiang, Zhang, Kim, Ding, Zhang (bib54) 2017; 29 Cui, Liu, Zhang (bib58) 2017; 5 Shelby, Smith, Schultz (bib4) 2001; 292 Chen, O’Hara, Azad, Shrekenhamer, Padilla, Zide, Gossard, Averitt, Taylor (bib38) 2006; 444 Miao, Wu, Li, He, Ding, An, Zhang, Zhou (bib43) 2015; 5 Smith, Padilla, Vier, Nemat-Nasser, Schultz (bib2) 2000; 84 Cheng, Ma, Cui (bib16) 2009; 95 Zhang, Yu, Jiang, Sun, Bai, Wang, Qiu, Cui (bib13b) 2020; 7 Cui (bib97) 2018; 5 Zhang, Tang, Jiang, Bai, Tang, Bai, Qiu, Cui (bib16a) 2018; 5 Zhu, Song, Yan, Zhang, Wu, Chin, Cai, Tsai, Shen, Deng (bib49) 2015; 27 Lai, Ng, Chen, Han, Xiao, Zhang, Chan (bib13) 2009; 102 Zhang, Jiang, Jiang, Wang, Tian, Bai, Luo, Sun, Luo, Qiu, Cui (bib12a) 2020; 3 Ergin, Stenger, Brenner, Pendry, Wegener (bib12) 2010; 328 Li, Pendry (bib9) 2008; 101 Oliveri, Werner, Massa (bib50) 2015; 103 Cui (bib100) 2017; 19 Huang, Yang, Wu, Song, Pu, Wang, Luo (bib2b) 2017; 5 Zhang (10.1016/j.isci.2020.101403_bib19b) 2019; 68 Bao (10.1016/j.isci.2020.101403_bib109) 2018; 113 Zhang (10.1016/j.isci.2020.101403_bib16a) 2018; 5 Mehmood (10.1016/j.isci.2020.101403_bib29) 2016; 28 Cui (10.1016/j.isci.2020.101403_bib100) 2017; 19 Ma (10.1016/j.isci.2020.101403_bib102) 2019; 7 Oliveri (10.1016/j.isci.2020.101403_bib50) 2015; 103 Zhang (10.1016/j.isci.2020.101403_bib14c) 2020 Shelby (10.1016/j.isci.2020.101403_bib4) 2001; 292 Ergin (10.1016/j.isci.2020.101403_bib12) 2010; 328 Cui (10.1016/j.isci.2020.101403_bib58) 2017; 5 Li (10.1016/j.isci.2020.101403_bib74) 2016; 6 Huang (10.1016/j.isci.2020.101403_bib28) 2012; 12 Li (10.1016/j.isci.2020.101403_bib9) 2008; 101 Zheng (10.1016/j.isci.2020.101403_bib35) 2015; 10 Luo (10.1016/j.isci.2020.101403_bib31) 2015; 3 Yao (10.1016/j.isci.2020.101403_bib41) 2014; 14 Tang (10.1016/j.isci.2020.101403_bib11b) 2019; 55 Kuester (10.1016/j.isci.2020.101403_bib20) 2003; 51 Fang (10.1016/j.isci.2020.101403_bib6a) 2005; 308 Cui (10.1016/j.isci.2020.101403_bib97) 2018; 5 Pitchappa (10.1016/j.isci.2020.101403_bib51) 2016; 4 Grady (10.1016/j.isci.2020.101403_bib32) 2013; 340 Yu (10.1016/j.isci.2020.101403_bib26) 2014; 13 Schurig (10.1016/j.isci.2020.101403_bib8) 2006; 314 Cui (10.1016/j.isci.2020.101403_bib78) 2019 Pendry (10.1016/j.isci.2020.101403_bib1a) 1996; 76 Shannon (10.1016/j.isci.2020.101403_bib60) 2001; 5 Ni (10.1016/j.isci.2020.101403_bib33) 2013; 4 Cui (10.1016/j.isci.2020.101403_bib61) 2016; 5 Liu (10.1016/j.isci.2020.101403_bib8d) 2016; 3 Chen (10.1016/j.isci.2020.101403_bib101) 2019; 11 Li (10.1016/j.isci.2020.101403_bib77) 2017; 8 Sun (10.1016/j.isci.2020.101403_bib37) 2012; 11 Yu (10.1016/j.isci.2020.101403_bib23) 2011; 334 Zhang (10.1016/j.isci.2020.101403_bib13b) 2020; 7 Zhang (10.1016/j.isci.2020.101403_bib15a) 2017; 9 Valentine (10.1016/j.isci.2020.101403_bib5A) 2008; 455 Liu (10.1016/j.isci.2020.101403_bib104) 2018; 7 Huang (10.1016/j.isci.2020.101403_bib2b) 2017; 5 Shuang (10.1016/j.isci.2020.101403_bib67) 2020; 10 Wang (10.1016/j.isci.2020.101403_bib48) 2015; 10 Zhao (10.1016/j.isci.2020.101403_bib82) 2019; 6 Zhu (10.1016/j.isci.2020.101403_bib49) 2015; 27 Correas-Serrano (10.1016/j.isci.2020.101403_bib95) 2016; 15 Zhang (10.1016/j.isci.2020.101403_bib17b) 2018; 9 Luo (10.1016/j.isci.2020.101403_bib110) 2019; 126 Aieta (10.1016/j.isci.2020.101403_bib27) 2012; 12 Lee (10.1016/j.isci.2020.101403_bib42) 2014; 2 Smith (10.1016/j.isci.2020.101403_bib15) 2005; 71 Li (10.1016/j.isci.2020.101403_bib76) 2018; 12 Ma (10.1016/j.isci.2020.101403_bib106) 2017; 5 Chen (10.1016/j.isci.2020.101403_bib18) 2011; 110 Wang (10.1016/j.isci.2020.101403_bib47) 2019; 9 Wang (10.1016/j.isci.2020.101403_bib75) 2016; 6 Liu (10.1016/j.isci.2020.101403_bib98) 2017; 5 Ma (10.1016/j.isci.2020.101403_bib99) 2020; 1 Miao (10.1016/j.isci.2020.101403_bib43) 2015; 5 Khorasaninejad (10.1016/j.isci.2020.101403_bib36) 2016; 352 Ma (10.1016/j.isci.2020.101403_bib11) 2010; 1 Zhang (10.1016/j.isci.2020.101403_bib12a) 2020; 3 Cui (10.1016/j.isci.2020.101403_bib55) 2014; 3 Liu (10.1016/j.isci.2020.101403_bib10) 2009; 323 Li (10.1016/j.isci.2020.101403_bib4b) 2019; 67 Cheng (10.1016/j.isci.2020.101403_bib16) 2009; 95 Pendry (10.1016/j.isci.2020.101403_bib7) 2006; 312 Yin (10.1016/j.isci.2020.101403_bib30) 2013; 339 Chen (10.1016/j.isci.2020.101403_bib38) 2006; 444 Ni (10.1016/j.isci.2020.101403_bib24) 2012; 335 Liu (10.1016/j.isci.2020.101403_bib7c) 2016; 3 Holloway (10.1016/j.isci.2020.101403_bib22) 2005; 47 Gutruf (10.1016/j.isci.2020.101403_bib44) 2016; 10 Li (10.1016/j.isci.2020.101403_bib81) 2020; 1 Wu (10.1016/j.isci.2020.101403_bib107) 2017; 4 Dai (10.1016/j.isci.2020.101403_bib83) 2018; 7 Hadad (10.1016/j.isci.2020.101403_bib94) 2016; 113 Wu (10.1016/j.isci.2020.101403_bib65) 2018; 6 Huang (10.1016/j.isci.2020.101403_bib1w) 2017; 5 Shaltout (10.1016/j.isci.2020.101403_bib93) 2015; 5 Wan (10.1016/j.isci.2020.101403_bib68) 2019; 8 Jiang (10.1016/j.isci.2020.101403_bib14) 2011; 98 Liu (10.1016/j.isci.2020.101403_bib9a) 2016; 5 Ma (10.1016/j.isci.2020.101403_bib105) 2020; 13 Pendry (10.1016/j.isci.2020.101403_bib3) 2000; 85 Lipworth (10.1016/j.isci.2020.101403_bib72) 2013; 30 Liu (10.1016/j.isci.2020.101403_bib6) 2016; 5 Li (10.1016/j.isci.2020.101403_bib3a) 2019; 10 Zhao (10.1016/j.isci.2020.101403_bib46) 2018; 5 Li (10.1016/j.isci.2020.101403_bib80) 2019; 8 Wu (10.1016/j.isci.2020.101403_bib62) 2019; 7 Lai (10.1016/j.isci.2020.101403_bib13) 2009; 102 Chen (10.1016/j.isci.2020.101403_bib34) 2014; 14 Liu (10.1016/j.isci.2020.101403_bib40) 2014; 22 Holloway (10.1016/j.isci.2020.101403_bib25) 2012; 54 Wan (10.1016/j.isci.2020.101403_bib66) 2016; 6 Wu (10.1016/j.isci.2020.101403_bib108) 2018; 6 Ma (10.1016/j.isci.2020.101403_bib96) 2019; 8 Cong (10.1016/j.isci.2020.101403_bib39) 2017; 29 Wan (10.1016/j.isci.2020.101403_bib19) 2014; 104 Hunt (10.1016/j.isci.2020.101403_bib73) 2013; 339 Smith (10.1016/j.isci.2020.101403_bib2) 2000; 84 Tang (10.1016/j.isci.2020.101403_bib10a) 2019; 16 Chen (10.1016/j.isci.2020.101403_bib54) 2017; 29 Zhang (10.1016/j.isci.2020.101403_bib18a) 2019; 31 Dai (10.1016/j.isci.2020.101403_bib85) 2019; 4 Liu (10.1016/j.isci.2020.101403_bib5) 2016; 28 Ma (10.1016/j.isci.2020.101403_bib17) 2010; 1 Falcone (10.1016/j.isci.2020.101403_bib21) 2004; 93 Hadad (10.1016/j.isci.2020.101403_bib92) 2015; 92 Dai (10.1016/j.isci.2020.101403_bib88) 2020; 68 |
| References_xml | – volume: 5 start-page: 134 year: 2018 end-page: 136 ident: bib97 article-title: Microwave metamaterials publication-title: Nat. Sci. Rev. – volume: 29 start-page: 1700733 year: 2017 ident: bib39 article-title: Active phase transition via loss engineering in a terahertz MEMS metamaterial publication-title: Adv. Mat. – volume: 6 start-page: 20663 year: 2016 ident: bib66 article-title: Field-programmable beam reconfiguring based on digitally-controlled coding metasurface publication-title: Sci. Rep. – volume: 68 start-page: 1618 year: 2020 end-page: 1627 ident: bib88 article-title: Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface publication-title: IEEE T. Antenn. Propag. – volume: 5 start-page: 3 year: 2001 ident: bib60 article-title: A mathematical theory of communication publication-title: ACM Sigmobile Mobile Comput. Commun. Rev. – volume: 5 start-page: e16076 year: 2016 ident: bib9a article-title: Anisotropic coding metamaterials and their powerful manipulation to differently polarized terahertz waves publication-title: Light.: Sci. Appl. – volume: 6 start-page: 26959 year: 2016 ident: bib75 article-title: Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface publication-title: Sci. Rep. – volume: 5 start-page: 3040 year: 2018 end-page: 3050 ident: bib46 article-title: Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures publication-title: ACS Photon. – volume: 6 start-page: 23731 year: 2016 ident: bib74 article-title: Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging publication-title: Sci. Rep. – volume: 5 start-page: 1700485 year: 2017 ident: bib1w article-title: Reconfigurable metasurface for multifunctional control of electromagnetic waves publication-title: Adv. Opt. Mater. – volume: 27 start-page: 4739 year: 2015 end-page: 4743 ident: bib49 article-title: A flat lens with tunable phase gradient by using random access reconfigurable metamaterial publication-title: Adv. Mater. – volume: 5 start-page: 2459 year: 2015 end-page: 2467 ident: bib93 article-title: Time-varying metasurfaces and Lorentz non-reciprocity publication-title: Opt. Mater. Express – volume: 340 start-page: 1304 year: 2013 end-page: 1307 ident: bib32 article-title: Terahertz metamaterials for linear polarization conversion and anomalous refraction publication-title: Science – volume: 51 start-page: 2641 year: 2003 end-page: 2651 ident: bib20 article-title: Averaged transition conditions for electromagnetic fields at a metafilm publication-title: IEEE T. Antenn. Propag. – volume: 103 start-page: 1034 year: 2015 end-page: 1056 ident: bib50 article-title: Reconfigurable electromagnetics through metamaterials-A review publication-title: P. IEEE – volume: 31 start-page: e1904069 year: 2019 ident: bib18a article-title: Breaking reciprocity with space-time-coding digital metasurfaces publication-title: Adv. Mater. – volume: 308 start-page: 534 year: 2005 end-page: 537 ident: bib6a article-title: Sub-diffraction-limited optical imaging with a silver superlens publication-title: Science – volume: 8 start-page: 97 year: 2019 ident: bib80 article-title: Shuang, Intelligent metasurface imager and recognizer, Light publication-title: Sci. Appl. – volume: 7 start-page: nwz195 year: 2019 ident: bib62 article-title: Information theory of metasurfaces publication-title: Natl. Sci. Rev. – volume: 102 start-page: 253902 year: 2009 ident: bib13 article-title: Illusion optics: the optical transformation of an object into another object publication-title: Phys. Rev. Lett. – volume: 5 start-page: 041027 year: 2015 ident: bib43 article-title: Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces publication-title: Phys. Rev. X – volume: 5 start-page: 1700548 year: 2017 ident: bib106 article-title: Beam-editing coding metasurfaces based on polarization bit and OAM-mode bit publication-title: Adv. Opt. Mater. – volume: 334 start-page: 333 year: 2011 end-page: 337 ident: bib23 article-title: Light propagation with phase discontinuities: generalized laws of reflection and refraction publication-title: Science – volume: 1 start-page: 21 year: 2010 ident: bib11 article-title: Three-dimensional broadband ground-plane cloak made of metamaterials publication-title: Na. Commun. – volume: 2 start-page: 1057 year: 2014 end-page: 1063 ident: bib42 article-title: Ultrafast electrically tunable polaritonic metasurfaces publication-title: Adv. Opt. Mater. – volume: 126 start-page: 113102 year: 2019 ident: bib110 article-title: 2-bit amplitude- modulated coding metasurfaces based on indium tin oxide films publication-title: J. Appl. Phys. – volume: 5 start-page: e16172 year: 2016 ident: bib61 article-title: Information entropy of coding metasurface publication-title: Light.: Sci. Appl. – volume: 113 start-page: 063502 year: 2018 ident: bib109 article-title: Design of digital coding metasurfaces with independent controls of phase and amplitude responses publication-title: Appl. Phys. Lett. – volume: 6 start-page: 1801086 year: 2018 ident: bib108 article-title: Space-frequency-domain gradient metamaterials publication-title: Adv. Opt. Mater. – volume: 9 start-page: 4334 year: 2018 ident: bib17b article-title: Space-time-coding digital metasurfaces publication-title: Nat. Commun. – volume: 10 start-page: 133 year: 2016 end-page: 141 ident: bib44 article-title: Mechanically tunable dielectric resonator metasurfaces at visible frequencies publication-title: ACS Nano – volume: 12 start-page: 1702 year: 2012 end-page: 1706 ident: bib27 article-title: Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities publication-title: Nano Lett. – volume: 7 start-page: e18008 year: 2018 ident: bib104 article-title: Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves publication-title: Light.: Sci. Appl. – volume: 6 start-page: 1701236 year: 2018 ident: bib65 article-title: Addition theorem for digital coding metamaterials publication-title: Adv. Opt. Mater. – volume: 110 start-page: 044904 year: 2011 ident: bib18 article-title: Three-dimensional broadband and high-directivity lens antenna made of metamaterials publication-title: J. Appl. Phys. – volume: 339 start-page: 1405 year: 2013 end-page: 1407 ident: bib30 article-title: Photonic spin Hall effect at metasurfaces publication-title: Science – volume: 19 start-page: 084004 year: 2017 ident: bib100 article-title: Microwave metamaterials – from passive to digital and programmable controls of electromagnetic waves publication-title: J. Opt. – volume: 16 start-page: 46 year: 2019 end-page: 61 ident: bib10a article-title: Wireless communications with programmable metasurface: transceiver design and experimental results publication-title: China Commun. – volume: 3 start-page: 165 year: 2020 end-page: 171 ident: bib12a article-title: An optically driven digital metasurface for programming electromagnetic functions publication-title: Nat. Electron. – volume: 5 start-page: 1801028 year: 2018 ident: bib16a article-title: Light-controllable digital coding metasurfaces publication-title: Adv. Sci. – volume: 11 start-page: 054051 year: 2019 ident: bib101 article-title: Spatial-energy digital coding metasurface based on active amplifier publication-title: Phys. Rev. Appl. – volume: 30 start-page: 1603 year: 2013 end-page: 1612 ident: bib72 article-title: Metamaterial apertures for coherent computational imaging on the physical layer publication-title: J. Opt. Soc. Am. A. – volume: 85 start-page: 3966 year: 2000 end-page: 3969 ident: bib3 article-title: Negative refraction makes a perfect lens publication-title: Phys. Rev. Lett. – volume: 328 start-page: 337 year: 2010 end-page: 339 ident: bib12 article-title: Three-dimensional invisibility cloak at optical wavelengths publication-title: Science – volume: 95 start-page: 181901 year: 2009 ident: bib16 article-title: Broadband planar Luneburg lens based on complementary metamaterials publication-title: Appl. Phys. Lett. – volume: 3 start-page: e218 year: 2014 ident: bib55 article-title: Coding metamaterials, digital metamaterials and programmable metamaterials publication-title: Light.: Sci. Appl. – volume: 7 start-page: 1901285 year: 2019 ident: bib102 article-title: Controllable and programmable nonreciprocity based on detachable digital coding metasurface publication-title: Adv. Opt. Mater. – volume: 3 start-page: 1968 year: 2016 end-page: 1977 ident: bib7c article-title: Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces publication-title: ACS Photon. – volume: 1 start-page: 124 year: 2010 ident: bib17 article-title: Three-dimensional broadband and broad-angle transformation-optics lens publication-title: Nat. Commun. – volume: 4 start-page: 1700098 year: 2017 ident: bib107 article-title: Controlling energy radiations of electromagnetic waves via frequency coding metamaterials publication-title: Adv. Sci. – volume: 4 start-page: 1900044 year: 2019 ident: bib85 article-title: Wireless communications through a simplified architecture based on time-domain digital coding metasurface publication-title: Adv. Mater. Technol. – volume: 9 start-page: 36447 year: 2017 ident: bib15a article-title: Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces publication-title: ACS Appl. Mater. Inter. – volume: 84 start-page: 4184 year: 2000 end-page: 4187 ident: bib2 article-title: Composite medium with simultaneously negative permeability and permittivity publication-title: Phys. Rev. Lett. – volume: 323 start-page: 366 year: 2009 end-page: 369 ident: bib10 article-title: Broadband ground-plane cloak publication-title: Science – volume: 4 start-page: 2807 year: 2013 ident: bib33 article-title: Metasurface holograms for visible light publication-title: Nat. Commun. – volume: 312 start-page: 1780 year: 2006 end-page: 1782 ident: bib7 article-title: Controlling electromagnetic fields publication-title: Science – volume: 68 start-page: 1 year: 2019 ident: bib19b article-title: Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface publication-title: IEEE T. Antenn. Propag. – volume: 28 start-page: 2533 year: 2016 end-page: 2539 ident: bib29 article-title: Visible-frequency metasurface for structuring and spatially multiplexing optical vortices publication-title: Adv. Mater. – volume: 352 start-page: 1190 year: 2016 end-page: 1194 ident: bib36 article-title: Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging publication-title: Science – volume: 8 start-page: 1 year: 2019 end-page: 12 ident: bib96 article-title: Smart metasurface with self-adaptively reprogrammable functions publication-title: Light.: Sci. Appl. – volume: 15 start-page: 1529 year: 2016 end-page: 1532 ident: bib95 article-title: Nonreciprocal graphene devices and antennas based on spatiotemporal modulation publication-title: IEEE Antenn. Wirel. Pr. – volume: 6 start-page: 231 year: 2019 end-page: 238 ident: bib82 article-title: Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems publication-title: Natl. Sci. Rev. – volume: 93 start-page: 197401 year: 2004 ident: bib21 article-title: Babinet principle applied to the design of metasurfaces and metamaterials publication-title: Phys. Rev. Lett. – volume: 455 start-page: 376 year: 2008 end-page: 379 ident: bib5A article-title: Three-dimensional optical metamaterial with a negative refractive index publication-title: Nature – volume: 76 start-page: 4773 year: 1996 ident: bib1a article-title: Extremely low frequency plasmons in metallic mesostructures publication-title: Phys. Rev. Lett. – volume: 7 start-page: 1 year: 2018 end-page: 10 ident: bib83 article-title: Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface publication-title: Light.: Sci.Appl. – volume: 10 start-page: 60 year: 2015 end-page: 65 ident: bib48 article-title: Optically reconfigurable metasurfaces and photonic devices based on phase change materials publication-title: Nat. Photon. – volume: 14 start-page: 225 year: 2014 end-page: 230 ident: bib34 article-title: High-efficiency broadband meta-hologram with polarization-controlled dual images publication-title: Nano Lett. – volume: 4 start-page: 391 year: 2016 end-page: 398 ident: bib51 article-title: Reconfigurable digital metamaterial for dynamic switching of terahertz Anisotropy publication-title: Adv. Opt. Mater. – year: 2020 ident: bib14c article-title: Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics publication-title: Nanophotonics – volume: 314 start-page: 977 year: 2006 end-page: 980 ident: bib8 article-title: Metamaterial electromagnetic cloak at microwave frequencies publication-title: Science – volume: 9 start-page: 965 year: 2019 ident: bib47 article-title: A review of THz modulators with dynamic tunable publication-title: Metasurfaces. Nanomater. – volume: 12 start-page: 107 year: 2018 end-page: 199 ident: bib76 article-title: A survey on the low-dimensional-model-based electromagnetic imaging publication-title: Found. Trends. Inf. Ret. – volume: 54 start-page: 10 year: 2012 end-page: 35 ident: bib25 article-title: An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials publication-title: IEEE Antenn. Propag. M – volume: 5 start-page: 1700624 year: 2017 ident: bib98 article-title: Concepts, working principles, and applications of coding and programmable metamaterials publication-title: Adv. Opt. Mater. – volume: 292 start-page: 77 year: 2001 end-page: 79 ident: bib4 article-title: Experimental verification of a negative index of refraction publication-title: Science – volume: 14 start-page: 6526 year: 2014 end-page: 6532 ident: bib41 article-title: Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators publication-title: Nano Lett. – volume: 5 start-page: 16076 year: 2016 ident: bib6 article-title: Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves publication-title: Light.: Sci. Appl. – volume: 98 start-page: 204101 year: 2011 ident: bib14 article-title: Shrinking an arbitrary object as one desires using metamaterials publication-title: Appl. Phys. Lett. – volume: 104 start-page: 151601 year: 2014 ident: bib19 article-title: A broadband transformation-optics metasurface lens publication-title: Appl. Phys. Lett. – volume: 12 start-page: 5750 year: 2012 end-page: 5755 ident: bib28 article-title: Dispersionless phase discontinuities for controlling light propagation publication-title: Nano Lett. – volume: 1 start-page: 100006 year: 2020 ident: bib81 article-title: Intelligent electromagnetic sensing with learnable data acquisition and processing publication-title: Patterns – volume: 5 start-page: 3644 year: 2017 end-page: 3668 ident: bib58 article-title: Information metamaterials and metasurfaces publication-title: J. Mater. Chem. C – volume: 339 start-page: 310 year: 2013 end-page: 313 ident: bib73 article-title: Metamaterial apertures for computational imaging publication-title: Science – volume: 10 start-page: 29 year: 2020 end-page: 37 ident: bib67 article-title: Programmable high-order OAM-carrying beams for direct-modulation wireless communications publication-title: IEEE J. Em. Sel. Top. C – volume: 7 start-page: 1903382 year: 2020 ident: bib13b article-title: Polarization-controlled dual-programmable metasurfaces publication-title: Adv. Sci. – volume: 3 start-page: 1600156 year: 2016 ident: bib8d article-title: Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams publication-title: Adv. Sci. – volume: 335 start-page: 427 year: 2012 ident: bib24 article-title: Broadband light bending with plasmonic nanoantennas publication-title: Science – volume: 8 start-page: 197 year: 2017 ident: bib77 article-title: Electromagnetic reprogrammable coding metasurface holograms publication-title: Nat. Commun. – volume: 444 start-page: 597 year: 2006 end-page: 600 ident: bib38 article-title: Active terahertz metamaterial devices publication-title: Nature – volume: 71 start-page: 036609 year: 2005 ident: bib15 article-title: Gradient index metamaterials publication-title: Phys. Rev. E – volume: 3 start-page: 1102 year: 2015 end-page: 1108 ident: bib31 article-title: Photonic spin Hall effect with nearly 100% efficiency publication-title: Adv. Opt. Mater. – volume: 47 start-page: 853 year: 2005 end-page: 865 ident: bib22 article-title: Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles publication-title: IEEE T. Electromagn. C – volume: 10 start-page: 308 year: 2015 end-page: 312 ident: bib35 article-title: Metasurface holograms reaching 80% efficiency publication-title: Nat. Nanotechnol. – volume: 13 start-page: 021003 year: 2020 ident: bib105 article-title: Editing arbitrarily linear polarizations using programmable metasurface publication-title: Phys. Rev. Appl. – volume: 113 start-page: 3471 year: 2016 end-page: 3475 ident: bib94 article-title: Breaking temporal symmetries for emission and absorption publication-title: Proc. Natl. Acad. Sci. – volume: 101 start-page: 203901 year: 2008 ident: bib9 article-title: Hiding under the carpet: a new strategy for cloaking publication-title: Phys. Rev. Lett. – volume: 92 start-page: 10 year: 2015 ident: bib92 article-title: Space-time gradient metasurfaces publication-title: Phys. Rev. B – volume: 5 start-page: 1718 year: 2017 end-page: 1725 ident: bib2b article-title: Reconfigurable metasurface cloak for dynamical electromagnetic illusions publication-title: ACS Photon. – volume: 1 start-page: 1 year: 2020 ident: bib99 article-title: Information metamaterials: bridging the physical world and digital world publication-title: PhotoniX – volume: 67 start-page: 1819 year: 2019 end-page: 1825 ident: bib4b article-title: Deepnis: deep neural network for nonlinear electromagnetic inverse scattering publication-title: IEEE T. Antenn. Propag. – volume: 11 start-page: 426 year: 2012 end-page: 431 ident: bib37 article-title: Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves publication-title: Nat. Mater. – volume: 29 start-page: 1606422 year: 2017 ident: bib54 article-title: A reconfigurable active Huygens' Metalens publication-title: Adv. Mater. – volume: 10 start-page: 1082 year: 2019 ident: bib3a article-title: Machine-learning reprogrammable metasurface imager publication-title: Nat. Commun. – volume: 22 start-page: 13403 year: 2014 end-page: 13417 ident: bib40 article-title: Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface publication-title: Opt. Express – volume: 55 start-page: 417 year: 2019 end-page: 420 ident: bib11b article-title: Programmable metasurface-based RF chain-free 8PSK wireless transmitter publication-title: Electron. Lett. – volume: 8 start-page: 60 year: 2019 ident: bib68 article-title: Multichannel direct transmissions of near-field information publication-title: Light.: Sci. Appl. – volume: 28 start-page: 1553 year: 2016 end-page: 1558 ident: bib5 article-title: Tunable meta-liquid crystals publication-title: Adv. Mater. – start-page: 2584509 year: 2019 ident: bib78 article-title: Direct transmission of digital message via programmable coding metasurface publication-title: Research – volume: 13 start-page: 139 year: 2014 end-page: 150 ident: bib26 article-title: Flat optics with designer metasurfaces publication-title: Nat. Mater. – volume: 1 start-page: 21 year: 2010 ident: 10.1016/j.isci.2020.101403_bib11 article-title: Three-dimensional broadband ground-plane cloak made of metamaterials publication-title: Na. Commun. doi: 10.1038/ncomms1023 – volume: 5 start-page: 3 year: 2001 ident: 10.1016/j.isci.2020.101403_bib60 article-title: A mathematical theory of communication publication-title: ACM Sigmobile Mobile Comput. Commun. Rev. doi: 10.1145/584091.584093 – volume: 85 start-page: 3966 year: 2000 ident: 10.1016/j.isci.2020.101403_bib3 article-title: Negative refraction makes a perfect lens publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.3966 – volume: 5 start-page: 1718 year: 2017 ident: 10.1016/j.isci.2020.101403_bib2b article-title: Reconfigurable metasurface cloak for dynamical electromagnetic illusions publication-title: ACS Photon. doi: 10.1021/acsphotonics.7b01114 – volume: 7 start-page: e18008 year: 2018 ident: 10.1016/j.isci.2020.101403_bib104 article-title: Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves publication-title: Light.: Sci. Appl. doi: 10.1038/lsa.2018.8 – volume: 1 start-page: 100006 year: 2020 ident: 10.1016/j.isci.2020.101403_bib81 article-title: Intelligent electromagnetic sensing with learnable data acquisition and processing publication-title: Patterns doi: 10.1016/j.patter.2020.100006 – volume: 6 start-page: 26959 year: 2016 ident: 10.1016/j.isci.2020.101403_bib75 article-title: Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface publication-title: Sci. Rep. doi: 10.1038/srep26959 – volume: 12 start-page: 1702 year: 2012 ident: 10.1016/j.isci.2020.101403_bib27 article-title: Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities publication-title: Nano Lett. doi: 10.1021/nl300204s – volume: 334 start-page: 333 year: 2011 ident: 10.1016/j.isci.2020.101403_bib23 article-title: Light propagation with phase discontinuities: generalized laws of reflection and refraction publication-title: Science doi: 10.1126/science.1210713 – volume: 113 start-page: 063502 year: 2018 ident: 10.1016/j.isci.2020.101403_bib109 article-title: Design of digital coding metasurfaces with independent controls of phase and amplitude responses publication-title: Appl. Phys. Lett. doi: 10.1063/1.5043520 – volume: 15 start-page: 1529 year: 2016 ident: 10.1016/j.isci.2020.101403_bib95 article-title: Nonreciprocal graphene devices and antennas based on spatiotemporal modulation publication-title: IEEE Antenn. Wirel. Pr. doi: 10.1109/LAWP.2015.2510818 – volume: 12 start-page: 107 year: 2018 ident: 10.1016/j.isci.2020.101403_bib76 article-title: A survey on the low-dimensional-model-based electromagnetic imaging publication-title: Found. Trends. Inf. Ret. – volume: 5 start-page: e16076 year: 2016 ident: 10.1016/j.isci.2020.101403_bib9a article-title: Anisotropic coding metamaterials and their powerful manipulation to differently polarized terahertz waves publication-title: Light.: Sci. Appl. doi: 10.1038/lsa.2016.76 – volume: 7 start-page: nwz195 year: 2019 ident: 10.1016/j.isci.2020.101403_bib62 article-title: Information theory of metasurfaces publication-title: Natl. Sci. Rev. – volume: 8 start-page: 1 year: 2019 ident: 10.1016/j.isci.2020.101403_bib96 article-title: Smart metasurface with self-adaptively reprogrammable functions publication-title: Light.: Sci. Appl. doi: 10.1038/s41377-019-0205-3 – volume: 4 start-page: 391 year: 2016 ident: 10.1016/j.isci.2020.101403_bib51 article-title: Reconfigurable digital metamaterial for dynamic switching of terahertz Anisotropy publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500588 – volume: 22 start-page: 13403 year: 2014 ident: 10.1016/j.isci.2020.101403_bib40 article-title: Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface publication-title: Opt. Express doi: 10.1364/OE.22.013403 – volume: 339 start-page: 1405 year: 2013 ident: 10.1016/j.isci.2020.101403_bib30 article-title: Photonic spin Hall effect at metasurfaces publication-title: Science doi: 10.1126/science.1231758 – volume: 16 start-page: 46 year: 2019 ident: 10.1016/j.isci.2020.101403_bib10a article-title: Wireless communications with programmable metasurface: transceiver design and experimental results publication-title: China Commun. doi: 10.23919/j.cc.2019.05.004 – volume: 71 start-page: 036609 year: 2005 ident: 10.1016/j.isci.2020.101403_bib15 article-title: Gradient index metamaterials publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.036609 – volume: 9 start-page: 36447 year: 2017 ident: 10.1016/j.isci.2020.101403_bib15a article-title: Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-Berry coding metasurfaces publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b12468 – volume: 455 start-page: 376 year: 2008 ident: 10.1016/j.isci.2020.101403_bib5A article-title: Three-dimensional optical metamaterial with a negative refractive index publication-title: Nature doi: 10.1038/nature07247 – volume: 352 start-page: 1190 year: 2016 ident: 10.1016/j.isci.2020.101403_bib36 article-title: Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging publication-title: Science doi: 10.1126/science.aaf6644 – volume: 104 start-page: 151601 year: 2014 ident: 10.1016/j.isci.2020.101403_bib19 article-title: A broadband transformation-optics metasurface lens publication-title: Appl. Phys. Lett. doi: 10.1063/1.4870809 – volume: 67 start-page: 1819 year: 2019 ident: 10.1016/j.isci.2020.101403_bib4b article-title: Deepnis: deep neural network for nonlinear electromagnetic inverse scattering publication-title: IEEE T. Antenn. Propag. doi: 10.1109/TAP.2018.2885437 – volume: 30 start-page: 1603 year: 2013 ident: 10.1016/j.isci.2020.101403_bib72 article-title: Metamaterial apertures for coherent computational imaging on the physical layer publication-title: J. Opt. Soc. Am. A. doi: 10.1364/JOSAA.30.001603 – volume: 9 start-page: 965 year: 2019 ident: 10.1016/j.isci.2020.101403_bib47 article-title: A review of THz modulators with dynamic tunable publication-title: Metasurfaces. Nanomater. doi: 10.3390/nano9070965 – volume: 2 start-page: 1057 year: 2014 ident: 10.1016/j.isci.2020.101403_bib42 article-title: Ultrafast electrically tunable polaritonic metasurfaces publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201400185 – volume: 101 start-page: 203901 year: 2008 ident: 10.1016/j.isci.2020.101403_bib9 article-title: Hiding under the carpet: a new strategy for cloaking publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.203901 – volume: 3 start-page: 1968 year: 2016 ident: 10.1016/j.isci.2020.101403_bib7c article-title: Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces publication-title: ACS Photon. doi: 10.1021/acsphotonics.6b00515 – volume: 29 start-page: 1700733 year: 2017 ident: 10.1016/j.isci.2020.101403_bib39 article-title: Active phase transition via loss engineering in a terahertz MEMS metamaterial publication-title: Adv. Mat. doi: 10.1002/adma.201700733 – volume: 8 start-page: 97 year: 2019 ident: 10.1016/j.isci.2020.101403_bib80 article-title: Shuang, Intelligent metasurface imager and recognizer, Light publication-title: Sci. Appl. – year: 2020 ident: 10.1016/j.isci.2020.101403_bib14c article-title: Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics publication-title: Nanophotonics – volume: 29 start-page: 1606422 year: 2017 ident: 10.1016/j.isci.2020.101403_bib54 article-title: A reconfigurable active Huygens' Metalens publication-title: Adv. Mater. doi: 10.1002/adma.201606422 – volume: 335 start-page: 427 year: 2012 ident: 10.1016/j.isci.2020.101403_bib24 article-title: Broadband light bending with plasmonic nanoantennas publication-title: Science doi: 10.1126/science.1214686 – volume: 6 start-page: 1801086 year: 2018 ident: 10.1016/j.isci.2020.101403_bib108 article-title: Space-frequency-domain gradient metamaterials publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801086 – volume: 28 start-page: 1553 year: 2016 ident: 10.1016/j.isci.2020.101403_bib5 article-title: Tunable meta-liquid crystals publication-title: Adv. Mater. doi: 10.1002/adma.201504924 – volume: 323 start-page: 366 year: 2009 ident: 10.1016/j.isci.2020.101403_bib10 article-title: Broadband ground-plane cloak publication-title: Science doi: 10.1126/science.1166949 – volume: 13 start-page: 139 year: 2014 ident: 10.1016/j.isci.2020.101403_bib26 article-title: Flat optics with designer metasurfaces publication-title: Nat. Mater. doi: 10.1038/nmat3839 – volume: 93 start-page: 197401 year: 2004 ident: 10.1016/j.isci.2020.101403_bib21 article-title: Babinet principle applied to the design of metasurfaces and metamaterials publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.197401 – volume: 5 start-page: 2459 year: 2015 ident: 10.1016/j.isci.2020.101403_bib93 article-title: Time-varying metasurfaces and Lorentz non-reciprocity publication-title: Opt. Mater. Express doi: 10.1364/OME.5.002459 – volume: 6 start-page: 231 year: 2019 ident: 10.1016/j.isci.2020.101403_bib82 article-title: Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwy135 – volume: 5 start-page: 3040 year: 2018 ident: 10.1016/j.isci.2020.101403_bib46 article-title: Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures publication-title: ACS Photon. doi: 10.1021/acsphotonics.8b00276 – volume: 103 start-page: 1034 year: 2015 ident: 10.1016/j.isci.2020.101403_bib50 article-title: Reconfigurable electromagnetics through metamaterials-A review publication-title: P. IEEE – volume: 314 start-page: 977 year: 2006 ident: 10.1016/j.isci.2020.101403_bib8 article-title: Metamaterial electromagnetic cloak at microwave frequencies publication-title: Science doi: 10.1126/science.1133628 – volume: 10 start-page: 60 year: 2015 ident: 10.1016/j.isci.2020.101403_bib48 article-title: Optically reconfigurable metasurfaces and photonic devices based on phase change materials publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.247 – volume: 8 start-page: 197 year: 2017 ident: 10.1016/j.isci.2020.101403_bib77 article-title: Electromagnetic reprogrammable coding metasurface holograms publication-title: Nat. Commun. doi: 10.1038/s41467-017-00164-9 – volume: 1 start-page: 124 year: 2010 ident: 10.1016/j.isci.2020.101403_bib17 article-title: Three-dimensional broadband and broad-angle transformation-optics lens publication-title: Nat. Commun. doi: 10.1038/ncomms1126 – volume: 68 start-page: 1618 year: 2020 ident: 10.1016/j.isci.2020.101403_bib88 article-title: Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface publication-title: IEEE T. Antenn. Propag. doi: 10.1109/TAP.2019.2952460 – volume: 31 start-page: e1904069 year: 2019 ident: 10.1016/j.isci.2020.101403_bib18a article-title: Breaking reciprocity with space-time-coding digital metasurfaces publication-title: Adv. Mater. doi: 10.1002/adma.201904069 – volume: 14 start-page: 6526 year: 2014 ident: 10.1016/j.isci.2020.101403_bib41 article-title: Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators publication-title: Nano Lett. doi: 10.1021/nl503104n – volume: 4 start-page: 1900044 year: 2019 ident: 10.1016/j.isci.2020.101403_bib85 article-title: Wireless communications through a simplified architecture based on time-domain digital coding metasurface publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900044 – volume: 10 start-page: 308 year: 2015 ident: 10.1016/j.isci.2020.101403_bib35 article-title: Metasurface holograms reaching 80% efficiency publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.2 – volume: 9 start-page: 4334 year: 2018 ident: 10.1016/j.isci.2020.101403_bib17b article-title: Space-time-coding digital metasurfaces publication-title: Nat. Commun. doi: 10.1038/s41467-018-06802-0 – volume: 55 start-page: 417 year: 2019 ident: 10.1016/j.isci.2020.101403_bib11b article-title: Programmable metasurface-based RF chain-free 8PSK wireless transmitter publication-title: Electron. Lett. doi: 10.1049/el.2019.0400 – volume: 5 start-page: 1700548 year: 2017 ident: 10.1016/j.isci.2020.101403_bib106 article-title: Beam-editing coding metasurfaces based on polarization bit and OAM-mode bit publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201700548 – volume: 14 start-page: 225 year: 2014 ident: 10.1016/j.isci.2020.101403_bib34 article-title: High-efficiency broadband meta-hologram with polarization-controlled dual images publication-title: Nano Lett. doi: 10.1021/nl403811d – volume: 5 start-page: 1700624 year: 2017 ident: 10.1016/j.isci.2020.101403_bib98 article-title: Concepts, working principles, and applications of coding and programmable metamaterials publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201700624 – volume: 113 start-page: 3471 year: 2016 ident: 10.1016/j.isci.2020.101403_bib94 article-title: Breaking temporal symmetries for emission and absorption publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1517363113 – volume: 28 start-page: 2533 year: 2016 ident: 10.1016/j.isci.2020.101403_bib29 article-title: Visible-frequency metasurface for structuring and spatially multiplexing optical vortices publication-title: Adv. Mater. doi: 10.1002/adma.201504532 – volume: 102 start-page: 253902 year: 2009 ident: 10.1016/j.isci.2020.101403_bib13 article-title: Illusion optics: the optical transformation of an object into another object publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.253902 – volume: 3 start-page: 1600156 year: 2016 ident: 10.1016/j.isci.2020.101403_bib8d article-title: Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams publication-title: Adv. Sci. doi: 10.1002/advs.201600156 – volume: 444 start-page: 597 year: 2006 ident: 10.1016/j.isci.2020.101403_bib38 article-title: Active terahertz metamaterial devices publication-title: Nature doi: 10.1038/nature05343 – volume: 3 start-page: e218 year: 2014 ident: 10.1016/j.isci.2020.101403_bib55 article-title: Coding metamaterials, digital metamaterials and programmable metamaterials publication-title: Light.: Sci. Appl. doi: 10.1038/lsa.2014.99 – volume: 7 start-page: 1901285 year: 2019 ident: 10.1016/j.isci.2020.101403_bib102 article-title: Controllable and programmable nonreciprocity based on detachable digital coding metasurface publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201901285 – volume: 47 start-page: 853 year: 2005 ident: 10.1016/j.isci.2020.101403_bib22 article-title: Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles publication-title: IEEE T. Electromagn. C doi: 10.1109/TEMC.2005.853719 – volume: 1 start-page: 1 year: 2020 ident: 10.1016/j.isci.2020.101403_bib99 article-title: Information metamaterials: bridging the physical world and digital world publication-title: PhotoniX doi: 10.1186/s43074-020-00006-w – volume: 98 start-page: 204101 year: 2011 ident: 10.1016/j.isci.2020.101403_bib14 article-title: Shrinking an arbitrary object as one desires using metamaterials publication-title: Appl. Phys. Lett. doi: 10.1063/1.3590203 – volume: 5 start-page: 041027 year: 2015 ident: 10.1016/j.isci.2020.101403_bib43 article-title: Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces publication-title: Phys. Rev. X – volume: 6 start-page: 23731 year: 2016 ident: 10.1016/j.isci.2020.101403_bib74 article-title: Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging publication-title: Sci. Rep. doi: 10.1038/srep23731 – volume: 126 start-page: 113102 year: 2019 ident: 10.1016/j.isci.2020.101403_bib110 article-title: 2-bit amplitude- modulated coding metasurfaces based on indium tin oxide films publication-title: J. Appl. Phys. doi: 10.1063/1.5096321 – volume: 84 start-page: 4184 year: 2000 ident: 10.1016/j.isci.2020.101403_bib2 article-title: Composite medium with simultaneously negative permeability and permittivity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.4184 – volume: 5 start-page: 1801028 year: 2018 ident: 10.1016/j.isci.2020.101403_bib16a article-title: Light-controllable digital coding metasurfaces publication-title: Adv. Sci. doi: 10.1002/advs.201801028 – volume: 328 start-page: 337 year: 2010 ident: 10.1016/j.isci.2020.101403_bib12 article-title: Three-dimensional invisibility cloak at optical wavelengths publication-title: Science doi: 10.1126/science.1186351 – volume: 292 start-page: 77 year: 2001 ident: 10.1016/j.isci.2020.101403_bib4 article-title: Experimental verification of a negative index of refraction publication-title: Science doi: 10.1126/science.1058847 – volume: 339 start-page: 310 year: 2013 ident: 10.1016/j.isci.2020.101403_bib73 article-title: Metamaterial apertures for computational imaging publication-title: Science doi: 10.1126/science.1230054 – volume: 27 start-page: 4739 year: 2015 ident: 10.1016/j.isci.2020.101403_bib49 article-title: A flat lens with tunable phase gradient by using random access reconfigurable metamaterial publication-title: Adv. Mater. doi: 10.1002/adma.201501943 – volume: 3 start-page: 165 year: 2020 ident: 10.1016/j.isci.2020.101403_bib12a article-title: An optically driven digital metasurface for programming electromagnetic functions publication-title: Nat. Electron. doi: 10.1038/s41928-020-0380-5 – volume: 95 start-page: 181901 year: 2009 ident: 10.1016/j.isci.2020.101403_bib16 article-title: Broadband planar Luneburg lens based on complementary metamaterials publication-title: Appl. Phys. Lett. doi: 10.1063/1.3257375 – volume: 10 start-page: 1082 year: 2019 ident: 10.1016/j.isci.2020.101403_bib3a article-title: Machine-learning reprogrammable metasurface imager publication-title: Nat. Commun. doi: 10.1038/s41467-019-09103-2 – volume: 312 start-page: 1780 year: 2006 ident: 10.1016/j.isci.2020.101403_bib7 article-title: Controlling electromagnetic fields publication-title: Science doi: 10.1126/science.1125907 – volume: 13 start-page: 021003 year: 2020 ident: 10.1016/j.isci.2020.101403_bib105 article-title: Editing arbitrarily linear polarizations using programmable metasurface publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.021003 – volume: 4 start-page: 2807 year: 2013 ident: 10.1016/j.isci.2020.101403_bib33 article-title: Metasurface holograms for visible light publication-title: Nat. Commun. doi: 10.1038/ncomms3807 – volume: 11 start-page: 426 year: 2012 ident: 10.1016/j.isci.2020.101403_bib37 article-title: Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves publication-title: Nat. Mater. doi: 10.1038/nmat3292 – volume: 6 start-page: 20663 year: 2016 ident: 10.1016/j.isci.2020.101403_bib66 article-title: Field-programmable beam reconfiguring based on digitally-controlled coding metasurface publication-title: Sci. Rep. doi: 10.1038/srep20663 – volume: 5 start-page: e16172 year: 2016 ident: 10.1016/j.isci.2020.101403_bib61 article-title: Information entropy of coding metasurface publication-title: Light.: Sci. Appl. doi: 10.1038/lsa.2016.172 – volume: 7 start-page: 1 year: 2018 ident: 10.1016/j.isci.2020.101403_bib83 article-title: Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface publication-title: Light.: Sci.Appl. doi: 10.1038/s41377-018-0092-z – volume: 10 start-page: 133 year: 2016 ident: 10.1016/j.isci.2020.101403_bib44 article-title: Mechanically tunable dielectric resonator metasurfaces at visible frequencies publication-title: ACS Nano doi: 10.1021/acsnano.5b05954 – volume: 5 start-page: 3644 year: 2017 ident: 10.1016/j.isci.2020.101403_bib58 article-title: Information metamaterials and metasurfaces publication-title: J. Mater. Chem. C doi: 10.1039/C7TC00548B – volume: 12 start-page: 5750 year: 2012 ident: 10.1016/j.isci.2020.101403_bib28 article-title: Dispersionless phase discontinuities for controlling light propagation publication-title: Nano Lett. doi: 10.1021/nl303031j – volume: 51 start-page: 2641 year: 2003 ident: 10.1016/j.isci.2020.101403_bib20 article-title: Averaged transition conditions for electromagnetic fields at a metafilm publication-title: IEEE T. Antenn. Propag. doi: 10.1109/TAP.2003.817560 – volume: 7 start-page: 1903382 year: 2020 ident: 10.1016/j.isci.2020.101403_bib13b article-title: Polarization-controlled dual-programmable metasurfaces publication-title: Adv. Sci. doi: 10.1002/advs.201903382 – volume: 54 start-page: 10 year: 2012 ident: 10.1016/j.isci.2020.101403_bib25 article-title: An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials publication-title: IEEE Antenn. Propag. M doi: 10.1109/MAP.2012.6230714 – start-page: 2584509 year: 2019 ident: 10.1016/j.isci.2020.101403_bib78 article-title: Direct transmission of digital message via programmable coding metasurface publication-title: Research – volume: 5 start-page: 16076 year: 2016 ident: 10.1016/j.isci.2020.101403_bib6 article-title: Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves publication-title: Light.: Sci. Appl. doi: 10.1038/lsa.2016.76 – volume: 110 start-page: 044904 year: 2011 ident: 10.1016/j.isci.2020.101403_bib18 article-title: Three-dimensional broadband and high-directivity lens antenna made of metamaterials publication-title: J. Appl. Phys. doi: 10.1063/1.3622596 – volume: 308 start-page: 534 year: 2005 ident: 10.1016/j.isci.2020.101403_bib6a article-title: Sub-diffraction-limited optical imaging with a silver superlens publication-title: Science doi: 10.1126/science.1108759 – volume: 10 start-page: 29 year: 2020 ident: 10.1016/j.isci.2020.101403_bib67 article-title: Programmable high-order OAM-carrying beams for direct-modulation wireless communications publication-title: IEEE J. Em. Sel. Top. C – volume: 92 start-page: 10 year: 2015 ident: 10.1016/j.isci.2020.101403_bib92 article-title: Space-time gradient metasurfaces publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.100304 – volume: 4 start-page: 1700098 year: 2017 ident: 10.1016/j.isci.2020.101403_bib107 article-title: Controlling energy radiations of electromagnetic waves via frequency coding metamaterials publication-title: Adv. Sci. doi: 10.1002/advs.201700098 – volume: 19 start-page: 084004 year: 2017 ident: 10.1016/j.isci.2020.101403_bib100 article-title: Microwave metamaterials – from passive to digital and programmable controls of electromagnetic waves publication-title: J. Opt. – volume: 11 start-page: 054051 year: 2019 ident: 10.1016/j.isci.2020.101403_bib101 article-title: Spatial-energy digital coding metasurface based on active amplifier publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.054051 – volume: 76 start-page: 4773 year: 1996 ident: 10.1016/j.isci.2020.101403_bib1a article-title: Extremely low frequency plasmons in metallic mesostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.4773 – volume: 8 start-page: 60 year: 2019 ident: 10.1016/j.isci.2020.101403_bib68 article-title: Multichannel direct transmissions of near-field information publication-title: Light.: Sci. Appl. doi: 10.1038/s41377-019-0169-3 – volume: 68 start-page: 1 year: 2019 ident: 10.1016/j.isci.2020.101403_bib19b article-title: Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface publication-title: IEEE T. Antenn. Propag. – volume: 5 start-page: 1700485 year: 2017 ident: 10.1016/j.isci.2020.101403_bib1w article-title: Reconfigurable metasurface for multifunctional control of electromagnetic waves publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201700485 – volume: 6 start-page: 1701236 year: 2018 ident: 10.1016/j.isci.2020.101403_bib65 article-title: Addition theorem for digital coding metamaterials publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201701236 – volume: 5 start-page: 134 year: 2018 ident: 10.1016/j.isci.2020.101403_bib97 article-title: Microwave metamaterials publication-title: Nat. Sci. Rev. doi: 10.1093/nsr/nwx133 – volume: 340 start-page: 1304 year: 2013 ident: 10.1016/j.isci.2020.101403_bib32 article-title: Terahertz metamaterials for linear polarization conversion and anomalous refraction publication-title: Science doi: 10.1126/science.1235399 – volume: 3 start-page: 1102 year: 2015 ident: 10.1016/j.isci.2020.101403_bib31 article-title: Photonic spin Hall effect with nearly 100% efficiency publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500068 |
| SSID | ssj0002002496 |
| Score | 2.5691304 |
| SecondaryResourceType | review_article |
| Snippet | Metamaterials have great capabilities and flexibilities in controlling electromagnetic (EM) waves because their subwavelength meta-atoms can be designed and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 101403 |
| SubjectTerms | Electromagnetic Waves Information Systems Metamaterials Review |
| Title | Information Metamaterial Systems |
| URI | https://dx.doi.org/10.1016/j.isci.2020.101403 https://www.ncbi.nlm.nih.gov/pubmed/32777776 https://www.proquest.com/docview/2432857360 https://pubmed.ncbi.nlm.nih.gov/PMC7415848 https://doaj.org/article/6d5d83e322f54dacbe9074abf96cc167 |
| Volume | 23 |
| WOSCitedRecordID | wos000564159100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B1QOXqogCoWUVpN6qiMRObOdYUCsOsOJQqr1ZfoqtqhS12_7-zjjOahek9kJOkeM8ZsbOfGPPA-AYJWnr4HmF4Lir2shDZYyrqyZa_GMahMhpTffyu5zP1WLR_9wo9UU-YWN64JFxn4XvvOIBx13sWm-cDWTOGRt74VwjUhw5op4NY-oqba9RKrxUWa4jnyAcmjliZnTuoohXNA5ZaminillZK6Xk_VvK6V_w-bcP5YZSOt-HvYwmy9ORitfwIgxvoMwhRsTy8kdYGTxN46zM6ckP4Nf52cXXb1UuhFA5qjdQoQ1Xd16I0EeHAF8Ghzyw0fqOmyZ4GVmovUfNzYRsfV8H2pyUvo_KS9FHxt_CznAzhPdQMlMLa6xSpjVt7bwNHqelMgjrpDGBF9BMjNAuZwmnYhXXenIHu9LEPE3M0yPzCjhZ3_NnzJHxZO8vxN91T8pvnRpQ6jpLXT8n9QK6STo6Q4URAuCjlk--_NMkSo3ziDZHzBBu7u80azlTneSiLuDdKNr1J3Im6RAFyC2hb9GwfWVY_k65ugmwqVZ9-B9EH8IrIoVWtFlzBDur2_vwEXbdw2p5dzuDl3KhZmkaPAIzgAoM |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+Metamaterial+Systems&rft.jtitle=iScience&rft.au=Cui%2C+Tie+Jun&rft.au=Li%2C+Lianlin&rft.au=Liu%2C+Shuo&rft.au=Ma%2C+Qian&rft.date=2020-08-21&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=8&rft.spage=101403&rft_id=info:doi/10.1016%2Fj.isci.2020.101403&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2020_101403 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |