Multi-scale graph-based grading for Alzheimer’s disease prediction
•This work introduces a new approach combining patch-based grading and graph-based model.•Combination of inter-subject similarity and intra-subject variability helps to predict Alzheimer’s disease.•Analysis of whole brain structures and hippocampal subfields jointly enables improvement of prediction...
Gespeichert in:
| Veröffentlicht in: | Medical image analysis Jg. 67; S. 101850 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier B.V
01.01.2021
Elsevier BV Elsevier |
| Schlagworte: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •This work introduces a new approach combining patch-based grading and graph-based model.•Combination of inter-subject similarity and intra-subject variability helps to predict Alzheimer’s disease.•Analysis of whole brain structures and hippocampal subfields jointly enables improvement of prediction performances.•Image-based biomarkers and cognitive data are highly complementary for Alzheimer’s disease prediction.
[Display omitted]
The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer’s disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two main contributions. First, we present a new graph-based grading framework to combine inter-subject similarity features and intra-subject variability features. This framework involves patch-based grading of anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels. Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1 dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC) of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison to state-of-the-art methods evaluated on the same dataset. |
|---|---|
| AbstractList | The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer's disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two main contributions. First, we present a new graph-based grading framework to combine inter-subject similarity features and intra-subject variability features. This framework involves patch-based grading of anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels. Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1 dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC) of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison to state-of-the-art methods evaluated on the same dataset. •This work introduces a new approach combining patch-based grading and graph-based model.•Combination of inter-subject similarity and intra-subject variability helps to predict Alzheimer’s disease.•Analysis of whole brain structures and hippocampal subfields jointly enables improvement of prediction performances.•Image-based biomarkers and cognitive data are highly complementary for Alzheimer’s disease prediction. [Display omitted] The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer’s disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two main contributions. First, we present a new graph-based grading framework to combine inter-subject similarity features and intra-subject variability features. This framework involves patch-based grading of anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels. Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1 dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC) of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison to state-of-the-art methods evaluated on the same dataset. The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer's disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two main contributions. First, we present a new graph-based grading framework to combine inter-subject similarity features and intra-subject variability features. This framework involves patch-based grading of anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels. Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1 dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC) of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison to state-of-the-art methods evaluated on the same dataset.The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer's disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two main contributions. First, we present a new graph-based grading framework to combine inter-subject similarity features and intra-subject variability features. This framework involves patch-based grading of anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels. Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1 dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC) of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison to state-of-the-art methods evaluated on the same dataset. |
| ArticleNumber | 101850 |
| Author | Manjón, José V. Oguz, Ipek Ta, Vinh-Thong Hett, Kilian Coupé, Pierrick |
| AuthorAffiliation | a CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, PICTURA, F-33400 Talence, France b Universitat Politècnia de València, ITACA, 46022 Valencia, Spain c Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, TN, USA |
| AuthorAffiliation_xml | – name: b Universitat Politècnia de València, ITACA, 46022 Valencia, Spain – name: c Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, TN, USA – name: a CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, PICTURA, F-33400 Talence, France |
| Author_xml | – sequence: 1 givenname: Kilian surname: Hett fullname: Hett, Kilian email: kilian.hett@vanderbilt.edu organization: CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, PICTURA, Talence F-33400, France – sequence: 2 givenname: Vinh-Thong surname: Ta fullname: Ta, Vinh-Thong organization: CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, PICTURA, Talence F-33400, France – sequence: 3 givenname: Ipek surname: Oguz fullname: Oguz, Ipek organization: Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, TN, USA – sequence: 4 givenname: José V. surname: Manjón fullname: Manjón, José V. organization: Universitat Politècnica de Valèncica, ITACA, Valencia 46022, Spain – sequence: 5 givenname: Pierrick surname: Coupé fullname: Coupé, Pierrick organization: CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, PICTURA, Talence F-33400, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33075641$$D View this record in MEDLINE/PubMed https://hal.science/hal-02967401$$DView record in HAL |
| BookMark | eNp9kctu1DAUhi1URC_wBEgoEhtYZPA1jhdUGpVLkQaxgbXlOCczHmXswU5GghWvwevxJDhNW8EsuvLR8ff_x8f_OTrxwQNCzwleEEyqN9vFDlpnFhTTm04t8CN0RlhFyppTdnJfE3GKzlPaYowl5_gJOmUMS1FxcobefR77wZXJmh6KdTT7TdmYBO1Ut86viy7EYtn_3IDbQfzz63cqWpcgI8U-5vF2cME_RY870yd4dnteoG8f3n-9ui5XXz5-ulquSisoGUpuaquklVi1UrYNb6nlla1wB4zKFjpJmrqhVAhbm9wWoCjjDafAOs5UVbELdDn77scm727BD9H0eh_dzsQfOhin_7_xbqPX4aClpEJJnA1ezwabI9n1cqWnHqaqkhyTA8nsq9thMXwfIQ1655KFvjcewpg05YJyJVRdZ_TlEboNY_T5KzQVuFaE44pm6sW_r7-ffxdGBtQM2BhSitBp6wYzfXBexvWaYD0Fr7f6Jng9Ba_n4LOWHWnv7B9WvZ1VkFM7OIg6WQfeZjCCHXQb3IP6v6ypxwk |
| CitedBy_id | crossref_primary_10_1002_hbm_25331 crossref_primary_10_1016_j_health_2023_100223 crossref_primary_10_3389_fpsyg_2022_980954 crossref_primary_10_1002_hbm_70280 crossref_primary_10_1016_j_bspc_2023_105162 crossref_primary_10_1016_j_compbiomed_2024_109039 crossref_primary_10_1007_s10072_025_08167_x crossref_primary_10_1016_j_compmedimag_2022_102171 crossref_primary_10_1109_TMI_2022_3187141 crossref_primary_10_1016_j_compbiomed_2023_106790 crossref_primary_10_3389_fnagi_2022_906519 crossref_primary_10_1016_j_media_2024_103266 crossref_primary_10_1089_brain_2020_0905 crossref_primary_10_1093_bib_bbac093 crossref_primary_10_1016_j_media_2023_102903 crossref_primary_10_3389_fnagi_2022_876202 crossref_primary_10_1136_gpsych_2023_101310 crossref_primary_10_3389_fpsyt_2022_1079149 crossref_primary_10_1007_s11831_024_10176_6 crossref_primary_10_1186_s13195_022_01047_y crossref_primary_10_1016_j_neucom_2024_127325 crossref_primary_10_1016_j_eswa_2022_118633 crossref_primary_10_1186_s13195_024_01428_5 crossref_primary_10_1016_j_jneumeth_2025_110541 crossref_primary_10_3389_fnins_2022_926486 crossref_primary_10_1016_j_media_2022_102585 crossref_primary_10_1109_JBHI_2022_3155705 crossref_primary_10_1016_j_oret_2024_01_019 |
| Cites_doi | 10.1016/j.neuroimage.2017.09.049 10.1109/TBME.2016.2549363 10.1016/j.neuroimage.2017.03.057 10.1111/j.1467-9868.2005.00503.x 10.1016/j.nicl.2013.08.007 10.1016/j.nicl.2019.101929 10.1016/j.compmedimag.2018.08.002 10.1002/hbm.22156 10.1023/A:1026543900054 10.1126/science.6474172 10.1212/WNL.0b013e3181f736a1 10.1016/j.neuroimage.2016.02.079 10.1016/j.neuroimage.2010.09.025 10.1016/j.neurobiolaging.2006.03.007 10.1038/s41598-019-39809-8 10.1212/WNL.42.1.183 10.1016/j.neuroimage.2015.07.076 10.1038/s41598-018-29295-9 10.1002/hbm.22926 10.1001/archneur.56.3.303 10.1016/S0197-4580(02)00227-0 10.1016/S0140-6736(94)92338-8 10.1016/j.jalz.2018.02.018 10.1177/1533317513494452 10.1016/j.neuroimage.2012.01.055 10.1002/jmri.22003 10.1016/0197-4580(95)00021-6 10.1016/j.neuroimage.2013.06.030 10.1016/j.neuroimage.2014.06.077 10.1371/journal.pone.0031112 10.1109/TMI.2010.2046908 10.1016/S0140-6736(05)74869-8 10.1007/s00234-007-0269-2 10.1097/NEN.0b013e31824b211b 10.3389/fninf.2016.00030 10.1136/jnnp.73.6.657 10.1159/000103914 10.1001/archneur.63.5.693 10.1016/j.neuroimage.2014.10.002 10.1007/s004010050622 10.3233/JAD-140495 10.1016/j.neuroimage.2013.02.003 10.1023/A:1010933404324 10.3233/JAD-2006-9S317 10.1001/archneur.1993.00540090052010 10.1016/j.neuroimage.2011.10.080 10.1155/2014/820205 10.1038/s41598-018-37769-z 10.1038/s41598-019-49970-9 10.1093/cercor/bhj105 10.1371/journal.pone.0025446 10.1007/978-3-030-00931-1_49 10.1038/nrneurol.2009.215 10.1016/S1474-4422(03)00262-X 10.1371/journal.pone.0224030 10.1016/j.patcog.2016.10.009 10.1016/j.jalz.2012.06.004 10.1016/j.neuroimage.2015.01.048 10.1007/978-3-319-67434-6_10 10.1007/s00401-006-0127-z 10.1148/radiol.2262011600 10.1159/000469658 10.1016/j.media.2018.06.001 10.1016/j.nicl.2016.05.017 10.1016/j.neuroimage.2015.01.004 10.1371/journal.pone.0021935 10.1016/S0197-4580(02)00084-2 10.1006/nimg.2000.0582 10.1016/j.jalz.2010.03.012 10.1016/j.neuroimage.2012.06.048 10.1080/01621459.1926.10502161 10.1016/j.nicl.2012.10.002 10.1016/j.media.2014.04.006 10.1007/978-3-030-00919-9_30 10.1016/j.media.2017.01.008 10.1007/s00429-013-0687-3 10.1109/TPAMI.2012.142 10.1016/j.neuroimage.2011.01.006 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. Copyright Elsevier BV Jan 2021 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Jan 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| CorporateAuthor | Alzheimer’s Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: Alzheimer’s Disease Neuroimaging Initiative |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 1XC VOOES 5PM |
| DOI | 10.1016/j.media.2020.101850 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Computer Science |
| EISSN | 1361-8423 |
| EndPage | 101850 |
| ExternalDocumentID | PMC7725970 oai:HAL:hal-02967401v1 33075641 10_1016_j_media_2020_101850 S1361841520302140 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: U01 NS106845 – fundername: NINDS NIH HHS grantid: R01 NS094456 – fundername: NIA NIH HHS grantid: U01 AG024904 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c521t-4a8c97c709d77db4d2c46c60fe327def71b8b2255c8ac605e9234b42e3f439663 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598894800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Tue Sep 30 16:27:10 EDT 2025 Tue Oct 14 19:47:18 EDT 2025 Sat Sep 27 21:37:01 EDT 2025 Tue Oct 07 06:44:09 EDT 2025 Mon Jul 21 06:00:46 EDT 2025 Sat Nov 29 07:03:35 EST 2025 Tue Nov 18 22:34:11 EST 2025 Fri Feb 23 02:46:16 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hippocampal subfields Inter-subject similarity Graph-based method Intra-subject variability Alzheimer’s disease classification Mild cognitive impairment Patch-based grading Whole brain analysis |
| Language | English |
| License | Copyright © 2020 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c521t-4a8c97c709d77db4d2c46c60fe327def71b8b2255c8ac605e9234b42e3f439663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. Authorship contributions K.H., J.V.M., V.-T.T. and P.C. carried out the experiment and wrote the manuscript with support from I.O. All authors reviewed the manuscript. The data used in this manuscript is obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. |
| ORCID | 0000-0003-2709-3350 0000-0001-8831-4247 |
| OpenAccessLink | https://hal.science/hal-02967401 |
| PMID | 33075641 |
| PQID | 2508914062 |
| PQPubID | 2045428 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7725970 hal_primary_oai_HAL_hal_02967401v1 proquest_miscellaneous_2452495988 proquest_journals_2508914062 pubmed_primary_33075641 crossref_citationtrail_10_1016_j_media_2020_101850 crossref_primary_10_1016_j_media_2020_101850 elsevier_sciencedirect_doi_10_1016_j_media_2020_101850 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
| References | Hett, K., Ta, V.-T., Manjón, J. V., Coupé, P., Initiative, A. D. N., 2017. Adaptive fusion of texture-based grading: Application to Alzheimer’s disease detection. Springer. International Workshop on Patch-based Techniques in Medical Imaging, 82–89. Wyman, Harvey, Crawford, Bernstein, Carmichael, Cole, Crane, DeCarli, Fox, Gunter (bib0086) 2013; 9 Rubner, Tomasi, Guibas (bib0066) 2000; 40 Ledig, Schuh, Guerrero, Heckemann, Rueckert (bib0047) 2018; 8 Apostolova, Akopyan, Partiali, Steiner, Dutton, Hayashi, Dinov, Toga, Cummings, Thompson (bib0001) 2007; 24 Duthey (bib0025) 2013 Parker, Cash, Lane, Lu, Malone, Nicholas, James, Keshavan, Murray-Smith, Wong (bib0061) 2019; 14 Avants, Tustison, Song, Cook, Klein, Gee (bib0006) 2011; 54 Hyman, Van Hoesen, Damasio, Barnes (bib0036) 1984; 225 Manjón, Coupé (bib0054) 2016; 10 Wee, Liu, Lee, Poh, Ji, Qiu, Initiative (bib0079) 2019 Coupé, Eskildsen, Manjón, Fonov, Collins, disease Neuroimaging Initiative (bib0018) 2012; 59 Karas, Scheltens, Rombouts, Van Schijndel, Klein, Jones, Van Der Flier, Vrenken, Barkhof (bib0040) 2007; 49 Samper-Gonzalez, Burgos, Bottani, Habert, Evgeniou, Epelbaum, Colliot (bib0067) 2019 Tong, Wolz, Gao, Guerrero, Hajnal, Rueckert, Initiative (bib0075) 2014; 18 Kogure, Matsuda, Ohnishi, Asada, Uno, Kunihiro, Nakano, Takasaki (bib0044) 2000; 41 Braak, Braak (bib0010) 1997; 93 Li, Dong, Xie, Zhang (bib0049) 2013; 28 Kerchner, Hess, Hammond-Rosenbluth, Xu, Rabinovici, Kelley, Vigneron, Nelson, Miller (bib0041) 2010; 75 Liu, Ji, Ye (bib0051) 2009; 6 Wang, Das, Suh, Altinay, Pluta, Craige, Avants, Yushkevich, Initiative (bib0078) 2011; 55 Winterburn, Pruessner, Chavez, Schira, Lobaugh, Voineskos, Chakravarty (bib0084) 2013; 74 Lian, Liu, Zhang, Shen (bib0050) 2018 Zou, Hastie (bib0089) 2005; 67 Cairns, Taylor-Reinwald, Morris, Initiative (bib0016) 2010; 6 Romero, Coupe, Manjon (bib0065) 2017; 163 Lorente de Nó (bib0059) 1934 Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Initiative, A. D. N. et al. (2015). Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage, 104, 398–412. Coupé, Manjón, Chamberland, Descoteaux, Hiba (bib0021) 2013; 83 Arbabshirani, Plis, Sui, Calhoun (bib0003) 2017; 145 Halliday, Double, Macdonald, Kril (bib0029) 2003; 24 Hardy (bib0030) 2006; 9 Trujillo-Estrada, Dávila, Sánchez-Mejias, Sánchez-Varo, Gomez-Arboledas, Vizuete, Vitorica, Gutiérrez (bib0076) 2014; 42 Wen, Thibeau, Samper-González, Routier, Bottani, Dormont, Durrleman, Colliot, Burgos (bib0081) 2019 DeCarli (bib0024) 2003; 2 Braak, Alafuzoff, Arzberger, Kretzschmar, Del Tredici (bib0011) 2006; 112 Braak, Braak (bib0012) 1995; 16 Liu, Zhang, Shen, Initiative (bib0052) 2012; 60 Tong, Gray, Gao, Chen, Rueckert, Initiative (bib0074) 2017; 63 Bobinski, De Leon, Convit, De Santi, Wegiel, Tarshish, Saint Louis, Wisniewski (bib0009) 1999; 353 Bron, Smits, Van Der Flier, Vrenken, Barkhof, Scheltens, Papma, Steketee, Orellana, Meijboom (bib0014) 2015; 111 Suk, Lee, Shen, Initiative (bib0072) 2015; 220 Cuingnet, Glaunès, Chupin, Benali, Colliot (bib0023) 2013; 35 Manjón, Eskildsen, Coupé, Romero, Collins, Robles (bib0053) 2014 Petrella, Coleman, Doraiswamy (bib0063) 2003; 226 Frisoni, Testa, Zorzan, Sabattoli, Beltramello, Soininen, Laakso (bib0026) 2002; 73 Tong, Gao, Guerrero, Ledig, Chen, Rueckert, Initiative (bib0073) 2017; 64 Lee, Nho, Kang, Sohn, Kim (bib0048) 2019; 9 Parisot, Ktena, Ferrante, Lee, Guerrero, Glocker, Rueckert (bib0060) 2018; 48 Koikkalainen, Pölönen, Mattila, Van Gils, Soininen, Lötjönen, Initiative (bib0045) 2012; 7 Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (bib0062) 1999; 56 Giraud, Ta, Papadakis, Manjón, Collins, Coupé, Initiative (bib0028) 2016; 124 Killiany, Moss, Albert, Sandor, Tieman, Jolesz (bib0043) 1993; 50 Schwarz, Gunter, Wiste, Przybelski, Weigand, Ward, Senjem, Vemuri, Murray, Dickson (bib0068) 2016; 11 Rathore, Habes, Iftikhar, Shacklett, Davatzikos (bib0064) 2017; 155 Basaia, Agosta, Wagner, Canu, Magnani, Santangelo, Filippi, Initiative (bib0007) 2018 Matias-Guiu, Valles-Salgado, Rognoni, Hamre-Gil, Moreno-Ramos, Matias-Guiu (bib0056) 2017; 43 Zhou, Wang, Li, Yap, Shen, ADNI (bib0088) 2011; 6 Kerchner, Deutsch, Zeineh, Dougherty, Saranathan, Rutt (bib0042) 2012; 63 Wee, Yap, Shen, Initiative (bib0080) 2013; 34 Apostolova, Dutton, Dinov, Hayashi, Toga, Cummings, Thompson (bib0002) 2006; 63 Coupé, Manjón, Lanuza, Catheline (bib0022) 2019; 9 La Joie, Perrotin, De La Sayette, Egret, Doeuvre, Belliard, Eustache, Desgranges, Chételat (bib0046) 2013; 3 Wolz, Julkunen, Koikkalainen, Niskanen, Zhang, Rueckert, Soininen, Lötjönen, Initiative (bib0085) 2011; 6 Coupé, Eskildsen, Manjón, Fonov, Pruessner, Allard, Collins, Initiative (bib0019) 2012; 1 Coupé, Fonov, Bernard, Zandifar, Eskildsen, Helmer, Manjón, Amieva, Dartigues, Allard (bib0020) 2015; 36 Frisoni, Fox, Jack, Scheltens, Thompson (bib0027) 2010; 6 Hett, Ta, Manjón, Coupé, Initiative (bib0034) 2018; 70 Carlesimo, Piras, Orfei, Iorio, Caltagirone, Spalletta (bib0017) 2015; 1 Jack Jr, Bennett, Blennow, Carrillo, Dunn, Haeberlein, Holtzman, Jagust, Jessen, Karlawish (bib0038) 2018; 14 West, Coleman, Flood, Troncoso (bib0083) 1994; 344 Hett, Ta, Catheline, Tourdias, Manjón, Coupe (bib0031) 2019; 9 Mueller, S., Stables, L., Du, A., Schuff, N., Truran, D., Cashdollar, N., & Weiner, M. (2007). Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiology of aging, 28, 719–726. Suk, Lee, Shen, Initiative (bib0071) 2014; 101 Suk, Lee, Shen (bib0070) 2017; 37 Hett, K., Ta, V.-T., Manjón, J. V., Coupé, P., 2018a. Graph of hippocampal subfields grading for Alzheimer’s disease prediction. Springer. International Workshop on Machine Learning in Medical Imaging, 259–266. Breiman (bib0013) 2001; 45 Jones, Barnes, Uylings, Fox, Frost, Witter, Scheltens (bib0039) 2006; 16 Jack, Petersen, O’brien, Tangalos (bib0037) 1992; 42 Alzheimer’s Association (bib0005) 2015; 11 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib0077) 2010; 29 Beach, Monsell, Phillips, Kukull (bib0008) 2012; 71 Manjón, Coupé, Martí-Bonmatí, Collins, Robles (bib0055) 2010; 31 Sturges (bib0069) 1926; 21 Ashburner, Friston (bib0004) 2000; 11 Yushkevich, Amaral, Augustinack, Bender, Bernstein, Boccardi, Bocchetta, Burggren, Carr, Chakravarty (bib0087) 2015; 111 Hett, K., Ta, V.-T., Manjón, J. V., Coupé, P., Initiative, A. D. N., et al., 2018c. Graph of brain structures grading for early detection of Alzheimer’s disease. Springer. International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 429–436 Wen, Thibeau-Sutre, Samper-Gonzalez, Routier, Bottani, Durrleman, Burgos, Colliot (bib0082) 2019 Busatto, Garrido, Almeida, Castro, Camargo, Cid, Buchpiguel, Furuie, Bottino (bib0015) 2003; 24 Trujillo-Estrada (10.1016/j.media.2020.101850_bib0076) 2014; 42 Apostolova (10.1016/j.media.2020.101850_bib0001) 2007; 24 Braak (10.1016/j.media.2020.101850_bib0011) 2006; 112 Frisoni (10.1016/j.media.2020.101850_bib0026) 2002; 73 Coupé (10.1016/j.media.2020.101850_bib0021) 2013; 83 Hett (10.1016/j.media.2020.101850_bib0031) 2019; 9 Wee (10.1016/j.media.2020.101850_bib0079) 2019 Liu (10.1016/j.media.2020.101850_bib0051) 2009; 6 Bobinski (10.1016/j.media.2020.101850_bib0009) 1999; 353 Wang (10.1016/j.media.2020.101850_bib0078) 2011; 55 Manjón (10.1016/j.media.2020.101850_bib0054) 2016; 10 Jack Jr (10.1016/j.media.2020.101850_bib0038) 2018; 14 Kerchner (10.1016/j.media.2020.101850_bib0042) 2012; 63 Zou (10.1016/j.media.2020.101850_bib0089) 2005; 67 Schwarz (10.1016/j.media.2020.101850_bib0068) 2016; 11 Arbabshirani (10.1016/j.media.2020.101850_bib0003) 2017; 145 Romero (10.1016/j.media.2020.101850_bib0065) 2017; 163 Apostolova (10.1016/j.media.2020.101850_bib0002) 2006; 63 Manjón (10.1016/j.media.2020.101850_bib0055) 2010; 31 Wen (10.1016/j.media.2020.101850_bib0082) 2019 Wyman (10.1016/j.media.2020.101850_bib0086) 2013; 9 Matias-Guiu (10.1016/j.media.2020.101850_bib0056) 2017; 43 Killiany (10.1016/j.media.2020.101850_bib0043) 1993; 50 Tong (10.1016/j.media.2020.101850_bib0074) 2017; 63 Halliday (10.1016/j.media.2020.101850_bib0029) 2003; 24 Ledig (10.1016/j.media.2020.101850_bib0047) 2018; 8 Lian (10.1016/j.media.2020.101850_bib0050) 2018 Coupé (10.1016/j.media.2020.101850_bib0019) 2012; 1 Hyman (10.1016/j.media.2020.101850_bib0036) 1984; 225 Zhou (10.1016/j.media.2020.101850_bib0088) 2011; 6 Frisoni (10.1016/j.media.2020.101850_bib0027) 2010; 6 Beach (10.1016/j.media.2020.101850_bib0008) 2012; 71 10.1016/j.media.2020.101850_bib0035 Kerchner (10.1016/j.media.2020.101850_bib0041) 2010; 75 Coupé (10.1016/j.media.2020.101850_bib0020) 2015; 36 10.1016/j.media.2020.101850_bib0033 Manjón (10.1016/j.media.2020.101850_bib0053) 2014 DeCarli (10.1016/j.media.2020.101850_bib0024) 2003; 2 10.1016/j.media.2020.101850_bib0032 Rubner (10.1016/j.media.2020.101850_bib0066) 2000; 40 Suk (10.1016/j.media.2020.101850_bib0071) 2014; 101 Coupé (10.1016/j.media.2020.101850_bib0022) 2019; 9 Bron (10.1016/j.media.2020.101850_bib0014) 2015; 111 Suk (10.1016/j.media.2020.101850_bib0070) 2017; 37 Karas (10.1016/j.media.2020.101850_bib0040) 2007; 49 Kogure (10.1016/j.media.2020.101850_bib0044) 2000; 41 Petersen (10.1016/j.media.2020.101850_bib0062) 1999; 56 Sturges (10.1016/j.media.2020.101850_bib0069) 1926; 21 Jack (10.1016/j.media.2020.101850_sbref0037) 1992; 42 Koikkalainen (10.1016/j.media.2020.101850_bib0045) 2012; 7 Wolz (10.1016/j.media.2020.101850_bib0085) 2011; 6 Samper-Gonzalez (10.1016/j.media.2020.101850_bib0067) 2019 Braak (10.1016/j.media.2020.101850_bib0010) 1997; 93 Duthey (10.1016/j.media.2020.101850_bib0025) 2013 Rathore (10.1016/j.media.2020.101850_bib0064) 2017; 155 Suk (10.1016/j.media.2020.101850_bib0072) 2015; 220 Braak (10.1016/j.media.2020.101850_bib0012) 1995; 16 Lee (10.1016/j.media.2020.101850_bib0048) 2019; 9 Parker (10.1016/j.media.2020.101850_bib0061) 2019; 14 Giraud (10.1016/j.media.2020.101850_bib0028) 2016; 124 Winterburn (10.1016/j.media.2020.101850_bib0084) 2013; 74 Cuingnet (10.1016/j.media.2020.101850_bib0023) 2013; 35 West (10.1016/j.media.2020.101850_bib0083) 1994; 344 Avants (10.1016/j.media.2020.101850_bib0006) 2011; 54 Cairns (10.1016/j.media.2020.101850_bib0016) 2010; 6 La Joie (10.1016/j.media.2020.101850_bib0046) 2013; 3 Yushkevich (10.1016/j.media.2020.101850_bib0087) 2015; 111 Lorente de Nó (10.1016/j.media.2020.101850_bib0059) 1934 Tustison (10.1016/j.media.2020.101850_bib0077) 2010; 29 Hardy (10.1016/j.media.2020.101850_bib0030) 2006; 9 Liu (10.1016/j.media.2020.101850_bib0052) 2012; 60 Busatto (10.1016/j.media.2020.101850_bib0015) 2003; 24 Wee (10.1016/j.media.2020.101850_bib0080) 2013; 34 Ashburner (10.1016/j.media.2020.101850_bib0004) 2000; 11 Breiman (10.1016/j.media.2020.101850_bib0013) 2001; 45 Jones (10.1016/j.media.2020.101850_bib0039) 2006; 16 Alzheimer’s Association (10.1016/j.media.2020.101850_bib0005) 2015; 11 Li (10.1016/j.media.2020.101850_bib0049) 2013; 28 Petrella (10.1016/j.media.2020.101850_bib0063) 2003; 226 Carlesimo (10.1016/j.media.2020.101850_bib0017) 2015; 1 Wen (10.1016/j.media.2020.101850_bib0081) 2019 Hett (10.1016/j.media.2020.101850_bib0034) 2018; 70 10.1016/j.media.2020.101850_bib0057 Tong (10.1016/j.media.2020.101850_bib0075) 2014; 18 Basaia (10.1016/j.media.2020.101850_bib0007) 2018 Coupé (10.1016/j.media.2020.101850_bib0018) 2012; 59 Parisot (10.1016/j.media.2020.101850_bib0060) 2018; 48 10.1016/j.media.2020.101850_bib0058 Tong (10.1016/j.media.2020.101850_bib0073) 2017; 64 |
| References_xml | – volume: 220 start-page: 841 year: 2015 end-page: 859 ident: bib0072 article-title: Latent feature representation with stacked auto-encoder for ad/mci diagnosis publication-title: Brain Structure and Function – volume: 34 start-page: 3411 year: 2013 end-page: 3425 ident: bib0080 article-title: Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns publication-title: Hum Brain Mapp – volume: 7 start-page: e31112 year: 2012 ident: bib0045 article-title: Improved classification of alzheimer’s disease data via removal of nuisance variability publication-title: PLoS ONE – volume: 24 start-page: 221 year: 2003 end-page: 231 ident: bib0015 article-title: A voxel-based morphometry study of temporal lobe gray matter reductions in alzheimer’s disease publication-title: Neurobiol. Aging – volume: 21 start-page: 65 year: 1926 end-page: 66 ident: bib0069 article-title: The choice of a class interval publication-title: J Am Stat Assoc – volume: 1 start-page: 141 year: 2012 end-page: 152 ident: bib0019 article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease publication-title: NeuroImage: clinical – volume: 2 start-page: 15 year: 2003 end-page: 21 ident: bib0024 article-title: Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment publication-title: The Lancet Neurology – volume: 124 start-page: 770 year: 2016 end-page: 782 ident: bib0028 article-title: An optimized patchmatch for multi-scale and multi-feature label fusion publication-title: Neuroimage – volume: 11 start-page: 805 year: 2000 end-page: 821 ident: bib0004 article-title: Voxel-based morphometry—the methods publication-title: Neuroimage – volume: 56 start-page: 303 year: 1999 end-page: 308 ident: bib0062 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Arch. Neurol. – volume: 63 start-page: 171 year: 2017 end-page: 181 ident: bib0074 article-title: Multi-modal classification of alzheimer’s disease using nonlinear graph fusion publication-title: Pattern Recognit – volume: 344 start-page: 769 year: 1994 end-page: 772 ident: bib0083 article-title: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease publication-title: The Lancet – volume: 9 start-page: 332 year: 2013 end-page: 337 ident: bib0086 article-title: Standardization of analysis sets for reporting results from adni mri data publication-title: Alzheimer’s & Dementia – volume: 41 start-page: 1155 year: 2000 end-page: 1162 ident: bib0044 article-title: Longitudinal evaluation of early alzheimer’s disease using brain perfusion spect publication-title: J. Nucl. Med. – year: 2019 ident: bib0067 article-title: Reproducible evaluation of methods for predicting progression to Alzheimer’s disease from clinical and neuroimaging Data publication-title: SPIE Medical Imaging 2019 – volume: 6 start-page: 7 year: 2009 ident: bib0051 article-title: SLEP: Sparse learning with efficient projections publication-title: Arizona State University – volume: 93 start-page: 323 year: 1997 end-page: 325 ident: bib0010 article-title: Alzheimer’s disease: transiently developing dendritic changes in pyramidal cells of sector CA1 of the Ammon’s horn publication-title: Acta Neuropathol. – volume: 24 start-page: 797 year: 2003 end-page: 806 ident: bib0029 article-title: Identifying severely atrophic cortical subregions in Alzheimer’s disease publication-title: Neurobiol. Aging – year: 1934 ident: bib0059 article-title: Studies on the structure of the cerebral cortex. ii. continuation of the study of the ammonic system publication-title: Journal für Psychologie und Neurologie – volume: 6 start-page: e21935 year: 2011 ident: bib0088 article-title: Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures publication-title: PLoS ONE – reference: Mueller, S., Stables, L., Du, A., Schuff, N., Truran, D., Cashdollar, N., & Weiner, M. (2007). Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiology of aging, 28, 719–726. – volume: 28 start-page: 627 year: 2013 end-page: 633 ident: bib0049 article-title: Discriminative analysis of mild Alzheimer’s disease and normal aging using volume of hippocampal subfields and hippocampal mean diffusivity: an in vivo magnetic resonance imaging study publication-title: American Journal of Alzheimer’s Disease & Other Dementias – volume: 73 start-page: 657 year: 2002 end-page: 664 ident: bib0026 article-title: Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry publication-title: Journal of Neurology, Neurosurgery & Psychiatry – volume: 63 start-page: 194 year: 2012 end-page: 202 ident: bib0042 article-title: Hippocampal CA1 apical neuropil atrophy and memory performance in Alzheimer’s disease publication-title: Neuroimage – volume: 163 start-page: 286 year: 2017 end-page: 295 ident: bib0065 article-title: Hips: a new hippocampus subfield segmentation method publication-title: Neuroimage – start-page: 101929 year: 2019 ident: bib0079 article-title: Cortical graph neural network for ad and mci diagnosis and transfer learning across populations publication-title: NeuroImage: Clinical – year: 2014 ident: bib0053 article-title: NICE: Non-local intracranial cavity extraction publication-title: Int J Biomed Imaging – volume: 36 start-page: 4758 year: 2015 end-page: 4770 ident: bib0020 article-title: Detection of Alzheimer’s disease signature in MR images seven years before conversion to dementia: toward an early individual prognosis publication-title: Hum Brain Mapp – volume: 71 start-page: 266 year: 2012 end-page: 273 ident: bib0008 article-title: Accuracy of the clinical diagnosis of alzheimer disease at national institute on aging alzheimer disease centers, 2005–2010 publication-title: J. Neuropathol. Exp. Neurol. – volume: 31 start-page: 192 year: 2010 end-page: 203 ident: bib0055 article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels publication-title: J. Magn. Reson. Imaging – volume: 11 start-page: 802 year: 2016 end-page: 812 ident: bib0068 article-title: A large-scale comparison of cortical thickness and volume methods for measuring alzheimer’s disease severity publication-title: NeuroImage: Clinical – start-page: 1 year: 2013 end-page: 74 ident: bib0025 article-title: Background paper 6.11: Alzheimer disease and other dementias publication-title: A Public Health Approach to Innovation – year: 2019 ident: bib0081 article-title: How serious is data leakage in Deep learning studies on Alzheimer’s disease classification? publication-title: OHBM Annual meeting - Organization for Human Brain Mapping – volume: 14 year: 2019 ident: bib0061 article-title: Hippocampal subfield volumes and pre-clinical alzheimer’s disease in 408 cognitively normal adults born in 1946 publication-title: PLoS ONE – volume: 42 start-page: 521 year: 2014 end-page: 541 ident: bib0076 article-title: Early neuronal loss and axonal/presynaptic damage is associated with accelerated amyloid- publication-title: J. Alzheimers Dis. – volume: 9 start-page: 1952 year: 2019 ident: bib0048 article-title: Predicting alzheimer’s disease progression using multi-modal deep learning approach publication-title: Sci Rep – volume: 6 start-page: 67 year: 2010 end-page: 77 ident: bib0027 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nature Reviews Neurology – volume: 112 start-page: 389 year: 2006 end-page: 404 ident: bib0011 article-title: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry publication-title: Acta Neuropathol. – volume: 111 start-page: 562 year: 2015 end-page: 579 ident: bib0014 article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge publication-title: Neuroimage – volume: 101 start-page: 569 year: 2014 end-page: 582 ident: bib0071 article-title: Hierarchical feature representation and multimodal fusion with deep learning for ad/mci diagnosis publication-title: Neuroimage – volume: 6 start-page: 274 year: 2010 end-page: 279 ident: bib0016 article-title: Autopsy consent, brain collection, and standardized neuropathologic assessment of adni participants: the essential role of the neuropathology core publication-title: Alzheimer’s & Dementia – volume: 9 start-page: 3998 year: 2019 ident: bib0022 article-title: Lifespan changes of the human brain in Alzheimer’s disease publication-title: Sci Rep – reference: Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Initiative, A. D. N. et al. (2015). Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage, 104, 398–412. – volume: 1 start-page: 24 year: 2015 end-page: 32 ident: bib0017 article-title: Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of alzheimer’s disease publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring – volume: 48 start-page: 117 year: 2018 end-page: 130 ident: bib0060 article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease publication-title: Med Image Anal – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bib0089 article-title: Regularization and variable selection via the elastic net publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 75 start-page: 1381 year: 2010 end-page: 1387 ident: bib0041 article-title: Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-t MRI publication-title: Neurology – year: 2018 ident: bib0050 article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural mri publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 145 start-page: 137 year: 2017 end-page: 165 ident: bib0003 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage – volume: 111 start-page: 526 year: 2015 end-page: 541 ident: bib0087 article-title: Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in vivo MRI: towards a harmonized segmentation protocol publication-title: Neuroimage – volume: 3 start-page: 155 year: 2013 end-page: 162 ident: bib0046 article-title: Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia publication-title: NeuroImage: Clinical – volume: 55 start-page: 968 year: 2011 end-page: 985 ident: bib0078 article-title: A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation publication-title: Neuroimage – volume: 59 start-page: 3736 year: 2012 end-page: 3747 ident: bib0018 article-title: Simultaneous segmentation and grading of anatomical structures for patient’s classification: application to alzheimer’s disease publication-title: Neuroimage – reference: Hett, K., Ta, V.-T., Manjón, J. V., Coupé, P., 2018a. Graph of hippocampal subfields grading for Alzheimer’s disease prediction. Springer. International Workshop on Machine Learning in Medical Imaging, 259–266. – year: 2019 ident: bib0082 article-title: Convolutional neural networks for classification of alzheimer’s disease: overview and reproducible evaluation publication-title: arXiv preprint arXiv:1904.07773 – volume: 63 start-page: 693 year: 2006 end-page: 699 ident: bib0002 article-title: Conversion of mild cognitive impairment to alzheimer disease predicted by hippocampal atrophy maps publication-title: Arch. Neurol. – start-page: 101645 year: 2018 ident: bib0007 article-title: Automated classification of alzheimer’s disease and mild cognitive impairment using a single mri and deep neural networks publication-title: NeuroImage: Clinical – reference: Hett, K., Ta, V.-T., Manjón, J. V., Coupé, P., Initiative, A. D. N., 2017. Adaptive fusion of texture-based grading: Application to Alzheimer’s disease detection. Springer. International Workshop on Patch-based Techniques in Medical Imaging, 82–89. – volume: 226 start-page: 315 year: 2003 end-page: 336 ident: bib0063 article-title: Neuroimaging and early diagnosis of alzheimer disease: a look to the future publication-title: Radiology – volume: 49 start-page: 967 year: 2007 end-page: 976 ident: bib0040 article-title: Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study publication-title: Neuroradiology – volume: 60 start-page: 1106 year: 2012 end-page: 1116 ident: bib0052 article-title: Ensemble sparse classification of Alzheimer’s disease publication-title: Neuroimage – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: bib0077 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans Med Imaging – volume: 42 year: 1992 ident: bib0037 article-title: Mr-based hippocampal volumetry in the diagnosis of Alzheimer’s disease publication-title: Neurology – volume: 24 start-page: 91 year: 2007 ident: bib0001 article-title: Structural correlates of apathy in alzheimer’s disease publication-title: Dement Geriatr Cogn Disord – volume: 11 start-page: 332 year: 2015 ident: bib0005 article-title: 2015 Alzheimer’s disease facts and figures publication-title: Alzheimer’s & dementia: the journal of the Alzheimer’s Association – volume: 16 start-page: 1701 year: 2006 end-page: 1708 ident: bib0039 article-title: Differential regional atrophy of the cingulate gyrus in alzheimer disease: a volumetric MRI study publication-title: Cerebral Cortex – volume: 74 start-page: 254 year: 2013 end-page: 265 ident: bib0084 article-title: A novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic resonance imaging publication-title: Neuroimage – volume: 35 start-page: 682 year: 2013 end-page: 696 ident: bib0023 article-title: Spatial and anatomical regularization of svm: a general framework for neuroimaging data publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0013 article-title: Random forests publication-title: Mach Learn – volume: 155 start-page: 530 year: 2017 end-page: 548 ident: bib0064 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for alzheimer’s disease and its prodromal stages publication-title: Neuroimage – volume: 18 start-page: 808 year: 2014 end-page: 818 ident: bib0075 article-title: Multiple instance learning for classification of dementia in brain MRI publication-title: Med Image Anal – volume: 16 start-page: 271 year: 1995 end-page: 278 ident: bib0012 article-title: Staging of alzheimer’s disease-related neurofibrillary changes publication-title: Neurobiol. Aging – volume: 64 start-page: 155 year: 2017 end-page: 165 ident: bib0073 article-title: A novel grading biomarker for the prediction of conversion from mild cognitive impairment to alzheimer’s disease publication-title: IEEE Trans. Biomed. Eng. – volume: 6 start-page: e25446 year: 2011 ident: bib0085 article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease publication-title: PLoS ONE – volume: 43 start-page: 237 year: 2017 end-page: 246 ident: bib0056 article-title: Comparative diagnostic accuracy of the ace-iii, mis, mmse, moca, and rudas for screening of Alzheimer disease publication-title: Dement Geriatr Cogn Disord – volume: 8 start-page: 11258 year: 2018 ident: bib0047 article-title: Structural brain imaging in alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database publication-title: Sci Rep – volume: 9 start-page: 1 year: 2019 end-page: 16 ident: bib0031 article-title: Multimodal hippocampal subfield grading for Alzheimer’s disease classification publication-title: Sci Rep – volume: 37 start-page: 101 year: 2017 end-page: 113 ident: bib0070 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Med Image Anal – volume: 353 start-page: 38 year: 1999 end-page: 40 ident: bib0009 article-title: Mri of entorhinal cortex in mild alzheimer’s disease publication-title: The Lancet – volume: 9 start-page: 151 year: 2006 end-page: 153 ident: bib0030 article-title: Alzheimer’S disease: the amyloid cascade hypothesis: an update and reappraisal publication-title: J. Alzheimers Dis. – volume: 14 start-page: 535 year: 2018 end-page: 562 ident: bib0038 article-title: Nia-aa research framework: toward a biological definition of Alzheimer’s disease publication-title: Alzheimer’s & Dementia – volume: 40 start-page: 99 year: 2000 end-page: 121 ident: bib0066 article-title: The earth mover’s distance as a metric for image retrieval publication-title: Int J Comput Vis – reference: Hett, K., Ta, V.-T., Manjón, J. V., Coupé, P., Initiative, A. D. N., et al., 2018c. Graph of brain structures grading for early detection of Alzheimer’s disease. Springer. International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 429–436, – volume: 70 start-page: 8 year: 2018 end-page: 16 ident: bib0034 article-title: Adaptive fusion of texture-based grading for alzheimer’s disease classification publication-title: Computerized Medical Imaging and Graphics – volume: 50 start-page: 949 year: 1993 end-page: 954 ident: bib0043 article-title: Temporal lobe regions on magnetic resonance imaging identify patients with early alzheimer’s disease publication-title: Arch. Neurol. – volume: 54 start-page: 2033 year: 2011 end-page: 2044 ident: bib0006 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: Neuroimage – volume: 83 start-page: 245 year: 2013 end-page: 261 ident: bib0021 article-title: Collaborative patch-based super-resolution for diffusion-weighted images publication-title: Neuroimage – volume: 225 start-page: 1168 year: 1984 end-page: 1171 ident: bib0036 article-title: Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation publication-title: Science – volume: 10 year: 2016 ident: bib0054 article-title: volBrain: an online MRI brain volumetry system publication-title: Front Neuroinform – volume: 163 start-page: 286 year: 2017 ident: 10.1016/j.media.2020.101850_bib0065 article-title: Hips: a new hippocampus subfield segmentation method publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.09.049 – volume: 64 start-page: 155 year: 2017 ident: 10.1016/j.media.2020.101850_bib0073 article-title: A novel grading biomarker for the prediction of conversion from mild cognitive impairment to alzheimer’s disease publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2549363 – volume: 155 start-page: 530 year: 2017 ident: 10.1016/j.media.2020.101850_bib0064 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for alzheimer’s disease and its prodromal stages publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.03.057 – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.media.2020.101850_bib0089 article-title: Regularization and variable selection via the elastic net publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2005.00503.x – start-page: 1 year: 2013 ident: 10.1016/j.media.2020.101850_bib0025 article-title: Background paper 6.11: Alzheimer disease and other dementias publication-title: A Public Health Approach to Innovation – volume: 3 start-page: 155 year: 2013 ident: 10.1016/j.media.2020.101850_bib0046 article-title: Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2013.08.007 – start-page: 101929 year: 2019 ident: 10.1016/j.media.2020.101850_bib0079 article-title: Cortical graph neural network for ad and mci diagnosis and transfer learning across populations publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2019.101929 – volume: 70 start-page: 8 year: 2018 ident: 10.1016/j.media.2020.101850_bib0034 article-title: Adaptive fusion of texture-based grading for alzheimer’s disease classification publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2018.08.002 – volume: 34 start-page: 3411 year: 2013 ident: 10.1016/j.media.2020.101850_bib0080 article-title: Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns publication-title: Hum Brain Mapp doi: 10.1002/hbm.22156 – volume: 40 start-page: 99 year: 2000 ident: 10.1016/j.media.2020.101850_bib0066 article-title: The earth mover’s distance as a metric for image retrieval publication-title: Int J Comput Vis doi: 10.1023/A:1026543900054 – volume: 225 start-page: 1168 year: 1984 ident: 10.1016/j.media.2020.101850_bib0036 article-title: Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation publication-title: Science doi: 10.1126/science.6474172 – volume: 75 start-page: 1381 year: 2010 ident: 10.1016/j.media.2020.101850_bib0041 article-title: Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-t MRI publication-title: Neurology doi: 10.1212/WNL.0b013e3181f736a1 – year: 1934 ident: 10.1016/j.media.2020.101850_bib0059 article-title: Studies on the structure of the cerebral cortex. ii. continuation of the study of the ammonic system publication-title: Journal für Psychologie und Neurologie – volume: 11 start-page: 332 year: 2015 ident: 10.1016/j.media.2020.101850_bib0005 article-title: 2015 Alzheimer’s disease facts and figures publication-title: Alzheimer’s & dementia: the journal of the Alzheimer’s Association – volume: 145 start-page: 137 year: 2017 ident: 10.1016/j.media.2020.101850_bib0003 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 54 start-page: 2033 year: 2011 ident: 10.1016/j.media.2020.101850_bib0006 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.025 – ident: 10.1016/j.media.2020.101850_bib0058 doi: 10.1016/j.neurobiolaging.2006.03.007 – volume: 9 start-page: 3998 year: 2019 ident: 10.1016/j.media.2020.101850_bib0022 article-title: Lifespan changes of the human brain in Alzheimer’s disease publication-title: Sci Rep doi: 10.1038/s41598-019-39809-8 – volume: 42 year: 1992 ident: 10.1016/j.media.2020.101850_sbref0037 article-title: Mr-based hippocampal volumetry in the diagnosis of Alzheimer’s disease publication-title: Neurology doi: 10.1212/WNL.42.1.183 – volume: 124 start-page: 770 year: 2016 ident: 10.1016/j.media.2020.101850_bib0028 article-title: An optimized patchmatch for multi-scale and multi-feature label fusion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.076 – volume: 8 start-page: 11258 year: 2018 ident: 10.1016/j.media.2020.101850_bib0047 article-title: Structural brain imaging in alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database publication-title: Sci Rep doi: 10.1038/s41598-018-29295-9 – year: 2019 ident: 10.1016/j.media.2020.101850_bib0082 article-title: Convolutional neural networks for classification of alzheimer’s disease: overview and reproducible evaluation publication-title: arXiv preprint arXiv:1904.07773 – volume: 36 start-page: 4758 year: 2015 ident: 10.1016/j.media.2020.101850_bib0020 article-title: Detection of Alzheimer’s disease signature in MR images seven years before conversion to dementia: toward an early individual prognosis publication-title: Hum Brain Mapp doi: 10.1002/hbm.22926 – volume: 56 start-page: 303 year: 1999 ident: 10.1016/j.media.2020.101850_bib0062 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Arch. Neurol. doi: 10.1001/archneur.56.3.303 – volume: 24 start-page: 797 year: 2003 ident: 10.1016/j.media.2020.101850_bib0029 article-title: Identifying severely atrophic cortical subregions in Alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(02)00227-0 – volume: 344 start-page: 769 year: 1994 ident: 10.1016/j.media.2020.101850_bib0083 article-title: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease publication-title: The Lancet doi: 10.1016/S0140-6736(94)92338-8 – volume: 14 start-page: 535 year: 2018 ident: 10.1016/j.media.2020.101850_bib0038 article-title: Nia-aa research framework: toward a biological definition of Alzheimer’s disease publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2018.02.018 – volume: 28 start-page: 627 year: 2013 ident: 10.1016/j.media.2020.101850_bib0049 article-title: Discriminative analysis of mild Alzheimer’s disease and normal aging using volume of hippocampal subfields and hippocampal mean diffusivity: an in vivo magnetic resonance imaging study publication-title: American Journal of Alzheimer’s Disease & Other Dementias doi: 10.1177/1533317513494452 – volume: 60 start-page: 1106 year: 2012 ident: 10.1016/j.media.2020.101850_bib0052 article-title: Ensemble sparse classification of Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.055 – volume: 31 start-page: 192 year: 2010 ident: 10.1016/j.media.2020.101850_bib0055 article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22003 – year: 2018 ident: 10.1016/j.media.2020.101850_bib0050 article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural mri publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 16 start-page: 271 year: 1995 ident: 10.1016/j.media.2020.101850_bib0012 article-title: Staging of alzheimer’s disease-related neurofibrillary changes publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(95)00021-6 – volume: 83 start-page: 245 year: 2013 ident: 10.1016/j.media.2020.101850_bib0021 article-title: Collaborative patch-based super-resolution for diffusion-weighted images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.06.030 – year: 2019 ident: 10.1016/j.media.2020.101850_bib0067 article-title: Reproducible evaluation of methods for predicting progression to Alzheimer’s disease from clinical and neuroimaging Data – volume: 6 start-page: 7 year: 2009 ident: 10.1016/j.media.2020.101850_bib0051 article-title: SLEP: Sparse learning with efficient projections publication-title: Arizona State University – volume: 101 start-page: 569 year: 2014 ident: 10.1016/j.media.2020.101850_bib0071 article-title: Hierarchical feature representation and multimodal fusion with deep learning for ad/mci diagnosis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.077 – volume: 7 start-page: e31112 year: 2012 ident: 10.1016/j.media.2020.101850_bib0045 article-title: Improved classification of alzheimer’s disease data via removal of nuisance variability publication-title: PLoS ONE doi: 10.1371/journal.pone.0031112 – volume: 29 start-page: 1310 year: 2010 ident: 10.1016/j.media.2020.101850_bib0077 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2010.2046908 – volume: 353 start-page: 38 year: 1999 ident: 10.1016/j.media.2020.101850_bib0009 article-title: Mri of entorhinal cortex in mild alzheimer’s disease publication-title: The Lancet doi: 10.1016/S0140-6736(05)74869-8 – volume: 49 start-page: 967 year: 2007 ident: 10.1016/j.media.2020.101850_bib0040 article-title: Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study publication-title: Neuroradiology doi: 10.1007/s00234-007-0269-2 – volume: 71 start-page: 266 year: 2012 ident: 10.1016/j.media.2020.101850_bib0008 article-title: Accuracy of the clinical diagnosis of alzheimer disease at national institute on aging alzheimer disease centers, 2005–2010 publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/NEN.0b013e31824b211b – volume: 10 year: 2016 ident: 10.1016/j.media.2020.101850_bib0054 article-title: volBrain: an online MRI brain volumetry system publication-title: Front Neuroinform doi: 10.3389/fninf.2016.00030 – volume: 73 start-page: 657 year: 2002 ident: 10.1016/j.media.2020.101850_bib0026 article-title: Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry publication-title: Journal of Neurology, Neurosurgery & Psychiatry doi: 10.1136/jnnp.73.6.657 – volume: 24 start-page: 91 year: 2007 ident: 10.1016/j.media.2020.101850_bib0001 article-title: Structural correlates of apathy in alzheimer’s disease publication-title: Dement Geriatr Cogn Disord doi: 10.1159/000103914 – volume: 63 start-page: 693 year: 2006 ident: 10.1016/j.media.2020.101850_bib0002 article-title: Conversion of mild cognitive impairment to alzheimer disease predicted by hippocampal atrophy maps publication-title: Arch. Neurol. doi: 10.1001/archneur.63.5.693 – ident: 10.1016/j.media.2020.101850_bib0057 doi: 10.1016/j.neuroimage.2014.10.002 – volume: 93 start-page: 323 year: 1997 ident: 10.1016/j.media.2020.101850_bib0010 article-title: Alzheimer’s disease: transiently developing dendritic changes in pyramidal cells of sector CA1 of the Ammon’s horn publication-title: Acta Neuropathol. doi: 10.1007/s004010050622 – volume: 42 start-page: 521 year: 2014 ident: 10.1016/j.media.2020.101850_bib0076 article-title: Early neuronal loss and axonal/presynaptic damage is associated with accelerated amyloid-β accumulation in aβPP/PS1 alzheimer’s disease mice subiculum publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-140495 – volume: 74 start-page: 254 year: 2013 ident: 10.1016/j.media.2020.101850_bib0084 article-title: A novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic resonance imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.02.003 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.media.2020.101850_bib0013 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 9 start-page: 151 year: 2006 ident: 10.1016/j.media.2020.101850_bib0030 article-title: Alzheimer’S disease: the amyloid cascade hypothesis: an update and reappraisal publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2006-9S317 – volume: 50 start-page: 949 year: 1993 ident: 10.1016/j.media.2020.101850_bib0043 article-title: Temporal lobe regions on magnetic resonance imaging identify patients with early alzheimer’s disease publication-title: Arch. Neurol. doi: 10.1001/archneur.1993.00540090052010 – volume: 59 start-page: 3736 year: 2012 ident: 10.1016/j.media.2020.101850_bib0018 article-title: Simultaneous segmentation and grading of anatomical structures for patient’s classification: application to alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.080 – year: 2014 ident: 10.1016/j.media.2020.101850_bib0053 article-title: NICE: Non-local intracranial cavity extraction publication-title: Int J Biomed Imaging doi: 10.1155/2014/820205 – volume: 41 start-page: 1155 year: 2000 ident: 10.1016/j.media.2020.101850_bib0044 article-title: Longitudinal evaluation of early alzheimer’s disease using brain perfusion spect publication-title: J. Nucl. Med. – volume: 9 start-page: 1952 year: 2019 ident: 10.1016/j.media.2020.101850_bib0048 article-title: Predicting alzheimer’s disease progression using multi-modal deep learning approach publication-title: Sci Rep doi: 10.1038/s41598-018-37769-z – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.media.2020.101850_bib0031 article-title: Multimodal hippocampal subfield grading for Alzheimer’s disease classification publication-title: Sci Rep doi: 10.1038/s41598-019-49970-9 – volume: 16 start-page: 1701 year: 2006 ident: 10.1016/j.media.2020.101850_bib0039 article-title: Differential regional atrophy of the cingulate gyrus in alzheimer disease: a volumetric MRI study publication-title: Cerebral Cortex doi: 10.1093/cercor/bhj105 – volume: 6 start-page: e25446 year: 2011 ident: 10.1016/j.media.2020.101850_bib0085 article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0025446 – ident: 10.1016/j.media.2020.101850_bib0035 doi: 10.1007/978-3-030-00931-1_49 – volume: 6 start-page: 67 year: 2010 ident: 10.1016/j.media.2020.101850_bib0027 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nature Reviews Neurology doi: 10.1038/nrneurol.2009.215 – volume: 2 start-page: 15 year: 2003 ident: 10.1016/j.media.2020.101850_bib0024 article-title: Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(03)00262-X – start-page: 101645 year: 2018 ident: 10.1016/j.media.2020.101850_bib0007 article-title: Automated classification of alzheimer’s disease and mild cognitive impairment using a single mri and deep neural networks publication-title: NeuroImage: Clinical – volume: 14 year: 2019 ident: 10.1016/j.media.2020.101850_bib0061 article-title: Hippocampal subfield volumes and pre-clinical alzheimer’s disease in 408 cognitively normal adults born in 1946 publication-title: PLoS ONE doi: 10.1371/journal.pone.0224030 – volume: 63 start-page: 171 year: 2017 ident: 10.1016/j.media.2020.101850_bib0074 article-title: Multi-modal classification of alzheimer’s disease using nonlinear graph fusion publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.10.009 – volume: 9 start-page: 332 year: 2013 ident: 10.1016/j.media.2020.101850_bib0086 article-title: Standardization of analysis sets for reporting results from adni mri data publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2012.06.004 – volume: 111 start-page: 562 year: 2015 ident: 10.1016/j.media.2020.101850_bib0014 article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.048 – ident: 10.1016/j.media.2020.101850_bib0033 doi: 10.1007/978-3-319-67434-6_10 – volume: 112 start-page: 389 year: 2006 ident: 10.1016/j.media.2020.101850_bib0011 article-title: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry publication-title: Acta Neuropathol. doi: 10.1007/s00401-006-0127-z – volume: 226 start-page: 315 year: 2003 ident: 10.1016/j.media.2020.101850_bib0063 article-title: Neuroimaging and early diagnosis of alzheimer disease: a look to the future publication-title: Radiology doi: 10.1148/radiol.2262011600 – volume: 43 start-page: 237 year: 2017 ident: 10.1016/j.media.2020.101850_bib0056 article-title: Comparative diagnostic accuracy of the ace-iii, mis, mmse, moca, and rudas for screening of Alzheimer disease publication-title: Dement Geriatr Cogn Disord doi: 10.1159/000469658 – volume: 48 start-page: 117 year: 2018 ident: 10.1016/j.media.2020.101850_bib0060 article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease publication-title: Med Image Anal doi: 10.1016/j.media.2018.06.001 – volume: 11 start-page: 802 year: 2016 ident: 10.1016/j.media.2020.101850_bib0068 article-title: A large-scale comparison of cortical thickness and volume methods for measuring alzheimer’s disease severity publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2016.05.017 – volume: 111 start-page: 526 year: 2015 ident: 10.1016/j.media.2020.101850_bib0087 article-title: Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in vivo MRI: towards a harmonized segmentation protocol publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.004 – volume: 6 start-page: e21935 year: 2011 ident: 10.1016/j.media.2020.101850_bib0088 article-title: Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures publication-title: PLoS ONE doi: 10.1371/journal.pone.0021935 – volume: 24 start-page: 221 year: 2003 ident: 10.1016/j.media.2020.101850_bib0015 article-title: A voxel-based morphometry study of temporal lobe gray matter reductions in alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(02)00084-2 – year: 2019 ident: 10.1016/j.media.2020.101850_bib0081 article-title: How serious is data leakage in Deep learning studies on Alzheimer’s disease classification? – volume: 11 start-page: 805 year: 2000 ident: 10.1016/j.media.2020.101850_bib0004 article-title: Voxel-based morphometry—the methods publication-title: Neuroimage doi: 10.1006/nimg.2000.0582 – volume: 6 start-page: 274 year: 2010 ident: 10.1016/j.media.2020.101850_bib0016 article-title: Autopsy consent, brain collection, and standardized neuropathologic assessment of adni participants: the essential role of the neuropathology core publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2010.03.012 – volume: 63 start-page: 194 year: 2012 ident: 10.1016/j.media.2020.101850_bib0042 article-title: Hippocampal CA1 apical neuropil atrophy and memory performance in Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.048 – volume: 21 start-page: 65 year: 1926 ident: 10.1016/j.media.2020.101850_bib0069 article-title: The choice of a class interval publication-title: J Am Stat Assoc doi: 10.1080/01621459.1926.10502161 – volume: 1 start-page: 141 year: 2012 ident: 10.1016/j.media.2020.101850_bib0019 article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease publication-title: NeuroImage: clinical doi: 10.1016/j.nicl.2012.10.002 – volume: 18 start-page: 808 year: 2014 ident: 10.1016/j.media.2020.101850_bib0075 article-title: Multiple instance learning for classification of dementia in brain MRI publication-title: Med Image Anal doi: 10.1016/j.media.2014.04.006 – ident: 10.1016/j.media.2020.101850_bib0032 doi: 10.1007/978-3-030-00919-9_30 – volume: 37 start-page: 101 year: 2017 ident: 10.1016/j.media.2020.101850_bib0070 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Med Image Anal doi: 10.1016/j.media.2017.01.008 – volume: 220 start-page: 841 year: 2015 ident: 10.1016/j.media.2020.101850_bib0072 article-title: Latent feature representation with stacked auto-encoder for ad/mci diagnosis publication-title: Brain Structure and Function doi: 10.1007/s00429-013-0687-3 – volume: 35 start-page: 682 year: 2013 ident: 10.1016/j.media.2020.101850_bib0023 article-title: Spatial and anatomical regularization of svm: a general framework for neuroimaging data publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.142 – volume: 1 start-page: 24 year: 2015 ident: 10.1016/j.media.2020.101850_bib0017 article-title: Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of alzheimer’s disease publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring – volume: 55 start-page: 968 year: 2011 ident: 10.1016/j.media.2020.101850_bib0078 article-title: A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.006 |
| SSID | ssj0007440 |
| Score | 2.5006022 |
| Snippet | •This work introduces a new approach combining patch-based grading and graph-based model.•Combination of inter-subject similarity and intra-subject variability... The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer's disease (AD) is clinically relevant, and may above all have a... The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer’s disease (AD) is clinically relevant, and may above all have a... |
| SourceID | pubmedcentral hal proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 101850 |
| SubjectTerms | Alzheimer Disease - diagnostic imaging Alzheimer's disease Alzheimer’s disease classification Bioengineering Biomarkers Brain Brain - diagnostic imaging Cognitive ability Cognitive Dysfunction - diagnostic imaging Cognitive science Computer science Computer Vision and Pattern Recognition Conversion Datasets Graph-based method Hippocampal subfields Hippocampus Humans Imaging Inter-subject similarity Intra-subject variability Life Sciences Magnetic Resonance Imaging Mild cognitive impairment Multiscale analysis Neurodegenerative diseases Neuroscience Patch-based grading State-of-the-art reviews Whole brain analysis |
| Title | Multi-scale graph-based grading for Alzheimer’s disease prediction |
| URI | https://dx.doi.org/10.1016/j.media.2020.101850 https://www.ncbi.nlm.nih.gov/pubmed/33075641 https://www.proquest.com/docview/2508914062 https://www.proquest.com/docview/2452495988 https://hal.science/hal-02967401 https://pubmed.ncbi.nlm.nih.gov/PMC7725970 |
| Volume | 67 |
| WOSCitedRecordID | wos000598894800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbohhA8IBi3wpgC4m24Spw4dh4LDG3AJiTK1LcocRySqqTVsk4TT_wN_h6_hONL0rQVEyDxEkVOaqc-n-1zPwi9oFmS05xS7BEmcCCIwGlAPCySFERcN-G5SHWxCXZywsfj6KP1Va11OQFWVfzyMpr_V1JDGxBbhc7-BbnbTqEB7oHocAWyw_WPCK9DanENcy_3dTpqrE6qTN1njdvkcPqtkKUqnGJ9HaK6MdWorAFZKVp6NdWerEGn_KqcfBKbymSpSTU2pvfltAO3kWZMT8uqwKNiZo9IpdD9stBq66O5bOOEjpNqooz2r_zKGiaMCX__dNBVTBBvTTGxGTGjN1g_9DAPTAjnQHbbTNxxsyubIh0bG7zRNUwGOq4GxHui27hJXruWOfuT6liNRWAnIyBJ9tA2YTSCzW97eHQwftce2SpLognQMx_XpKfSjoAbQ_2OhekVypd2U1BZ97ftMDCjO-i2lTycoUHMXXRNVjvoVicf5Q66cWw9Le6hNx0YOR0YORZGDsDIaWH08_uP2rEAcpYAuo8-vz0YvT7EtuIGFqqwBQ4SLiImmBtljGVpkBERhCJ0c-kTlsmceSlP4QSggifQTCWIBwGsbennwNgC8_oAbVWzSj5CDlVhziKBrnIeSOFCZ1KGLPFCYCh9IvuINJMYC5uOXlVFmcaN3-Ek1jMfq5mPzcz30cv2R3OTjeXq18OGOrFlKA2jGAOcrv7hc6BlO4RKwX44_BCrNpdEoapieeH10W5D6tiu_zoGiYJHALWQ9NGz9jFs2coOl1RytoB3Aqoqvkec99FDg4x2KB_OXBoG0DlbwczKt6w-qcpCp4UHOZlGzH38r3_6Cbq5XMa7aOv8bCGfouvi4rysz_ZQj435nl04vwAj79WZ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+graph-based+grading+for+Alzheimer%E2%80%99s+disease+prediction&rft.jtitle=Medical+image+analysis&rft.au=Hett%2C+Kilian&rft.au=Ta%2C+Vinh-Thong&rft.au=Oguz%2C+Ipek&rft.au=Manj%C3%B3n%2C+Jos%C3%A9+V.&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=67&rft_id=info:doi/10.1016%2Fj.media.2020.101850&rft.externalDocID=S1361841520302140 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |