Multi-scale graph-based grading for Alzheimer’s disease prediction

•This work introduces a new approach combining patch-based grading and graph-based model.•Combination of inter-subject similarity and intra-subject variability helps to predict Alzheimer’s disease.•Analysis of whole brain structures and hippocampal subfields jointly enables improvement of prediction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis Jg. 67; S. 101850
Hauptverfasser: Hett, Kilian, Ta, Vinh-Thong, Oguz, Ipek, Manjón, José V., Coupé, Pierrick
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier B.V 01.01.2021
Elsevier BV
Elsevier
Schlagworte:
ISSN:1361-8415, 1361-8423, 1361-8423
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •This work introduces a new approach combining patch-based grading and graph-based model.•Combination of inter-subject similarity and intra-subject variability helps to predict Alzheimer’s disease.•Analysis of whole brain structures and hippocampal subfields jointly enables improvement of prediction performances.•Image-based biomarkers and cognitive data are highly complementary for Alzheimer’s disease prediction. [Display omitted] The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer’s disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two main contributions. First, we present a new graph-based grading framework to combine inter-subject similarity features and intra-subject variability features. This framework involves patch-based grading of anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels. Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1 dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC) of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison to state-of-the-art methods evaluated on the same dataset.
AbstractList The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer's disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two main contributions. First, we present a new graph-based grading framework to combine inter-subject similarity features and intra-subject variability features. This framework involves patch-based grading of anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels. Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1 dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC) of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison to state-of-the-art methods evaluated on the same dataset.
•This work introduces a new approach combining patch-based grading and graph-based model.•Combination of inter-subject similarity and intra-subject variability helps to predict Alzheimer’s disease.•Analysis of whole brain structures and hippocampal subfields jointly enables improvement of prediction performances.•Image-based biomarkers and cognitive data are highly complementary for Alzheimer’s disease prediction. [Display omitted] The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer’s disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two main contributions. First, we present a new graph-based grading framework to combine inter-subject similarity features and intra-subject variability features. This framework involves patch-based grading of anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels. Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1 dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC) of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison to state-of-the-art methods evaluated on the same dataset.
The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer's disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two main contributions. First, we present a new graph-based grading framework to combine inter-subject similarity features and intra-subject variability features. This framework involves patch-based grading of anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels. Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1 dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC) of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison to state-of-the-art methods evaluated on the same dataset.The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer's disease (AD) is clinically relevant, and may above all have a significant impact on accelerating the development of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two main contributions. First, we present a new graph-based grading framework to combine inter-subject similarity features and intra-subject variability features. This framework involves patch-based grading of anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels. Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1 dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC) of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison to state-of-the-art methods evaluated on the same dataset.
ArticleNumber 101850
Author Manjón, José V.
Oguz, Ipek
Ta, Vinh-Thong
Hett, Kilian
Coupé, Pierrick
AuthorAffiliation a CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, PICTURA, F-33400 Talence, France
b Universitat Politècnia de València, ITACA, 46022 Valencia, Spain
c Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, TN, USA
AuthorAffiliation_xml – name: b Universitat Politècnia de València, ITACA, 46022 Valencia, Spain
– name: c Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, TN, USA
– name: a CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, PICTURA, F-33400 Talence, France
Author_xml – sequence: 1
  givenname: Kilian
  surname: Hett
  fullname: Hett, Kilian
  email: kilian.hett@vanderbilt.edu
  organization: CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, PICTURA, Talence F-33400, France
– sequence: 2
  givenname: Vinh-Thong
  surname: Ta
  fullname: Ta, Vinh-Thong
  organization: CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, PICTURA, Talence F-33400, France
– sequence: 3
  givenname: Ipek
  surname: Oguz
  fullname: Oguz, Ipek
  organization: Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, TN, USA
– sequence: 4
  givenname: José V.
  surname: Manjón
  fullname: Manjón, José V.
  organization: Universitat Politècnica de Valèncica, ITACA, Valencia 46022, Spain
– sequence: 5
  givenname: Pierrick
  surname: Coupé
  fullname: Coupé, Pierrick
  organization: CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, PICTURA, Talence F-33400, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33075641$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02967401$$DView record in HAL
BookMark eNp9kctu1DAUhi1URC_wBEgoEhtYZPA1jhdUGpVLkQaxgbXlOCczHmXswU5GghWvwevxJDhNW8EsuvLR8ff_x8f_OTrxwQNCzwleEEyqN9vFDlpnFhTTm04t8CN0RlhFyppTdnJfE3GKzlPaYowl5_gJOmUMS1FxcobefR77wZXJmh6KdTT7TdmYBO1Ut86viy7EYtn_3IDbQfzz63cqWpcgI8U-5vF2cME_RY870yd4dnteoG8f3n-9ui5XXz5-ulquSisoGUpuaquklVi1UrYNb6nlla1wB4zKFjpJmrqhVAhbm9wWoCjjDafAOs5UVbELdDn77scm727BD9H0eh_dzsQfOhin_7_xbqPX4aClpEJJnA1ezwabI9n1cqWnHqaqkhyTA8nsq9thMXwfIQ1655KFvjcewpg05YJyJVRdZ_TlEboNY_T5KzQVuFaE44pm6sW_r7-ffxdGBtQM2BhSitBp6wYzfXBexvWaYD0Fr7f6Jng9Ba_n4LOWHWnv7B9WvZ1VkFM7OIg6WQfeZjCCHXQb3IP6v6ypxwk
CitedBy_id crossref_primary_10_1002_hbm_25331
crossref_primary_10_1016_j_health_2023_100223
crossref_primary_10_3389_fpsyg_2022_980954
crossref_primary_10_1002_hbm_70280
crossref_primary_10_1016_j_bspc_2023_105162
crossref_primary_10_1016_j_compbiomed_2024_109039
crossref_primary_10_1007_s10072_025_08167_x
crossref_primary_10_1016_j_compmedimag_2022_102171
crossref_primary_10_1109_TMI_2022_3187141
crossref_primary_10_1016_j_compbiomed_2023_106790
crossref_primary_10_3389_fnagi_2022_906519
crossref_primary_10_1016_j_media_2024_103266
crossref_primary_10_1089_brain_2020_0905
crossref_primary_10_1093_bib_bbac093
crossref_primary_10_1016_j_media_2023_102903
crossref_primary_10_3389_fnagi_2022_876202
crossref_primary_10_1136_gpsych_2023_101310
crossref_primary_10_3389_fpsyt_2022_1079149
crossref_primary_10_1007_s11831_024_10176_6
crossref_primary_10_1186_s13195_022_01047_y
crossref_primary_10_1016_j_neucom_2024_127325
crossref_primary_10_1016_j_eswa_2022_118633
crossref_primary_10_1186_s13195_024_01428_5
crossref_primary_10_1016_j_jneumeth_2025_110541
crossref_primary_10_3389_fnins_2022_926486
crossref_primary_10_1016_j_media_2022_102585
crossref_primary_10_1109_JBHI_2022_3155705
crossref_primary_10_1016_j_oret_2024_01_019
Cites_doi 10.1016/j.neuroimage.2017.09.049
10.1109/TBME.2016.2549363
10.1016/j.neuroimage.2017.03.057
10.1111/j.1467-9868.2005.00503.x
10.1016/j.nicl.2013.08.007
10.1016/j.nicl.2019.101929
10.1016/j.compmedimag.2018.08.002
10.1002/hbm.22156
10.1023/A:1026543900054
10.1126/science.6474172
10.1212/WNL.0b013e3181f736a1
10.1016/j.neuroimage.2016.02.079
10.1016/j.neuroimage.2010.09.025
10.1016/j.neurobiolaging.2006.03.007
10.1038/s41598-019-39809-8
10.1212/WNL.42.1.183
10.1016/j.neuroimage.2015.07.076
10.1038/s41598-018-29295-9
10.1002/hbm.22926
10.1001/archneur.56.3.303
10.1016/S0197-4580(02)00227-0
10.1016/S0140-6736(94)92338-8
10.1016/j.jalz.2018.02.018
10.1177/1533317513494452
10.1016/j.neuroimage.2012.01.055
10.1002/jmri.22003
10.1016/0197-4580(95)00021-6
10.1016/j.neuroimage.2013.06.030
10.1016/j.neuroimage.2014.06.077
10.1371/journal.pone.0031112
10.1109/TMI.2010.2046908
10.1016/S0140-6736(05)74869-8
10.1007/s00234-007-0269-2
10.1097/NEN.0b013e31824b211b
10.3389/fninf.2016.00030
10.1136/jnnp.73.6.657
10.1159/000103914
10.1001/archneur.63.5.693
10.1016/j.neuroimage.2014.10.002
10.1007/s004010050622
10.3233/JAD-140495
10.1016/j.neuroimage.2013.02.003
10.1023/A:1010933404324
10.3233/JAD-2006-9S317
10.1001/archneur.1993.00540090052010
10.1016/j.neuroimage.2011.10.080
10.1155/2014/820205
10.1038/s41598-018-37769-z
10.1038/s41598-019-49970-9
10.1093/cercor/bhj105
10.1371/journal.pone.0025446
10.1007/978-3-030-00931-1_49
10.1038/nrneurol.2009.215
10.1016/S1474-4422(03)00262-X
10.1371/journal.pone.0224030
10.1016/j.patcog.2016.10.009
10.1016/j.jalz.2012.06.004
10.1016/j.neuroimage.2015.01.048
10.1007/978-3-319-67434-6_10
10.1007/s00401-006-0127-z
10.1148/radiol.2262011600
10.1159/000469658
10.1016/j.media.2018.06.001
10.1016/j.nicl.2016.05.017
10.1016/j.neuroimage.2015.01.004
10.1371/journal.pone.0021935
10.1016/S0197-4580(02)00084-2
10.1006/nimg.2000.0582
10.1016/j.jalz.2010.03.012
10.1016/j.neuroimage.2012.06.048
10.1080/01621459.1926.10502161
10.1016/j.nicl.2012.10.002
10.1016/j.media.2014.04.006
10.1007/978-3-030-00919-9_30
10.1016/j.media.2017.01.008
10.1007/s00429-013-0687-3
10.1109/TPAMI.2012.142
10.1016/j.neuroimage.2011.01.006
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Jan 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Jan 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer’s Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
1XC
VOOES
5PM
DOI 10.1016/j.media.2020.101850
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1361-8423
EndPage 101850
ExternalDocumentID PMC7725970
oai:HAL:hal-02967401v1
33075641
10_1016_j_media_2020_101850
S1361841520302140
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: U01 NS106845
– fundername: NINDS NIH HHS
  grantid: R01 NS094456
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c521t-4a8c97c709d77db4d2c46c60fe327def71b8b2255c8ac605e9234b42e3f439663
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598894800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1361-8415
1361-8423
IngestDate Tue Sep 30 16:27:10 EDT 2025
Tue Oct 14 19:47:18 EDT 2025
Sat Sep 27 21:37:01 EDT 2025
Tue Oct 07 06:44:09 EDT 2025
Mon Jul 21 06:00:46 EDT 2025
Sat Nov 29 07:03:35 EST 2025
Tue Nov 18 22:34:11 EST 2025
Fri Feb 23 02:46:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hippocampal subfields
Inter-subject similarity
Graph-based method
Intra-subject variability
Alzheimer’s disease classification
Mild cognitive impairment
Patch-based grading
Whole brain analysis
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c521t-4a8c97c709d77db4d2c46c60fe327def71b8b2255c8ac605e9234b42e3f439663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
Authorship contributions
K.H., J.V.M., V.-T.T. and P.C. carried out the experiment and wrote the manuscript with support from I.O. All authors reviewed the manuscript. The data used in this manuscript is obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
ORCID 0000-0003-2709-3350
0000-0001-8831-4247
OpenAccessLink https://hal.science/hal-02967401
PMID 33075641
PQID 2508914062
PQPubID 2045428
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7725970
hal_primary_oai_HAL_hal_02967401v1
proquest_miscellaneous_2452495988
proquest_journals_2508914062
pubmed_primary_33075641
crossref_citationtrail_10_1016_j_media_2020_101850
crossref_primary_10_1016_j_media_2020_101850
elsevier_sciencedirect_doi_10_1016_j_media_2020_101850
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Hett, K., Ta, V.-T., Manjón, J. V., Coupé, P., Initiative, A. D. N., 2017. Adaptive fusion of texture-based grading: Application to Alzheimer’s disease detection. Springer. International Workshop on Patch-based Techniques in Medical Imaging, 82–89.
Wyman, Harvey, Crawford, Bernstein, Carmichael, Cole, Crane, DeCarli, Fox, Gunter (bib0086) 2013; 9
Rubner, Tomasi, Guibas (bib0066) 2000; 40
Ledig, Schuh, Guerrero, Heckemann, Rueckert (bib0047) 2018; 8
Apostolova, Akopyan, Partiali, Steiner, Dutton, Hayashi, Dinov, Toga, Cummings, Thompson (bib0001) 2007; 24
Duthey (bib0025) 2013
Parker, Cash, Lane, Lu, Malone, Nicholas, James, Keshavan, Murray-Smith, Wong (bib0061) 2019; 14
Avants, Tustison, Song, Cook, Klein, Gee (bib0006) 2011; 54
Hyman, Van Hoesen, Damasio, Barnes (bib0036) 1984; 225
Manjón, Coupé (bib0054) 2016; 10
Wee, Liu, Lee, Poh, Ji, Qiu, Initiative (bib0079) 2019
Coupé, Eskildsen, Manjón, Fonov, Collins, disease Neuroimaging Initiative (bib0018) 2012; 59
Karas, Scheltens, Rombouts, Van Schijndel, Klein, Jones, Van Der Flier, Vrenken, Barkhof (bib0040) 2007; 49
Samper-Gonzalez, Burgos, Bottani, Habert, Evgeniou, Epelbaum, Colliot (bib0067) 2019
Tong, Wolz, Gao, Guerrero, Hajnal, Rueckert, Initiative (bib0075) 2014; 18
Kogure, Matsuda, Ohnishi, Asada, Uno, Kunihiro, Nakano, Takasaki (bib0044) 2000; 41
Braak, Braak (bib0010) 1997; 93
Li, Dong, Xie, Zhang (bib0049) 2013; 28
Kerchner, Hess, Hammond-Rosenbluth, Xu, Rabinovici, Kelley, Vigneron, Nelson, Miller (bib0041) 2010; 75
Liu, Ji, Ye (bib0051) 2009; 6
Wang, Das, Suh, Altinay, Pluta, Craige, Avants, Yushkevich, Initiative (bib0078) 2011; 55
Winterburn, Pruessner, Chavez, Schira, Lobaugh, Voineskos, Chakravarty (bib0084) 2013; 74
Lian, Liu, Zhang, Shen (bib0050) 2018
Zou, Hastie (bib0089) 2005; 67
Cairns, Taylor-Reinwald, Morris, Initiative (bib0016) 2010; 6
Romero, Coupe, Manjon (bib0065) 2017; 163
Lorente de Nó (bib0059) 1934
Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Initiative, A. D. N. et al. (2015). Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage, 104, 398–412.
Coupé, Manjón, Chamberland, Descoteaux, Hiba (bib0021) 2013; 83
Arbabshirani, Plis, Sui, Calhoun (bib0003) 2017; 145
Halliday, Double, Macdonald, Kril (bib0029) 2003; 24
Hardy (bib0030) 2006; 9
Trujillo-Estrada, Dávila, Sánchez-Mejias, Sánchez-Varo, Gomez-Arboledas, Vizuete, Vitorica, Gutiérrez (bib0076) 2014; 42
Wen, Thibeau, Samper-González, Routier, Bottani, Dormont, Durrleman, Colliot, Burgos (bib0081) 2019
DeCarli (bib0024) 2003; 2
Braak, Alafuzoff, Arzberger, Kretzschmar, Del Tredici (bib0011) 2006; 112
Braak, Braak (bib0012) 1995; 16
Liu, Zhang, Shen, Initiative (bib0052) 2012; 60
Tong, Gray, Gao, Chen, Rueckert, Initiative (bib0074) 2017; 63
Bobinski, De Leon, Convit, De Santi, Wegiel, Tarshish, Saint Louis, Wisniewski (bib0009) 1999; 353
Bron, Smits, Van Der Flier, Vrenken, Barkhof, Scheltens, Papma, Steketee, Orellana, Meijboom (bib0014) 2015; 111
Suk, Lee, Shen, Initiative (bib0072) 2015; 220
Cuingnet, Glaunès, Chupin, Benali, Colliot (bib0023) 2013; 35
Manjón, Eskildsen, Coupé, Romero, Collins, Robles (bib0053) 2014
Petrella, Coleman, Doraiswamy (bib0063) 2003; 226
Frisoni, Testa, Zorzan, Sabattoli, Beltramello, Soininen, Laakso (bib0026) 2002; 73
Tong, Gao, Guerrero, Ledig, Chen, Rueckert, Initiative (bib0073) 2017; 64
Lee, Nho, Kang, Sohn, Kim (bib0048) 2019; 9
Parisot, Ktena, Ferrante, Lee, Guerrero, Glocker, Rueckert (bib0060) 2018; 48
Koikkalainen, Pölönen, Mattila, Van Gils, Soininen, Lötjönen, Initiative (bib0045) 2012; 7
Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (bib0062) 1999; 56
Giraud, Ta, Papadakis, Manjón, Collins, Coupé, Initiative (bib0028) 2016; 124
Killiany, Moss, Albert, Sandor, Tieman, Jolesz (bib0043) 1993; 50
Schwarz, Gunter, Wiste, Przybelski, Weigand, Ward, Senjem, Vemuri, Murray, Dickson (bib0068) 2016; 11
Rathore, Habes, Iftikhar, Shacklett, Davatzikos (bib0064) 2017; 155
Basaia, Agosta, Wagner, Canu, Magnani, Santangelo, Filippi, Initiative (bib0007) 2018
Matias-Guiu, Valles-Salgado, Rognoni, Hamre-Gil, Moreno-Ramos, Matias-Guiu (bib0056) 2017; 43
Zhou, Wang, Li, Yap, Shen, ADNI (bib0088) 2011; 6
Kerchner, Deutsch, Zeineh, Dougherty, Saranathan, Rutt (bib0042) 2012; 63
Wee, Yap, Shen, Initiative (bib0080) 2013; 34
Apostolova, Dutton, Dinov, Hayashi, Toga, Cummings, Thompson (bib0002) 2006; 63
Coupé, Manjón, Lanuza, Catheline (bib0022) 2019; 9
La Joie, Perrotin, De La Sayette, Egret, Doeuvre, Belliard, Eustache, Desgranges, Chételat (bib0046) 2013; 3
Wolz, Julkunen, Koikkalainen, Niskanen, Zhang, Rueckert, Soininen, Lötjönen, Initiative (bib0085) 2011; 6
Coupé, Eskildsen, Manjón, Fonov, Pruessner, Allard, Collins, Initiative (bib0019) 2012; 1
Coupé, Fonov, Bernard, Zandifar, Eskildsen, Helmer, Manjón, Amieva, Dartigues, Allard (bib0020) 2015; 36
Frisoni, Fox, Jack, Scheltens, Thompson (bib0027) 2010; 6
Hett, Ta, Manjón, Coupé, Initiative (bib0034) 2018; 70
Carlesimo, Piras, Orfei, Iorio, Caltagirone, Spalletta (bib0017) 2015; 1
Jack Jr, Bennett, Blennow, Carrillo, Dunn, Haeberlein, Holtzman, Jagust, Jessen, Karlawish (bib0038) 2018; 14
West, Coleman, Flood, Troncoso (bib0083) 1994; 344
Hett, Ta, Catheline, Tourdias, Manjón, Coupe (bib0031) 2019; 9
Mueller, S., Stables, L., Du, A., Schuff, N., Truran, D., Cashdollar, N., & Weiner, M. (2007). Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiology of aging, 28, 719–726.
Suk, Lee, Shen, Initiative (bib0071) 2014; 101
Suk, Lee, Shen (bib0070) 2017; 37
Hett, K., Ta, V.-T., Manjón, J. V., Coupé, P., 2018a. Graph of hippocampal subfields grading for Alzheimer’s disease prediction. Springer. International Workshop on Machine Learning in Medical Imaging, 259–266.
Breiman (bib0013) 2001; 45
Jones, Barnes, Uylings, Fox, Frost, Witter, Scheltens (bib0039) 2006; 16
Jack, Petersen, O’brien, Tangalos (bib0037) 1992; 42
Alzheimer’s Association (bib0005) 2015; 11
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib0077) 2010; 29
Beach, Monsell, Phillips, Kukull (bib0008) 2012; 71
Manjón, Coupé, Martí-Bonmatí, Collins, Robles (bib0055) 2010; 31
Sturges (bib0069) 1926; 21
Ashburner, Friston (bib0004) 2000; 11
Yushkevich, Amaral, Augustinack, Bender, Bernstein, Boccardi, Bocchetta, Burggren, Carr, Chakravarty (bib0087) 2015; 111
Hett, K., Ta, V.-T., Manjón, J. V., Coupé, P., Initiative, A. D. N., et al., 2018c. Graph of brain structures grading for early detection of Alzheimer’s disease. Springer. International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 429–436
Wen, Thibeau-Sutre, Samper-Gonzalez, Routier, Bottani, Durrleman, Burgos, Colliot (bib0082) 2019
Busatto, Garrido, Almeida, Castro, Camargo, Cid, Buchpiguel, Furuie, Bottino (bib0015) 2003; 24
Trujillo-Estrada (10.1016/j.media.2020.101850_bib0076) 2014; 42
Apostolova (10.1016/j.media.2020.101850_bib0001) 2007; 24
Braak (10.1016/j.media.2020.101850_bib0011) 2006; 112
Frisoni (10.1016/j.media.2020.101850_bib0026) 2002; 73
Coupé (10.1016/j.media.2020.101850_bib0021) 2013; 83
Hett (10.1016/j.media.2020.101850_bib0031) 2019; 9
Wee (10.1016/j.media.2020.101850_bib0079) 2019
Liu (10.1016/j.media.2020.101850_bib0051) 2009; 6
Bobinski (10.1016/j.media.2020.101850_bib0009) 1999; 353
Wang (10.1016/j.media.2020.101850_bib0078) 2011; 55
Manjón (10.1016/j.media.2020.101850_bib0054) 2016; 10
Jack Jr (10.1016/j.media.2020.101850_bib0038) 2018; 14
Kerchner (10.1016/j.media.2020.101850_bib0042) 2012; 63
Zou (10.1016/j.media.2020.101850_bib0089) 2005; 67
Schwarz (10.1016/j.media.2020.101850_bib0068) 2016; 11
Arbabshirani (10.1016/j.media.2020.101850_bib0003) 2017; 145
Romero (10.1016/j.media.2020.101850_bib0065) 2017; 163
Apostolova (10.1016/j.media.2020.101850_bib0002) 2006; 63
Manjón (10.1016/j.media.2020.101850_bib0055) 2010; 31
Wen (10.1016/j.media.2020.101850_bib0082) 2019
Wyman (10.1016/j.media.2020.101850_bib0086) 2013; 9
Matias-Guiu (10.1016/j.media.2020.101850_bib0056) 2017; 43
Killiany (10.1016/j.media.2020.101850_bib0043) 1993; 50
Tong (10.1016/j.media.2020.101850_bib0074) 2017; 63
Halliday (10.1016/j.media.2020.101850_bib0029) 2003; 24
Ledig (10.1016/j.media.2020.101850_bib0047) 2018; 8
Lian (10.1016/j.media.2020.101850_bib0050) 2018
Coupé (10.1016/j.media.2020.101850_bib0019) 2012; 1
Hyman (10.1016/j.media.2020.101850_bib0036) 1984; 225
Zhou (10.1016/j.media.2020.101850_bib0088) 2011; 6
Frisoni (10.1016/j.media.2020.101850_bib0027) 2010; 6
Beach (10.1016/j.media.2020.101850_bib0008) 2012; 71
10.1016/j.media.2020.101850_bib0035
Kerchner (10.1016/j.media.2020.101850_bib0041) 2010; 75
Coupé (10.1016/j.media.2020.101850_bib0020) 2015; 36
10.1016/j.media.2020.101850_bib0033
Manjón (10.1016/j.media.2020.101850_bib0053) 2014
DeCarli (10.1016/j.media.2020.101850_bib0024) 2003; 2
10.1016/j.media.2020.101850_bib0032
Rubner (10.1016/j.media.2020.101850_bib0066) 2000; 40
Suk (10.1016/j.media.2020.101850_bib0071) 2014; 101
Coupé (10.1016/j.media.2020.101850_bib0022) 2019; 9
Bron (10.1016/j.media.2020.101850_bib0014) 2015; 111
Suk (10.1016/j.media.2020.101850_bib0070) 2017; 37
Karas (10.1016/j.media.2020.101850_bib0040) 2007; 49
Kogure (10.1016/j.media.2020.101850_bib0044) 2000; 41
Petersen (10.1016/j.media.2020.101850_bib0062) 1999; 56
Sturges (10.1016/j.media.2020.101850_bib0069) 1926; 21
Jack (10.1016/j.media.2020.101850_sbref0037) 1992; 42
Koikkalainen (10.1016/j.media.2020.101850_bib0045) 2012; 7
Wolz (10.1016/j.media.2020.101850_bib0085) 2011; 6
Samper-Gonzalez (10.1016/j.media.2020.101850_bib0067) 2019
Braak (10.1016/j.media.2020.101850_bib0010) 1997; 93
Duthey (10.1016/j.media.2020.101850_bib0025) 2013
Rathore (10.1016/j.media.2020.101850_bib0064) 2017; 155
Suk (10.1016/j.media.2020.101850_bib0072) 2015; 220
Braak (10.1016/j.media.2020.101850_bib0012) 1995; 16
Lee (10.1016/j.media.2020.101850_bib0048) 2019; 9
Parker (10.1016/j.media.2020.101850_bib0061) 2019; 14
Giraud (10.1016/j.media.2020.101850_bib0028) 2016; 124
Winterburn (10.1016/j.media.2020.101850_bib0084) 2013; 74
Cuingnet (10.1016/j.media.2020.101850_bib0023) 2013; 35
West (10.1016/j.media.2020.101850_bib0083) 1994; 344
Avants (10.1016/j.media.2020.101850_bib0006) 2011; 54
Cairns (10.1016/j.media.2020.101850_bib0016) 2010; 6
La Joie (10.1016/j.media.2020.101850_bib0046) 2013; 3
Yushkevich (10.1016/j.media.2020.101850_bib0087) 2015; 111
Lorente de Nó (10.1016/j.media.2020.101850_bib0059) 1934
Tustison (10.1016/j.media.2020.101850_bib0077) 2010; 29
Hardy (10.1016/j.media.2020.101850_bib0030) 2006; 9
Liu (10.1016/j.media.2020.101850_bib0052) 2012; 60
Busatto (10.1016/j.media.2020.101850_bib0015) 2003; 24
Wee (10.1016/j.media.2020.101850_bib0080) 2013; 34
Ashburner (10.1016/j.media.2020.101850_bib0004) 2000; 11
Breiman (10.1016/j.media.2020.101850_bib0013) 2001; 45
Jones (10.1016/j.media.2020.101850_bib0039) 2006; 16
Alzheimer’s Association (10.1016/j.media.2020.101850_bib0005) 2015; 11
Li (10.1016/j.media.2020.101850_bib0049) 2013; 28
Petrella (10.1016/j.media.2020.101850_bib0063) 2003; 226
Carlesimo (10.1016/j.media.2020.101850_bib0017) 2015; 1
Wen (10.1016/j.media.2020.101850_bib0081) 2019
Hett (10.1016/j.media.2020.101850_bib0034) 2018; 70
10.1016/j.media.2020.101850_bib0057
Tong (10.1016/j.media.2020.101850_bib0075) 2014; 18
Basaia (10.1016/j.media.2020.101850_bib0007) 2018
Coupé (10.1016/j.media.2020.101850_bib0018) 2012; 59
Parisot (10.1016/j.media.2020.101850_bib0060) 2018; 48
10.1016/j.media.2020.101850_bib0058
Tong (10.1016/j.media.2020.101850_bib0073) 2017; 64
References_xml – volume: 220
  start-page: 841
  year: 2015
  end-page: 859
  ident: bib0072
  article-title: Latent feature representation with stacked auto-encoder for ad/mci diagnosis
  publication-title: Brain Structure and Function
– volume: 34
  start-page: 3411
  year: 2013
  end-page: 3425
  ident: bib0080
  article-title: Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns
  publication-title: Hum Brain Mapp
– volume: 7
  start-page: e31112
  year: 2012
  ident: bib0045
  article-title: Improved classification of alzheimer’s disease data via removal of nuisance variability
  publication-title: PLoS ONE
– volume: 24
  start-page: 221
  year: 2003
  end-page: 231
  ident: bib0015
  article-title: A voxel-based morphometry study of temporal lobe gray matter reductions in alzheimer’s disease
  publication-title: Neurobiol. Aging
– volume: 21
  start-page: 65
  year: 1926
  end-page: 66
  ident: bib0069
  article-title: The choice of a class interval
  publication-title: J Am Stat Assoc
– volume: 1
  start-page: 141
  year: 2012
  end-page: 152
  ident: bib0019
  article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease
  publication-title: NeuroImage: clinical
– volume: 2
  start-page: 15
  year: 2003
  end-page: 21
  ident: bib0024
  article-title: Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment
  publication-title: The Lancet Neurology
– volume: 124
  start-page: 770
  year: 2016
  end-page: 782
  ident: bib0028
  article-title: An optimized patchmatch for multi-scale and multi-feature label fusion
  publication-title: Neuroimage
– volume: 11
  start-page: 805
  year: 2000
  end-page: 821
  ident: bib0004
  article-title: Voxel-based morphometry—the methods
  publication-title: Neuroimage
– volume: 56
  start-page: 303
  year: 1999
  end-page: 308
  ident: bib0062
  article-title: Mild cognitive impairment: clinical characterization and outcome
  publication-title: Arch. Neurol.
– volume: 63
  start-page: 171
  year: 2017
  end-page: 181
  ident: bib0074
  article-title: Multi-modal classification of alzheimer’s disease using nonlinear graph fusion
  publication-title: Pattern Recognit
– volume: 344
  start-page: 769
  year: 1994
  end-page: 772
  ident: bib0083
  article-title: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease
  publication-title: The Lancet
– volume: 9
  start-page: 332
  year: 2013
  end-page: 337
  ident: bib0086
  article-title: Standardization of analysis sets for reporting results from adni mri data
  publication-title: Alzheimer’s & Dementia
– volume: 41
  start-page: 1155
  year: 2000
  end-page: 1162
  ident: bib0044
  article-title: Longitudinal evaluation of early alzheimer’s disease using brain perfusion spect
  publication-title: J. Nucl. Med.
– year: 2019
  ident: bib0067
  article-title: Reproducible evaluation of methods for predicting progression to Alzheimer’s disease from clinical and neuroimaging Data
  publication-title: SPIE Medical Imaging 2019
– volume: 6
  start-page: 7
  year: 2009
  ident: bib0051
  article-title: SLEP: Sparse learning with efficient projections
  publication-title: Arizona State University
– volume: 93
  start-page: 323
  year: 1997
  end-page: 325
  ident: bib0010
  article-title: Alzheimer’s disease: transiently developing dendritic changes in pyramidal cells of sector CA1 of the Ammon’s horn
  publication-title: Acta Neuropathol.
– volume: 24
  start-page: 797
  year: 2003
  end-page: 806
  ident: bib0029
  article-title: Identifying severely atrophic cortical subregions in Alzheimer’s disease
  publication-title: Neurobiol. Aging
– year: 1934
  ident: bib0059
  article-title: Studies on the structure of the cerebral cortex. ii. continuation of the study of the ammonic system
  publication-title: Journal für Psychologie und Neurologie
– volume: 6
  start-page: e21935
  year: 2011
  ident: bib0088
  article-title: Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures
  publication-title: PLoS ONE
– reference: Mueller, S., Stables, L., Du, A., Schuff, N., Truran, D., Cashdollar, N., & Weiner, M. (2007). Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiology of aging, 28, 719–726.
– volume: 28
  start-page: 627
  year: 2013
  end-page: 633
  ident: bib0049
  article-title: Discriminative analysis of mild Alzheimer’s disease and normal aging using volume of hippocampal subfields and hippocampal mean diffusivity: an in vivo magnetic resonance imaging study
  publication-title: American Journal of Alzheimer’s Disease & Other Dementias
– volume: 73
  start-page: 657
  year: 2002
  end-page: 664
  ident: bib0026
  article-title: Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry
  publication-title: Journal of Neurology, Neurosurgery & Psychiatry
– volume: 63
  start-page: 194
  year: 2012
  end-page: 202
  ident: bib0042
  article-title: Hippocampal CA1 apical neuropil atrophy and memory performance in Alzheimer’s disease
  publication-title: Neuroimage
– volume: 163
  start-page: 286
  year: 2017
  end-page: 295
  ident: bib0065
  article-title: Hips: a new hippocampus subfield segmentation method
  publication-title: Neuroimage
– start-page: 101929
  year: 2019
  ident: bib0079
  article-title: Cortical graph neural network for ad and mci diagnosis and transfer learning across populations
  publication-title: NeuroImage: Clinical
– year: 2014
  ident: bib0053
  article-title: NICE: Non-local intracranial cavity extraction
  publication-title: Int J Biomed Imaging
– volume: 36
  start-page: 4758
  year: 2015
  end-page: 4770
  ident: bib0020
  article-title: Detection of Alzheimer’s disease signature in MR images seven years before conversion to dementia: toward an early individual prognosis
  publication-title: Hum Brain Mapp
– volume: 71
  start-page: 266
  year: 2012
  end-page: 273
  ident: bib0008
  article-title: Accuracy of the clinical diagnosis of alzheimer disease at national institute on aging alzheimer disease centers, 2005–2010
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 31
  start-page: 192
  year: 2010
  end-page: 203
  ident: bib0055
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: J. Magn. Reson. Imaging
– volume: 11
  start-page: 802
  year: 2016
  end-page: 812
  ident: bib0068
  article-title: A large-scale comparison of cortical thickness and volume methods for measuring alzheimer’s disease severity
  publication-title: NeuroImage: Clinical
– start-page: 1
  year: 2013
  end-page: 74
  ident: bib0025
  article-title: Background paper 6.11: Alzheimer disease and other dementias
  publication-title: A Public Health Approach to Innovation
– year: 2019
  ident: bib0081
  article-title: How serious is data leakage in Deep learning studies on Alzheimer’s disease classification?
  publication-title: OHBM Annual meeting - Organization for Human Brain Mapping
– volume: 14
  year: 2019
  ident: bib0061
  article-title: Hippocampal subfield volumes and pre-clinical alzheimer’s disease in 408 cognitively normal adults born in 1946
  publication-title: PLoS ONE
– volume: 42
  start-page: 521
  year: 2014
  end-page: 541
  ident: bib0076
  article-title: Early neuronal loss and axonal/presynaptic damage is associated with accelerated amyloid-
  publication-title: J. Alzheimers Dis.
– volume: 9
  start-page: 1952
  year: 2019
  ident: bib0048
  article-title: Predicting alzheimer’s disease progression using multi-modal deep learning approach
  publication-title: Sci Rep
– volume: 6
  start-page: 67
  year: 2010
  end-page: 77
  ident: bib0027
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nature Reviews Neurology
– volume: 112
  start-page: 389
  year: 2006
  end-page: 404
  ident: bib0011
  article-title: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry
  publication-title: Acta Neuropathol.
– volume: 111
  start-page: 562
  year: 2015
  end-page: 579
  ident: bib0014
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge
  publication-title: Neuroimage
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  ident: bib0071
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for ad/mci diagnosis
  publication-title: Neuroimage
– volume: 6
  start-page: 274
  year: 2010
  end-page: 279
  ident: bib0016
  article-title: Autopsy consent, brain collection, and standardized neuropathologic assessment of adni participants: the essential role of the neuropathology core
  publication-title: Alzheimer’s & Dementia
– volume: 9
  start-page: 3998
  year: 2019
  ident: bib0022
  article-title: Lifespan changes of the human brain in Alzheimer’s disease
  publication-title: Sci Rep
– reference: Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Initiative, A. D. N. et al. (2015). Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage, 104, 398–412.
– volume: 1
  start-page: 24
  year: 2015
  end-page: 32
  ident: bib0017
  article-title: Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of alzheimer’s disease
  publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
– volume: 48
  start-page: 117
  year: 2018
  end-page: 130
  ident: bib0060
  article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease
  publication-title: Med Image Anal
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib0089
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 75
  start-page: 1381
  year: 2010
  end-page: 1387
  ident: bib0041
  article-title: Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-t MRI
  publication-title: Neurology
– year: 2018
  ident: bib0050
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural mri
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 145
  start-page: 137
  year: 2017
  end-page: 165
  ident: bib0003
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
– volume: 111
  start-page: 526
  year: 2015
  end-page: 541
  ident: bib0087
  article-title: Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in vivo MRI: towards a harmonized segmentation protocol
  publication-title: Neuroimage
– volume: 3
  start-page: 155
  year: 2013
  end-page: 162
  ident: bib0046
  article-title: Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia
  publication-title: NeuroImage: Clinical
– volume: 55
  start-page: 968
  year: 2011
  end-page: 985
  ident: bib0078
  article-title: A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation
  publication-title: Neuroimage
– volume: 59
  start-page: 3736
  year: 2012
  end-page: 3747
  ident: bib0018
  article-title: Simultaneous segmentation and grading of anatomical structures for patient’s classification: application to alzheimer’s disease
  publication-title: Neuroimage
– reference: Hett, K., Ta, V.-T., Manjón, J. V., Coupé, P., 2018a. Graph of hippocampal subfields grading for Alzheimer’s disease prediction. Springer. International Workshop on Machine Learning in Medical Imaging, 259–266.
– year: 2019
  ident: bib0082
  article-title: Convolutional neural networks for classification of alzheimer’s disease: overview and reproducible evaluation
  publication-title: arXiv preprint arXiv:1904.07773
– volume: 63
  start-page: 693
  year: 2006
  end-page: 699
  ident: bib0002
  article-title: Conversion of mild cognitive impairment to alzheimer disease predicted by hippocampal atrophy maps
  publication-title: Arch. Neurol.
– start-page: 101645
  year: 2018
  ident: bib0007
  article-title: Automated classification of alzheimer’s disease and mild cognitive impairment using a single mri and deep neural networks
  publication-title: NeuroImage: Clinical
– reference: Hett, K., Ta, V.-T., Manjón, J. V., Coupé, P., Initiative, A. D. N., 2017. Adaptive fusion of texture-based grading: Application to Alzheimer’s disease detection. Springer. International Workshop on Patch-based Techniques in Medical Imaging, 82–89.
– volume: 226
  start-page: 315
  year: 2003
  end-page: 336
  ident: bib0063
  article-title: Neuroimaging and early diagnosis of alzheimer disease: a look to the future
  publication-title: Radiology
– volume: 49
  start-page: 967
  year: 2007
  end-page: 976
  ident: bib0040
  article-title: Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study
  publication-title: Neuroradiology
– volume: 60
  start-page: 1106
  year: 2012
  end-page: 1116
  ident: bib0052
  article-title: Ensemble sparse classification of Alzheimer’s disease
  publication-title: Neuroimage
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib0077
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
– volume: 42
  year: 1992
  ident: bib0037
  article-title: Mr-based hippocampal volumetry in the diagnosis of Alzheimer’s disease
  publication-title: Neurology
– volume: 24
  start-page: 91
  year: 2007
  ident: bib0001
  article-title: Structural correlates of apathy in alzheimer’s disease
  publication-title: Dement Geriatr Cogn Disord
– volume: 11
  start-page: 332
  year: 2015
  ident: bib0005
  article-title: 2015 Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s & dementia: the journal of the Alzheimer’s Association
– volume: 16
  start-page: 1701
  year: 2006
  end-page: 1708
  ident: bib0039
  article-title: Differential regional atrophy of the cingulate gyrus in alzheimer disease: a volumetric MRI study
  publication-title: Cerebral Cortex
– volume: 74
  start-page: 254
  year: 2013
  end-page: 265
  ident: bib0084
  article-title: A novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic resonance imaging
  publication-title: Neuroimage
– volume: 35
  start-page: 682
  year: 2013
  end-page: 696
  ident: bib0023
  article-title: Spatial and anatomical regularization of svm: a general framework for neuroimaging data
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0013
  article-title: Random forests
  publication-title: Mach Learn
– volume: 155
  start-page: 530
  year: 2017
  end-page: 548
  ident: bib0064
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for alzheimer’s disease and its prodromal stages
  publication-title: Neuroimage
– volume: 18
  start-page: 808
  year: 2014
  end-page: 818
  ident: bib0075
  article-title: Multiple instance learning for classification of dementia in brain MRI
  publication-title: Med Image Anal
– volume: 16
  start-page: 271
  year: 1995
  end-page: 278
  ident: bib0012
  article-title: Staging of alzheimer’s disease-related neurofibrillary changes
  publication-title: Neurobiol. Aging
– volume: 64
  start-page: 155
  year: 2017
  end-page: 165
  ident: bib0073
  article-title: A novel grading biomarker for the prediction of conversion from mild cognitive impairment to alzheimer’s disease
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 6
  start-page: e25446
  year: 2011
  ident: bib0085
  article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease
  publication-title: PLoS ONE
– volume: 43
  start-page: 237
  year: 2017
  end-page: 246
  ident: bib0056
  article-title: Comparative diagnostic accuracy of the ace-iii, mis, mmse, moca, and rudas for screening of Alzheimer disease
  publication-title: Dement Geriatr Cogn Disord
– volume: 8
  start-page: 11258
  year: 2018
  ident: bib0047
  article-title: Structural brain imaging in alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database
  publication-title: Sci Rep
– volume: 9
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib0031
  article-title: Multimodal hippocampal subfield grading for Alzheimer’s disease classification
  publication-title: Sci Rep
– volume: 37
  start-page: 101
  year: 2017
  end-page: 113
  ident: bib0070
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Med Image Anal
– volume: 353
  start-page: 38
  year: 1999
  end-page: 40
  ident: bib0009
  article-title: Mri of entorhinal cortex in mild alzheimer’s disease
  publication-title: The Lancet
– volume: 9
  start-page: 151
  year: 2006
  end-page: 153
  ident: bib0030
  article-title: Alzheimer’S disease: the amyloid cascade hypothesis: an update and reappraisal
  publication-title: J. Alzheimers Dis.
– volume: 14
  start-page: 535
  year: 2018
  end-page: 562
  ident: bib0038
  article-title: Nia-aa research framework: toward a biological definition of Alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
– volume: 40
  start-page: 99
  year: 2000
  end-page: 121
  ident: bib0066
  article-title: The earth mover’s distance as a metric for image retrieval
  publication-title: Int J Comput Vis
– reference: Hett, K., Ta, V.-T., Manjón, J. V., Coupé, P., Initiative, A. D. N., et al., 2018c. Graph of brain structures grading for early detection of Alzheimer’s disease. Springer. International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 429–436,
– volume: 70
  start-page: 8
  year: 2018
  end-page: 16
  ident: bib0034
  article-title: Adaptive fusion of texture-based grading for alzheimer’s disease classification
  publication-title: Computerized Medical Imaging and Graphics
– volume: 50
  start-page: 949
  year: 1993
  end-page: 954
  ident: bib0043
  article-title: Temporal lobe regions on magnetic resonance imaging identify patients with early alzheimer’s disease
  publication-title: Arch. Neurol.
– volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  ident: bib0006
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage
– volume: 83
  start-page: 245
  year: 2013
  end-page: 261
  ident: bib0021
  article-title: Collaborative patch-based super-resolution for diffusion-weighted images
  publication-title: Neuroimage
– volume: 225
  start-page: 1168
  year: 1984
  end-page: 1171
  ident: bib0036
  article-title: Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation
  publication-title: Science
– volume: 10
  year: 2016
  ident: bib0054
  article-title: volBrain: an online MRI brain volumetry system
  publication-title: Front Neuroinform
– volume: 163
  start-page: 286
  year: 2017
  ident: 10.1016/j.media.2020.101850_bib0065
  article-title: Hips: a new hippocampus subfield segmentation method
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.09.049
– volume: 64
  start-page: 155
  year: 2017
  ident: 10.1016/j.media.2020.101850_bib0073
  article-title: A novel grading biomarker for the prediction of conversion from mild cognitive impairment to alzheimer’s disease
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2549363
– volume: 155
  start-page: 530
  year: 2017
  ident: 10.1016/j.media.2020.101850_bib0064
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for alzheimer’s disease and its prodromal stages
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 67
  start-page: 301
  year: 2005
  ident: 10.1016/j.media.2020.101850_bib0089
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2005.00503.x
– start-page: 1
  year: 2013
  ident: 10.1016/j.media.2020.101850_bib0025
  article-title: Background paper 6.11: Alzheimer disease and other dementias
  publication-title: A Public Health Approach to Innovation
– volume: 3
  start-page: 155
  year: 2013
  ident: 10.1016/j.media.2020.101850_bib0046
  article-title: Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2013.08.007
– start-page: 101929
  year: 2019
  ident: 10.1016/j.media.2020.101850_bib0079
  article-title: Cortical graph neural network for ad and mci diagnosis and transfer learning across populations
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2019.101929
– volume: 70
  start-page: 8
  year: 2018
  ident: 10.1016/j.media.2020.101850_bib0034
  article-title: Adaptive fusion of texture-based grading for alzheimer’s disease classification
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2018.08.002
– volume: 34
  start-page: 3411
  year: 2013
  ident: 10.1016/j.media.2020.101850_bib0080
  article-title: Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22156
– volume: 40
  start-page: 99
  year: 2000
  ident: 10.1016/j.media.2020.101850_bib0066
  article-title: The earth mover’s distance as a metric for image retrieval
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1026543900054
– volume: 225
  start-page: 1168
  year: 1984
  ident: 10.1016/j.media.2020.101850_bib0036
  article-title: Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation
  publication-title: Science
  doi: 10.1126/science.6474172
– volume: 75
  start-page: 1381
  year: 2010
  ident: 10.1016/j.media.2020.101850_bib0041
  article-title: Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-t MRI
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181f736a1
– year: 1934
  ident: 10.1016/j.media.2020.101850_bib0059
  article-title: Studies on the structure of the cerebral cortex. ii. continuation of the study of the ammonic system
  publication-title: Journal für Psychologie und Neurologie
– volume: 11
  start-page: 332
  year: 2015
  ident: 10.1016/j.media.2020.101850_bib0005
  article-title: 2015 Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s & dementia: the journal of the Alzheimer’s Association
– volume: 145
  start-page: 137
  year: 2017
  ident: 10.1016/j.media.2020.101850_bib0003
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 54
  start-page: 2033
  year: 2011
  ident: 10.1016/j.media.2020.101850_bib0006
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: 10.1016/j.media.2020.101850_bib0058
  doi: 10.1016/j.neurobiolaging.2006.03.007
– volume: 9
  start-page: 3998
  year: 2019
  ident: 10.1016/j.media.2020.101850_bib0022
  article-title: Lifespan changes of the human brain in Alzheimer’s disease
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-39809-8
– volume: 42
  year: 1992
  ident: 10.1016/j.media.2020.101850_sbref0037
  article-title: Mr-based hippocampal volumetry in the diagnosis of Alzheimer’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.42.1.183
– volume: 124
  start-page: 770
  year: 2016
  ident: 10.1016/j.media.2020.101850_bib0028
  article-title: An optimized patchmatch for multi-scale and multi-feature label fusion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.076
– volume: 8
  start-page: 11258
  year: 2018
  ident: 10.1016/j.media.2020.101850_bib0047
  article-title: Structural brain imaging in alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-29295-9
– year: 2019
  ident: 10.1016/j.media.2020.101850_bib0082
  article-title: Convolutional neural networks for classification of alzheimer’s disease: overview and reproducible evaluation
  publication-title: arXiv preprint arXiv:1904.07773
– volume: 36
  start-page: 4758
  year: 2015
  ident: 10.1016/j.media.2020.101850_bib0020
  article-title: Detection of Alzheimer’s disease signature in MR images seven years before conversion to dementia: toward an early individual prognosis
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22926
– volume: 56
  start-page: 303
  year: 1999
  ident: 10.1016/j.media.2020.101850_bib0062
  article-title: Mild cognitive impairment: clinical characterization and outcome
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.56.3.303
– volume: 24
  start-page: 797
  year: 2003
  ident: 10.1016/j.media.2020.101850_bib0029
  article-title: Identifying severely atrophic cortical subregions in Alzheimer’s disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(02)00227-0
– volume: 344
  start-page: 769
  year: 1994
  ident: 10.1016/j.media.2020.101850_bib0083
  article-title: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(94)92338-8
– volume: 14
  start-page: 535
  year: 2018
  ident: 10.1016/j.media.2020.101850_bib0038
  article-title: Nia-aa research framework: toward a biological definition of Alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2018.02.018
– volume: 28
  start-page: 627
  year: 2013
  ident: 10.1016/j.media.2020.101850_bib0049
  article-title: Discriminative analysis of mild Alzheimer’s disease and normal aging using volume of hippocampal subfields and hippocampal mean diffusivity: an in vivo magnetic resonance imaging study
  publication-title: American Journal of Alzheimer’s Disease & Other Dementias
  doi: 10.1177/1533317513494452
– volume: 60
  start-page: 1106
  year: 2012
  ident: 10.1016/j.media.2020.101850_bib0052
  article-title: Ensemble sparse classification of Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.055
– volume: 31
  start-page: 192
  year: 2010
  ident: 10.1016/j.media.2020.101850_bib0055
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22003
– year: 2018
  ident: 10.1016/j.media.2020.101850_bib0050
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural mri
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 16
  start-page: 271
  year: 1995
  ident: 10.1016/j.media.2020.101850_bib0012
  article-title: Staging of alzheimer’s disease-related neurofibrillary changes
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(95)00021-6
– volume: 83
  start-page: 245
  year: 2013
  ident: 10.1016/j.media.2020.101850_bib0021
  article-title: Collaborative patch-based super-resolution for diffusion-weighted images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.06.030
– year: 2019
  ident: 10.1016/j.media.2020.101850_bib0067
  article-title: Reproducible evaluation of methods for predicting progression to Alzheimer’s disease from clinical and neuroimaging Data
– volume: 6
  start-page: 7
  year: 2009
  ident: 10.1016/j.media.2020.101850_bib0051
  article-title: SLEP: Sparse learning with efficient projections
  publication-title: Arizona State University
– volume: 101
  start-page: 569
  year: 2014
  ident: 10.1016/j.media.2020.101850_bib0071
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for ad/mci diagnosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 7
  start-page: e31112
  year: 2012
  ident: 10.1016/j.media.2020.101850_bib0045
  article-title: Improved classification of alzheimer’s disease data via removal of nuisance variability
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0031112
– volume: 29
  start-page: 1310
  year: 2010
  ident: 10.1016/j.media.2020.101850_bib0077
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 353
  start-page: 38
  year: 1999
  ident: 10.1016/j.media.2020.101850_bib0009
  article-title: Mri of entorhinal cortex in mild alzheimer’s disease
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(05)74869-8
– volume: 49
  start-page: 967
  year: 2007
  ident: 10.1016/j.media.2020.101850_bib0040
  article-title: Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study
  publication-title: Neuroradiology
  doi: 10.1007/s00234-007-0269-2
– volume: 71
  start-page: 266
  year: 2012
  ident: 10.1016/j.media.2020.101850_bib0008
  article-title: Accuracy of the clinical diagnosis of alzheimer disease at national institute on aging alzheimer disease centers, 2005–2010
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/NEN.0b013e31824b211b
– volume: 10
  year: 2016
  ident: 10.1016/j.media.2020.101850_bib0054
  article-title: volBrain: an online MRI brain volumetry system
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2016.00030
– volume: 73
  start-page: 657
  year: 2002
  ident: 10.1016/j.media.2020.101850_bib0026
  article-title: Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry
  publication-title: Journal of Neurology, Neurosurgery & Psychiatry
  doi: 10.1136/jnnp.73.6.657
– volume: 24
  start-page: 91
  year: 2007
  ident: 10.1016/j.media.2020.101850_bib0001
  article-title: Structural correlates of apathy in alzheimer’s disease
  publication-title: Dement Geriatr Cogn Disord
  doi: 10.1159/000103914
– volume: 63
  start-page: 693
  year: 2006
  ident: 10.1016/j.media.2020.101850_bib0002
  article-title: Conversion of mild cognitive impairment to alzheimer disease predicted by hippocampal atrophy maps
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.63.5.693
– ident: 10.1016/j.media.2020.101850_bib0057
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 93
  start-page: 323
  year: 1997
  ident: 10.1016/j.media.2020.101850_bib0010
  article-title: Alzheimer’s disease: transiently developing dendritic changes in pyramidal cells of sector CA1 of the Ammon’s horn
  publication-title: Acta Neuropathol.
  doi: 10.1007/s004010050622
– volume: 42
  start-page: 521
  year: 2014
  ident: 10.1016/j.media.2020.101850_bib0076
  article-title: Early neuronal loss and axonal/presynaptic damage is associated with accelerated amyloid-β accumulation in aβPP/PS1 alzheimer’s disease mice subiculum
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-140495
– volume: 74
  start-page: 254
  year: 2013
  ident: 10.1016/j.media.2020.101850_bib0084
  article-title: A novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic resonance imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.02.003
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.media.2020.101850_bib0013
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 9
  start-page: 151
  year: 2006
  ident: 10.1016/j.media.2020.101850_bib0030
  article-title: Alzheimer’S disease: the amyloid cascade hypothesis: an update and reappraisal
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2006-9S317
– volume: 50
  start-page: 949
  year: 1993
  ident: 10.1016/j.media.2020.101850_bib0043
  article-title: Temporal lobe regions on magnetic resonance imaging identify patients with early alzheimer’s disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.1993.00540090052010
– volume: 59
  start-page: 3736
  year: 2012
  ident: 10.1016/j.media.2020.101850_bib0018
  article-title: Simultaneous segmentation and grading of anatomical structures for patient’s classification: application to alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.080
– year: 2014
  ident: 10.1016/j.media.2020.101850_bib0053
  article-title: NICE: Non-local intracranial cavity extraction
  publication-title: Int J Biomed Imaging
  doi: 10.1155/2014/820205
– volume: 41
  start-page: 1155
  year: 2000
  ident: 10.1016/j.media.2020.101850_bib0044
  article-title: Longitudinal evaluation of early alzheimer’s disease using brain perfusion spect
  publication-title: J. Nucl. Med.
– volume: 9
  start-page: 1952
  year: 2019
  ident: 10.1016/j.media.2020.101850_bib0048
  article-title: Predicting alzheimer’s disease progression using multi-modal deep learning approach
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-37769-z
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.media.2020.101850_bib0031
  article-title: Multimodal hippocampal subfield grading for Alzheimer’s disease classification
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-49970-9
– volume: 16
  start-page: 1701
  year: 2006
  ident: 10.1016/j.media.2020.101850_bib0039
  article-title: Differential regional atrophy of the cingulate gyrus in alzheimer disease: a volumetric MRI study
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhj105
– volume: 6
  start-page: e25446
  year: 2011
  ident: 10.1016/j.media.2020.101850_bib0085
  article-title: Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025446
– ident: 10.1016/j.media.2020.101850_bib0035
  doi: 10.1007/978-3-030-00931-1_49
– volume: 6
  start-page: 67
  year: 2010
  ident: 10.1016/j.media.2020.101850_bib0027
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nature Reviews Neurology
  doi: 10.1038/nrneurol.2009.215
– volume: 2
  start-page: 15
  year: 2003
  ident: 10.1016/j.media.2020.101850_bib0024
  article-title: Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(03)00262-X
– start-page: 101645
  year: 2018
  ident: 10.1016/j.media.2020.101850_bib0007
  article-title: Automated classification of alzheimer’s disease and mild cognitive impairment using a single mri and deep neural networks
  publication-title: NeuroImage: Clinical
– volume: 14
  year: 2019
  ident: 10.1016/j.media.2020.101850_bib0061
  article-title: Hippocampal subfield volumes and pre-clinical alzheimer’s disease in 408 cognitively normal adults born in 1946
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0224030
– volume: 63
  start-page: 171
  year: 2017
  ident: 10.1016/j.media.2020.101850_bib0074
  article-title: Multi-modal classification of alzheimer’s disease using nonlinear graph fusion
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.10.009
– volume: 9
  start-page: 332
  year: 2013
  ident: 10.1016/j.media.2020.101850_bib0086
  article-title: Standardization of analysis sets for reporting results from adni mri data
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2012.06.004
– volume: 111
  start-page: 562
  year: 2015
  ident: 10.1016/j.media.2020.101850_bib0014
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.048
– ident: 10.1016/j.media.2020.101850_bib0033
  doi: 10.1007/978-3-319-67434-6_10
– volume: 112
  start-page: 389
  year: 2006
  ident: 10.1016/j.media.2020.101850_bib0011
  article-title: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-006-0127-z
– volume: 226
  start-page: 315
  year: 2003
  ident: 10.1016/j.media.2020.101850_bib0063
  article-title: Neuroimaging and early diagnosis of alzheimer disease: a look to the future
  publication-title: Radiology
  doi: 10.1148/radiol.2262011600
– volume: 43
  start-page: 237
  year: 2017
  ident: 10.1016/j.media.2020.101850_bib0056
  article-title: Comparative diagnostic accuracy of the ace-iii, mis, mmse, moca, and rudas for screening of Alzheimer disease
  publication-title: Dement Geriatr Cogn Disord
  doi: 10.1159/000469658
– volume: 48
  start-page: 117
  year: 2018
  ident: 10.1016/j.media.2020.101850_bib0060
  article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.06.001
– volume: 11
  start-page: 802
  year: 2016
  ident: 10.1016/j.media.2020.101850_bib0068
  article-title: A large-scale comparison of cortical thickness and volume methods for measuring alzheimer’s disease severity
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2016.05.017
– volume: 111
  start-page: 526
  year: 2015
  ident: 10.1016/j.media.2020.101850_bib0087
  article-title: Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in vivo MRI: towards a harmonized segmentation protocol
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.004
– volume: 6
  start-page: e21935
  year: 2011
  ident: 10.1016/j.media.2020.101850_bib0088
  article-title: Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0021935
– volume: 24
  start-page: 221
  year: 2003
  ident: 10.1016/j.media.2020.101850_bib0015
  article-title: A voxel-based morphometry study of temporal lobe gray matter reductions in alzheimer’s disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(02)00084-2
– year: 2019
  ident: 10.1016/j.media.2020.101850_bib0081
  article-title: How serious is data leakage in Deep learning studies on Alzheimer’s disease classification?
– volume: 11
  start-page: 805
  year: 2000
  ident: 10.1016/j.media.2020.101850_bib0004
  article-title: Voxel-based morphometry—the methods
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0582
– volume: 6
  start-page: 274
  year: 2010
  ident: 10.1016/j.media.2020.101850_bib0016
  article-title: Autopsy consent, brain collection, and standardized neuropathologic assessment of adni participants: the essential role of the neuropathology core
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2010.03.012
– volume: 63
  start-page: 194
  year: 2012
  ident: 10.1016/j.media.2020.101850_bib0042
  article-title: Hippocampal CA1 apical neuropil atrophy and memory performance in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.048
– volume: 21
  start-page: 65
  year: 1926
  ident: 10.1016/j.media.2020.101850_bib0069
  article-title: The choice of a class interval
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1926.10502161
– volume: 1
  start-page: 141
  year: 2012
  ident: 10.1016/j.media.2020.101850_bib0019
  article-title: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease
  publication-title: NeuroImage: clinical
  doi: 10.1016/j.nicl.2012.10.002
– volume: 18
  start-page: 808
  year: 2014
  ident: 10.1016/j.media.2020.101850_bib0075
  article-title: Multiple instance learning for classification of dementia in brain MRI
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2014.04.006
– ident: 10.1016/j.media.2020.101850_bib0032
  doi: 10.1007/978-3-030-00919-9_30
– volume: 37
  start-page: 101
  year: 2017
  ident: 10.1016/j.media.2020.101850_bib0070
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.01.008
– volume: 220
  start-page: 841
  year: 2015
  ident: 10.1016/j.media.2020.101850_bib0072
  article-title: Latent feature representation with stacked auto-encoder for ad/mci diagnosis
  publication-title: Brain Structure and Function
  doi: 10.1007/s00429-013-0687-3
– volume: 35
  start-page: 682
  year: 2013
  ident: 10.1016/j.media.2020.101850_bib0023
  article-title: Spatial and anatomical regularization of svm: a general framework for neuroimaging data
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.142
– volume: 1
  start-page: 24
  year: 2015
  ident: 10.1016/j.media.2020.101850_bib0017
  article-title: Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of alzheimer’s disease
  publication-title: Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring
– volume: 55
  start-page: 968
  year: 2011
  ident: 10.1016/j.media.2020.101850_bib0078
  article-title: A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.006
SSID ssj0007440
Score 2.5006022
Snippet •This work introduces a new approach combining patch-based grading and graph-based model.•Combination of inter-subject similarity and intra-subject variability...
The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer's disease (AD) is clinically relevant, and may above all have a...
The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer’s disease (AD) is clinically relevant, and may above all have a...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101850
SubjectTerms Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Alzheimer’s disease classification
Bioengineering
Biomarkers
Brain
Brain - diagnostic imaging
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Cognitive science
Computer science
Computer Vision and Pattern Recognition
Conversion
Datasets
Graph-based method
Hippocampal subfields
Hippocampus
Humans
Imaging
Inter-subject similarity
Intra-subject variability
Life Sciences
Magnetic Resonance Imaging
Mild cognitive impairment
Multiscale analysis
Neurodegenerative diseases
Neuroscience
Patch-based grading
State-of-the-art reviews
Whole brain analysis
Title Multi-scale graph-based grading for Alzheimer’s disease prediction
URI https://dx.doi.org/10.1016/j.media.2020.101850
https://www.ncbi.nlm.nih.gov/pubmed/33075641
https://www.proquest.com/docview/2508914062
https://www.proquest.com/docview/2452495988
https://hal.science/hal-02967401
https://pubmed.ncbi.nlm.nih.gov/PMC7725970
Volume 67
WOSCitedRecordID wos000598894800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbohhA8IBi3wpgC4m24Spw4dh4LDG3AJiTK1LcocRySqqTVsk4TT_wN_h6_hONL0rQVEyDxEkVOaqc-n-1zPwi9oFmS05xS7BEmcCCIwGlAPCySFERcN-G5SHWxCXZywsfj6KP1Va11OQFWVfzyMpr_V1JDGxBbhc7-BbnbTqEB7oHocAWyw_WPCK9DanENcy_3dTpqrE6qTN1njdvkcPqtkKUqnGJ9HaK6MdWorAFZKVp6NdWerEGn_KqcfBKbymSpSTU2pvfltAO3kWZMT8uqwKNiZo9IpdD9stBq66O5bOOEjpNqooz2r_zKGiaMCX__dNBVTBBvTTGxGTGjN1g_9DAPTAjnQHbbTNxxsyubIh0bG7zRNUwGOq4GxHui27hJXruWOfuT6liNRWAnIyBJ9tA2YTSCzW97eHQwftce2SpLognQMx_XpKfSjoAbQ_2OhekVypd2U1BZ97ftMDCjO-i2lTycoUHMXXRNVjvoVicf5Q66cWw9Le6hNx0YOR0YORZGDsDIaWH08_uP2rEAcpYAuo8-vz0YvT7EtuIGFqqwBQ4SLiImmBtljGVpkBERhCJ0c-kTlsmceSlP4QSggifQTCWIBwGsbennwNgC8_oAbVWzSj5CDlVhziKBrnIeSOFCZ1KGLPFCYCh9IvuINJMYC5uOXlVFmcaN3-Ek1jMfq5mPzcz30cv2R3OTjeXq18OGOrFlKA2jGAOcrv7hc6BlO4RKwX44_BCrNpdEoapieeH10W5D6tiu_zoGiYJHALWQ9NGz9jFs2coOl1RytoB3Aqoqvkec99FDg4x2KB_OXBoG0DlbwczKt6w-qcpCp4UHOZlGzH38r3_6Cbq5XMa7aOv8bCGfouvi4rysz_ZQj435nl04vwAj79WZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+graph-based+grading+for+Alzheimer%E2%80%99s+disease+prediction&rft.jtitle=Medical+image+analysis&rft.au=Hett%2C+Kilian&rft.au=Ta%2C+Vinh-Thong&rft.au=Oguz%2C+Ipek&rft.au=Manj%C3%B3n%2C+Jos%C3%A9+V.&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=67&rft_id=info:doi/10.1016%2Fj.media.2020.101850&rft.externalDocID=S1361841520302140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon