Mechanical coupling and tuned anisotropic elasticity: Numerical and experimental material design for shear-normal and shear-shear interactions

[Display omitted] •A highly anisotropic architectured material with mechanical coupling is investigated.•Coupling parameters are numerically and experimentally quantified.•Material anisotropy is identified using elastic distance function.•Material behavior is characterized through elastic and elasto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials & design Jg. 230; S. 111950
Hauptverfasser: Molavitabrizi, Danial, Suzuki, Asuka, Kobashi, Makoto, Mousavi, S. Mahmoud
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.06.2023
Elsevier
Schlagworte:
ISSN:0264-1275, 1873-4197, 1873-4197
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •A highly anisotropic architectured material with mechanical coupling is investigated.•Coupling parameters are numerically and experimentally quantified.•Material anisotropy is identified using elastic distance function.•Material behavior is characterized through elastic and elastoplastic homogenization.•Elastic anisotropy in various directions is numerically and experimentally evaluated. Mechanical coupling in architectured materials has been traditionally investigated in the context of generalized continuum mechanics and is often assumed to be non-existent in the framework of classical continuum mechanics. In this paper, we challenge this misconception and study an anisotropic architectured material exhibiting shear-shear and shear-normal coupling from the standpoint of classical continuum mechanics. The material is non-regular tetrahedron lattice, a potential candidate for biomedical implants, but the lack of understanding about its anisotropic behavior and mechanical couplings has limited its application. We exploited the unit-cell definition with periodic boundary conditions and performed elastic and elastoplastic homogenizations. Non-zero coupling sub-matrices appeared in the homogenized elasticity matrix, which we further transformed into material’s natural coordinate system using elastic distance function. This allowed for anisotropy identification and determination of all the coupling parameters. Next, compression tests are conducted on laser powder bed fused Al-12Si (mass%) lattice samples with different relative densities and spatial orientations. Employing test data, mechanical anisotropy and shear-normal couplings are experimentally characterized. Both numerical and experimental results confirmed the presence of mechanical couplings and predicted a similar anisotropic tendency in the material. Finally, the role of manufacturing defects in deterioration of as-designed mechanical properties is discussed.
AbstractList Mechanical coupling in architectured materials has been traditionally investigated in the context of generalized continuum mechanics and is often assumed to be non-existent in the framework of classical continuum mechanics. In this paper, we challenge this misconception and study an anisotropic architectured material exhibiting shear-shear and shear-normal coupling from the standpoint of classical continuum mechanics. The material is non-regular tetrahedron lattice, a potential candidate for biomedical implants, but the lack of understanding about its anisotropic behavior and mechanical couplings has limited its application. We exploited the unit-cell definition with periodic boundary conditions and performed elastic and elastoplastic homogenizations. Non-zero coupling sub-matrices appeared in the homogenized elasticity matrix, which we further transformed into material’s natural coordinate system using elastic distance function. This allowed for anisotropy identification and determination of all the coupling parameters. Next, compression tests are conducted on laser powder bed fused Al-12Si (mass%) lattice samples with different relative densities and spatial orientations. Employing test data, mechanical anisotropy and shear-normal couplings are experimentally characterized. Both numerical and experimental results confirmed the presence of mechanical couplings and predicted a similar anisotropic tendency in the material. Finally, the role of manufacturing defects in deterioration of as-designed mechanical properties is discussed.
[Display omitted] •A highly anisotropic architectured material with mechanical coupling is investigated.•Coupling parameters are numerically and experimentally quantified.•Material anisotropy is identified using elastic distance function.•Material behavior is characterized through elastic and elastoplastic homogenization.•Elastic anisotropy in various directions is numerically and experimentally evaluated. Mechanical coupling in architectured materials has been traditionally investigated in the context of generalized continuum mechanics and is often assumed to be non-existent in the framework of classical continuum mechanics. In this paper, we challenge this misconception and study an anisotropic architectured material exhibiting shear-shear and shear-normal coupling from the standpoint of classical continuum mechanics. The material is non-regular tetrahedron lattice, a potential candidate for biomedical implants, but the lack of understanding about its anisotropic behavior and mechanical couplings has limited its application. We exploited the unit-cell definition with periodic boundary conditions and performed elastic and elastoplastic homogenizations. Non-zero coupling sub-matrices appeared in the homogenized elasticity matrix, which we further transformed into material’s natural coordinate system using elastic distance function. This allowed for anisotropy identification and determination of all the coupling parameters. Next, compression tests are conducted on laser powder bed fused Al-12Si (mass%) lattice samples with different relative densities and spatial orientations. Employing test data, mechanical anisotropy and shear-normal couplings are experimentally characterized. Both numerical and experimental results confirmed the presence of mechanical couplings and predicted a similar anisotropic tendency in the material. Finally, the role of manufacturing defects in deterioration of as-designed mechanical properties is discussed.
ArticleNumber 111950
Author Mousavi, S. Mahmoud
Suzuki, Asuka
Molavitabrizi, Danial
Kobashi, Makoto
Author_xml – sequence: 1
  givenname: Danial
  orcidid: 0000-0003-2936-1398
  surname: Molavitabrizi
  fullname: Molavitabrizi, Danial
  organization: Division of Applied Mechanics, Department of Materials Science and Engineering, Uppsala University, 751 03 Uppsala, Sweden
– sequence: 2
  givenname: Asuka
  orcidid: 0000-0002-7375-3914
  surname: Suzuki
  fullname: Suzuki, Asuka
  organization: Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
– sequence: 3
  givenname: Makoto
  surname: Kobashi
  fullname: Kobashi, Makoto
  organization: Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
– sequence: 4
  givenname: S. Mahmoud
  surname: Mousavi
  fullname: Mousavi, S. Mahmoud
  email: mahmoud.mousavi@angstrom.uu.se
  organization: Division of Applied Mechanics, Department of Materials Science and Engineering, Uppsala University, 751 03 Uppsala, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-504555$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqFkc1u1DAQxy1UJLaFN-CQByCLv530gFSVr0oFLsDVcuzJ1qusHdkO0JfgmfFuygEOcLE9o_n9PTP_c3QWYgCEnhO8JZjIl_vtwRQHeUsxZVtCSC_wI7QhnWItJ706QxtMJW8JVeIJOs95jzGlivEN-vkB7J0J3pqpsXGZJx92jQmuKUsAV18-x5Li7G0Dk8nFW1_uL5uPywHSCTrWwo-5RgcIpSZqKzWoj9qQ34VmjKnJd2BSG2I6PBBr4nQ2PlTA2OJjyE_R49FMGZ493Bfoy9s3n6_ft7ef3t1cX922VlBSWmZVT5l0g2GWODVII0c29MAM660cOuyAdh0mPceO874bBiUNUxIGLBSRjF2gm1XXRbPXc23epHsdjdenREw7bVIddgLNekdGqqQVlnJrVVdXh4UZwBEpJBur1otVK3-HeRn-UHvtv16d1JZFC8yFELX8ci23KeacYNR1peY4fUnGT5pgfTRV7_Vqqj6aqldTK8z_gn__9h_s1YpB3ek3D0ln6yFYcD6BLXVo_2-BX5bQwwY
CitedBy_id crossref_primary_10_1016_j_ijengsci_2025_104367
crossref_primary_10_1080_15397734_2024_2407416
crossref_primary_10_1016_j_mtcomm_2025_113278
crossref_primary_10_1016_j_matdes_2025_113866
crossref_primary_10_1016_j_compstruct_2024_118634
Cites_doi 10.1121/1.5091690
10.1016/j.polymer.2017.11.049
10.1016/j.matdes.2018.02.062
10.1016/j.eml.2019.01.010
10.1098/rspa.2013.0611
10.1007/978-3-319-71090-7
10.1016/j.ijsolstr.2021.111386
10.1002/adfm.200801675
10.1016/j.engfracmech.2022.108762
10.1016/j.scriptamat.2021.114003
10.1016/j.matdes.2022.111265
10.1115/1.2788983
10.1098/rspa.2014.0522
10.1016/j.ijsolstr.2022.111783
10.1016/j.ijmecsci.2020.105986
10.1073/pnas.2111505119
10.1016/j.ijsolstr.2017.02.031
10.1016/j.actbio.2015.10.048
10.1016/j.msea.2019.138356
10.1016/j.actbio.2016.10.005
10.1007/s10999-012-9192-8
10.1002/adem.201900571
10.1016/j.matdes.2019.108059
10.1016/j.matdes.2022.111254
10.1016/j.matdes.2020.108971
10.1016/j.euromechsol.2021.104480
10.1007/s10659-010-9272-7
10.3390/cryst10111007
10.1016/j.actamat.2012.01.052
10.1007/s10659-020-09787-4
10.1016/j.msea.2019.03.014
10.1016/j.cma.2023.115931
10.1016/j.jmps.2018.08.022
10.1016/j.mechmat.2021.103818
10.1016/j.jmst.2019.06.015
10.1016/S0022-5096(01)00010-2
10.1016/j.ijmecsci.2019.02.041
10.1016/j.matdes.2020.109416
10.1002/admt.201800419
10.1016/j.compstruct.2021.115091
10.1007/978-3-030-18383-7
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOA
DOI 10.1016/j.matdes.2023.111950
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_39d1f276c5c24cc7802205abed16563f
oai_DiVA_org_uu_504555
10_1016_j_matdes_2023_111950
S0264127523003659
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
NCXOZ
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSM
SST
SSZ
T5K
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c521t-3c79236dba3c1d7b6a6f3b9e3a39c6b80de28801940d4498bb76a376eb0571633
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001041987900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0264-1275
1873-4197
IngestDate Fri Oct 03 12:48:47 EDT 2025
Tue Nov 04 17:25:53 EST 2025
Tue Nov 18 21:53:14 EST 2025
Sat Nov 29 07:23:00 EST 2025
Fri Feb 23 02:37:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Anisotropic elasticity
Shear-normal coupling
Shear-shear coupling
Lattice materials
Additive manufacturing
Trigonal symmetry
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-3c79236dba3c1d7b6a6f3b9e3a39c6b80de28801940d4498bb76a376eb0571633
ORCID 0000-0003-2936-1398
0000-0002-7375-3914
OpenAccessLink https://doaj.org/article/39d1f276c5c24cc7802205abed16563f
ParticipantIDs doaj_primary_oai_doaj_org_article_39d1f276c5c24cc7802205abed16563f
swepub_primary_oai_DiVA_org_uu_504555
crossref_citationtrail_10_1016_j_matdes_2023_111950
crossref_primary_10_1016_j_matdes_2023_111950
elsevier_sciencedirect_doi_10_1016_j_matdes_2023_111950
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Dirrenberger, Forest, Jeulin (b0005) 2013; 9
Van Hooreweder, Apers, Lietaert, Kruth (b0205) 2017; 47
Mahbod, Asgari (b0050) 2019; 155
Lohmuller, Favre, Kenzari, Piotrowski, Peltier, Laheurte (b0160) 2019; 182
Suzuki, Miyasaka, Takata, Kobashi, Kato (b0200) 2021; 48
D. Molavitabrizi, H. Yu, S. Mahmoud Mousavi, Hydrogen embrittlement in micro-architectured materials, Eng. Fracture Mec. 274 (2022) 108762, doi: 10.1016/j.engfracmech.2022.108762.
Deshpande, Fleck, Ashby (b0035) 2001
Fergoug, Parret-Fréaud, Feld, Marchand, Forest (b0150) 2022; 285
Patil, Matlack (b0130) 2019; 145
Liu, Takata, Suzuki, Kobashi (b0070) 2020; 36
Singamaneni (b0015) 2009; 19
S. Arabnejad, R. Burnett Johnston, J.A. Pura, B. Singh, M. Tanzer, D. Pasini, High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints, Acta Biomaterialia 30 (2016) 345–356, doi: 10.1016/j.actbio.2015.10.048.
Maskery (b0085) 2018; 152
Warren, Kraynik (b0040) 1997; 64
D. Gross, T. Seelig, Fracture Mechanics: With an Introduction to Micromechanics, third ed., Mechanical Engineering Series, Springer International Publishing, 2018, doi: 10.1007/978-3-319-71090-7.
Yang, Abali, Müller, Barboura, Li (b0215) 2022; 238
Suzuki, Sekizawa, Liu, Takata, Kobashi (b0095) 2019; 21
Norris (b0055) 2014; 470
Munford, Hossain, Ghouse, Jeffers (b0115) 2020; 32
Zhu, Blal, Cunsolo, Baillis (b0125) 2017; 115–116
Yuan, Chua, Zhou (b0075) 2019; 4
Molavitabrizi, Mousavi (b0010) 2020; 143
Babaee, Jahromi, Ajdari, Nayeb-Hashemi, Vaziri (b0045) 2012; 60
Drücker (b0145) 2021; 189
J.-H. Bastek, S. Kumar, B. Telgen, R.N. Glaesener, D.M. Kochmann, Inverting the structure–property map of truss metamaterials by deep learning, Proc. Natl. Acad. Sci. U.S.A. 119 (1) (2022) e2111505119, doi: 10.1073/pnas.2111505119.
Ruschel, Samuel, Martinez, Begley, Zok (b0020) 2022; 224
Liu, Wada, Suzuki, Takata, Kobashi, Kato (b0195) 2020; 10
Diner, Kochetov, Slawinski (b0185) 2011; 102
Z. Ji, D. Li, W. Liao, Y. Min Xie, AI-aided design of multiscale lattice metastructures for controllable anisotropy, Mater. Design 223 (2022) 111254, doi: 10.1016/j.matdes.2022.111254.
Novak, Duncan, Allen, Alderson, Vesenjak, Ren (b0100) 2021; 157
Alaña, Cutolo, Probst, Ruiz de Galarreta, Van Hooreweder (b0110) 2020; 195
Molavitabrizi, Ekberg, Mousavi (b0135) 2022; 92
D. Molavitabrizi, R. Bengtsson, C. Botero, L. Rännar, S. Mousavi, Damage-induced failure analysis of additively manufactured lattice materials under uniaxial and multiaxial tension, [Manuscript Submitted], 2022.
Bonatti, Mohr (b0155) 2019; 122
Köhnen, Haase, Bültmann, Ziegler, Schleifenbaum, Bleck (b0080) 2018; 145
Liu, Azad, Burgueño (b0105) 2019; 28
Liu, Suzuki, Takata, Kobashi, Kato (b0065) 2021; 202
Liu, Wada, Suzuki, Takata, Kobashi, Kato (b0025) 2021; 199
Stahn, Müller, Bertram (b0190) 2020; 141
Großmann, Gosmann, Mittelstedt (b0090) 2019; 766
Yvonnet (b0120) 2019
Gurtner, Durand (b0060) 2014; 470
Wu, Mustafa, Segurado, Noels (b0220) 2023; 407
Epasto, Palomba, D’Andrea, Guglielmino, Di Bella, Traina (b0210) 2019; 753
Gurtner (10.1016/j.matdes.2023.111950_b0060) 2014; 470
Epasto (10.1016/j.matdes.2023.111950_b0210) 2019; 753
Norris (10.1016/j.matdes.2023.111950_b0055) 2014; 470
Warren (10.1016/j.matdes.2023.111950_b0040) 1997; 64
Liu (10.1016/j.matdes.2023.111950_b0195) 2020; 10
Mahbod (10.1016/j.matdes.2023.111950_b0050) 2019; 155
Yvonnet (10.1016/j.matdes.2023.111950_b0120) 2019
Diner (10.1016/j.matdes.2023.111950_b0185) 2011; 102
Suzuki (10.1016/j.matdes.2023.111950_b0200) 2021; 48
Babaee (10.1016/j.matdes.2023.111950_b0045) 2012; 60
Yang (10.1016/j.matdes.2023.111950_b0215) 2022; 238
10.1016/j.matdes.2023.111950_b0030
Ruschel (10.1016/j.matdes.2023.111950_b0020) 2022; 224
10.1016/j.matdes.2023.111950_b0170
Alaña (10.1016/j.matdes.2023.111950_b0110) 2020; 195
Patil (10.1016/j.matdes.2023.111950_b0130) 2019; 145
Großmann (10.1016/j.matdes.2023.111950_b0090) 2019; 766
Molavitabrizi (10.1016/j.matdes.2023.111950_b0010) 2020; 143
Suzuki (10.1016/j.matdes.2023.111950_b0095) 2019; 21
Drücker (10.1016/j.matdes.2023.111950_b0145) 2021; 189
Liu (10.1016/j.matdes.2023.111950_b0105) 2019; 28
Stahn (10.1016/j.matdes.2023.111950_b0190) 2020; 141
Molavitabrizi (10.1016/j.matdes.2023.111950_b0135) 2022; 92
Van Hooreweder (10.1016/j.matdes.2023.111950_b0205) 2017; 47
Maskery (10.1016/j.matdes.2023.111950_b0085) 2018; 152
10.1016/j.matdes.2023.111950_b0175
Novak (10.1016/j.matdes.2023.111950_b0100) 2021; 157
Deshpande (10.1016/j.matdes.2023.111950_b0035) 2001
Dirrenberger (10.1016/j.matdes.2023.111950_b0005) 2013; 9
Munford (10.1016/j.matdes.2023.111950_b0115) 2020; 32
Lohmuller (10.1016/j.matdes.2023.111950_b0160) 2019; 182
Wu (10.1016/j.matdes.2023.111950_b0220) 2023; 407
Singamaneni (10.1016/j.matdes.2023.111950_b0015) 2009; 19
10.1016/j.matdes.2023.111950_b0140
Zhu (10.1016/j.matdes.2023.111950_b0125) 2017; 115–116
Fergoug (10.1016/j.matdes.2023.111950_b0150) 2022; 285
Bonatti (10.1016/j.matdes.2023.111950_b0155) 2019; 122
Liu (10.1016/j.matdes.2023.111950_b0065) 2021; 202
10.1016/j.matdes.2023.111950_b0180
Liu (10.1016/j.matdes.2023.111950_b0025) 2021; 199
Yuan (10.1016/j.matdes.2023.111950_b0075) 2019; 4
Liu (10.1016/j.matdes.2023.111950_b0070) 2020; 36
Köhnen (10.1016/j.matdes.2023.111950_b0080) 2018; 145
10.1016/j.matdes.2023.111950_b0165
References_xml – reference: D. Molavitabrizi, R. Bengtsson, C. Botero, L. Rännar, S. Mousavi, Damage-induced failure analysis of additively manufactured lattice materials under uniaxial and multiaxial tension, [Manuscript Submitted], 2022.
– volume: 115–116
  start-page: 61
  year: 2017
  end-page: 72
  ident: b0125
  article-title: Micromechanical modeling of effective elastic properties of open-cell foam
  publication-title: Int. J. Solids Struct.
– volume: 47
  start-page: 193
  year: 2017
  end-page: 202
  ident: b0205
  article-title: Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting
  publication-title: Acta Biomater.
– volume: 64
  start-page: 787
  year: 1997
  end-page: 794
  ident: b0040
  article-title: Linear elastic behavior of a low-density kelvin foam with open cells
  publication-title: J. Appl. Mech.
– volume: 157
  year: 2021
  ident: b0100
  article-title: Shear modulus of conventional and auxetic open-cell foam
  publication-title: Mech. Mater.
– volume: 202
  year: 2021
  ident: b0065
  article-title: Dual plateau stress of C15-type topologically close-packed lattice structures additive-manufactured by laser powder bed fusion
  publication-title: Scr. Mater.
– volume: 4
  start-page: 1800419
  year: 2019
  ident: b0075
  article-title: 3D-printed mechanical metamaterials with high energy absorption
  publication-title: Adv. Mater. Technol.
– volume: 122
  start-page: 1
  year: 2019
  end-page: 26
  ident: b0155
  article-title: Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments
  publication-title: J. Mech. Phys. Solids
– volume: 28
  start-page: 1
  year: 2019
  end-page: 7
  ident: b0105
  article-title: Architected materials for tailorable shear behavior with energy dissipation
  publication-title: Extreme Mech. Lett.
– reference: Z. Ji, D. Li, W. Liao, Y. Min Xie, AI-aided design of multiscale lattice metastructures for controllable anisotropy, Mater. Design 223 (2022) 111254, doi: 10.1016/j.matdes.2022.111254.
– year: 2001
  ident: b0035
  article-title: Effective properties of the octet-truss lattice material
  publication-title: J. Mech. Phys. Solids
– volume: 145
  start-page: 205
  year: 2018
  end-page: 217
  ident: b0080
  article-title: Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel
  publication-title: Mater. Des.
– volume: 182
  year: 2019
  ident: b0160
  article-title: Architectural effect on 3D elastic properties and anisotropy of cubic lattice structures
  publication-title: Mater. Des.
– reference: D. Molavitabrizi, H. Yu, S. Mahmoud Mousavi, Hydrogen embrittlement in micro-architectured materials, Eng. Fracture Mec. 274 (2022) 108762, doi: 10.1016/j.engfracmech.2022.108762.
– volume: 195
  year: 2020
  ident: b0110
  article-title: Understanding elastic anisotropy in diamond based lattice structures produced by laser powder bed fusion: effect of manufacturing deviations
  publication-title: Mater. Des.
– volume: 48
  year: 2021
  ident: b0200
  article-title: Control of microstructural characteristics and mechanical properties of AlSi12 alloy by processing conditions of laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 36
  start-page: 106
  year: 2020
  end-page: 117
  ident: b0070
  article-title: Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting
  publication-title: J. Mater. Sci. Technol.
– volume: 141
  start-page: 349
  year: 2020
  end-page: 361
  ident: b0190
  article-title: Distances of stiffnesses to symmetry classes
  publication-title: J. Elast.
– volume: 155
  start-page: 248
  year: 2019
  end-page: 266
  ident: b0050
  article-title: Elastic and plastic characterization of a new developed additively manufactured functionally graded porous lattice structure: Analytical and numerical models
  publication-title: Int. J. Mech. Sci.
– volume: 32
  year: 2020
  ident: b0115
  article-title: Prediction of anisotropic mechanical properties for lattice structures
  publication-title: Addit. Manuf.
– volume: 470
  start-page: 20140522
  year: 2014
  ident: b0055
  article-title: Mechanics of elastic networks
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
– volume: 407
  year: 2023
  ident: b0220
  article-title: Second-order computational homogenisation enhanced with non-uniform body forces for non-linear cellular materials and metamaterials
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2019
  ident: b0120
  article-title: Computational homogenization of heterogeneous materials with finite elements
  publication-title: Solid Mechanics and Its Applications
– volume: 238
  year: 2022
  ident: b0215
  article-title: Verification of asymptotic homogenization method developed for periodic architected materials in strain gradient continuum
  publication-title: Int. J. Solids Struct.
– reference: D. Gross, T. Seelig, Fracture Mechanics: With an Introduction to Micromechanics, third ed., Mechanical Engineering Series, Springer International Publishing, 2018, doi: 10.1007/978-3-319-71090-7.
– volume: 19
  start-page: 1426
  year: 2009
  end-page: 1436
  ident: b0015
  article-title: Bifurcated mechanical behavior of deformed periodic porous solids
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1007
  year: 2020
  ident: b0195
  article-title: Effect of annealing on anisotropic tensile properties of Al–12%Si alloy fabricated by laser powder bed fusion
  publication-title: Crystals
– volume: 152
  start-page: 62
  year: 2018
  end-page: 71
  ident: b0085
  article-title: Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing
  publication-title: Polymer
– reference: J.-H. Bastek, S. Kumar, B. Telgen, R.N. Glaesener, D.M. Kochmann, Inverting the structure–property map of truss metamaterials by deep learning, Proc. Natl. Acad. Sci. U.S.A. 119 (1) (2022) e2111505119, doi: 10.1073/pnas.2111505119.
– reference: S. Arabnejad, R. Burnett Johnston, J.A. Pura, B. Singh, M. Tanzer, D. Pasini, High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints, Acta Biomaterialia 30 (2016) 345–356, doi: 10.1016/j.actbio.2015.10.048.
– volume: 60
  start-page: 2873
  year: 2012
  end-page: 2885
  ident: b0045
  article-title: Mechanical properties of open-cell rhombic dodecahedron cellular structures
  publication-title: Acta Mater.
– volume: 102
  start-page: 175
  year: 2011
  end-page: 190
  ident: b0185
  article-title: Identifying symmetry classes of elasticity tensors using monoclinic distance function
  publication-title: J. Elast.
– volume: 199
  year: 2021
  ident: b0025
  article-title: Understanding and suppressing shear band formation in strut-based lattice structures manufactured by laser powder bed fusion
  publication-title: Mater. Des.
– volume: 21
  start-page: 1900571
  year: 2019
  ident: b0095
  article-title: Effects of heat treatments on compressive deformation behaviors of lattice-structured AlSi10Mg alloy fabricated by selective laser melting
  publication-title: Adv. Eng. Mater.
– volume: 753
  start-page: 31
  year: 2019
  end-page: 41
  ident: b0210
  article-title: Ti-6Al-4V ELI microlattice structures manufactured by electron beam melting: effect of unit cell dimensions and morphology on mechanical behaviour
  publication-title: Mater. Sci. Eng. A
– volume: 145
  start-page: 1259
  year: 2019
  end-page: 1269
  ident: b0130
  article-title: Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization
  publication-title: J. Acoust. Soc. Am.
– volume: 285
  year: 2022
  ident: b0150
  article-title: A general boundary layer corrector for the asymptotic homogenization of elastic linear composite structures
  publication-title: Compos. Struct.
– volume: 470
  start-page: 20130611
  year: 2014
  ident: b0060
  article-title: Stiffest elastic networks
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
– volume: 143
  start-page: Nov
  year: 2020
  ident: b0010
  article-title: Elasticity of anisotropic low-density lattice materials
  publication-title: J. Eng. Mater. Technol.
– volume: 92
  year: 2022
  ident: b0135
  article-title: Computational model for low cycle fatigue analysis of lattice materials: incorporating theory of critical distance with elastoplastic homogenization
  publication-title: Eur. J. Mech. A Solids
– volume: 766
  year: 2019
  ident: b0090
  article-title: Lightweight lattice structures in selective laser melting: design, fabrication and mechanical properties
  publication-title: Mater. Sci. Eng. A
– volume: 224
  year: 2022
  ident: b0020
  article-title: A 3D bi-material lattice concept for tailoring compressive properties
  publication-title: Mater. Des.
– volume: 189
  year: 2021
  ident: b0145
  article-title: Experimental and numerical mechanical characterization of additively manufactured Ti6Al4V lattice structures considering progressive damage
  publication-title: Int. J. Mech. Sci.
– volume: 9
  start-page: 21
  year: 2013
  end-page: 33
  ident: b0005
  article-title: Effective elastic properties of auxetic microstructures: anisotropy and structural applications
  publication-title: Int. J. Mech. Mater. Des.
– volume: 48
  year: 2021
  ident: 10.1016/j.matdes.2023.111950_b0200
  article-title: Control of microstructural characteristics and mechanical properties of AlSi12 alloy by processing conditions of laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 145
  start-page: 1259
  issue: 3
  year: 2019
  ident: 10.1016/j.matdes.2023.111950_b0130
  article-title: Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5091690
– volume: 152
  start-page: 62
  year: 2018
  ident: 10.1016/j.matdes.2023.111950_b0085
  article-title: Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.11.049
– volume: 145
  start-page: 205
  year: 2018
  ident: 10.1016/j.matdes.2023.111950_b0080
  article-title: Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.02.062
– volume: 28
  start-page: 1
  year: 2019
  ident: 10.1016/j.matdes.2023.111950_b0105
  article-title: Architected materials for tailorable shear behavior with energy dissipation
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2019.01.010
– volume: 470
  start-page: 20130611
  issue: 2164
  year: 2014
  ident: 10.1016/j.matdes.2023.111950_b0060
  article-title: Stiffest elastic networks
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2013.0611
– ident: 10.1016/j.matdes.2023.111950_b0180
  doi: 10.1007/978-3-319-71090-7
– volume: 238
  year: 2022
  ident: 10.1016/j.matdes.2023.111950_b0215
  article-title: Verification of asymptotic homogenization method developed for periodic architected materials in strain gradient continuum
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2021.111386
– volume: 19
  start-page: 1426
  issue: 9
  year: 2009
  ident: 10.1016/j.matdes.2023.111950_b0015
  article-title: Bifurcated mechanical behavior of deformed periodic porous solids
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801675
– ident: 10.1016/j.matdes.2023.111950_b0030
  doi: 10.1016/j.engfracmech.2022.108762
– volume: 202
  year: 2021
  ident: 10.1016/j.matdes.2023.111950_b0065
  article-title: Dual plateau stress of C15-type topologically close-packed lattice structures additive-manufactured by laser powder bed fusion
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.114003
– volume: 224
  year: 2022
  ident: 10.1016/j.matdes.2023.111950_b0020
  article-title: A 3D bi-material lattice concept for tailoring compressive properties
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111265
– volume: 64
  start-page: 787
  issue: 4
  year: 1997
  ident: 10.1016/j.matdes.2023.111950_b0040
  article-title: Linear elastic behavior of a low-density kelvin foam with open cells
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2788983
– volume: 470
  start-page: 20140522
  issue: 2172
  year: 2014
  ident: 10.1016/j.matdes.2023.111950_b0055
  article-title: Mechanics of elastic networks
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2014.0522
– ident: 10.1016/j.matdes.2023.111950_b0140
  doi: 10.1016/j.ijsolstr.2022.111783
– volume: 189
  year: 2021
  ident: 10.1016/j.matdes.2023.111950_b0145
  article-title: Experimental and numerical mechanical characterization of additively manufactured Ti6Al4V lattice structures considering progressive damage
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105986
– ident: 10.1016/j.matdes.2023.111950_b0165
  doi: 10.1073/pnas.2111505119
– volume: 115–116
  start-page: 61
  year: 2017
  ident: 10.1016/j.matdes.2023.111950_b0125
  article-title: Micromechanical modeling of effective elastic properties of open-cell foam
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.02.031
– ident: 10.1016/j.matdes.2023.111950_b0175
  doi: 10.1016/j.actbio.2015.10.048
– volume: 766
  year: 2019
  ident: 10.1016/j.matdes.2023.111950_b0090
  article-title: Lightweight lattice structures in selective laser melting: design, fabrication and mechanical properties
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138356
– volume: 47
  start-page: 193
  year: 2017
  ident: 10.1016/j.matdes.2023.111950_b0205
  article-title: Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.10.005
– volume: 9
  start-page: 21
  issue: 1
  year: 2013
  ident: 10.1016/j.matdes.2023.111950_b0005
  article-title: Effective elastic properties of auxetic microstructures: anisotropy and structural applications
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1007/s10999-012-9192-8
– volume: 21
  start-page: 1900571
  issue: 10
  year: 2019
  ident: 10.1016/j.matdes.2023.111950_b0095
  article-title: Effects of heat treatments on compressive deformation behaviors of lattice-structured AlSi10Mg alloy fabricated by selective laser melting
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201900571
– volume: 182
  year: 2019
  ident: 10.1016/j.matdes.2023.111950_b0160
  article-title: Architectural effect on 3D elastic properties and anisotropy of cubic lattice structures
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108059
– ident: 10.1016/j.matdes.2023.111950_b0170
  doi: 10.1016/j.matdes.2022.111254
– volume: 195
  year: 2020
  ident: 10.1016/j.matdes.2023.111950_b0110
  article-title: Understanding elastic anisotropy in diamond based lattice structures produced by laser powder bed fusion: effect of manufacturing deviations
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108971
– volume: 92
  year: 2022
  ident: 10.1016/j.matdes.2023.111950_b0135
  article-title: Computational model for low cycle fatigue analysis of lattice materials: incorporating theory of critical distance with elastoplastic homogenization
  publication-title: Eur. J. Mech. A Solids
  doi: 10.1016/j.euromechsol.2021.104480
– volume: 102
  start-page: 175
  issue: 2
  year: 2011
  ident: 10.1016/j.matdes.2023.111950_b0185
  article-title: Identifying symmetry classes of elasticity tensors using monoclinic distance function
  publication-title: J. Elast.
  doi: 10.1007/s10659-010-9272-7
– volume: 10
  start-page: 1007
  issue: 11
  year: 2020
  ident: 10.1016/j.matdes.2023.111950_b0195
  article-title: Effect of annealing on anisotropic tensile properties of Al–12%Si alloy fabricated by laser powder bed fusion
  publication-title: Crystals
  doi: 10.3390/cryst10111007
– volume: 60
  start-page: 2873
  issue: 6
  year: 2012
  ident: 10.1016/j.matdes.2023.111950_b0045
  article-title: Mechanical properties of open-cell rhombic dodecahedron cellular structures
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.01.052
– volume: 141
  start-page: 349
  issue: 2
  year: 2020
  ident: 10.1016/j.matdes.2023.111950_b0190
  article-title: Distances of stiffnesses to symmetry classes
  publication-title: J. Elast.
  doi: 10.1007/s10659-020-09787-4
– volume: 143
  start-page: Nov
  issue: 021007
  year: 2020
  ident: 10.1016/j.matdes.2023.111950_b0010
  article-title: Elasticity of anisotropic low-density lattice materials
  publication-title: J. Eng. Mater. Technol.
– volume: 753
  start-page: 31
  year: 2019
  ident: 10.1016/j.matdes.2023.111950_b0210
  article-title: Ti-6Al-4V ELI microlattice structures manufactured by electron beam melting: effect of unit cell dimensions and morphology on mechanical behaviour
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.03.014
– volume: 407
  year: 2023
  ident: 10.1016/j.matdes.2023.111950_b0220
  article-title: Second-order computational homogenisation enhanced with non-uniform body forces for non-linear cellular materials and metamaterials
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.115931
– volume: 122
  start-page: 1
  year: 2019
  ident: 10.1016/j.matdes.2023.111950_b0155
  article-title: Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: simulations & experiments
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.08.022
– volume: 157
  year: 2021
  ident: 10.1016/j.matdes.2023.111950_b0100
  article-title: Shear modulus of conventional and auxetic open-cell foam
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2021.103818
– volume: 36
  start-page: 106
  year: 2020
  ident: 10.1016/j.matdes.2023.111950_b0070
  article-title: Development of gradient microstructure in the lattice structure of AlSi10Mg alloy fabricated by selective laser melting
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.06.015
– volume: 32
  year: 2020
  ident: 10.1016/j.matdes.2023.111950_b0115
  article-title: Prediction of anisotropic mechanical properties for lattice structures
  publication-title: Addit. Manuf.
– year: 2001
  ident: 10.1016/j.matdes.2023.111950_b0035
  article-title: Effective properties of the octet-truss lattice material
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(01)00010-2
– volume: 155
  start-page: 248
  year: 2019
  ident: 10.1016/j.matdes.2023.111950_b0050
  article-title: Elastic and plastic characterization of a new developed additively manufactured functionally graded porous lattice structure: Analytical and numerical models
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2019.02.041
– volume: 199
  year: 2021
  ident: 10.1016/j.matdes.2023.111950_b0025
  article-title: Understanding and suppressing shear band formation in strut-based lattice structures manufactured by laser powder bed fusion
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109416
– volume: 4
  start-page: 1800419
  issue: 3
  year: 2019
  ident: 10.1016/j.matdes.2023.111950_b0075
  article-title: 3D-printed mechanical metamaterials with high energy absorption
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800419
– volume: 285
  year: 2022
  ident: 10.1016/j.matdes.2023.111950_b0150
  article-title: A general boundary layer corrector for the asymptotic homogenization of elastic linear composite structures
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.115091
– year: 2019
  ident: 10.1016/j.matdes.2023.111950_b0120
  article-title: Computational homogenization of heterogeneous materials with finite elements
  doi: 10.1007/978-3-030-18383-7
SSID ssj0022734
Score 2.4152405
Snippet [Display omitted] •A highly anisotropic architectured material with mechanical coupling is investigated.•Coupling parameters are numerically and experimentally...
Mechanical coupling in architectured materials has been traditionally investigated in the context of generalized continuum mechanics and is often assumed to be...
SourceID doaj
swepub
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 111950
SubjectTerms Additive manufacturing
Anisotropic elasticity
Engineering Science with specialization in Solid Mechanics
Lattice materials
Shear-normal coupling
Shear-shear coupling
Teknisk fysik med inriktning mot hållfasthetslära
Trigonal symmetry
Title Mechanical coupling and tuned anisotropic elasticity: Numerical and experimental material design for shear-normal and shear-shear interactions
URI https://dx.doi.org/10.1016/j.matdes.2023.111950
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-504555
https://doaj.org/article/39d1f276c5c24cc7802205abed16563f
Volume 230
WOSCitedRecordID wos001041987900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1873-4197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022734
  issn: 1873-4197
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022734
  issn: 1873-4197
  databaseCode: AIEXJ
  dateStart: 20181205
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUl7aE9lKZN6abJokN7NLEtW7J623yRFLr00Ja9CWmkDQ7BG3btQP9EfnM0kr04p73kYoyQ7EEzGj3ZM28I-ZZZ6USqs4RDiik5YBNdFljrpTTl0khhrAnFJsR8Xi0W8veo1BfGhEV64DhxJ0zabJkLDiXkBYCIqaHaOIu8MWyJ3jcVcjhM9UctJG2JX1eQlU-UQ9JciOzyUNA6pOrOGXoMiTn3o00pcPc_35vGJKJh47n8QN73iJHOoqT75JVrPpJ3Ix7BT-Txl8MEXpxvCqsOk2xvqG4sbTvvRf1dvVm169V9DdR5tIyB1O3_H3Texd81d6HvmOufeuGDaVIbIjyoh7Z0g8WvkwZBbhwRG8KVIu3EOiZJbA7I38uLP2dXSV9oIQGsZ5AwQBZBbo1mkFlhuOZLZqRjmkngpkqty_06z2SR2qKQlTGCa--ZnNeoP28x9pnsNavGfSE055XV0nApLS-sSytZVJA6B8KBtjKdEDbMtIKehRyLYdypIdzsVkX9KNSPivqZkGQ76j6ycOzof4pK3PZFDu3Q4C1L9ZaldlnWhIjBBFQPRyLM8I-qd7z-e7SYZwKc1_9mQYCuU6VH0mV5-BJifiVv8dUxfO2I7LXrzh2TN_DQ1pv1lLyeXV8sfk7D8ngCb_8Vlw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+coupling+and+tuned+anisotropic+elasticity%3A+Numerical+and+experimental+material+design+for+shear-normal+and+shear-shear+interactions&rft.jtitle=Materials+%26+design&rft.au=Molavitabrizi%2C+Danial&rft.au=Suzuki%2C+Asuka&rft.au=Kobashi%2C+Makoto&rft.au=Mousavi%2C+S.+Mahmoud&rft.date=2023-06-01&rft.issn=0264-1275&rft.volume=230&rft.spage=111950&rft_id=info:doi/10.1016%2Fj.matdes.2023.111950&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2023_111950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon