Data and Power Efficient Intelligence with Neuromorphic Learning Machines

The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:iScience Jg. 5; S. 52 - 68
1. Verfasser: Neftci, Emre O.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 27.07.2018
Elsevier
Schlagworte:
ISSN:2589-0042, 2589-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data. [Display omitted] Systems Neuroscience; Computer Science; Evolvable Hardware
AbstractList The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data. [Display omitted] Systems Neuroscience; Computer Science; Evolvable Hardware
The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data.The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data.
The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data. Systems Neuroscience; Computer Science; Evolvable Hardware
The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data. : Systems Neuroscience; Computer Science; Evolvable Hardware Subject Areas: Systems Neuroscience, Computer Science, Evolvable Hardware
The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data.
Author Neftci, Emre O.
AuthorAffiliation 1 Department of Cognitive Sciences, UC Irvine, Irvine, CA 92697-5100, USA
2 Department of Computer Science, UC Irvine, Irvine, CA 92697-5100, USA
AuthorAffiliation_xml – name: 2 Department of Computer Science, UC Irvine, Irvine, CA 92697-5100, USA
– name: 1 Department of Cognitive Sciences, UC Irvine, Irvine, CA 92697-5100, USA
Author_xml – sequence: 1
  givenname: Emre O.
  surname: Neftci
  fullname: Neftci, Emre O.
  email: eneftci@uci.edu
  organization: Department of Cognitive Sciences, UC Irvine, Irvine, CA 92697-5100, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30240646$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1vFCEUhompsbX2D3hh5tKbHYHhYyYxJqZW3WT9uNBrwsBhl80srMC28d_LuK1pvSgh4QTO-77hPM_RSYgBEHpJcEswEW-2rc_GtxSTvsWixQQ_QWeU98MCY0ZP7tWn6CLnLcaY1s0G8QyddrXAgokztPygi250sM33eAOpuXLOGw-hNMtQYJr8GoKB5saXTfMVDinuYtpvvGlWoFPwYd180WbjA-QX6KnTU4aL2_Mc_fx49ePy82L17dPy8v1qYTglZUEsZrLDznBre-akHBkZudbEUkHswEHoHjupjdajGAfXjYJzGEGKzkrZi-4cLY--Nuqt2ie_0-m3itqrvxcxrZVOxZsJFLN8HCTphB0p48YNmHFmpOFOU8q5qV7vjl77w7gDa-q_k54emD58CX6j1vFaCUK7nvfV4PWtQYq_DpCL2lUsdW46QDxkRUldTIphqK2v7mf9C7ljURv6Y4NJMecEThlfdPFxjvaTIljN5NVWzeTVTF5hoSr5KqX_Se_cHxW9PYqg0rr2kFSeyRuwPoEpdZz-MfkfMSbHXQ
CitedBy_id crossref_primary_10_1038_s41598_019_43423_z
crossref_primary_10_1088_1674_1056_ad8b37
crossref_primary_10_1063_1_5042243
crossref_primary_10_1039_D2RA06866D
crossref_primary_10_1063_5_0181382
crossref_primary_10_1016_j_neunet_2019_09_036
crossref_primary_10_1016_j_neunet_2019_11_022
crossref_primary_10_3389_fnins_2019_00525
crossref_primary_10_3389_fnins_2019_00666
crossref_primary_10_1038_s42256_019_0025_4
crossref_primary_10_1038_s42256_021_00306_1
crossref_primary_10_1109_JPROC_2020_3045625
crossref_primary_10_1109_TBCAS_2019_2925454
crossref_primary_10_1109_ACCESS_2020_2986490
crossref_primary_10_1002_adfm_202307729
crossref_primary_10_1088_2634_4386_ac8828
crossref_primary_10_1002_admi_201900471
crossref_primary_10_1109_TPAMI_2020_3008413
crossref_primary_10_1162_neco_a_01367
crossref_primary_10_1007_s42401_021_00102_0
crossref_primary_10_1109_TCSI_2020_3035575
crossref_primary_10_1002_admt_201800345
crossref_primary_10_1063_1_5142089
crossref_primary_10_1002_aisy_201900030
crossref_primary_10_1109_ACCESS_2020_3001296
crossref_primary_10_1109_JPROC_2023_3273520
crossref_primary_10_3389_fnins_2018_00583
crossref_primary_10_1088_2634_4386_ac4a83
Cites_doi 10.3389/fncom.2014.00159
10.1523/JNEUROSCI.18-24-10464.1998
10.1162/neco.2007.19.10.2581
10.3389/fninf.2014.00076
10.3389/fnins.2011.00073
10.3389/fnins.2013.00272
10.1109/JPROC.2014.2304638
10.3389/fnins.2012.00090
10.1109/5.58356
10.1038/ncomms12611
10.1038/ncomms13276
10.1016/j.conb.2010.03.007
10.1016/j.neunet.2016.07.006
10.1073/pnas.1313114110
10.1073/pnas.152343099
10.1109/JPROC.2014.2314454
10.3389/fnins.2016.00508
10.1016/j.neuron.2017.06.011
10.1162/neco.2006.18.6.1318
10.1038/srep28073
10.3389/fnins.2015.00141
10.1109/JPROC.2014.2313565
10.1109/JPROC.2015.2444094
10.1109/TBCAS.2017.2759700
10.1523/JNEUROSCI.4098-12.2013
10.1038/nature14539
10.1073/pnas.1303053111
10.1073/pnas.1109359109
10.3389/fnins.2016.00241
10.3389/fnins.2015.00046
10.1152/physrev.00016.2007
10.1007/s00422-011-0435-9
10.3389/fnins.2017.00324
10.1146/annurev.neuro.27.070203.144152
10.1109/TNNLS.2016.2572164
10.1126/science.1192788
10.1016/j.neuron.2013.11.030
10.1007/s11263-014-0788-3
10.1073/pnas.1604850113
10.1038/nn1561
10.1109/TNN.2010.2083685
10.1016/j.conb.2004.07.007
10.1162/neco.2007.19.6.1468
10.1162/NECO_a_00052
10.1111/j.1551-6708.1987.tb00862.x
10.1016/j.conb.2014.02.002
10.1126/science.1254642
10.1109/TBCAS.2016.2579164
10.1162/neco.2007.19.11.2881
10.1109/TCSI.2016.2616169
10.1162/NECO_a_00182
10.1109/MM.2018.112130359
10.1016/j.neunet.2017.08.008
10.1109/TNN.2009.2023653
10.1073/pnas.132651299
10.1073/pnas.1212083110
10.1146/annurev.neuro.24.1.1193
10.1007/s10827-006-7074-5
10.1017/S0140525X16001837
ContentType Journal Article
Copyright 2018 The Author
Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.
2018 The Author 2018
Copyright_xml – notice: 2018 The Author
– notice: Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.
– notice: 2018 The Author 2018
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2018.06.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2589-0042
EndPage 68
ExternalDocumentID oai_doaj_org_article_4d5b97136db245cf90454c7c5fa2255c
PMC6123858
30240646
10_1016_j_isci_2018_06_010
S2589004218300865
Genre Journal Article
Review
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-1d04730fc5dd84f77b41b5aa1d261d95e6a80f7acaab6b9f3b655ebe763d77863
IEDL.DBID DOA
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449732300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-0042
IngestDate Fri Oct 03 12:53:08 EDT 2025
Tue Sep 30 16:53:03 EDT 2025
Thu Jul 10 18:43:18 EDT 2025
Mon Jul 21 06:00:15 EDT 2025
Thu Nov 13 04:33:52 EST 2025
Tue Nov 18 22:19:05 EST 2025
Thu Jul 20 20:17:11 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Systems Neuroscience
Evolvable Hardware
Computer Science
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-1d04730fc5dd84f77b41b5aa1d261d95e6a80f7acaab6b9f3b655ebe763d77863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/4d5b97136db245cf90454c7c5fa2255c
PMID 30240646
PQID 2111147699
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_4d5b97136db245cf90454c7c5fa2255c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6123858
proquest_miscellaneous_2111147699
pubmed_primary_30240646
crossref_citationtrail_10_1016_j_isci_2018_06_010
crossref_primary_10_1016_j_isci_2018_06_010
elsevier_sciencedirect_doi_10_1016_j_isci_2018_06_010
PublicationCentury 2000
PublicationDate 2018-07-27
PublicationDateYYYYMMDD 2018-07-27
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Benjamin, Gao, McQuinn, Choudhary, Chandrasekaran, Bussat, Alvarez-Icaza, Arthur, Merolla, Boahen (bib12) 2014; 102
Baldi, Sadowski, Lu (bib9) 2017; 95
Gerstner, Kistler (bib38) 2002
Neftci, Chicca, Indiveri, Douglas (bib68) 2011; 23
Azghadi, Iannella, Al-Sarawi, Indiveri, Abbott (bib6) 2014; 102
Mead (bib62) 1990; 78
Sjöström, Rancz, Roth, Häusser (bib95) 2008; 88
Neftci, Augustine, Paul, Detorakis (bib71) 2017; 11
Mostafa, Ramesh, Cauwenberghs (bib66) 2017
Yosinski, Clune, Bengio, Lipson (bib104) 2014
Chicca, Stefanini, Indiveri (bib22) 2013
Galluppi, Lagorce, Stromatias, Pfeiffer, Plana, Furber, Benosman (bib37) 2014; 8
Zhu, Awatramani, Rover, Zambreno (bib108) 2016
Andrychowicz, Denil, Gomez, Hoffman, Pfau, Schaul, Shillingford, de Freitas (bib3) 2016
Bi, Poo (bib15) 1998; 18
Pfister, Toyoizumi, Barber, Gerstner (bib78) 2006; 18
Furber, Galluppi, Temple, Plana (bib36) 2014; 102
Severa, Vineyard, Dellana, Aimone (bib91) 2018
Huayaney, Nease, Chicca (bib43) 2016; 63
Simoncelli, Olshausen (bib94) 2001; 24
Schuman, Potok, Patton, Birdwell, Dean, Rose, Plank (bib87) 2017
Blum, Dietmüller, Milde, Conradt, Indiveri, Sandamirskaya (bib16) 2017
Grossberg (bib40) 1987; 11
Olshausen, Field (bib74) 2004; 14
Jolivet, Rauch, Lüscher, Gerstner (bib50) 2006; 21
Baldi, Sadowski, Lu (bib8) 2016
Russell, Orchard, Dong, Mihalas, Niebur, Tapson, Etienne-Cummings (bib83) 2010; 21
von Neumann (bib102) 1958
O’Connor, Neil, Liu, Delbruck, Pfeiffer (bib73) 2013; 7
Shouval, Bear, Cooper (bib92) 2002; 99
Srinivasa, Cho (bib97) 2014; 8
Dean, Schuman, Birdwell (bib27) 2014
Urbanczik, Senn (bib100) 2014; 81
Zambrano, Bohte (bib105) 2016
Pfeil, Potjans, Schrader, Potjans, Schemmel, Diesmann, Meier (bib77) 2012; 6
Hassabis, Kumaran, Summerfield, Botvinick (bib41) 2017; 95
Serrano-Gotarredona, Oster, Lichtsteiner, Linares-Barranco, Paz-Vicente, Gómez-Rodriguez, Camunas-Mesa, Berner, Rivas-Perez, Delbruck (bib90) 2009; 20
Hochreiter, Younger, Conwell (bib42) 2001
Park, Ha, Yu, Neftci, Cauwenberghs (bib75) 2014
LeCun, Bottou (bib55) 2004; 16
Baldi, Sadowski (bib7) 2016; 83
Serb, Bill, Khiat, Berdan, Legenstein, Prodromakis (bib89) 2016; 7
Eliasmith, Anderson (bib32) 2004
Davies, Srinivasa, Lin, Chinya, Joshi, Lines, Wild, Wang (bib26) 2018
Moradi, Qiao, Stefanini, Indiveri (bib64) 2018
Neftci, Pedroni, Joshi, Al-Shedivat, Cauwenberghs (bib72) 2016; 10
Detorakis, Sheik, Augustine, Paul, Pedroni, Dutt, Krichmar, Cauwenberghs, Neftci (bib29) 2017
Neftci, Binas, Rutishauser, Chicca, Indiveri, Douglas (bib69) 2013; 110
Cao, Chen, Khosla (bib20) 2015; 113
Merolla, Arthur, Alvarez-Icaza, Cassidy, Sawada, Akopyan, Jackson, Imam, Guo, Nakamura (bib63) 2014; 345
Sompolinsky (bib96) 2014; 25
Qiao, Mostafa, Corradi, Osswald, Stefanini, Sumislawska, Indiveri (bib79) 2015; 9
Seide, Fu, Droppo, Li, Yu (bib88) 2014
Douglas, Martin (bib31) 2004; 27
Bruederle, Petrovici, Vogginger, Ehrlich, Pfeil, Millner, Grübl, Wendt, Müller, Schwartz (bib19) 2011; 104
Rastegari, Ordonez, Redmon, Farhadi (bib80) 2016
Arthur, Boahen (bib5) 2006
Zenke, Gerstner (bib107) 2014; 8
Lake, Ullman, Tenenbaum, Gershman (bib54) 2017; 40
Courbariaux, Hubara, Soudry, El-Yaniv, Bengio (bib25) 2016
Kansky, Silver, Mély, Eldawy, Lázaro-Gredilla, Lou, Dorfman, Sidor, Phoenix, George (bib51) 2017
Huh, Sejnowski (bib44) 2017
Liu, Delbruck (bib60) 2010; 20
Bergstra, Breuleux, Bastien, Lamblin, Pascanu, Desjardins, Turian, Warde-Farley, Bengio (bib14) 2010; volume 4
Marr (bib61) 1982
Venkataramani, Ranjan, Roy, Raghunathan (bib101) 2014
Lee, Delbruck, Pfeiffer (bib57) 2016; 10
Cireşan, Meier, Gambardella, Schmidhuber (bib23) 2010; 22
Diehl, Neil, Binas, Cook, Liu, Pfeiffer (bib30) 2015
Schemmel, Brüderle, Grübl, Hock, Meier, Millner (bib84) 2010
Brea, Senn, Pfister (bib18) 2013; 33
LeCun, Bengio, Hinton (bib56) 2015; 521
Rumelhart, McClelland (bib82) 1987; volume 1
Bengio, Bengio, Cloutier (bib11) 1990
Hunsberger, Eliasmith (bib45) 2015
Neftci, Indiveri (bib67) 2010
Cauwenberghs (bib21) 2013; 110
Bartolozzi, Indiveri (bib10) 2007; 19
Dethier, Nuyujukian, Eliasmith, Stewart, Elassaad, Shenoy, Boahen (bib28) 2011; 2011
Abarbanel, Huerta, Rabinovich (bib2) 2002; 99
Brader, Senn, Fusi (bib17) 2007; 19
Courbariaux, Bengio, David (bib24) 2014
Florian (bib34) 2007; 19
Isomura, Toyoizumi (bib48) 2016; 6
Jaderberg, Czarnecki, Osindero, Vinyals, Graves, Kavukcuoglu (bib49) 2016
Lengyel, Kwag, Paulsen, Dayan (bib58) 2005; 8
Indiveri, Linares-Barranco, Hamilton, van Schaik, Etienne-Cummings, Delbruck, Liu, Dudek, Häfliger, Renaud (bib47) 2011; 5
Zenke, Ganguli (bib106) 2017
Shouval, Wang, Wittenberg (bib93) 2010; 4
Indiveri, Liu (bib46) 2015; 103
Tenenbaum, Kemp, Griffiths, Goodman (bib99) 2011; 331
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin (bib1) 2016
Sterling, Laughlin (bib98) 2015
Schmidhuber, J. (1987). Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-… hook. PhD thesis (Technische Universität München).
Schmuker, Pfeil, Nawrot (bib86) 2014; 111
Park, Yu, Joshi, Maier, Cauwenberghs (bib76) 2017; 28
Lillicrap, Cownden, Tweed, Akerman (bib59) 2016; 7
Esser, Merolla, Arthur, Cassidy, Appuswamy, Andreopoulos, Berg, McKinstry, Melano, Barch (bib33) 2016; 113
Anwani, Rajendran (bib4) 2015
Lagorce, Ieng, Clady, Pfeiffer, Benosman (bib52) 2015; 9
Yin, Venkataramanaiah, Chen, Krishnamurthy, Cao, Chakrabarti, Seo (bib103) 2017
Friedmann, Schemmel, Grübl, Hartel, Hock, Meier (bib35) 2017; 11
Mostafa (bib65) 2016
Lahiri, Ganguli (bib53) 2013
Benna, Fusi (bib13) 2015
Rounds, Scott, Alexander, De Jong, Nitz, Krichmar (bib81) 2016
Neftci, Das, Pedroni, Kreutz-Delgado, Cauwenberghs (bib70) 2014; 7
Graupner, Brunel (bib39) 2012
Lee (10.1016/j.isci.2018.06.010_bib57) 2016; 10
Srinivasa (10.1016/j.isci.2018.06.010_bib97) 2014; 8
Zhu (10.1016/j.isci.2018.06.010_bib108) 2016
Mead (10.1016/j.isci.2018.06.010_bib62) 1990; 78
Neftci (10.1016/j.isci.2018.06.010_bib67) 2010
Shouval (10.1016/j.isci.2018.06.010_bib92) 2002; 99
Olshausen (10.1016/j.isci.2018.06.010_bib74) 2004; 14
Seide (10.1016/j.isci.2018.06.010_bib88) 2014
Courbariaux (10.1016/j.isci.2018.06.010_bib25) 2016
Zambrano (10.1016/j.isci.2018.06.010_bib105) 2016
Neftci (10.1016/j.isci.2018.06.010_bib71) 2017; 11
Shouval (10.1016/j.isci.2018.06.010_bib93) 2010; 4
Lahiri (10.1016/j.isci.2018.06.010_bib53) 2013
Baldi (10.1016/j.isci.2018.06.010_bib7) 2016; 83
Park (10.1016/j.isci.2018.06.010_bib75) 2014
Kansky (10.1016/j.isci.2018.06.010_bib51) 2017
Bruederle (10.1016/j.isci.2018.06.010_bib19) 2011; 104
Azghadi (10.1016/j.isci.2018.06.010_bib6) 2014; 102
Serb (10.1016/j.isci.2018.06.010_bib89) 2016; 7
Sompolinsky (10.1016/j.isci.2018.06.010_bib96) 2014; 25
Simoncelli (10.1016/j.isci.2018.06.010_bib94) 2001; 24
Qiao (10.1016/j.isci.2018.06.010_bib79) 2015; 9
Bi (10.1016/j.isci.2018.06.010_bib15) 1998; 18
Sjöström (10.1016/j.isci.2018.06.010_bib95) 2008; 88
Neftci (10.1016/j.isci.2018.06.010_bib69) 2013; 110
Indiveri (10.1016/j.isci.2018.06.010_bib46) 2015; 103
Neftci (10.1016/j.isci.2018.06.010_bib72) 2016; 10
Cao (10.1016/j.isci.2018.06.010_bib20) 2015; 113
Bergstra (10.1016/j.isci.2018.06.010_bib14) 2010; volume 4
Benjamin (10.1016/j.isci.2018.06.010_bib12) 2014; 102
Jolivet (10.1016/j.isci.2018.06.010_bib50) 2006; 21
Gerstner (10.1016/j.isci.2018.06.010_bib38) 2002
Esser (10.1016/j.isci.2018.06.010_bib33) 2016; 113
von Neumann (10.1016/j.isci.2018.06.010_bib102) 1958
Chicca (10.1016/j.isci.2018.06.010_bib22) 2013
Furber (10.1016/j.isci.2018.06.010_bib36) 2014; 102
Davies (10.1016/j.isci.2018.06.010_bib26) 2018
Hassabis (10.1016/j.isci.2018.06.010_bib41) 2017; 95
Isomura (10.1016/j.isci.2018.06.010_bib48) 2016; 6
Neftci (10.1016/j.isci.2018.06.010_bib68) 2011; 23
Schmuker (10.1016/j.isci.2018.06.010_bib86) 2014; 111
Detorakis (10.1016/j.isci.2018.06.010_bib29) 2017
Lillicrap (10.1016/j.isci.2018.06.010_bib59) 2016; 7
Bartolozzi (10.1016/j.isci.2018.06.010_bib10) 2007; 19
Brea (10.1016/j.isci.2018.06.010_bib18) 2013; 33
Serrano-Gotarredona (10.1016/j.isci.2018.06.010_bib90) 2009; 20
Rastegari (10.1016/j.isci.2018.06.010_bib80) 2016
Mostafa (10.1016/j.isci.2018.06.010_bib66) 2017
Brader (10.1016/j.isci.2018.06.010_bib17) 2007; 19
Urbanczik (10.1016/j.isci.2018.06.010_bib100) 2014; 81
Tenenbaum (10.1016/j.isci.2018.06.010_bib99) 2011; 331
Florian (10.1016/j.isci.2018.06.010_bib34) 2007; 19
Pfister (10.1016/j.isci.2018.06.010_bib78) 2006; 18
Jaderberg (10.1016/j.isci.2018.06.010_bib49) 2016
Mostafa (10.1016/j.isci.2018.06.010_bib65) 2016
10.1016/j.isci.2018.06.010_bib85
Sterling (10.1016/j.isci.2018.06.010_bib98) 2015
Benna (10.1016/j.isci.2018.06.010_bib13) 2015
Rounds (10.1016/j.isci.2018.06.010_bib81) 2016
Dethier (10.1016/j.isci.2018.06.010_bib28) 2011; 2011
Baldi (10.1016/j.isci.2018.06.010_bib9) 2017; 95
O’Connor (10.1016/j.isci.2018.06.010_bib73) 2013; 7
Rumelhart (10.1016/j.isci.2018.06.010_bib82) 1987; volume 1
Andrychowicz (10.1016/j.isci.2018.06.010_bib3) 2016
Merolla (10.1016/j.isci.2018.06.010_bib63) 2014; 345
Hochreiter (10.1016/j.isci.2018.06.010_bib42) 2001
Indiveri (10.1016/j.isci.2018.06.010_bib47) 2011; 5
Galluppi (10.1016/j.isci.2018.06.010_bib37) 2014; 8
Baldi (10.1016/j.isci.2018.06.010_bib8) 2016
Eliasmith (10.1016/j.isci.2018.06.010_bib32) 2004
Huh (10.1016/j.isci.2018.06.010_bib44) 2017
Neftci (10.1016/j.isci.2018.06.010_bib70) 2014; 7
Venkataramani (10.1016/j.isci.2018.06.010_bib101) 2014
Diehl (10.1016/j.isci.2018.06.010_bib30) 2015
Cauwenberghs (10.1016/j.isci.2018.06.010_bib21) 2013; 110
Zenke (10.1016/j.isci.2018.06.010_bib106) 2017
Zenke (10.1016/j.isci.2018.06.010_bib107) 2014; 8
Russell (10.1016/j.isci.2018.06.010_bib83) 2010; 21
Liu (10.1016/j.isci.2018.06.010_bib60) 2010; 20
Huayaney (10.1016/j.isci.2018.06.010_bib43) 2016; 63
Schemmel (10.1016/j.isci.2018.06.010_bib84) 2010
Lengyel (10.1016/j.isci.2018.06.010_bib58) 2005; 8
Lake (10.1016/j.isci.2018.06.010_bib54) 2017; 40
Cireşan (10.1016/j.isci.2018.06.010_bib23) 2010; 22
Grossberg (10.1016/j.isci.2018.06.010_bib40) 1987; 11
Friedmann (10.1016/j.isci.2018.06.010_bib35) 2017; 11
Abadi (10.1016/j.isci.2018.06.010_bib1) 2016
Severa (10.1016/j.isci.2018.06.010_bib91) 2018
LeCun (10.1016/j.isci.2018.06.010_bib56) 2015; 521
Moradi (10.1016/j.isci.2018.06.010_bib64) 2018
Courbariaux (10.1016/j.isci.2018.06.010_bib24) 2014
Douglas (10.1016/j.isci.2018.06.010_bib31) 2004; 27
Blum (10.1016/j.isci.2018.06.010_bib16) 2017
Abarbanel (10.1016/j.isci.2018.06.010_bib2) 2002; 99
Graupner (10.1016/j.isci.2018.06.010_bib39) 2012
LeCun (10.1016/j.isci.2018.06.010_bib55) 2004; 16
Marr (10.1016/j.isci.2018.06.010_bib61) 1982
Yosinski (10.1016/j.isci.2018.06.010_bib104) 2014
Bengio (10.1016/j.isci.2018.06.010_bib11) 1990
Anwani (10.1016/j.isci.2018.06.010_bib4) 2015
Dean (10.1016/j.isci.2018.06.010_bib27) 2014
Yin (10.1016/j.isci.2018.06.010_bib103) 2017
Hunsberger (10.1016/j.isci.2018.06.010_bib45) 2015
Arthur (10.1016/j.isci.2018.06.010_bib5) 2006
Pfeil (10.1016/j.isci.2018.06.010_bib77) 2012; 6
Lagorce (10.1016/j.isci.2018.06.010_bib52) 2015; 9
Schuman (10.1016/j.isci.2018.06.010_bib87) 2017
Park (10.1016/j.isci.2018.06.010_bib76) 2017; 28
References_xml – volume: 95
  start-page: 110
  year: 2017
  end-page: 133
  ident: bib9
  article-title: Learning in the machine: the symmetries of the deep learning channel
  publication-title: Neural Netw.
– volume: 99
  start-page: 10132
  year: 2002
  end-page: 10137
  ident: bib2
  article-title: Dynamical model of long-term synaptic plasticity
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 1947
  year: 2010
  end-page: 1950
  ident: bib84
  article-title: A wafer-scale neuromorphic hardware system for large-scale neural modeling
  publication-title: Proceedings of 2010 IEEE International Symposiumon Circuits and Systems
– volume: 19
  start-page: 2881
  year: 2007
  end-page: 2912
  ident: bib17
  article-title: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics
  publication-title: Neural Comput.
– volume: 78
  start-page: 1629
  year: 1990
  end-page: 1636
  ident: bib62
  article-title: Neuromorphic electronic systems
  publication-title: Proc. IEEE
– volume: 11
  start-page: 128
  year: 2017
  end-page: 142
  ident: bib35
  article-title: Demonstrating hybrid learning in a flexible neuromorphic hardware system
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– year: 2013
  ident: bib22
  article-title: Neuromorphic electronic circuits for building autonomous cognitive systems
  publication-title: Proc. IEEE
– start-page: 235
  year: 2014
  end-page: 239
  ident: bib88
  article-title: On parallelizability of stochastic gradient descent for speech dnns
  publication-title: Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
– volume: 7
  start-page: 12611
  year: 2016
  ident: bib89
  article-title: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
  publication-title: Nat. Commun.
– volume: 21
  start-page: 35
  year: 2006
  end-page: 49
  ident: bib50
  article-title: Predicting spike timing of neocortical pyramidal neurons by simple threshold models
  publication-title: J. Comput. Neurosci.
– volume: 104
  start-page: 263
  year: 2011
  end-page: 296
  ident: bib19
  article-title: A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems
  publication-title: Biol. Cybern.
– volume: 18
  start-page: 1318
  year: 2006
  end-page: 1348
  ident: bib78
  article-title: Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning
  publication-title: Neural Comput.
– start-page: 537
  year: 2016
  end-page: 547
  ident: bib81
  article-title: An evolutionary framework for replicating neurophysiological data with spiking neural networks
  publication-title: International Conference on Parallel Problem Solving from Nature
– year: 1982
  ident: bib61
  article-title: Vision: A Computational Investigation
– volume: 113
  start-page: 11441
  year: 2016
  end-page: 11446
  ident: bib33
  article-title: Convolutional networks for fast, energy-efficient neuromorphic computing
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 217
  year: 2004
  ident: bib55
  article-title: Large scale online learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: bib105
  article-title: Fast and efficient asynchronous neural computation with adapting spiking neural networks
  publication-title: arXiv
– volume: 21
  start-page: 1950
  year: 2010
  end-page: 1962
  ident: bib83
  article-title: Optimization methods for spiking neurons and networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 110
  start-page: 15512
  year: 2013
  end-page: 15513
  ident: bib21
  article-title: Reverse engineering the cognitive brain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 419
  year: 2004
  end-page: 451
  ident: bib31
  article-title: Neural circuits of the neocortex
  publication-title: Annu. Rev. Neurosci.
– volume: 110
  start-page: E3468
  year: 2013
  end-page: E3476
  ident: bib69
  article-title: Synthesizing cognition in neuromorphic electronic systems
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 508
  year: 2016
  ident: bib57
  article-title: Training deep spiking neural networks using backpropagation
  publication-title: Front. Neurosci.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib56
  article-title: Deep learning
  publication-title: Nature
– year: 2014
  ident: bib24
  article-title: Low precision arithmetic for deep learning
  publication-title: arXiv
– year: 2016
  ident: bib49
  article-title: Decoupled neural interfaces using synthetic gradients
  publication-title: arXiv
– year: 1958
  ident: bib102
  article-title: The Computer and the Brain
– volume: 8
  start-page: 76
  year: 2014
  ident: bib107
  article-title: Limits to high-speed simulations of spiking neural networks using general-purpose computers
  publication-title: Front. Neuroinform.
– volume: 63
  start-page: 2189
  year: 2016
  end-page: 2199
  ident: bib43
  article-title: Learning in silicon beyond STDP: a neuromorphic implementation of multi-factor synaptic plasticity with calcium-based dynamics
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
– volume: 22
  start-page: 3207
  year: 2010
  end-page: 3220
  ident: bib23
  article-title: Deep, big, simple neural nets for handwritten digit recognition
  publication-title: Neural Comput.
– year: 2014
  ident: bib75
  article-title: 65k-neuron 73-mevents/s 22-pj/event asynchronous micro-pipelined integrate-and-fire array transceiver
  publication-title: Biomedical Circuits and Systems Conference (BioCAS)
– volume: 9
  year: 2015
  ident: bib52
  article-title: Spatiotemporal features for asynchronous event-based data
  publication-title: Front. Neurosci.
– start-page: 75
  year: 2006
  end-page: 82
  ident: bib5
  article-title: Learning in silicon: timing is everything
  publication-title: Advances in Neural Information Processing Systems 18
– volume: 28
  start-page: 2408
  year: 2017
  end-page: 2422
  ident: bib76
  article-title: Hierarchical address event routing for reconfigurable large-scale neuromorphic systems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2018
  ident: bib26
  article-title: Loihi: a neuromorphic manycore processor with on-chip learning
  publication-title: IEEE Micro
– volume: 5
  start-page: 1
  year: 2011
  end-page: 23
  ident: bib47
  article-title: Neuromorphic silicon neuron circuits
  publication-title: Front. Neurosci.
– start-page: 265
  year: 2016
  end-page: 283
  ident: bib1
  article-title: TensorFlow: a system for large-scale machine learning
  publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation OSDI 16
– volume: 18
  start-page: 10464
  year: 1998
  end-page: 10472
  ident: bib15
  article-title: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type
  publication-title: J. Neurosci.
– volume: 40
  start-page: e253
  year: 2017
  ident: bib54
  article-title: Building machines that learn and think like people
  publication-title: Behav. Brain Sci.
– year: 2016
  ident: bib25
  article-title: Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or -1
  publication-title: arXiv
– volume: 8
  start-page: 1677
  year: 2005
  ident: bib58
  article-title: Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves
  publication-title: Nat. Neurosci.
– volume: 7
  year: 2013
  ident: bib73
  article-title: Real-time classification and sensor fusion with a spiking deep belief network
  publication-title: Front. Neurosci.
– year: 2004
  ident: bib32
  article-title: Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems
– reference: Schmidhuber, J. (1987). Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-… hook. PhD thesis (Technische Universität München).
– volume: 102
  start-page: 699
  year: 2014
  end-page: 716
  ident: bib12
  article-title: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations
  publication-title: Proc. IEEE
– start-page: 129
  year: 2014
  end-page: 141
  ident: bib27
  article-title: Dynamic adaptive neural network array
  publication-title: Unconventional Computation and NaturalComputation UCNC
– start-page: 3320
  year: 2014
  end-page: 3328
  ident: bib104
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 25
  year: 2014
  ident: bib96
  article-title: Computational neuroscience: beyond the local circuit
  publication-title: Curr. Opin. Neurobiol.
– start-page: 27
  year: 2014
  end-page: 32
  ident: bib101
  article-title: Axnn: energy-efficient neuromorphic systems using approximate computing
  publication-title: 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)
– year: 2018
  ident: bib91
  article-title: Whetstone: an accessible, platform-independent method for training spiking deep neural networks for neuromorphic processors
  publication-title: SysML Conference
– volume: 95
  start-page: 245
  year: 2017
  end-page: 258
  ident: bib41
  article-title: Neuroscience-inspired artificial intelligence
  publication-title: Neuron
– volume: 8
  start-page: 429
  year: 2014
  ident: bib37
  article-title: A framework for plasticity implementation on the spinnaker neural architecture
  publication-title: Front. Neurosci.
– volume: 23
  start-page: 2457
  year: 2011
  end-page: 2497
  ident: bib68
  article-title: A systematic method for configuring VLSI networks of spiking neurons
  publication-title: Neural Comput.
– volume: 20
  start-page: 288
  year: 2010
  end-page: 295
  ident: bib60
  article-title: Neuromorphic sensory systems
  publication-title: Curr. Opin. Neurobiol.
– volume: 33
  start-page: 9565
  year: 2013
  end-page: 9575
  ident: bib18
  article-title: Matching recall and storage in sequence learning with spiking neural networks
  publication-title: J. Neurosci.
– volume: 113
  start-page: 54
  year: 2015
  end-page: 66
  ident: bib20
  article-title: Spiking deep convolutional neural networks for energy-efficient object recognition
  publication-title: Int. J. Comput. Vis.
– volume: 14
  start-page: 481
  year: 2004
  end-page: 487
  ident: bib74
  article-title: Sparse coding of sensory inputs
  publication-title: Curr. Opin. Neurobiol.
– year: 2017
  ident: bib16
  article-title: A neuromorphic controller for a robotic vehicle equipped with a dynamic vision sensor
  publication-title: Proceedings of Robotics: Science and Systems
– volume: 6
  start-page: 28073
  year: 2016
  ident: bib48
  article-title: A local learning rule for independent component analysis
  publication-title: Sci. Rep.
– year: 2015
  ident: bib13
  article-title: Computational principles of biological memory
  publication-title: arXiv
– start-page: 512
  year: 2016
  end-page: 519
  ident: bib108
  article-title: ONAC: optimal number of active cores detector for energy efficient GPU computing
  publication-title: 2016 IEEE 34th International Conference on Computer Design (ICCD)
– volume: 331
  start-page: 1279
  year: 2011
  end-page: 1285
  ident: bib99
  article-title: How to grow a mind: statistics, structure, and abstraction
  publication-title: Science
– start-page: 262
  year: 2010
  end-page: 265
  ident: bib67
  article-title: A device mismatch compensation method for VLSI neural networks
  publication-title: Biomedical Circuits and Systems Conference (BioCAS)
– volume: 11
  start-page: 23
  year: 1987
  end-page: 63
  ident: bib40
  article-title: Competitive learning: from interactive activation to adaptive resonance
  publication-title: Cogn. Sci.
– year: 2017
  ident: bib44
  article-title: Gradient descent for spiking neural networks
  publication-title: arXiv
– start-page: 1034
  year: 2013
  end-page: 1042
  ident: bib53
  article-title: A memory frontier for complex synapses
  publication-title: Advances in Neural Information Processing Systems 26
– year: 2012
  ident: bib39
  article-title: Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 19
  year: 2010
  ident: bib93
  article-title: Spike timing dependent plasticity: a consequence of more fundamental learning rules
  publication-title: Front. Comput. Neurosci.
– start-page: 3981
  year: 2016
  end-page: 3989
  ident: bib3
  article-title: Learning to learn by gradient descent by gradient descent
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2011
  start-page: 2213
  year: 2011
  end-page: 2221
  ident: bib28
  article-title: A brain-machine interface operating with a real-time spiking neural network control algorithm
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 525
  year: 2016
  end-page: 542
  ident: bib80
  article-title: Xnor-net: imagenet classification using binary convolutional neural networks
  publication-title: European Conference on Computer Vision
– volume: 99
  start-page: 10831
  year: 2002
  end-page: 10836
  ident: bib92
  article-title: A unified model of NMDA receptor-dependent bidirectional synaptic plasticity
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2017
  ident: bib51
  article-title: Schema networks: zero-shot transfer with a generative causal model of intuitive physics
  publication-title: arXiv
– volume: 20
  start-page: 1417
  year: 2009
  end-page: 1438
  ident: bib90
  article-title: CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory–processing–learning–actuating system for high-speed visual object recognition and tracking
  publication-title: IEEE Trans. Neural Netw.
– volume: 8
  start-page: 159
  year: 2014
  ident: bib97
  article-title: Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity
  publication-title: Front. Comput. Neurosci.
– year: 1990
  ident: bib11
  article-title: Learning a Synaptic Learning Rule
– volume: 83
  start-page: 51
  year: 2016
  end-page: 74
  ident: bib7
  article-title: A theory of local learning, the learning channel, and the optimality of backpropagation
  publication-title: Neural Netw.
– volume: 111
  start-page: 2081
  year: 2014
  end-page: 2086
  ident: bib86
  article-title: A neuromorphic network for generic multivariate data classification
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  year: 2016
  ident: bib72
  article-title: Stochastic synapses enable efficient brain-inspired learning machines
  publication-title: Front. Neurosci.
– year: 2015
  ident: bib45
  article-title: Spiking deep networks with lif neurons
  publication-title: arXiv
– volume: 102
  start-page: 652
  year: 2014
  end-page: 665
  ident: bib36
  article-title: The spinnaker project
  publication-title: Proc. IEEE
– year: 2017
  ident: bib66
  article-title: Deep supervised learning using local errors
  publication-title: arXiv
– volume: 19
  start-page: 2581
  year: 2007
  end-page: 2603
  ident: bib10
  article-title: Synaptic dynamics in analog VLSI
  publication-title: Neural Comput.
– year: 2018
  ident: bib64
  article-title: A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (dynaps)
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– year: 2016
  ident: bib65
  article-title: Supervised learning based on temporal coding in spiking neural networks
  publication-title: arXiv
– start-page: 87
  year: 2001
  end-page: 94
  ident: bib42
  article-title: Learning to learn using gradient descent
  publication-title: International Conference on Artificial Neural Networks
– volume: 81
  start-page: 521
  year: 2014
  end-page: 528
  ident: bib100
  article-title: Learning by the dendritic prediction of somatic spiking
  publication-title: Neuron
– volume: volume 4
  start-page: 3
  year: 2010
  end-page: 10
  ident: bib14
  article-title: Theano: a CPU and GPU math expression compiler in python
  publication-title: Proceedings of the 9th Python in Science Conference
– volume: 88
  start-page: 769
  year: 2008
  end-page: 840
  ident: bib95
  article-title: Dendritic excitability and synaptic plasticity
  publication-title: Physiol. Rev.
– volume: 9
  start-page: 141
  year: 2015
  ident: bib79
  article-title: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses
  publication-title: Front. Neurosci.
– volume: 19
  start-page: 1468
  year: 2007
  end-page: 1502
  ident: bib34
  article-title: Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity
  publication-title: Neural Comput.
– volume: 345
  start-page: 668
  year: 2014
  end-page: 673
  ident: bib63
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
– start-page: 1
  year: 2015
  end-page: 8
  ident: bib30
  article-title: Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing
  publication-title: 2015 International Joint Conference on NeuralNetworks (IJCNN)
– year: 2002
  ident: bib38
  article-title: Spiking Neuron Models. Single Neurons, Populations, Plasticity
– volume: 6
  year: 2012
  ident: bib77
  article-title: Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware
  publication-title: Front. Neurosci.
– volume: 24
  start-page: 1193
  year: 2001
  end-page: 1216
  ident: bib94
  article-title: Natural image statistics and neural representation
  publication-title: Annu. Rev. Neurosci.
– year: 2016
  ident: bib8
  article-title: Learning in the machine: random backpropagation and the learning channel
  publication-title: arXiv
– volume: 102
  start-page: 717
  year: 2014
  end-page: 737
  ident: bib6
  article-title: Spike-based synaptic plasticity in silicon: design, implementation, application, and challenges
  publication-title: Proc. IEEE
– year: 2017
  ident: bib29
  article-title: Neural and synaptic array transceiver: a brain-inspired computing framework for embedded learning
  publication-title: arXiv
– volume: volume 1
  year: 1987
  ident: bib82
  publication-title: Parallel Distributed Processing
– volume: 7
  start-page: 13276
  year: 2016
  ident: bib59
  article-title: Random synaptic feedback weights support error backpropagation for deep learning
  publication-title: Nat. Commun.
– volume: 7
  year: 2014
  ident: bib70
  article-title: Event-driven contrastive divergence for spiking neuromorphic systems
  publication-title: Front. Neurosci.
– volume: 11
  start-page: 324
  year: 2017
  ident: bib71
  article-title: Event-driven random back-propagation: enabling neuromorphic deep learning machines
  publication-title: Front. Neurosci.
– year: 2015
  ident: bib98
  article-title: Principles of Neural Design
– year: 2017
  ident: bib103
  article-title: Algorithm and hardware design of discrete-time spiking neural networks based on back propagation with binary activations
  publication-title: arXiv
– volume: 103
  start-page: 1379
  year: 2015
  end-page: 1397
  ident: bib46
  article-title: Memory and information processing in neuromorphic systems
  publication-title: Proc. IEEE
– year: 2017
  ident: bib87
  article-title: A survey of neuromorphic computing and neural networks in hardware
  publication-title: arXiv
– start-page: 1
  year: 2015
  end-page: 8
  ident: bib4
  article-title: NormAD-normalized approximate descent based supervised learning rule for spiking neurons
  publication-title: 2015 International Joint Conference on NeuralNetworks (IJCNN)
– year: 2017
  ident: bib106
  article-title: Superspike: supervised learning in multi-layer spiking neural networks
  publication-title: arXiv
– year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib29
  article-title: Neural and synaptic array transceiver: a brain-inspired computing framework for embedded learning
  publication-title: arXiv
– volume: 8
  start-page: 159
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib97
  article-title: Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2014.00159
– volume: 18
  start-page: 10464
  year: 1998
  ident: 10.1016/j.isci.2018.06.010_bib15
  article-title: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– volume: 19
  start-page: 2581
  year: 2007
  ident: 10.1016/j.isci.2018.06.010_bib10
  article-title: Synaptic dynamics in analog VLSI
  publication-title: Neural Comput.
  doi: 10.1162/neco.2007.19.10.2581
– volume: 8
  start-page: 76
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib107
  article-title: Limits to high-speed simulations of spiking neural networks using general-purpose computers
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2014.00076
– year: 2015
  ident: 10.1016/j.isci.2018.06.010_bib13
  article-title: Computational principles of biological memory
  publication-title: arXiv
– volume: 5
  start-page: 1
  year: 2011
  ident: 10.1016/j.isci.2018.06.010_bib47
  article-title: Neuromorphic silicon neuron circuits
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2011.00073
– year: 2002
  ident: 10.1016/j.isci.2018.06.010_bib38
– year: 2004
  ident: 10.1016/j.isci.2018.06.010_bib32
– volume: 7
  year: 2013
  ident: 10.1016/j.isci.2018.06.010_bib73
  article-title: Real-time classification and sensor fusion with a spiking deep belief network
  publication-title: Front. Neurosci.
– volume: 7
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib70
  article-title: Event-driven contrastive divergence for spiking neuromorphic systems
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2013.00272
– start-page: 525
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib80
  article-title: Xnor-net: imagenet classification using binary convolutional neural networks
– volume: 102
  start-page: 652
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib36
  article-title: The spinnaker project
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2304638
– volume: 6
  year: 2012
  ident: 10.1016/j.isci.2018.06.010_bib77
  article-title: Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00090
– start-page: 537
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib81
  article-title: An evolutionary framework for replicating neurophysiological data with spiking neural networks
– volume: 78
  start-page: 1629
  year: 1990
  ident: 10.1016/j.isci.2018.06.010_bib62
  article-title: Neuromorphic electronic systems
  publication-title: Proc. IEEE
  doi: 10.1109/5.58356
– start-page: 1947
  year: 2010
  ident: 10.1016/j.isci.2018.06.010_bib84
  article-title: A wafer-scale neuromorphic hardware system for large-scale neural modeling
– volume: 7
  start-page: 12611
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib89
  article-title: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12611
– volume: 7
  start-page: 13276
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib59
  article-title: Random synaptic feedback weights support error backpropagation for deep learning
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13276
– volume: 20
  start-page: 288
  year: 2010
  ident: 10.1016/j.isci.2018.06.010_bib60
  article-title: Neuromorphic sensory systems
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2010.03.007
– volume: 8
  start-page: 429
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib37
  article-title: A framework for plasticity implementation on the spinnaker neural architecture
  publication-title: Front. Neurosci.
– volume: 83
  start-page: 51
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib7
  article-title: A theory of local learning, the learning channel, and the optimality of backpropagation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2016.07.006
– volume: 110
  start-page: 15512
  year: 2013
  ident: 10.1016/j.isci.2018.06.010_bib21
  article-title: Reverse engineering the cognitive brain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1313114110
– volume: 99
  start-page: 10831
  year: 2002
  ident: 10.1016/j.isci.2018.06.010_bib92
  article-title: A unified model of NMDA receptor-dependent bidirectional synaptic plasticity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.152343099
– volume: 102
  start-page: 717
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib6
  article-title: Spike-based synaptic plasticity in silicon: design, implementation, application, and challenges
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2314454
– year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib75
  article-title: 65k-neuron 73-mevents/s 22-pj/event asynchronous micro-pipelined integrate-and-fire array transceiver
– start-page: 265
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib1
  article-title: TensorFlow: a system for large-scale machine learning
– volume: 10
  start-page: 508
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib57
  article-title: Training deep spiking neural networks using backpropagation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00508
– start-page: 262
  year: 2010
  ident: 10.1016/j.isci.2018.06.010_bib67
  article-title: A device mismatch compensation method for VLSI neural networks
– year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib8
  article-title: Learning in the machine: random backpropagation and the learning channel
  publication-title: arXiv
– start-page: 1
  year: 2015
  ident: 10.1016/j.isci.2018.06.010_bib4
  article-title: NormAD-normalized approximate descent based supervised learning rule for spiking neurons
– volume: 95
  start-page: 245
  year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib41
  article-title: Neuroscience-inspired artificial intelligence
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.06.011
– year: 2013
  ident: 10.1016/j.isci.2018.06.010_bib22
  article-title: Neuromorphic electronic circuits for building autonomous cognitive systems
  publication-title: Proc. IEEE
– volume: 18
  start-page: 1318
  year: 2006
  ident: 10.1016/j.isci.2018.06.010_bib78
  article-title: Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.6.1318
– volume: 6
  start-page: 28073
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib48
  article-title: A local learning rule for independent component analysis
  publication-title: Sci. Rep.
  doi: 10.1038/srep28073
– volume: 9
  start-page: 141
  year: 2015
  ident: 10.1016/j.isci.2018.06.010_bib79
  article-title: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00141
– volume: 102
  start-page: 699
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib12
  article-title: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2313565
– year: 1982
  ident: 10.1016/j.isci.2018.06.010_bib61
– year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib106
  article-title: Superspike: supervised learning in multi-layer spiking neural networks
  publication-title: arXiv
– volume: 103
  start-page: 1379
  year: 2015
  ident: 10.1016/j.isci.2018.06.010_bib46
  article-title: Memory and information processing in neuromorphic systems
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2444094
– volume: 2011
  start-page: 2213
  year: 2011
  ident: 10.1016/j.isci.2018.06.010_bib28
  article-title: A brain-machine interface operating with a real-time spiking neural network control algorithm
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.isci.2018.06.010_bib85
– year: 1958
  ident: 10.1016/j.isci.2018.06.010_bib102
– year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib51
  article-title: Schema networks: zero-shot transfer with a generative causal model of intuitive physics
  publication-title: arXiv
– year: 2018
  ident: 10.1016/j.isci.2018.06.010_bib64
  article-title: A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (dynaps)
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2017.2759700
– start-page: 129
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib27
  article-title: Dynamic adaptive neural network array
– volume: 33
  start-page: 9565
  year: 2013
  ident: 10.1016/j.isci.2018.06.010_bib18
  article-title: Matching recall and storage in sequence learning with spiking neural networks
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4098-12.2013
– start-page: 3320
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib104
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.isci.2018.06.010_bib56
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2015
  ident: 10.1016/j.isci.2018.06.010_bib98
– year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib66
  article-title: Deep supervised learning using local errors
  publication-title: arXiv
– volume: 111
  start-page: 2081
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib86
  article-title: A neuromorphic network for generic multivariate data classification
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1303053111
– start-page: 1034
  year: 2013
  ident: 10.1016/j.isci.2018.06.010_bib53
  article-title: A memory frontier for complex synapses
– year: 2012
  ident: 10.1016/j.isci.2018.06.010_bib39
  article-title: Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1109359109
– volume: 16
  start-page: 217
  year: 2004
  ident: 10.1016/j.isci.2018.06.010_bib55
  article-title: Large scale online learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib72
  article-title: Stochastic synapses enable efficient brain-inspired learning machines
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00241
– year: 2018
  ident: 10.1016/j.isci.2018.06.010_bib91
  article-title: Whetstone: an accessible, platform-independent method for training spiking deep neural networks for neuromorphic processors
– year: 2015
  ident: 10.1016/j.isci.2018.06.010_bib45
  article-title: Spiking deep networks with lif neurons
  publication-title: arXiv
– start-page: 27
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib101
  article-title: Axnn: energy-efficient neuromorphic systems using approximate computing
– year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib49
  article-title: Decoupled neural interfaces using synthetic gradients
  publication-title: arXiv
– start-page: 87
  year: 2001
  ident: 10.1016/j.isci.2018.06.010_bib42
  article-title: Learning to learn using gradient descent
– start-page: 75
  year: 2006
  ident: 10.1016/j.isci.2018.06.010_bib5
  article-title: Learning in silicon: timing is everything
– year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib105
  article-title: Fast and efficient asynchronous neural computation with adapting spiking neural networks
  publication-title: arXiv
– start-page: 235
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib88
  article-title: On parallelizability of stochastic gradient descent for speech dnns
– volume: 9
  year: 2015
  ident: 10.1016/j.isci.2018.06.010_bib52
  article-title: Spatiotemporal features for asynchronous event-based data
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00046
– volume: volume 4
  start-page: 3
  year: 2010
  ident: 10.1016/j.isci.2018.06.010_bib14
  article-title: Theano: a CPU and GPU math expression compiler in python
– year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib24
  article-title: Low precision arithmetic for deep learning
  publication-title: arXiv
– volume: 88
  start-page: 769
  year: 2008
  ident: 10.1016/j.isci.2018.06.010_bib95
  article-title: Dendritic excitability and synaptic plasticity
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00016.2007
– volume: 104
  start-page: 263
  year: 2011
  ident: 10.1016/j.isci.2018.06.010_bib19
  article-title: A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-011-0435-9
– year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib103
  article-title: Algorithm and hardware design of discrete-time spiking neural networks based on back propagation with binary activations
  publication-title: arXiv
– volume: 11
  start-page: 324
  year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib71
  article-title: Event-driven random back-propagation: enabling neuromorphic deep learning machines
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00324
– start-page: 1
  year: 2015
  ident: 10.1016/j.isci.2018.06.010_bib30
  article-title: Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing
– volume: 27
  start-page: 419
  year: 2004
  ident: 10.1016/j.isci.2018.06.010_bib31
  article-title: Neural circuits of the neocortex
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.27.070203.144152
– year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib87
  article-title: A survey of neuromorphic computing and neural networks in hardware
  publication-title: arXiv
– volume: 28
  start-page: 2408
  year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib76
  article-title: Hierarchical address event routing for reconfigurable large-scale neuromorphic systems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2572164
– volume: 331
  start-page: 1279
  year: 2011
  ident: 10.1016/j.isci.2018.06.010_bib99
  article-title: How to grow a mind: statistics, structure, and abstraction
  publication-title: Science
  doi: 10.1126/science.1192788
– year: 1990
  ident: 10.1016/j.isci.2018.06.010_bib11
– volume: 81
  start-page: 521
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib100
  article-title: Learning by the dendritic prediction of somatic spiking
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.11.030
– volume: 113
  start-page: 54
  year: 2015
  ident: 10.1016/j.isci.2018.06.010_bib20
  article-title: Spiking deep convolutional neural networks for energy-efficient object recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0788-3
– year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib44
  article-title: Gradient descent for spiking neural networks
  publication-title: arXiv
– volume: 113
  start-page: 11441
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib33
  article-title: Convolutional networks for fast, energy-efficient neuromorphic computing
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1604850113
– volume: 8
  start-page: 1677
  year: 2005
  ident: 10.1016/j.isci.2018.06.010_bib58
  article-title: Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1561
– volume: 21
  start-page: 1950
  year: 2010
  ident: 10.1016/j.isci.2018.06.010_bib83
  article-title: Optimization methods for spiking neurons and networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2083685
– volume: 14
  start-page: 481
  year: 2004
  ident: 10.1016/j.isci.2018.06.010_bib74
  article-title: Sparse coding of sensory inputs
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2004.07.007
– volume: 4
  start-page: 19
  year: 2010
  ident: 10.1016/j.isci.2018.06.010_bib93
  article-title: Spike timing dependent plasticity: a consequence of more fundamental learning rules
  publication-title: Front. Comput. Neurosci.
– year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib16
  article-title: A neuromorphic controller for a robotic vehicle equipped with a dynamic vision sensor
– volume: 19
  start-page: 1468
  year: 2007
  ident: 10.1016/j.isci.2018.06.010_bib34
  article-title: Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity
  publication-title: Neural Comput.
  doi: 10.1162/neco.2007.19.6.1468
– volume: 22
  start-page: 3207
  year: 2010
  ident: 10.1016/j.isci.2018.06.010_bib23
  article-title: Deep, big, simple neural nets for handwritten digit recognition
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00052
– volume: 11
  start-page: 23
  year: 1987
  ident: 10.1016/j.isci.2018.06.010_bib40
  article-title: Competitive learning: from interactive activation to adaptive resonance
  publication-title: Cogn. Sci.
  doi: 10.1111/j.1551-6708.1987.tb00862.x
– volume: 25
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib96
  article-title: Computational neuroscience: beyond the local circuit
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2014.02.002
– volume: 345
  start-page: 668
  year: 2014
  ident: 10.1016/j.isci.2018.06.010_bib63
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
  doi: 10.1126/science.1254642
– volume: 11
  start-page: 128
  year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib35
  article-title: Demonstrating hybrid learning in a flexible neuromorphic hardware system
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2016.2579164
– volume: 19
  start-page: 2881
  year: 2007
  ident: 10.1016/j.isci.2018.06.010_bib17
  article-title: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics
  publication-title: Neural Comput.
  doi: 10.1162/neco.2007.19.11.2881
– volume: 63
  start-page: 2189
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib43
  article-title: Learning in silicon beyond STDP: a neuromorphic implementation of multi-factor synaptic plasticity with calcium-based dynamics
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2016.2616169
– start-page: 512
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib108
  article-title: ONAC: optimal number of active cores detector for energy efficient GPU computing
– year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib25
  article-title: Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or -1
  publication-title: arXiv
– volume: 23
  start-page: 2457
  year: 2011
  ident: 10.1016/j.isci.2018.06.010_bib68
  article-title: A systematic method for configuring VLSI networks of spiking neurons
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00182
– year: 2018
  ident: 10.1016/j.isci.2018.06.010_bib26
  article-title: Loihi: a neuromorphic manycore processor with on-chip learning
  publication-title: IEEE Micro
  doi: 10.1109/MM.2018.112130359
– volume: 95
  start-page: 110
  year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib9
  article-title: Learning in the machine: the symmetries of the deep learning channel
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.08.008
– volume: 20
  start-page: 1417
  year: 2009
  ident: 10.1016/j.isci.2018.06.010_bib90
  article-title: CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory–processing–learning–actuating system for high-speed visual object recognition and tracking
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2023653
– volume: 99
  start-page: 10132
  year: 2002
  ident: 10.1016/j.isci.2018.06.010_bib2
  article-title: Dynamical model of long-term synaptic plasticity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.132651299
– start-page: 3981
  year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib3
  article-title: Learning to learn by gradient descent by gradient descent
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: 10.1016/j.isci.2018.06.010_bib65
  article-title: Supervised learning based on temporal coding in spiking neural networks
  publication-title: arXiv
– volume: 110
  start-page: E3468
  year: 2013
  ident: 10.1016/j.isci.2018.06.010_bib69
  article-title: Synthesizing cognition in neuromorphic electronic systems
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1212083110
– volume: 24
  start-page: 1193
  year: 2001
  ident: 10.1016/j.isci.2018.06.010_bib94
  article-title: Natural image statistics and neural representation
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.24.1.1193
– volume: 21
  start-page: 35
  year: 2006
  ident: 10.1016/j.isci.2018.06.010_bib50
  article-title: Predicting spike timing of neocortical pyramidal neurons by simple threshold models
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-006-7074-5
– volume: 40
  start-page: e253
  year: 2017
  ident: 10.1016/j.isci.2018.06.010_bib54
  article-title: Building machines that learn and think like people
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X16001837
– volume: volume 1
  year: 1987
  ident: 10.1016/j.isci.2018.06.010_bib82
SSID ssj0002002496
Score 2.3239775
SecondaryResourceType review_article
Snippet The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 52
SubjectTerms Computer Science
Evolvable Hardware
Review
Systems Neuroscience
Title Data and Power Efficient Intelligence with Neuromorphic Learning Machines
URI https://dx.doi.org/10.1016/j.isci.2018.06.010
https://www.ncbi.nlm.nih.gov/pubmed/30240646
https://www.proquest.com/docview/2111147699
https://pubmed.ncbi.nlm.nih.gov/PMC6123858
https://doaj.org/article/4d5b97136db245cf90454c7c5fa2255c
Volume 5
WOSCitedRecordID wos000449732300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEIBHUHHggqh4hUdlJG4oItn4eSy0FZWg6gGkvVnjF2wFWdTd8vvrcbKrbCuVC9c8nHg8tmfs8TcA73wjTVToavRNrHmXXG2SSnW2PUITOa1jFLr-F3V2pudzcz5J9UUxYQMeeBDcBx6EM9mTorxHXPhkiBnnlRcJsyoKT6Nvo8zEmboo22uEwiuZ5QTFBGXVHE_MDMFddOKV4roGeCcdn53MSgXevzM53TY-b8ZQTialk8fwaLQm2eFQi324F_sncHqEa2TYB3ZOKdDYcaFE5ALY6YS_yWgFlhU2x-9lFvbCs5G1-oN9LRGWcfUUvp8cf_v0uR4zJtSeEhPUbWh47rLJixA0T0o53jqB2IbsKAUjokTdJIUe0UlnUuekELkZ8yATCCTXPYO9ftnHF8C0T7KVonOYBMdupn2XnUWcxWxfKB2xgnYjMetHnDhltfhlN3FjF5akbEnKloLn2qaC99t3_gwwjTuf_kgNsX2SQNjlQlYPO6qH_Zd6VCA2zWhHm2KwFXJRizs__nbT5jZ3ONpFwT4ur1Z2RpMMV9KYCp4POrD9xY6IcZLLCtSOduzUYfdOv_hZoN6EwdFCv_wflX4FD6kqtAQ9U69hb315Fd_AA_93vVhdHsB9NdcHpb9cA4PnF9g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+and+Power+Efficient+Intelligence+with+Neuromorphic+Learning+Machines&rft.jtitle=iScience&rft.au=Neftci%2C+Emre+O.&rft.date=2018-07-27&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=5&rft.spage=52&rft.epage=68&rft_id=info:doi/10.1016%2Fj.isci.2018.06.010&rft.externalDocID=S2589004218300865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon