Data and Power Efficient Intelligence with Neuromorphic Learning Machines
The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine le...
Gespeichert in:
| Veröffentlicht in: | iScience Jg. 5; S. 52 - 68 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
27.07.2018
Elsevier |
| Schlagworte: | |
| ISSN: | 2589-0042, 2589-0042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data.
[Display omitted]
Systems Neuroscience; Computer Science; Evolvable Hardware |
|---|---|
| AbstractList | The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data.
[Display omitted]
Systems Neuroscience; Computer Science; Evolvable Hardware The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data.The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data. The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data. Systems Neuroscience; Computer Science; Evolvable Hardware The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data. : Systems Neuroscience; Computer Science; Evolvable Hardware Subject Areas: Systems Neuroscience, Computer Science, Evolvable Hardware The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that emulates the biological processes of the brain on an electronic substrate. This review explores interdisciplinary approaches anchored in machine learning theory that enable the applicability of neuromorphic technologies to real-world, human-centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up approaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware for proactive learning of real-world data. |
| Author | Neftci, Emre O. |
| AuthorAffiliation | 1 Department of Cognitive Sciences, UC Irvine, Irvine, CA 92697-5100, USA 2 Department of Computer Science, UC Irvine, Irvine, CA 92697-5100, USA |
| AuthorAffiliation_xml | – name: 2 Department of Computer Science, UC Irvine, Irvine, CA 92697-5100, USA – name: 1 Department of Cognitive Sciences, UC Irvine, Irvine, CA 92697-5100, USA |
| Author_xml | – sequence: 1 givenname: Emre O. surname: Neftci fullname: Neftci, Emre O. email: eneftci@uci.edu organization: Department of Cognitive Sciences, UC Irvine, Irvine, CA 92697-5100, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30240646$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV1vFCEUhompsbX2D3hh5tKbHYHhYyYxJqZW3WT9uNBrwsBhl80srMC28d_LuK1pvSgh4QTO-77hPM_RSYgBEHpJcEswEW-2rc_GtxSTvsWixQQ_QWeU98MCY0ZP7tWn6CLnLcaY1s0G8QyddrXAgokztPygi250sM33eAOpuXLOGw-hNMtQYJr8GoKB5saXTfMVDinuYtpvvGlWoFPwYd180WbjA-QX6KnTU4aL2_Mc_fx49ePy82L17dPy8v1qYTglZUEsZrLDznBre-akHBkZudbEUkHswEHoHjupjdajGAfXjYJzGEGKzkrZi-4cLY--Nuqt2ie_0-m3itqrvxcxrZVOxZsJFLN8HCTphB0p48YNmHFmpOFOU8q5qV7vjl77w7gDa-q_k54emD58CX6j1vFaCUK7nvfV4PWtQYq_DpCL2lUsdW46QDxkRUldTIphqK2v7mf9C7ljURv6Y4NJMecEThlfdPFxjvaTIljN5NVWzeTVTF5hoSr5KqX_Se_cHxW9PYqg0rr2kFSeyRuwPoEpdZz-MfkfMSbHXQ |
| CitedBy_id | crossref_primary_10_1038_s41598_019_43423_z crossref_primary_10_1088_1674_1056_ad8b37 crossref_primary_10_1063_1_5042243 crossref_primary_10_1039_D2RA06866D crossref_primary_10_1063_5_0181382 crossref_primary_10_1016_j_neunet_2019_09_036 crossref_primary_10_1016_j_neunet_2019_11_022 crossref_primary_10_3389_fnins_2019_00525 crossref_primary_10_3389_fnins_2019_00666 crossref_primary_10_1038_s42256_019_0025_4 crossref_primary_10_1038_s42256_021_00306_1 crossref_primary_10_1109_JPROC_2020_3045625 crossref_primary_10_1109_TBCAS_2019_2925454 crossref_primary_10_1109_ACCESS_2020_2986490 crossref_primary_10_1002_adfm_202307729 crossref_primary_10_1088_2634_4386_ac8828 crossref_primary_10_1002_admi_201900471 crossref_primary_10_1109_TPAMI_2020_3008413 crossref_primary_10_1162_neco_a_01367 crossref_primary_10_1007_s42401_021_00102_0 crossref_primary_10_1109_TCSI_2020_3035575 crossref_primary_10_1002_admt_201800345 crossref_primary_10_1063_1_5142089 crossref_primary_10_1002_aisy_201900030 crossref_primary_10_1109_ACCESS_2020_3001296 crossref_primary_10_1109_JPROC_2023_3273520 crossref_primary_10_3389_fnins_2018_00583 crossref_primary_10_1088_2634_4386_ac4a83 |
| Cites_doi | 10.3389/fncom.2014.00159 10.1523/JNEUROSCI.18-24-10464.1998 10.1162/neco.2007.19.10.2581 10.3389/fninf.2014.00076 10.3389/fnins.2011.00073 10.3389/fnins.2013.00272 10.1109/JPROC.2014.2304638 10.3389/fnins.2012.00090 10.1109/5.58356 10.1038/ncomms12611 10.1038/ncomms13276 10.1016/j.conb.2010.03.007 10.1016/j.neunet.2016.07.006 10.1073/pnas.1313114110 10.1073/pnas.152343099 10.1109/JPROC.2014.2314454 10.3389/fnins.2016.00508 10.1016/j.neuron.2017.06.011 10.1162/neco.2006.18.6.1318 10.1038/srep28073 10.3389/fnins.2015.00141 10.1109/JPROC.2014.2313565 10.1109/JPROC.2015.2444094 10.1109/TBCAS.2017.2759700 10.1523/JNEUROSCI.4098-12.2013 10.1038/nature14539 10.1073/pnas.1303053111 10.1073/pnas.1109359109 10.3389/fnins.2016.00241 10.3389/fnins.2015.00046 10.1152/physrev.00016.2007 10.1007/s00422-011-0435-9 10.3389/fnins.2017.00324 10.1146/annurev.neuro.27.070203.144152 10.1109/TNNLS.2016.2572164 10.1126/science.1192788 10.1016/j.neuron.2013.11.030 10.1007/s11263-014-0788-3 10.1073/pnas.1604850113 10.1038/nn1561 10.1109/TNN.2010.2083685 10.1016/j.conb.2004.07.007 10.1162/neco.2007.19.6.1468 10.1162/NECO_a_00052 10.1111/j.1551-6708.1987.tb00862.x 10.1016/j.conb.2014.02.002 10.1126/science.1254642 10.1109/TBCAS.2016.2579164 10.1162/neco.2007.19.11.2881 10.1109/TCSI.2016.2616169 10.1162/NECO_a_00182 10.1109/MM.2018.112130359 10.1016/j.neunet.2017.08.008 10.1109/TNN.2009.2023653 10.1073/pnas.132651299 10.1073/pnas.1212083110 10.1146/annurev.neuro.24.1.1193 10.1007/s10827-006-7074-5 10.1017/S0140525X16001837 |
| ContentType | Journal Article |
| Copyright | 2018 The Author Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved. 2018 The Author 2018 |
| Copyright_xml | – notice: 2018 The Author – notice: Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved. – notice: 2018 The Author 2018 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.isci.2018.06.010 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2589-0042 |
| EndPage | 68 |
| ExternalDocumentID | oai_doaj_org_article_4d5b97136db245cf90454c7c5fa2255c PMC6123858 30240646 10_1016_j_isci_2018_06_010 S2589004218300865 |
| Genre | Journal Article Review |
| GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c521t-1d04730fc5dd84f77b41b5aa1d261d95e6a80f7acaab6b9f3b655ebe763d77863 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449732300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2589-0042 |
| IngestDate | Fri Oct 03 12:53:08 EDT 2025 Tue Sep 30 16:53:03 EDT 2025 Thu Jul 10 18:43:18 EDT 2025 Mon Jul 21 06:00:15 EDT 2025 Thu Nov 13 04:33:52 EST 2025 Tue Nov 18 22:19:05 EST 2025 Thu Jul 20 20:17:11 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Systems Neuroscience Evolvable Hardware Computer Science |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c521t-1d04730fc5dd84f77b41b5aa1d261d95e6a80f7acaab6b9f3b655ebe763d77863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://doaj.org/article/4d5b97136db245cf90454c7c5fa2255c |
| PMID | 30240646 |
| PQID | 2111147699 |
| PQPubID | 23479 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4d5b97136db245cf90454c7c5fa2255c pubmedcentral_primary_oai_pubmedcentral_nih_gov_6123858 proquest_miscellaneous_2111147699 pubmed_primary_30240646 crossref_citationtrail_10_1016_j_isci_2018_06_010 crossref_primary_10_1016_j_isci_2018_06_010 elsevier_sciencedirect_doi_10_1016_j_isci_2018_06_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-27 |
| PublicationDateYYYYMMDD | 2018-07-27 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | iScience |
| PublicationTitleAlternate | iScience |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Benjamin, Gao, McQuinn, Choudhary, Chandrasekaran, Bussat, Alvarez-Icaza, Arthur, Merolla, Boahen (bib12) 2014; 102 Baldi, Sadowski, Lu (bib9) 2017; 95 Gerstner, Kistler (bib38) 2002 Neftci, Chicca, Indiveri, Douglas (bib68) 2011; 23 Azghadi, Iannella, Al-Sarawi, Indiveri, Abbott (bib6) 2014; 102 Mead (bib62) 1990; 78 Sjöström, Rancz, Roth, Häusser (bib95) 2008; 88 Neftci, Augustine, Paul, Detorakis (bib71) 2017; 11 Mostafa, Ramesh, Cauwenberghs (bib66) 2017 Yosinski, Clune, Bengio, Lipson (bib104) 2014 Chicca, Stefanini, Indiveri (bib22) 2013 Galluppi, Lagorce, Stromatias, Pfeiffer, Plana, Furber, Benosman (bib37) 2014; 8 Zhu, Awatramani, Rover, Zambreno (bib108) 2016 Andrychowicz, Denil, Gomez, Hoffman, Pfau, Schaul, Shillingford, de Freitas (bib3) 2016 Bi, Poo (bib15) 1998; 18 Pfister, Toyoizumi, Barber, Gerstner (bib78) 2006; 18 Furber, Galluppi, Temple, Plana (bib36) 2014; 102 Severa, Vineyard, Dellana, Aimone (bib91) 2018 Huayaney, Nease, Chicca (bib43) 2016; 63 Simoncelli, Olshausen (bib94) 2001; 24 Schuman, Potok, Patton, Birdwell, Dean, Rose, Plank (bib87) 2017 Blum, Dietmüller, Milde, Conradt, Indiveri, Sandamirskaya (bib16) 2017 Grossberg (bib40) 1987; 11 Olshausen, Field (bib74) 2004; 14 Jolivet, Rauch, Lüscher, Gerstner (bib50) 2006; 21 Baldi, Sadowski, Lu (bib8) 2016 Russell, Orchard, Dong, Mihalas, Niebur, Tapson, Etienne-Cummings (bib83) 2010; 21 von Neumann (bib102) 1958 O’Connor, Neil, Liu, Delbruck, Pfeiffer (bib73) 2013; 7 Shouval, Bear, Cooper (bib92) 2002; 99 Srinivasa, Cho (bib97) 2014; 8 Dean, Schuman, Birdwell (bib27) 2014 Urbanczik, Senn (bib100) 2014; 81 Zambrano, Bohte (bib105) 2016 Pfeil, Potjans, Schrader, Potjans, Schemmel, Diesmann, Meier (bib77) 2012; 6 Hassabis, Kumaran, Summerfield, Botvinick (bib41) 2017; 95 Serrano-Gotarredona, Oster, Lichtsteiner, Linares-Barranco, Paz-Vicente, Gómez-Rodriguez, Camunas-Mesa, Berner, Rivas-Perez, Delbruck (bib90) 2009; 20 Hochreiter, Younger, Conwell (bib42) 2001 Park, Ha, Yu, Neftci, Cauwenberghs (bib75) 2014 LeCun, Bottou (bib55) 2004; 16 Baldi, Sadowski (bib7) 2016; 83 Serb, Bill, Khiat, Berdan, Legenstein, Prodromakis (bib89) 2016; 7 Eliasmith, Anderson (bib32) 2004 Davies, Srinivasa, Lin, Chinya, Joshi, Lines, Wild, Wang (bib26) 2018 Moradi, Qiao, Stefanini, Indiveri (bib64) 2018 Neftci, Pedroni, Joshi, Al-Shedivat, Cauwenberghs (bib72) 2016; 10 Detorakis, Sheik, Augustine, Paul, Pedroni, Dutt, Krichmar, Cauwenberghs, Neftci (bib29) 2017 Neftci, Binas, Rutishauser, Chicca, Indiveri, Douglas (bib69) 2013; 110 Cao, Chen, Khosla (bib20) 2015; 113 Merolla, Arthur, Alvarez-Icaza, Cassidy, Sawada, Akopyan, Jackson, Imam, Guo, Nakamura (bib63) 2014; 345 Sompolinsky (bib96) 2014; 25 Qiao, Mostafa, Corradi, Osswald, Stefanini, Sumislawska, Indiveri (bib79) 2015; 9 Seide, Fu, Droppo, Li, Yu (bib88) 2014 Douglas, Martin (bib31) 2004; 27 Bruederle, Petrovici, Vogginger, Ehrlich, Pfeil, Millner, Grübl, Wendt, Müller, Schwartz (bib19) 2011; 104 Rastegari, Ordonez, Redmon, Farhadi (bib80) 2016 Arthur, Boahen (bib5) 2006 Zenke, Gerstner (bib107) 2014; 8 Lake, Ullman, Tenenbaum, Gershman (bib54) 2017; 40 Courbariaux, Hubara, Soudry, El-Yaniv, Bengio (bib25) 2016 Kansky, Silver, Mély, Eldawy, Lázaro-Gredilla, Lou, Dorfman, Sidor, Phoenix, George (bib51) 2017 Huh, Sejnowski (bib44) 2017 Liu, Delbruck (bib60) 2010; 20 Bergstra, Breuleux, Bastien, Lamblin, Pascanu, Desjardins, Turian, Warde-Farley, Bengio (bib14) 2010; volume 4 Marr (bib61) 1982 Venkataramani, Ranjan, Roy, Raghunathan (bib101) 2014 Lee, Delbruck, Pfeiffer (bib57) 2016; 10 Cireşan, Meier, Gambardella, Schmidhuber (bib23) 2010; 22 Diehl, Neil, Binas, Cook, Liu, Pfeiffer (bib30) 2015 Schemmel, Brüderle, Grübl, Hock, Meier, Millner (bib84) 2010 Brea, Senn, Pfister (bib18) 2013; 33 LeCun, Bengio, Hinton (bib56) 2015; 521 Rumelhart, McClelland (bib82) 1987; volume 1 Bengio, Bengio, Cloutier (bib11) 1990 Hunsberger, Eliasmith (bib45) 2015 Neftci, Indiveri (bib67) 2010 Cauwenberghs (bib21) 2013; 110 Bartolozzi, Indiveri (bib10) 2007; 19 Dethier, Nuyujukian, Eliasmith, Stewart, Elassaad, Shenoy, Boahen (bib28) 2011; 2011 Abarbanel, Huerta, Rabinovich (bib2) 2002; 99 Brader, Senn, Fusi (bib17) 2007; 19 Courbariaux, Bengio, David (bib24) 2014 Florian (bib34) 2007; 19 Isomura, Toyoizumi (bib48) 2016; 6 Jaderberg, Czarnecki, Osindero, Vinyals, Graves, Kavukcuoglu (bib49) 2016 Lengyel, Kwag, Paulsen, Dayan (bib58) 2005; 8 Indiveri, Linares-Barranco, Hamilton, van Schaik, Etienne-Cummings, Delbruck, Liu, Dudek, Häfliger, Renaud (bib47) 2011; 5 Zenke, Ganguli (bib106) 2017 Shouval, Wang, Wittenberg (bib93) 2010; 4 Indiveri, Liu (bib46) 2015; 103 Tenenbaum, Kemp, Griffiths, Goodman (bib99) 2011; 331 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin (bib1) 2016 Sterling, Laughlin (bib98) 2015 Schmidhuber, J. (1987). Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-… hook. PhD thesis (Technische Universität München). Schmuker, Pfeil, Nawrot (bib86) 2014; 111 Park, Yu, Joshi, Maier, Cauwenberghs (bib76) 2017; 28 Lillicrap, Cownden, Tweed, Akerman (bib59) 2016; 7 Esser, Merolla, Arthur, Cassidy, Appuswamy, Andreopoulos, Berg, McKinstry, Melano, Barch (bib33) 2016; 113 Anwani, Rajendran (bib4) 2015 Lagorce, Ieng, Clady, Pfeiffer, Benosman (bib52) 2015; 9 Yin, Venkataramanaiah, Chen, Krishnamurthy, Cao, Chakrabarti, Seo (bib103) 2017 Friedmann, Schemmel, Grübl, Hartel, Hock, Meier (bib35) 2017; 11 Mostafa (bib65) 2016 Lahiri, Ganguli (bib53) 2013 Benna, Fusi (bib13) 2015 Rounds, Scott, Alexander, De Jong, Nitz, Krichmar (bib81) 2016 Neftci, Das, Pedroni, Kreutz-Delgado, Cauwenberghs (bib70) 2014; 7 Graupner, Brunel (bib39) 2012 Lee (10.1016/j.isci.2018.06.010_bib57) 2016; 10 Srinivasa (10.1016/j.isci.2018.06.010_bib97) 2014; 8 Zhu (10.1016/j.isci.2018.06.010_bib108) 2016 Mead (10.1016/j.isci.2018.06.010_bib62) 1990; 78 Neftci (10.1016/j.isci.2018.06.010_bib67) 2010 Shouval (10.1016/j.isci.2018.06.010_bib92) 2002; 99 Olshausen (10.1016/j.isci.2018.06.010_bib74) 2004; 14 Seide (10.1016/j.isci.2018.06.010_bib88) 2014 Courbariaux (10.1016/j.isci.2018.06.010_bib25) 2016 Zambrano (10.1016/j.isci.2018.06.010_bib105) 2016 Neftci (10.1016/j.isci.2018.06.010_bib71) 2017; 11 Shouval (10.1016/j.isci.2018.06.010_bib93) 2010; 4 Lahiri (10.1016/j.isci.2018.06.010_bib53) 2013 Baldi (10.1016/j.isci.2018.06.010_bib7) 2016; 83 Park (10.1016/j.isci.2018.06.010_bib75) 2014 Kansky (10.1016/j.isci.2018.06.010_bib51) 2017 Bruederle (10.1016/j.isci.2018.06.010_bib19) 2011; 104 Azghadi (10.1016/j.isci.2018.06.010_bib6) 2014; 102 Serb (10.1016/j.isci.2018.06.010_bib89) 2016; 7 Sompolinsky (10.1016/j.isci.2018.06.010_bib96) 2014; 25 Simoncelli (10.1016/j.isci.2018.06.010_bib94) 2001; 24 Qiao (10.1016/j.isci.2018.06.010_bib79) 2015; 9 Bi (10.1016/j.isci.2018.06.010_bib15) 1998; 18 Sjöström (10.1016/j.isci.2018.06.010_bib95) 2008; 88 Neftci (10.1016/j.isci.2018.06.010_bib69) 2013; 110 Indiveri (10.1016/j.isci.2018.06.010_bib46) 2015; 103 Neftci (10.1016/j.isci.2018.06.010_bib72) 2016; 10 Cao (10.1016/j.isci.2018.06.010_bib20) 2015; 113 Bergstra (10.1016/j.isci.2018.06.010_bib14) 2010; volume 4 Benjamin (10.1016/j.isci.2018.06.010_bib12) 2014; 102 Jolivet (10.1016/j.isci.2018.06.010_bib50) 2006; 21 Gerstner (10.1016/j.isci.2018.06.010_bib38) 2002 Esser (10.1016/j.isci.2018.06.010_bib33) 2016; 113 von Neumann (10.1016/j.isci.2018.06.010_bib102) 1958 Chicca (10.1016/j.isci.2018.06.010_bib22) 2013 Furber (10.1016/j.isci.2018.06.010_bib36) 2014; 102 Davies (10.1016/j.isci.2018.06.010_bib26) 2018 Hassabis (10.1016/j.isci.2018.06.010_bib41) 2017; 95 Isomura (10.1016/j.isci.2018.06.010_bib48) 2016; 6 Neftci (10.1016/j.isci.2018.06.010_bib68) 2011; 23 Schmuker (10.1016/j.isci.2018.06.010_bib86) 2014; 111 Detorakis (10.1016/j.isci.2018.06.010_bib29) 2017 Lillicrap (10.1016/j.isci.2018.06.010_bib59) 2016; 7 Bartolozzi (10.1016/j.isci.2018.06.010_bib10) 2007; 19 Brea (10.1016/j.isci.2018.06.010_bib18) 2013; 33 Serrano-Gotarredona (10.1016/j.isci.2018.06.010_bib90) 2009; 20 Rastegari (10.1016/j.isci.2018.06.010_bib80) 2016 Mostafa (10.1016/j.isci.2018.06.010_bib66) 2017 Brader (10.1016/j.isci.2018.06.010_bib17) 2007; 19 Urbanczik (10.1016/j.isci.2018.06.010_bib100) 2014; 81 Tenenbaum (10.1016/j.isci.2018.06.010_bib99) 2011; 331 Florian (10.1016/j.isci.2018.06.010_bib34) 2007; 19 Pfister (10.1016/j.isci.2018.06.010_bib78) 2006; 18 Jaderberg (10.1016/j.isci.2018.06.010_bib49) 2016 Mostafa (10.1016/j.isci.2018.06.010_bib65) 2016 10.1016/j.isci.2018.06.010_bib85 Sterling (10.1016/j.isci.2018.06.010_bib98) 2015 Benna (10.1016/j.isci.2018.06.010_bib13) 2015 Rounds (10.1016/j.isci.2018.06.010_bib81) 2016 Dethier (10.1016/j.isci.2018.06.010_bib28) 2011; 2011 Baldi (10.1016/j.isci.2018.06.010_bib9) 2017; 95 O’Connor (10.1016/j.isci.2018.06.010_bib73) 2013; 7 Rumelhart (10.1016/j.isci.2018.06.010_bib82) 1987; volume 1 Andrychowicz (10.1016/j.isci.2018.06.010_bib3) 2016 Merolla (10.1016/j.isci.2018.06.010_bib63) 2014; 345 Hochreiter (10.1016/j.isci.2018.06.010_bib42) 2001 Indiveri (10.1016/j.isci.2018.06.010_bib47) 2011; 5 Galluppi (10.1016/j.isci.2018.06.010_bib37) 2014; 8 Baldi (10.1016/j.isci.2018.06.010_bib8) 2016 Eliasmith (10.1016/j.isci.2018.06.010_bib32) 2004 Huh (10.1016/j.isci.2018.06.010_bib44) 2017 Neftci (10.1016/j.isci.2018.06.010_bib70) 2014; 7 Venkataramani (10.1016/j.isci.2018.06.010_bib101) 2014 Diehl (10.1016/j.isci.2018.06.010_bib30) 2015 Cauwenberghs (10.1016/j.isci.2018.06.010_bib21) 2013; 110 Zenke (10.1016/j.isci.2018.06.010_bib106) 2017 Zenke (10.1016/j.isci.2018.06.010_bib107) 2014; 8 Russell (10.1016/j.isci.2018.06.010_bib83) 2010; 21 Liu (10.1016/j.isci.2018.06.010_bib60) 2010; 20 Huayaney (10.1016/j.isci.2018.06.010_bib43) 2016; 63 Schemmel (10.1016/j.isci.2018.06.010_bib84) 2010 Lengyel (10.1016/j.isci.2018.06.010_bib58) 2005; 8 Lake (10.1016/j.isci.2018.06.010_bib54) 2017; 40 Cireşan (10.1016/j.isci.2018.06.010_bib23) 2010; 22 Grossberg (10.1016/j.isci.2018.06.010_bib40) 1987; 11 Friedmann (10.1016/j.isci.2018.06.010_bib35) 2017; 11 Abadi (10.1016/j.isci.2018.06.010_bib1) 2016 Severa (10.1016/j.isci.2018.06.010_bib91) 2018 LeCun (10.1016/j.isci.2018.06.010_bib56) 2015; 521 Moradi (10.1016/j.isci.2018.06.010_bib64) 2018 Courbariaux (10.1016/j.isci.2018.06.010_bib24) 2014 Douglas (10.1016/j.isci.2018.06.010_bib31) 2004; 27 Blum (10.1016/j.isci.2018.06.010_bib16) 2017 Abarbanel (10.1016/j.isci.2018.06.010_bib2) 2002; 99 Graupner (10.1016/j.isci.2018.06.010_bib39) 2012 LeCun (10.1016/j.isci.2018.06.010_bib55) 2004; 16 Marr (10.1016/j.isci.2018.06.010_bib61) 1982 Yosinski (10.1016/j.isci.2018.06.010_bib104) 2014 Bengio (10.1016/j.isci.2018.06.010_bib11) 1990 Anwani (10.1016/j.isci.2018.06.010_bib4) 2015 Dean (10.1016/j.isci.2018.06.010_bib27) 2014 Yin (10.1016/j.isci.2018.06.010_bib103) 2017 Hunsberger (10.1016/j.isci.2018.06.010_bib45) 2015 Arthur (10.1016/j.isci.2018.06.010_bib5) 2006 Pfeil (10.1016/j.isci.2018.06.010_bib77) 2012; 6 Lagorce (10.1016/j.isci.2018.06.010_bib52) 2015; 9 Schuman (10.1016/j.isci.2018.06.010_bib87) 2017 Park (10.1016/j.isci.2018.06.010_bib76) 2017; 28 |
| References_xml | – volume: 95 start-page: 110 year: 2017 end-page: 133 ident: bib9 article-title: Learning in the machine: the symmetries of the deep learning channel publication-title: Neural Netw. – volume: 99 start-page: 10132 year: 2002 end-page: 10137 ident: bib2 article-title: Dynamical model of long-term synaptic plasticity publication-title: Proc. Natl. Acad. Sci. USA – start-page: 1947 year: 2010 end-page: 1950 ident: bib84 article-title: A wafer-scale neuromorphic hardware system for large-scale neural modeling publication-title: Proceedings of 2010 IEEE International Symposiumon Circuits and Systems – volume: 19 start-page: 2881 year: 2007 end-page: 2912 ident: bib17 article-title: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics publication-title: Neural Comput. – volume: 78 start-page: 1629 year: 1990 end-page: 1636 ident: bib62 article-title: Neuromorphic electronic systems publication-title: Proc. IEEE – volume: 11 start-page: 128 year: 2017 end-page: 142 ident: bib35 article-title: Demonstrating hybrid learning in a flexible neuromorphic hardware system publication-title: IEEE Trans. Biomed. Circuits Syst. – year: 2013 ident: bib22 article-title: Neuromorphic electronic circuits for building autonomous cognitive systems publication-title: Proc. IEEE – start-page: 235 year: 2014 end-page: 239 ident: bib88 article-title: On parallelizability of stochastic gradient descent for speech dnns publication-title: Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on – volume: 7 start-page: 12611 year: 2016 ident: bib89 article-title: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses publication-title: Nat. Commun. – volume: 21 start-page: 35 year: 2006 end-page: 49 ident: bib50 article-title: Predicting spike timing of neocortical pyramidal neurons by simple threshold models publication-title: J. Comput. Neurosci. – volume: 104 start-page: 263 year: 2011 end-page: 296 ident: bib19 article-title: A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems publication-title: Biol. Cybern. – volume: 18 start-page: 1318 year: 2006 end-page: 1348 ident: bib78 article-title: Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning publication-title: Neural Comput. – start-page: 537 year: 2016 end-page: 547 ident: bib81 article-title: An evolutionary framework for replicating neurophysiological data with spiking neural networks publication-title: International Conference on Parallel Problem Solving from Nature – year: 1982 ident: bib61 article-title: Vision: A Computational Investigation – volume: 113 start-page: 11441 year: 2016 end-page: 11446 ident: bib33 article-title: Convolutional networks for fast, energy-efficient neuromorphic computing publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 217 year: 2004 ident: bib55 article-title: Large scale online learning publication-title: Adv. Neural Inf. Process. Syst. – year: 2016 ident: bib105 article-title: Fast and efficient asynchronous neural computation with adapting spiking neural networks publication-title: arXiv – volume: 21 start-page: 1950 year: 2010 end-page: 1962 ident: bib83 article-title: Optimization methods for spiking neurons and networks publication-title: IEEE Trans. Neural Netw. – volume: 110 start-page: 15512 year: 2013 end-page: 15513 ident: bib21 article-title: Reverse engineering the cognitive brain publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 419 year: 2004 end-page: 451 ident: bib31 article-title: Neural circuits of the neocortex publication-title: Annu. Rev. Neurosci. – volume: 110 start-page: E3468 year: 2013 end-page: E3476 ident: bib69 article-title: Synthesizing cognition in neuromorphic electronic systems publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 508 year: 2016 ident: bib57 article-title: Training deep spiking neural networks using backpropagation publication-title: Front. Neurosci. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib56 article-title: Deep learning publication-title: Nature – year: 2014 ident: bib24 article-title: Low precision arithmetic for deep learning publication-title: arXiv – year: 2016 ident: bib49 article-title: Decoupled neural interfaces using synthetic gradients publication-title: arXiv – year: 1958 ident: bib102 article-title: The Computer and the Brain – volume: 8 start-page: 76 year: 2014 ident: bib107 article-title: Limits to high-speed simulations of spiking neural networks using general-purpose computers publication-title: Front. Neuroinform. – volume: 63 start-page: 2189 year: 2016 end-page: 2199 ident: bib43 article-title: Learning in silicon beyond STDP: a neuromorphic implementation of multi-factor synaptic plasticity with calcium-based dynamics publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. – volume: 22 start-page: 3207 year: 2010 end-page: 3220 ident: bib23 article-title: Deep, big, simple neural nets for handwritten digit recognition publication-title: Neural Comput. – year: 2014 ident: bib75 article-title: 65k-neuron 73-mevents/s 22-pj/event asynchronous micro-pipelined integrate-and-fire array transceiver publication-title: Biomedical Circuits and Systems Conference (BioCAS) – volume: 9 year: 2015 ident: bib52 article-title: Spatiotemporal features for asynchronous event-based data publication-title: Front. Neurosci. – start-page: 75 year: 2006 end-page: 82 ident: bib5 article-title: Learning in silicon: timing is everything publication-title: Advances in Neural Information Processing Systems 18 – volume: 28 start-page: 2408 year: 2017 end-page: 2422 ident: bib76 article-title: Hierarchical address event routing for reconfigurable large-scale neuromorphic systems publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2018 ident: bib26 article-title: Loihi: a neuromorphic manycore processor with on-chip learning publication-title: IEEE Micro – volume: 5 start-page: 1 year: 2011 end-page: 23 ident: bib47 article-title: Neuromorphic silicon neuron circuits publication-title: Front. Neurosci. – start-page: 265 year: 2016 end-page: 283 ident: bib1 article-title: TensorFlow: a system for large-scale machine learning publication-title: 12th USENIX Symposium on Operating Systems Design and Implementation OSDI 16 – volume: 18 start-page: 10464 year: 1998 end-page: 10472 ident: bib15 article-title: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type publication-title: J. Neurosci. – volume: 40 start-page: e253 year: 2017 ident: bib54 article-title: Building machines that learn and think like people publication-title: Behav. Brain Sci. – year: 2016 ident: bib25 article-title: Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or -1 publication-title: arXiv – volume: 8 start-page: 1677 year: 2005 ident: bib58 article-title: Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves publication-title: Nat. Neurosci. – volume: 7 year: 2013 ident: bib73 article-title: Real-time classification and sensor fusion with a spiking deep belief network publication-title: Front. Neurosci. – year: 2004 ident: bib32 article-title: Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems – reference: Schmidhuber, J. (1987). Evolutionary principles in self-referential learning, or on learning how to learn: the meta-meta-… hook. PhD thesis (Technische Universität München). – volume: 102 start-page: 699 year: 2014 end-page: 716 ident: bib12 article-title: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations publication-title: Proc. IEEE – start-page: 129 year: 2014 end-page: 141 ident: bib27 article-title: Dynamic adaptive neural network array publication-title: Unconventional Computation and NaturalComputation UCNC – start-page: 3320 year: 2014 end-page: 3328 ident: bib104 article-title: How transferable are features in deep neural networks? publication-title: Adv. Neural Inf. Process. Syst. – volume: 25 year: 2014 ident: bib96 article-title: Computational neuroscience: beyond the local circuit publication-title: Curr. Opin. Neurobiol. – start-page: 27 year: 2014 end-page: 32 ident: bib101 article-title: Axnn: energy-efficient neuromorphic systems using approximate computing publication-title: 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED) – year: 2018 ident: bib91 article-title: Whetstone: an accessible, platform-independent method for training spiking deep neural networks for neuromorphic processors publication-title: SysML Conference – volume: 95 start-page: 245 year: 2017 end-page: 258 ident: bib41 article-title: Neuroscience-inspired artificial intelligence publication-title: Neuron – volume: 8 start-page: 429 year: 2014 ident: bib37 article-title: A framework for plasticity implementation on the spinnaker neural architecture publication-title: Front. Neurosci. – volume: 23 start-page: 2457 year: 2011 end-page: 2497 ident: bib68 article-title: A systematic method for configuring VLSI networks of spiking neurons publication-title: Neural Comput. – volume: 20 start-page: 288 year: 2010 end-page: 295 ident: bib60 article-title: Neuromorphic sensory systems publication-title: Curr. Opin. Neurobiol. – volume: 33 start-page: 9565 year: 2013 end-page: 9575 ident: bib18 article-title: Matching recall and storage in sequence learning with spiking neural networks publication-title: J. Neurosci. – volume: 113 start-page: 54 year: 2015 end-page: 66 ident: bib20 article-title: Spiking deep convolutional neural networks for energy-efficient object recognition publication-title: Int. J. Comput. Vis. – volume: 14 start-page: 481 year: 2004 end-page: 487 ident: bib74 article-title: Sparse coding of sensory inputs publication-title: Curr. Opin. Neurobiol. – year: 2017 ident: bib16 article-title: A neuromorphic controller for a robotic vehicle equipped with a dynamic vision sensor publication-title: Proceedings of Robotics: Science and Systems – volume: 6 start-page: 28073 year: 2016 ident: bib48 article-title: A local learning rule for independent component analysis publication-title: Sci. Rep. – year: 2015 ident: bib13 article-title: Computational principles of biological memory publication-title: arXiv – start-page: 512 year: 2016 end-page: 519 ident: bib108 article-title: ONAC: optimal number of active cores detector for energy efficient GPU computing publication-title: 2016 IEEE 34th International Conference on Computer Design (ICCD) – volume: 331 start-page: 1279 year: 2011 end-page: 1285 ident: bib99 article-title: How to grow a mind: statistics, structure, and abstraction publication-title: Science – start-page: 262 year: 2010 end-page: 265 ident: bib67 article-title: A device mismatch compensation method for VLSI neural networks publication-title: Biomedical Circuits and Systems Conference (BioCAS) – volume: 11 start-page: 23 year: 1987 end-page: 63 ident: bib40 article-title: Competitive learning: from interactive activation to adaptive resonance publication-title: Cogn. Sci. – year: 2017 ident: bib44 article-title: Gradient descent for spiking neural networks publication-title: arXiv – start-page: 1034 year: 2013 end-page: 1042 ident: bib53 article-title: A memory frontier for complex synapses publication-title: Advances in Neural Information Processing Systems 26 – year: 2012 ident: bib39 article-title: Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 19 year: 2010 ident: bib93 article-title: Spike timing dependent plasticity: a consequence of more fundamental learning rules publication-title: Front. Comput. Neurosci. – start-page: 3981 year: 2016 end-page: 3989 ident: bib3 article-title: Learning to learn by gradient descent by gradient descent publication-title: Adv. Neural Inf. Process. Syst. – volume: 2011 start-page: 2213 year: 2011 end-page: 2221 ident: bib28 article-title: A brain-machine interface operating with a real-time spiking neural network control algorithm publication-title: Adv. Neural Inf. Process. Syst. – start-page: 525 year: 2016 end-page: 542 ident: bib80 article-title: Xnor-net: imagenet classification using binary convolutional neural networks publication-title: European Conference on Computer Vision – volume: 99 start-page: 10831 year: 2002 end-page: 10836 ident: bib92 article-title: A unified model of NMDA receptor-dependent bidirectional synaptic plasticity publication-title: Proc. Natl. Acad. Sci. USA – year: 2017 ident: bib51 article-title: Schema networks: zero-shot transfer with a generative causal model of intuitive physics publication-title: arXiv – volume: 20 start-page: 1417 year: 2009 end-page: 1438 ident: bib90 article-title: CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory–processing–learning–actuating system for high-speed visual object recognition and tracking publication-title: IEEE Trans. Neural Netw. – volume: 8 start-page: 159 year: 2014 ident: bib97 article-title: Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity publication-title: Front. Comput. Neurosci. – year: 1990 ident: bib11 article-title: Learning a Synaptic Learning Rule – volume: 83 start-page: 51 year: 2016 end-page: 74 ident: bib7 article-title: A theory of local learning, the learning channel, and the optimality of backpropagation publication-title: Neural Netw. – volume: 111 start-page: 2081 year: 2014 end-page: 2086 ident: bib86 article-title: A neuromorphic network for generic multivariate data classification publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 year: 2016 ident: bib72 article-title: Stochastic synapses enable efficient brain-inspired learning machines publication-title: Front. Neurosci. – year: 2015 ident: bib45 article-title: Spiking deep networks with lif neurons publication-title: arXiv – volume: 102 start-page: 652 year: 2014 end-page: 665 ident: bib36 article-title: The spinnaker project publication-title: Proc. IEEE – year: 2017 ident: bib66 article-title: Deep supervised learning using local errors publication-title: arXiv – volume: 19 start-page: 2581 year: 2007 end-page: 2603 ident: bib10 article-title: Synaptic dynamics in analog VLSI publication-title: Neural Comput. – year: 2018 ident: bib64 article-title: A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (dynaps) publication-title: IEEE Trans. Biomed. Circuits Syst. – year: 2016 ident: bib65 article-title: Supervised learning based on temporal coding in spiking neural networks publication-title: arXiv – start-page: 87 year: 2001 end-page: 94 ident: bib42 article-title: Learning to learn using gradient descent publication-title: International Conference on Artificial Neural Networks – volume: 81 start-page: 521 year: 2014 end-page: 528 ident: bib100 article-title: Learning by the dendritic prediction of somatic spiking publication-title: Neuron – volume: volume 4 start-page: 3 year: 2010 end-page: 10 ident: bib14 article-title: Theano: a CPU and GPU math expression compiler in python publication-title: Proceedings of the 9th Python in Science Conference – volume: 88 start-page: 769 year: 2008 end-page: 840 ident: bib95 article-title: Dendritic excitability and synaptic plasticity publication-title: Physiol. Rev. – volume: 9 start-page: 141 year: 2015 ident: bib79 article-title: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses publication-title: Front. Neurosci. – volume: 19 start-page: 1468 year: 2007 end-page: 1502 ident: bib34 article-title: Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity publication-title: Neural Comput. – volume: 345 start-page: 668 year: 2014 end-page: 673 ident: bib63 article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface publication-title: Science – start-page: 1 year: 2015 end-page: 8 ident: bib30 article-title: Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing publication-title: 2015 International Joint Conference on NeuralNetworks (IJCNN) – year: 2002 ident: bib38 article-title: Spiking Neuron Models. Single Neurons, Populations, Plasticity – volume: 6 year: 2012 ident: bib77 article-title: Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware publication-title: Front. Neurosci. – volume: 24 start-page: 1193 year: 2001 end-page: 1216 ident: bib94 article-title: Natural image statistics and neural representation publication-title: Annu. Rev. Neurosci. – year: 2016 ident: bib8 article-title: Learning in the machine: random backpropagation and the learning channel publication-title: arXiv – volume: 102 start-page: 717 year: 2014 end-page: 737 ident: bib6 article-title: Spike-based synaptic plasticity in silicon: design, implementation, application, and challenges publication-title: Proc. IEEE – year: 2017 ident: bib29 article-title: Neural and synaptic array transceiver: a brain-inspired computing framework for embedded learning publication-title: arXiv – volume: volume 1 year: 1987 ident: bib82 publication-title: Parallel Distributed Processing – volume: 7 start-page: 13276 year: 2016 ident: bib59 article-title: Random synaptic feedback weights support error backpropagation for deep learning publication-title: Nat. Commun. – volume: 7 year: 2014 ident: bib70 article-title: Event-driven contrastive divergence for spiking neuromorphic systems publication-title: Front. Neurosci. – volume: 11 start-page: 324 year: 2017 ident: bib71 article-title: Event-driven random back-propagation: enabling neuromorphic deep learning machines publication-title: Front. Neurosci. – year: 2015 ident: bib98 article-title: Principles of Neural Design – year: 2017 ident: bib103 article-title: Algorithm and hardware design of discrete-time spiking neural networks based on back propagation with binary activations publication-title: arXiv – volume: 103 start-page: 1379 year: 2015 end-page: 1397 ident: bib46 article-title: Memory and information processing in neuromorphic systems publication-title: Proc. IEEE – year: 2017 ident: bib87 article-title: A survey of neuromorphic computing and neural networks in hardware publication-title: arXiv – start-page: 1 year: 2015 end-page: 8 ident: bib4 article-title: NormAD-normalized approximate descent based supervised learning rule for spiking neurons publication-title: 2015 International Joint Conference on NeuralNetworks (IJCNN) – year: 2017 ident: bib106 article-title: Superspike: supervised learning in multi-layer spiking neural networks publication-title: arXiv – year: 2017 ident: 10.1016/j.isci.2018.06.010_bib29 article-title: Neural and synaptic array transceiver: a brain-inspired computing framework for embedded learning publication-title: arXiv – volume: 8 start-page: 159 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib97 article-title: Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2014.00159 – volume: 18 start-page: 10464 year: 1998 ident: 10.1016/j.isci.2018.06.010_bib15 article-title: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-24-10464.1998 – volume: 19 start-page: 2581 year: 2007 ident: 10.1016/j.isci.2018.06.010_bib10 article-title: Synaptic dynamics in analog VLSI publication-title: Neural Comput. doi: 10.1162/neco.2007.19.10.2581 – volume: 8 start-page: 76 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib107 article-title: Limits to high-speed simulations of spiking neural networks using general-purpose computers publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00076 – year: 2015 ident: 10.1016/j.isci.2018.06.010_bib13 article-title: Computational principles of biological memory publication-title: arXiv – volume: 5 start-page: 1 year: 2011 ident: 10.1016/j.isci.2018.06.010_bib47 article-title: Neuromorphic silicon neuron circuits publication-title: Front. Neurosci. doi: 10.3389/fnins.2011.00073 – year: 2002 ident: 10.1016/j.isci.2018.06.010_bib38 – year: 2004 ident: 10.1016/j.isci.2018.06.010_bib32 – volume: 7 year: 2013 ident: 10.1016/j.isci.2018.06.010_bib73 article-title: Real-time classification and sensor fusion with a spiking deep belief network publication-title: Front. Neurosci. – volume: 7 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib70 article-title: Event-driven contrastive divergence for spiking neuromorphic systems publication-title: Front. Neurosci. doi: 10.3389/fnins.2013.00272 – start-page: 525 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib80 article-title: Xnor-net: imagenet classification using binary convolutional neural networks – volume: 102 start-page: 652 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib36 article-title: The spinnaker project publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2304638 – volume: 6 year: 2012 ident: 10.1016/j.isci.2018.06.010_bib77 article-title: Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00090 – start-page: 537 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib81 article-title: An evolutionary framework for replicating neurophysiological data with spiking neural networks – volume: 78 start-page: 1629 year: 1990 ident: 10.1016/j.isci.2018.06.010_bib62 article-title: Neuromorphic electronic systems publication-title: Proc. IEEE doi: 10.1109/5.58356 – start-page: 1947 year: 2010 ident: 10.1016/j.isci.2018.06.010_bib84 article-title: A wafer-scale neuromorphic hardware system for large-scale neural modeling – volume: 7 start-page: 12611 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib89 article-title: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses publication-title: Nat. Commun. doi: 10.1038/ncomms12611 – volume: 7 start-page: 13276 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib59 article-title: Random synaptic feedback weights support error backpropagation for deep learning publication-title: Nat. Commun. doi: 10.1038/ncomms13276 – volume: 20 start-page: 288 year: 2010 ident: 10.1016/j.isci.2018.06.010_bib60 article-title: Neuromorphic sensory systems publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2010.03.007 – volume: 8 start-page: 429 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib37 article-title: A framework for plasticity implementation on the spinnaker neural architecture publication-title: Front. Neurosci. – volume: 83 start-page: 51 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib7 article-title: A theory of local learning, the learning channel, and the optimality of backpropagation publication-title: Neural Netw. doi: 10.1016/j.neunet.2016.07.006 – volume: 110 start-page: 15512 year: 2013 ident: 10.1016/j.isci.2018.06.010_bib21 article-title: Reverse engineering the cognitive brain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1313114110 – volume: 99 start-page: 10831 year: 2002 ident: 10.1016/j.isci.2018.06.010_bib92 article-title: A unified model of NMDA receptor-dependent bidirectional synaptic plasticity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.152343099 – volume: 102 start-page: 717 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib6 article-title: Spike-based synaptic plasticity in silicon: design, implementation, application, and challenges publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2314454 – year: 2014 ident: 10.1016/j.isci.2018.06.010_bib75 article-title: 65k-neuron 73-mevents/s 22-pj/event asynchronous micro-pipelined integrate-and-fire array transceiver – start-page: 265 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib1 article-title: TensorFlow: a system for large-scale machine learning – volume: 10 start-page: 508 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib57 article-title: Training deep spiking neural networks using backpropagation publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00508 – start-page: 262 year: 2010 ident: 10.1016/j.isci.2018.06.010_bib67 article-title: A device mismatch compensation method for VLSI neural networks – year: 2016 ident: 10.1016/j.isci.2018.06.010_bib8 article-title: Learning in the machine: random backpropagation and the learning channel publication-title: arXiv – start-page: 1 year: 2015 ident: 10.1016/j.isci.2018.06.010_bib4 article-title: NormAD-normalized approximate descent based supervised learning rule for spiking neurons – volume: 95 start-page: 245 year: 2017 ident: 10.1016/j.isci.2018.06.010_bib41 article-title: Neuroscience-inspired artificial intelligence publication-title: Neuron doi: 10.1016/j.neuron.2017.06.011 – year: 2013 ident: 10.1016/j.isci.2018.06.010_bib22 article-title: Neuromorphic electronic circuits for building autonomous cognitive systems publication-title: Proc. IEEE – volume: 18 start-page: 1318 year: 2006 ident: 10.1016/j.isci.2018.06.010_bib78 article-title: Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning publication-title: Neural Comput. doi: 10.1162/neco.2006.18.6.1318 – volume: 6 start-page: 28073 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib48 article-title: A local learning rule for independent component analysis publication-title: Sci. Rep. doi: 10.1038/srep28073 – volume: 9 start-page: 141 year: 2015 ident: 10.1016/j.isci.2018.06.010_bib79 article-title: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00141 – volume: 102 start-page: 699 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib12 article-title: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2313565 – year: 1982 ident: 10.1016/j.isci.2018.06.010_bib61 – year: 2017 ident: 10.1016/j.isci.2018.06.010_bib106 article-title: Superspike: supervised learning in multi-layer spiking neural networks publication-title: arXiv – volume: 103 start-page: 1379 year: 2015 ident: 10.1016/j.isci.2018.06.010_bib46 article-title: Memory and information processing in neuromorphic systems publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2444094 – volume: 2011 start-page: 2213 year: 2011 ident: 10.1016/j.isci.2018.06.010_bib28 article-title: A brain-machine interface operating with a real-time spiking neural network control algorithm publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.isci.2018.06.010_bib85 – year: 1958 ident: 10.1016/j.isci.2018.06.010_bib102 – year: 2017 ident: 10.1016/j.isci.2018.06.010_bib51 article-title: Schema networks: zero-shot transfer with a generative causal model of intuitive physics publication-title: arXiv – year: 2018 ident: 10.1016/j.isci.2018.06.010_bib64 article-title: A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (dynaps) publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2017.2759700 – start-page: 129 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib27 article-title: Dynamic adaptive neural network array – volume: 33 start-page: 9565 year: 2013 ident: 10.1016/j.isci.2018.06.010_bib18 article-title: Matching recall and storage in sequence learning with spiking neural networks publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4098-12.2013 – start-page: 3320 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib104 article-title: How transferable are features in deep neural networks? publication-title: Adv. Neural Inf. Process. Syst. – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.isci.2018.06.010_bib56 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2015 ident: 10.1016/j.isci.2018.06.010_bib98 – year: 2017 ident: 10.1016/j.isci.2018.06.010_bib66 article-title: Deep supervised learning using local errors publication-title: arXiv – volume: 111 start-page: 2081 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib86 article-title: A neuromorphic network for generic multivariate data classification publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1303053111 – start-page: 1034 year: 2013 ident: 10.1016/j.isci.2018.06.010_bib53 article-title: A memory frontier for complex synapses – year: 2012 ident: 10.1016/j.isci.2018.06.010_bib39 article-title: Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1109359109 – volume: 16 start-page: 217 year: 2004 ident: 10.1016/j.isci.2018.06.010_bib55 article-title: Large scale online learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib72 article-title: Stochastic synapses enable efficient brain-inspired learning machines publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00241 – year: 2018 ident: 10.1016/j.isci.2018.06.010_bib91 article-title: Whetstone: an accessible, platform-independent method for training spiking deep neural networks for neuromorphic processors – year: 2015 ident: 10.1016/j.isci.2018.06.010_bib45 article-title: Spiking deep networks with lif neurons publication-title: arXiv – start-page: 27 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib101 article-title: Axnn: energy-efficient neuromorphic systems using approximate computing – year: 2016 ident: 10.1016/j.isci.2018.06.010_bib49 article-title: Decoupled neural interfaces using synthetic gradients publication-title: arXiv – start-page: 87 year: 2001 ident: 10.1016/j.isci.2018.06.010_bib42 article-title: Learning to learn using gradient descent – start-page: 75 year: 2006 ident: 10.1016/j.isci.2018.06.010_bib5 article-title: Learning in silicon: timing is everything – year: 2016 ident: 10.1016/j.isci.2018.06.010_bib105 article-title: Fast and efficient asynchronous neural computation with adapting spiking neural networks publication-title: arXiv – start-page: 235 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib88 article-title: On parallelizability of stochastic gradient descent for speech dnns – volume: 9 year: 2015 ident: 10.1016/j.isci.2018.06.010_bib52 article-title: Spatiotemporal features for asynchronous event-based data publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00046 – volume: volume 4 start-page: 3 year: 2010 ident: 10.1016/j.isci.2018.06.010_bib14 article-title: Theano: a CPU and GPU math expression compiler in python – year: 2014 ident: 10.1016/j.isci.2018.06.010_bib24 article-title: Low precision arithmetic for deep learning publication-title: arXiv – volume: 88 start-page: 769 year: 2008 ident: 10.1016/j.isci.2018.06.010_bib95 article-title: Dendritic excitability and synaptic plasticity publication-title: Physiol. Rev. doi: 10.1152/physrev.00016.2007 – volume: 104 start-page: 263 year: 2011 ident: 10.1016/j.isci.2018.06.010_bib19 article-title: A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems publication-title: Biol. Cybern. doi: 10.1007/s00422-011-0435-9 – year: 2017 ident: 10.1016/j.isci.2018.06.010_bib103 article-title: Algorithm and hardware design of discrete-time spiking neural networks based on back propagation with binary activations publication-title: arXiv – volume: 11 start-page: 324 year: 2017 ident: 10.1016/j.isci.2018.06.010_bib71 article-title: Event-driven random back-propagation: enabling neuromorphic deep learning machines publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00324 – start-page: 1 year: 2015 ident: 10.1016/j.isci.2018.06.010_bib30 article-title: Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing – volume: 27 start-page: 419 year: 2004 ident: 10.1016/j.isci.2018.06.010_bib31 article-title: Neural circuits of the neocortex publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.27.070203.144152 – year: 2017 ident: 10.1016/j.isci.2018.06.010_bib87 article-title: A survey of neuromorphic computing and neural networks in hardware publication-title: arXiv – volume: 28 start-page: 2408 year: 2017 ident: 10.1016/j.isci.2018.06.010_bib76 article-title: Hierarchical address event routing for reconfigurable large-scale neuromorphic systems publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2572164 – volume: 331 start-page: 1279 year: 2011 ident: 10.1016/j.isci.2018.06.010_bib99 article-title: How to grow a mind: statistics, structure, and abstraction publication-title: Science doi: 10.1126/science.1192788 – year: 1990 ident: 10.1016/j.isci.2018.06.010_bib11 – volume: 81 start-page: 521 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib100 article-title: Learning by the dendritic prediction of somatic spiking publication-title: Neuron doi: 10.1016/j.neuron.2013.11.030 – volume: 113 start-page: 54 year: 2015 ident: 10.1016/j.isci.2018.06.010_bib20 article-title: Spiking deep convolutional neural networks for energy-efficient object recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0788-3 – year: 2017 ident: 10.1016/j.isci.2018.06.010_bib44 article-title: Gradient descent for spiking neural networks publication-title: arXiv – volume: 113 start-page: 11441 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib33 article-title: Convolutional networks for fast, energy-efficient neuromorphic computing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1604850113 – volume: 8 start-page: 1677 year: 2005 ident: 10.1016/j.isci.2018.06.010_bib58 article-title: Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves publication-title: Nat. Neurosci. doi: 10.1038/nn1561 – volume: 21 start-page: 1950 year: 2010 ident: 10.1016/j.isci.2018.06.010_bib83 article-title: Optimization methods for spiking neurons and networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2083685 – volume: 14 start-page: 481 year: 2004 ident: 10.1016/j.isci.2018.06.010_bib74 article-title: Sparse coding of sensory inputs publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2004.07.007 – volume: 4 start-page: 19 year: 2010 ident: 10.1016/j.isci.2018.06.010_bib93 article-title: Spike timing dependent plasticity: a consequence of more fundamental learning rules publication-title: Front. Comput. Neurosci. – year: 2017 ident: 10.1016/j.isci.2018.06.010_bib16 article-title: A neuromorphic controller for a robotic vehicle equipped with a dynamic vision sensor – volume: 19 start-page: 1468 year: 2007 ident: 10.1016/j.isci.2018.06.010_bib34 article-title: Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity publication-title: Neural Comput. doi: 10.1162/neco.2007.19.6.1468 – volume: 22 start-page: 3207 year: 2010 ident: 10.1016/j.isci.2018.06.010_bib23 article-title: Deep, big, simple neural nets for handwritten digit recognition publication-title: Neural Comput. doi: 10.1162/NECO_a_00052 – volume: 11 start-page: 23 year: 1987 ident: 10.1016/j.isci.2018.06.010_bib40 article-title: Competitive learning: from interactive activation to adaptive resonance publication-title: Cogn. Sci. doi: 10.1111/j.1551-6708.1987.tb00862.x – volume: 25 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib96 article-title: Computational neuroscience: beyond the local circuit publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.02.002 – volume: 345 start-page: 668 year: 2014 ident: 10.1016/j.isci.2018.06.010_bib63 article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface publication-title: Science doi: 10.1126/science.1254642 – volume: 11 start-page: 128 year: 2017 ident: 10.1016/j.isci.2018.06.010_bib35 article-title: Demonstrating hybrid learning in a flexible neuromorphic hardware system publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2016.2579164 – volume: 19 start-page: 2881 year: 2007 ident: 10.1016/j.isci.2018.06.010_bib17 article-title: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics publication-title: Neural Comput. doi: 10.1162/neco.2007.19.11.2881 – volume: 63 start-page: 2189 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib43 article-title: Learning in silicon beyond STDP: a neuromorphic implementation of multi-factor synaptic plasticity with calcium-based dynamics publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2016.2616169 – start-page: 512 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib108 article-title: ONAC: optimal number of active cores detector for energy efficient GPU computing – year: 2016 ident: 10.1016/j.isci.2018.06.010_bib25 article-title: Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or -1 publication-title: arXiv – volume: 23 start-page: 2457 year: 2011 ident: 10.1016/j.isci.2018.06.010_bib68 article-title: A systematic method for configuring VLSI networks of spiking neurons publication-title: Neural Comput. doi: 10.1162/NECO_a_00182 – year: 2018 ident: 10.1016/j.isci.2018.06.010_bib26 article-title: Loihi: a neuromorphic manycore processor with on-chip learning publication-title: IEEE Micro doi: 10.1109/MM.2018.112130359 – volume: 95 start-page: 110 year: 2017 ident: 10.1016/j.isci.2018.06.010_bib9 article-title: Learning in the machine: the symmetries of the deep learning channel publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.08.008 – volume: 20 start-page: 1417 year: 2009 ident: 10.1016/j.isci.2018.06.010_bib90 article-title: CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory–processing–learning–actuating system for high-speed visual object recognition and tracking publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2009.2023653 – volume: 99 start-page: 10132 year: 2002 ident: 10.1016/j.isci.2018.06.010_bib2 article-title: Dynamical model of long-term synaptic plasticity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.132651299 – start-page: 3981 year: 2016 ident: 10.1016/j.isci.2018.06.010_bib3 article-title: Learning to learn by gradient descent by gradient descent publication-title: Adv. Neural Inf. Process. Syst. – year: 2016 ident: 10.1016/j.isci.2018.06.010_bib65 article-title: Supervised learning based on temporal coding in spiking neural networks publication-title: arXiv – volume: 110 start-page: E3468 year: 2013 ident: 10.1016/j.isci.2018.06.010_bib69 article-title: Synthesizing cognition in neuromorphic electronic systems publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1212083110 – volume: 24 start-page: 1193 year: 2001 ident: 10.1016/j.isci.2018.06.010_bib94 article-title: Natural image statistics and neural representation publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.24.1.1193 – volume: 21 start-page: 35 year: 2006 ident: 10.1016/j.isci.2018.06.010_bib50 article-title: Predicting spike timing of neocortical pyramidal neurons by simple threshold models publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-006-7074-5 – volume: 40 start-page: e253 year: 2017 ident: 10.1016/j.isci.2018.06.010_bib54 article-title: Building machines that learn and think like people publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X16001837 – volume: volume 1 year: 1987 ident: 10.1016/j.isci.2018.06.010_bib82 |
| SSID | ssj0002002496 |
| Score | 2.3239775 |
| SecondaryResourceType | review_article |
| Snippet | The success of deep networks and recent industry involvement in brain-inspired computing is igniting a widespread interest in neuromorphic hardware that... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 52 |
| SubjectTerms | Computer Science Evolvable Hardware Review Systems Neuroscience |
| Title | Data and Power Efficient Intelligence with Neuromorphic Learning Machines |
| URI | https://dx.doi.org/10.1016/j.isci.2018.06.010 https://www.ncbi.nlm.nih.gov/pubmed/30240646 https://www.proquest.com/docview/2111147699 https://pubmed.ncbi.nlm.nih.gov/PMC6123858 https://doaj.org/article/4d5b97136db245cf90454c7c5fa2255c |
| Volume | 5 |
| WOSCitedRecordID | wos000449732300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEIBHUHHggqh4hUdlJG4oItn4eSy0FZWg6gGkvVnjF2wFWdTd8vvrcbKrbCuVC9c8nHg8tmfs8TcA73wjTVToavRNrHmXXG2SSnW2PUITOa1jFLr-F3V2pudzcz5J9UUxYQMeeBDcBx6EM9mTorxHXPhkiBnnlRcJsyoKT6Nvo8zEmboo22uEwiuZ5QTFBGXVHE_MDMFddOKV4roGeCcdn53MSgXevzM53TY-b8ZQTialk8fwaLQm2eFQi324F_sncHqEa2TYB3ZOKdDYcaFE5ALY6YS_yWgFlhU2x-9lFvbCs5G1-oN9LRGWcfUUvp8cf_v0uR4zJtSeEhPUbWh47rLJixA0T0o53jqB2IbsKAUjokTdJIUe0UlnUuekELkZ8yATCCTXPYO9ftnHF8C0T7KVonOYBMdupn2XnUWcxWxfKB2xgnYjMetHnDhltfhlN3FjF5akbEnKloLn2qaC99t3_gwwjTuf_kgNsX2SQNjlQlYPO6qH_Zd6VCA2zWhHm2KwFXJRizs__nbT5jZ3ONpFwT4ur1Z2RpMMV9KYCp4POrD9xY6IcZLLCtSOduzUYfdOv_hZoN6EwdFCv_wflX4FD6kqtAQ9U69hb315Fd_AA_93vVhdHsB9NdcHpb9cA4PnF9g |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+and+Power+Efficient+Intelligence+with+Neuromorphic+Learning+Machines&rft.jtitle=iScience&rft.au=Neftci%2C+Emre+O.&rft.date=2018-07-27&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=5&rft.spage=52&rft.epage=68&rft_id=info:doi/10.1016%2Fj.isci.2018.06.010&rft.externalDocID=S2589004218300865 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |