Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends

Incomplete global coverage is a potential source of bias in global temperature reconstructions if the unsampled regions are not uniformly distributed over the planet's surface. The widely used Hadley Centre–Climatic Reseach Unit Version 4 (HadCRUT4) dataset covers on average about 84% of the gl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society Jg. 140; H. 683; S. 1935 - 1944
Hauptverfasser: Cowtan, Kevin, Way, Robert G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 01.07.2014
Wiley
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0035-9009, 1477-870X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Incomplete global coverage is a potential source of bias in global temperature reconstructions if the unsampled regions are not uniformly distributed over the planet's surface. The widely used Hadley Centre–Climatic Reseach Unit Version 4 (HadCRUT4) dataset covers on average about 84% of the globe over recent decades, with the unsampled regions being concentrated at the poles and over Africa. Three existing reconstructions with near‐global coverage are examined, each suggesting that HadCRUT4 is subject to bias due to its treatment of unobserved regions. Two alternative approaches for reconstructing global temperatures are explored, one based on an optimal interpolation algorithm and the other a hybrid method incorporating additional information from the satellite temperature record. The methods are validated on the basis of their skill at reconstructing omitted sets of observations. Both methods provide results superior to excluding the unsampled regions, with the hybrid method showing particular skill around the regions where no observations are available. Temperature trends are compared for the hybrid global temperature reconstruction and the raw HadCRUT4 data. The widely quoted trend since 1997 in the hybrid global reconstruction is two and a half times greater than the corresponding trend in the coverage‐biased HadCRUT4 data. Coverage bias causes a cool bias in recent temperatures relative to the late 1990s, which increases from around 1998 to the present. Trends starting in 1997 or 1998 are particularly biased with respect to the global trend. The issue is exacerbated by the strong El Niño event of 1997–1998, which also tends to suppress trends starting during those years.
AbstractList Incomplete global coverage is a potential source of bias in global temperature reconstructions if the unsampled regions are not uniformly distributed over the planet's surface. The widely used Hadley Centre–Climatic Reseach Unit Version 4 (HadCRUT4) dataset covers on average about 84% of the globe over recent decades, with the unsampled regions being concentrated at the poles and over Africa. Three existing reconstructions with near‐global coverage are examined, each suggesting that HadCRUT4 is subject to bias due to its treatment of unobserved regions. Two alternative approaches for reconstructing global temperatures are explored, one based on an optimal interpolation algorithm and the other a hybrid method incorporating additional information from the satellite temperature record. The methods are validated on the basis of their skill at reconstructing omitted sets of observations. Both methods provide results superior to excluding the unsampled regions, with the hybrid method showing particular skill around the regions where no observations are available. Temperature trends are compared for the hybrid global temperature reconstruction and the raw HadCRUT4 data. The widely quoted trend since 1997 in the hybrid global reconstruction is two and a half times greater than the corresponding trend in the coverage‐biased HadCRUT4 data. Coverage bias causes a cool bias in recent temperatures relative to the late 1990s, which increases from around 1998 to the present. Trends starting in 1997 or 1998 are particularly biased with respect to the global trend. The issue is exacerbated by the strong El Niño event of 1997–1998, which also tends to suppress trends starting during those years.
Incomplete global coverage is a potential source of bias in global temperature reconstructions if the unsampled regions are not uniformly distributed over the planet's surface. The widely used Hadley Centre-Climatic Reseach Unit Version 4 (HadCRUT4) dataset covers on average about 84% of the globe over recent decades, with the unsampled regions being concentrated at the poles and over Africa. Three existing reconstructions with near-global coverage are examined, each suggesting that HadCRUT4 is subject to bias due to its treatment of unobserved regions. Two alternative approaches for reconstructing global temperatures are explored, one based on an optimal interpolation algorithm and the other a hybrid method incorporating additional information from the satellite temperature record. The methods are validated on the basis of their skill at reconstructing omitted sets of observations. Both methods provide results superior to excluding the unsampled regions, with the hybrid method showing particular skill around the regions where no observations are available. Temperature trends are compared for the hybrid global temperature reconstruction and the raw HadCRUT4 data. The widely quoted trend since 1997 in the hybrid global reconstruction is two and a half times greater than the corresponding trend in the coverage-biased HadCRUT4 data. Coverage bias causes a cool bias in recent temperatures relative to the late 1990s, which increases from around 1998 to the present. Trends starting in 1997 or 1998 are particularly biased with respect to the global trend. The issue is exacerbated by the strong El Niño event of 1997-1998, which also tends to suppress trends starting during those years. [PUBLICATION ABSTRACT]
Incomplete global coverage is a potential source of bias in global temperature reconstructions if the unsampled regions are not uniformly distributed over the planet's surface. The widely used Hadley Centre-Climatic Reseach Unit Version 4 (HadCRUT4) dataset covers on average about 84% of the globe over recent decades, with the unsampled regions being concentrated at the poles and over Africa. Three existing reconstructions with near-global coverage are examined, each suggesting that HadCRUT4 is subject to bias due to its treatment of unobserved regions. Two alternative approaches for reconstructing global temperatures are explored, one based on an optimal interpolation algorithm and the other a hybrid method incorporating additional information from the satellite temperature record. The methods are validated on the basis of their skill at reconstructing omitted sets of observations. Both methods provide results superior to excluding the unsampled regions, with the hybrid method showing particular skill around the regions where no observations are available. Temperature trends are compared for the hybrid global temperature reconstruction and the raw HadCRUT4 data. The widely quoted trend since 1997 in the hybrid global reconstruction is two and a half times greater than the corresponding trend in the coverage-biased HadCRUT4 data. Coverage bias causes a cool bias in recent temperatures relative to the late 1990s, which increases from around 1998 to the present. Trends starting in 1997 or 1998 are particularly biased with respect to the global trend. The issue is exacerbated by the strong El Nino event of 1997-1998, which also tends to suppress trends starting during those years.
Author Way, Robert G.
Cowtan, Kevin
Author_xml – sequence: 1
  givenname: Kevin
  surname: Cowtan
  fullname: Cowtan, Kevin
  organization: University of York
– sequence: 2
  givenname: Robert G.
  surname: Way
  fullname: Way, Robert G.
  organization: University of Ottawa
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28760242$$DView record in Pascal Francis
BookMark eNp10d9LHDEQB_BQFHra0n8hUIpCWZ3kNsnuYzm0KoJYFHwQwmx2ts2xl71Lcor_veudfajFp3mYD1_mxx7bCUMgxr4IOBIA8ng1P5KyNh_YRJTGFJWBux02AZiqogaoP7K9lOYAoIw0E3Y_Gx4o4m_ijcfEfeD5D_EzbGe_bm9KnmmxHNt5HYknip4Sx9Byn0e6WKLLfAg8kqOQ_7E5UmjTJ7bbYZ_o82vdZ7enJzezs-Ly6uf57Mdl4ZQUpnCi0bVRVGFXTYGEAyfLhtoWUNVKVdS5UrTjArLUTae1JN1plLrRpACpne6zw23uMg6rNaVsFz456nsMNKyTFUrrqtS6lCP9-obOh3UM43QbNR6unppRfXtVmBz2XcTgfLLL6BcYn6ysjAa5SSu2zsUhpUiddT5j9kPIEX1vBdiXn9jV3L78ZPQHb_zfyP_l96189D09vcfs9cVGPwOE7pqB
CODEN QJRMAM
CitedBy_id crossref_primary_10_1002_joc_6793
crossref_primary_10_1038_s41586_024_08230_1
crossref_primary_10_5194_esd_13_81_2022
crossref_primary_10_1175_JCLI_D_16_0693_1
crossref_primary_10_1038_srep25721
crossref_primary_10_1002_2017GL076500
crossref_primary_10_1107_S2059798320011201
crossref_primary_10_1175_JCLI_D_19_0941_1
crossref_primary_10_1007_s00704_024_04966_y
crossref_primary_10_1088_1748_9326_aafd4e
crossref_primary_10_1175_JCLI_D_16_0572_1
crossref_primary_10_1002_2017GL073239
crossref_primary_10_5194_essd_11_1629_2019
crossref_primary_10_1038_nature_2015_17700
crossref_primary_10_1007_s00382_014_2464_2
crossref_primary_10_1016_j_buildenv_2021_108713
crossref_primary_10_1038_ncomms13676
crossref_primary_10_1029_2019GL083474
crossref_primary_10_1007_s00382_020_05330_2
crossref_primary_10_1088_1748_9326_aa6cb5
crossref_primary_10_1029_2021GL094086
crossref_primary_10_1016_j_quascirev_2022_107499
crossref_primary_10_1016_j_scib_2020_06_009
crossref_primary_10_1038_s41598_017_14828_5
crossref_primary_10_1088_1748_9326_aaf372
crossref_primary_10_1175_JCLI_D_19_0855_1
crossref_primary_10_1038_s41561_019_0493_5
crossref_primary_10_1038_nature14117
crossref_primary_10_1007_s11442_019_1612_3
crossref_primary_10_1029_2024GL112848
crossref_primary_10_1175_JCLI_D_19_0360_1
crossref_primary_10_1007_s00382_020_05485_y
crossref_primary_10_1038_nclimate2660
crossref_primary_10_1002_2017GL076649
crossref_primary_10_1017_eds_2022_17
crossref_primary_10_3389_fmars_2018_00221
crossref_primary_10_1126_science_abk0063
crossref_primary_10_1007_s00382_025_07614_x
crossref_primary_10_1016_j_scitotenv_2020_141256
crossref_primary_10_1088_1674_4527_21_6_131
crossref_primary_10_1016_j_wace_2023_100613
crossref_primary_10_1038_s43247_021_00102_0
crossref_primary_10_1038_srep13711
crossref_primary_10_1007_s00382_018_4524_5
crossref_primary_10_1029_2019JD030943
crossref_primary_10_1002_2015JD023859
crossref_primary_10_1002_joc_7551
crossref_primary_10_1002_2014GL060184
crossref_primary_10_1038_s41558_020_0696_1
crossref_primary_10_1175_JCLI_D_19_0395_1
crossref_primary_10_1002_2017GL074596
crossref_primary_10_1002_wea_4087
crossref_primary_10_1088_1748_9326_aaf342
crossref_primary_10_1029_2022GL099371
crossref_primary_10_1038_nclimate2531
crossref_primary_10_1007_s00382_022_06235_y
crossref_primary_10_1175_JCLI_D_16_0628_1
crossref_primary_10_1016_j_cognition_2019_01_011
crossref_primary_10_1088_2515_7620_ad5ad8
crossref_primary_10_3390_cli5040083
crossref_primary_10_1088_1748_9326_ac1b5c
crossref_primary_10_1002_2017GL074232
crossref_primary_10_1175_JCLI_D_18_0316_1
crossref_primary_10_1016_j_accre_2022_06_001
crossref_primary_10_1002_2014JD022805
crossref_primary_10_1007_s00382_021_05821_w
crossref_primary_10_5194_acp_15_11571_2015
crossref_primary_10_1007_s00382_020_05362_8
crossref_primary_10_1002_wea_3042
crossref_primary_10_1007_s00477_018_1557_6
crossref_primary_10_5194_ascmo_4_19_2018
crossref_primary_10_1002_joc_6518
crossref_primary_10_1038_s41467_019_13823_w
crossref_primary_10_1071_ES22018
crossref_primary_10_1073_pnas_1412190111
crossref_primary_10_5194_acp_23_15121_2023
crossref_primary_10_5194_esd_13_1437_2022
crossref_primary_10_1002_qj_2949
crossref_primary_10_1038_srep45242
crossref_primary_10_1175_JCLI_D_20_0366_1
crossref_primary_10_1007_s00376_021_0343_4
crossref_primary_10_1088_1748_9326_ab86f2
crossref_primary_10_1002_joc_5675
crossref_primary_10_1038_s41467_022_30106_z
crossref_primary_10_3390_atmos14030522
crossref_primary_10_1002_wea_3174
crossref_primary_10_1029_2021GL093194
crossref_primary_10_1016_j_scitotenv_2021_148358
crossref_primary_10_1038_ngeo2228
crossref_primary_10_1175_JCLI_D_18_0669_1
crossref_primary_10_1038_ngeo2105
crossref_primary_10_1002_2015GL063091
crossref_primary_10_1016_j_accre_2021_03_014
crossref_primary_10_5194_cp_14_139_2018
crossref_primary_10_1016_j_wace_2016_01_001
crossref_primary_10_1088_1748_9326_acd5e6
crossref_primary_10_1175_JCLI_D_21_0565_1
crossref_primary_10_1007_s10584_023_03639_5
crossref_primary_10_1002_qj_3803
crossref_primary_10_1175_JCLI_D_16_0712_1
crossref_primary_10_1146_annurev_earth_060614_105156
crossref_primary_10_1175_JCLI_D_20_0791_1
crossref_primary_10_3390_agronomy11040647
crossref_primary_10_5194_bg_18_2559_2021
crossref_primary_10_1038_s41598_020_80701_7
crossref_primary_10_1016_j_gloplacha_2015_12_009
crossref_primary_10_1038_s41561_018_0086_8
crossref_primary_10_1080_07055900_2025_2516796
crossref_primary_10_1029_2024JD041625
crossref_primary_10_1038_s41558_017_0009_5
crossref_primary_10_1080_02691728_2017_1346720
crossref_primary_10_1016_j_jastp_2019_03_011
crossref_primary_10_5026_jgeography_134_379
crossref_primary_10_1016_j_atmosres_2023_107042
crossref_primary_10_1111_j_1740_9713_2018_01107_x
crossref_primary_10_1016_j_earscirev_2019_102998
crossref_primary_10_1007_s00376_015_5194_4
crossref_primary_10_1038_nclimate2573
crossref_primary_10_1007_s00382_021_06089_w
crossref_primary_10_1038_nclimate3304
crossref_primary_10_1038_nclimate2575
crossref_primary_10_1007_s00704_016_1732_y
crossref_primary_10_1038_s41598_025_92990_x
crossref_primary_10_1038_s41558_020_0892_z
crossref_primary_10_1002_2017JD027006
crossref_primary_10_1007_s10584_021_03089_x
crossref_primary_10_5194_ascmo_8_135_2022
crossref_primary_10_1007_s12583_019_1239_4
crossref_primary_10_5194_acp_20_7829_2020
crossref_primary_10_5194_acp_23_7425_2023
crossref_primary_10_1038_s41561_022_01056_4
crossref_primary_10_1038_srep18903
crossref_primary_10_1175_JCLI_D_14_00250_1
crossref_primary_10_1139_as_2019_0029
crossref_primary_10_3390_rs14112512
crossref_primary_10_1029_2019GL085378
crossref_primary_10_1111_ajps_12425
crossref_primary_10_1029_2019MS002037
crossref_primary_10_1002_joc_6042
crossref_primary_10_1126_science_aaa5632
crossref_primary_10_1175_JCLI_D_16_0455_1
crossref_primary_10_1038_505034a
crossref_primary_10_1029_2020GL090956
crossref_primary_10_3390_cli12060081
crossref_primary_10_1175_JCLI_D_17_0354_1
crossref_primary_10_1175_JCLI_D_18_0094_1
crossref_primary_10_1002_gdj3_84
crossref_primary_10_1016_j_accre_2023_06_003
crossref_primary_10_5194_esd_7_231_2016
crossref_primary_10_1080_10106049_2022_2086635
crossref_primary_10_1016_j_dendro_2022_125965
crossref_primary_10_1002_2016EF000417
crossref_primary_10_1007_s13351_016_6031_0
crossref_primary_10_1016_j_atmosres_2019_104802
crossref_primary_10_1029_2020JC016456
crossref_primary_10_1175_JCLI_D_19_0961_1
crossref_primary_10_5194_esd_9_879_2018
crossref_primary_10_1002_wea_3822
crossref_primary_10_1071_ES21028
crossref_primary_10_1088_1748_9326_ab4df4
crossref_primary_10_1038_s43247_023_00887_2
crossref_primary_10_5194_esd_11_563_2020
crossref_primary_10_1029_2019GL084385
crossref_primary_10_1029_2020EA001082
crossref_primary_10_5194_esd_6_411_2015
crossref_primary_10_1002_2016EA000179
crossref_primary_10_1016_j_gloenvcha_2015_02_013
crossref_primary_10_5194_esd_7_385_2016
crossref_primary_10_1038_nclimate3345
crossref_primary_10_1016_j_dendro_2018_02_010
crossref_primary_10_1016_j_rse_2025_114760
crossref_primary_10_1175_JCLI_D_16_0333_1
crossref_primary_10_1175_BAMS_D_14_00106_1
crossref_primary_10_1175_JCLI_D_21_0373_1
crossref_primary_10_1029_2025GL116615
crossref_primary_10_1038_s41467_024_53424_w
crossref_primary_10_3390_atmos14050820
crossref_primary_10_1002_joc_6114
crossref_primary_10_5194_essd_14_1677_2022
crossref_primary_10_1038_ngeo2973
crossref_primary_10_1016_j_quascirev_2015_01_020
crossref_primary_10_1007_s13351_018_8037_2
crossref_primary_10_3390_cli6040082
crossref_primary_10_5194_esd_12_709_2021
crossref_primary_10_1002_2016JD025430
crossref_primary_10_1016_j_wace_2017_11_002
crossref_primary_10_1175_JCLI_D_18_0555_1
crossref_primary_10_1007_s10584_022_03418_8
crossref_primary_10_1016_j_dendro_2022_125982
crossref_primary_10_1029_2019EF001189
crossref_primary_10_1088_1748_9326_ab738f
crossref_primary_10_1038_srep33315
crossref_primary_10_1002_2017GL075742
crossref_primary_10_3390_atmos11010082
crossref_primary_10_1038_ngeo2986
crossref_primary_10_1126_science_1257856
crossref_primary_10_1139_er_2022_0101
crossref_primary_10_1002_2014JD022752
crossref_primary_10_1029_2023JD039914
crossref_primary_10_1029_2018JD029726
crossref_primary_10_1029_2020GL090631
crossref_primary_10_1029_2020GL090873
crossref_primary_10_1007_s10584_015_1495_y
crossref_primary_10_1038_s41467_021_26370_0
crossref_primary_10_1007_s00382_016_3255_8
crossref_primary_10_1029_2019GL086259
crossref_primary_10_1103_RevModPhys_93_025004
crossref_primary_10_1002_joc_5161
crossref_primary_10_1002_joc_7226
crossref_primary_10_1029_2019MS002010
crossref_primary_10_1038_nclimate3274
crossref_primary_10_5194_tc_15_3035_2021
crossref_primary_10_1175_JCLI_D_16_0343_1
crossref_primary_10_1002_2016JD025410
crossref_primary_10_1002_2017GL073578
crossref_primary_10_1038_ngeo2517
crossref_primary_10_1038_s41467_018_07999_w
crossref_primary_10_1029_2019EF001160
crossref_primary_10_1007_s00704_017_2161_2
crossref_primary_10_1088_1748_9326_aac319
crossref_primary_10_12677_CCRL_2019_84047
crossref_primary_10_5194_cp_12_1785_2016
crossref_primary_10_1038_s41558_020_0883_0
crossref_primary_10_1175_JCLI_D_16_0123_1
crossref_primary_10_5194_acp_23_7535_2023
crossref_primary_10_1038_s41598_022_27220_9
crossref_primary_10_1088_1748_9326_10_4_044018
crossref_primary_10_1111_gcb_13121
crossref_primary_10_1007_s00382_019_04645_z
crossref_primary_10_5194_esd_8_177_2017
crossref_primary_10_1175_JCLI_D_21_0167_1
crossref_primary_10_1038_srep32813
crossref_primary_10_1175_JCLI_D_19_0674_1
crossref_primary_10_1029_2020JD033622
crossref_primary_10_1029_2019RG000678
crossref_primary_10_1038_srep19831
crossref_primary_10_1175_JCLI_D_14_00616_1
crossref_primary_10_1029_2018JD029522
crossref_primary_10_1007_s00382_017_3935_z
crossref_primary_10_1038_s41586_022_05517_z
crossref_primary_10_5194_acp_14_3969_2014
crossref_primary_10_1007_s00382_015_2811_y
crossref_primary_10_1088_1748_9326_aab326
crossref_primary_10_1016_j_atmosres_2025_108077
crossref_primary_10_1002_2014GL060962
crossref_primary_10_1016_j_wace_2015_10_007
crossref_primary_10_1002_2017EF000554
crossref_primary_10_1007_s00382_018_4343_8
crossref_primary_10_1175_JCLI_D_16_0569_1
crossref_primary_10_1002_qj_4791
crossref_primary_10_3189_2014JoG13J195
crossref_primary_10_1007_s11434_015_0806_z
crossref_primary_10_1002_2016GL068950
crossref_primary_10_1038_s43247_021_00140_8
crossref_primary_10_1007_s00484_020_02063_z
crossref_primary_10_1038_srep16784
crossref_primary_10_1029_2019JD030262
crossref_primary_10_1029_2022GL099826
crossref_primary_10_1146_annurev_marine_042120_111807
crossref_primary_10_1002_wea_3421
crossref_primary_10_1038_s41467_021_23627_6
crossref_primary_10_1155_2021_8278579
crossref_primary_10_1002_wea_2336
crossref_primary_10_1016_j_gloplacha_2016_01_001
crossref_primary_10_1088_1748_9326_aab305
crossref_primary_10_1175_JCLI_D_14_00712_1
crossref_primary_10_1038_s41558_019_0531_8
crossref_primary_10_1029_2018JD028776
crossref_primary_10_1016_j_scib_2024_09_023
crossref_primary_10_1038_nclimate3066
crossref_primary_10_1029_2023JD039269
crossref_primary_10_1038_s41467_021_27515_x
crossref_primary_10_1007_s00382_018_4232_1
crossref_primary_10_1038_s41558_020_0855_4
crossref_primary_10_1002_2016RG000521
crossref_primary_10_1007_s00382_017_3561_9
crossref_primary_10_1016_j_polar_2021_100677
crossref_primary_10_1038_srep14346
crossref_primary_10_1016_j_jvolgeores_2019_106746
crossref_primary_10_1029_2018JD028355
crossref_primary_10_1002_qj_3235
crossref_primary_10_1038_s41586_025_09242_1
crossref_primary_10_1175_JPO_D_17_0239_1
crossref_primary_10_1002_wcc_654
crossref_primary_10_1002_wea_3600
crossref_primary_10_1038_s41561_019_0400_0
crossref_primary_10_1007_s10584_016_1816_9
crossref_primary_10_1007_s00382_015_2582_5
crossref_primary_10_1038_s41467_020_18479_5
crossref_primary_10_1002_2014GL060527
crossref_primary_10_1007_s00382_017_3736_4
crossref_primary_10_1038_s41586_018_0181_4
crossref_primary_10_1016_j_quaint_2014_04_054
crossref_primary_10_1088_2752_5295_ad69b6
crossref_primary_10_1007_s11802_018_3347_7
crossref_primary_10_1088_1748_9326_aa9def
crossref_primary_10_1002_wea_2760
crossref_primary_10_1038_s41558_020_00957_9
crossref_primary_10_1175_AIES_D_22_0032_1
crossref_primary_10_1002_wea_2523
crossref_primary_10_1007_s00376_024_4174_y
crossref_primary_10_1002_2014GL061881
crossref_primary_10_1038_srep31789
crossref_primary_10_1029_2020GL091779
crossref_primary_10_1007_s00382_021_05827_4
crossref_primary_10_1038_s41586_020_03155_x
crossref_primary_10_1002_wcc_511
crossref_primary_10_1029_2020EF001900
crossref_primary_10_1007_s11430_020_9740_3
crossref_primary_10_1038_s43247_022_00343_7
crossref_primary_10_1038_s41597_020_0445_3
crossref_primary_10_1007_s00704_023_04649_0
crossref_primary_10_1088_1748_9326_10_8_084002
crossref_primary_10_1175_JCLI_D_17_0863_1
crossref_primary_10_1175_BAMS_D_14_00154_1
crossref_primary_10_1175_JCLI_D_17_0157_1
crossref_primary_10_1002_2016GL071055
crossref_primary_10_5194_esd_11_855_2020
crossref_primary_10_1038_srep30469
crossref_primary_10_3390_cli10060083
crossref_primary_10_1002_2016GL067935
crossref_primary_10_1080_07055900_2015_1045825
crossref_primary_10_1175_JCLI_D_17_0667_1
crossref_primary_10_1038_s41598_018_31862_z
crossref_primary_10_1002_wcc_522
crossref_primary_10_1007_s00382_020_05521_x
crossref_primary_10_1038_s41586_019_1554_z
crossref_primary_10_1088_1748_9326_ab59c9
crossref_primary_10_1038_nature22315
crossref_primary_10_1002_2015JD023126
crossref_primary_10_1002_joc_4808
crossref_primary_10_1029_2018GL080714
crossref_primary_10_1016_j_gloplacha_2020_103149
crossref_primary_10_1002_env_2721
crossref_primary_10_1038_ngeo2098
crossref_primary_10_1088_0026_1394_53_1_R40
crossref_primary_10_1002_2014GL061541
crossref_primary_10_1016_j_quascirev_2017_02_020
crossref_primary_10_1038_s41558_019_0666_7
crossref_primary_10_1007_s00382_022_06242_z
crossref_primary_10_1007_s00704_018_2435_3
crossref_primary_10_1175_JCLI_D_15_0730_1
crossref_primary_10_1038_s41598_021_99738_3
crossref_primary_10_1111_wej_12126
crossref_primary_10_1175_JCLI_D_19_0703_1
crossref_primary_10_3390_rs13204096
crossref_primary_10_1007_s00382_020_05502_0
crossref_primary_10_1007_s00190_023_01781_7
crossref_primary_10_1029_2019GL085806
crossref_primary_10_1002_asl2_574
crossref_primary_10_1002_qj_2633
crossref_primary_10_1007_s00382_019_04955_2
crossref_primary_10_1029_2023MS003790
crossref_primary_10_5194_cp_13_1007_2017
crossref_primary_10_1073_pnas_2209431119
crossref_primary_10_1016_j_rse_2021_112358
crossref_primary_10_3390_cli11090179
crossref_primary_10_5194_esd_14_81_2023
crossref_primary_10_1016_j_uclim_2023_101492
crossref_primary_10_1002_eap_2499
crossref_primary_10_1007_s11027_024_10105_9
crossref_primary_10_1080_00963402_2020_1751969
crossref_primary_10_1016_j_soilbio_2024_109404
crossref_primary_10_1038_nclimate2938
crossref_primary_10_1038_s41561_019_0463_y
crossref_primary_10_1007_s00382_021_05917_3
crossref_primary_10_1002_qj_2528
crossref_primary_10_1038_nature25450
crossref_primary_10_1002_2015GL064888
crossref_primary_10_1029_2022EF002790
crossref_primary_10_1175_JCLI_D_15_0742_1
crossref_primary_10_1002_2014GL062765
crossref_primary_10_1002_joc_4561
crossref_primary_10_1007_s00382_016_3403_1
crossref_primary_10_1038_s41561_021_00686_4
crossref_primary_10_1007_s00382_017_3528_x
crossref_primary_10_1002_2017EF000611
crossref_primary_10_1029_2021MS002565
crossref_primary_10_1007_s00382_020_05493_y
crossref_primary_10_5194_amt_14_7103_2021
crossref_primary_10_5194_cp_18_739_2022
crossref_primary_10_1029_2021GL095782
crossref_primary_10_5194_ascmo_6_91_2020
crossref_primary_10_1002_2015GL065327
crossref_primary_10_1002_qj_2422
crossref_primary_10_1007_s00382_019_04791_4
crossref_primary_10_1007_s00704_016_1818_6
crossref_primary_10_1038_s43247_020_00064_9
crossref_primary_10_1007_s10584_021_03226_6
crossref_primary_10_1002_2014GL061456
crossref_primary_10_1088_1748_9326_ac0caa
crossref_primary_10_1016_j_atmosres_2022_106392
crossref_primary_10_1139_facets_2024_0107
crossref_primary_10_5194_esd_7_717_2016
crossref_primary_10_1038_s41467_024_53464_2
crossref_primary_10_1029_2019MS001838
crossref_primary_10_1029_2019GL086812
crossref_primary_10_1007_s00382_017_3755_1
crossref_primary_10_1029_2019JD032352
crossref_primary_10_3390_f14020418
crossref_primary_10_1038_ngeo2078
crossref_primary_10_1038_517562a
crossref_primary_10_1002_joc_4996
crossref_primary_10_5194_essd_12_3469_2020
crossref_primary_10_1007_s10584_016_1840_9
crossref_primary_10_1002_2015GL064458
crossref_primary_10_1029_2022GL100215
crossref_primary_10_5194_esd_11_1123_2020
crossref_primary_10_1007_s00382_016_3326_x
crossref_primary_10_1029_2019JD032361
crossref_primary_10_1680_jfoen_17_00001
crossref_primary_10_1029_2024GL114269
crossref_primary_10_1038_s41597_023_02059_5
crossref_primary_10_1680_jfoen_17_00002
crossref_primary_10_5194_npg_22_513_2015
crossref_primary_10_5194_esd_12_545_2021
crossref_primary_10_1002_2014GL059274
crossref_primary_10_1175_JCLI_D_19_0476_1
crossref_primary_10_1073_pnas_2504482122
crossref_primary_10_1038_s41558_018_0118_9
crossref_primary_10_1038_s41586_019_1401_2
crossref_primary_10_1088_1748_9326_aa6825
crossref_primary_10_1007_s00376_021_1012_3
crossref_primary_10_1029_2018GL079216
crossref_primary_10_1111_jtsa_12246
crossref_primary_10_1016_j_earscirev_2015_08_010
crossref_primary_10_1038_sdata_2017_88
crossref_primary_10_1016_j_enbuild_2019_109372
crossref_primary_10_1038_s41598_024_72787_0
crossref_primary_10_1175_BAMS_D_19_0196_1
crossref_primary_10_3390_ijerph17217795
Cites_doi 10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2
10.1126/science.247.4950.1558
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1038/nclimate1229
10.4172/gigs.1000101
10.1175/1520-0442(2003)016<3650:AROTMC>2.0.CO;2
10.1029/2009JD012442
10.1073/pnas.1102467108
10.1175/2008JTECHA1176.1
10.1002/grl.50169
10.1073/pnas.0606291103
10.4172/gigs.1000103
10.1175/2010JCLI3347.1
10.1029/2012JD018509
10.1029/2011JD016761
10.1029/2005JD006548
10.1088/1748-9326/6/4/044022
10.1002/qj.776
10.1007/BF00889887
10.1029/2010RG000345
10.1029/2010JC006235
10.1175/2007JCLI2100.1
10.1002/qj.828
10.1029/2010JD015220
10.1029/2005JD006881
10.1029/2011JD017187
ContentType Journal Article
Copyright 2013 The Authors. published by JohnWiley & Sons Ltd on behalf of the Royal Meteorological Society
2015 INIST-CNRS
2014 Royal Meteorological Society
Copyright_xml – notice: 2013 The Authors. published by JohnWiley & Sons Ltd on behalf of the Royal Meteorological Society
– notice: 2015 INIST-CNRS
– notice: 2014 Royal Meteorological Society
DBID 24P
AAYXX
CITATION
IQODW
7TG
7TN
F1W
H96
KL.
L.G
7QH
7UA
C1K
H97
DOI 10.1002/qj.2297
DatabaseName Wiley Online Library Open Access
CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1477-870X
EndPage 1944
ExternalDocumentID 3446825891
28760242
10_1002_qj_2297
QJ2297
Genre article
GeographicLocations Africa
GeographicLocations_xml – name: Africa
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
ABUFD
CITATION
O8X
AAHHS
ABTAH
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
IQODW
XOL
7TG
7TN
F1W
H96
KL.
L.G
7QH
7UA
C1K
H97
ID FETCH-LOGICAL-c5217-c1b6975e8af830e1c0c24bedd0a59558efc41d035246bf662e6f6a26b6e50aed3
IEDL.DBID 24P
ISICitedReferencesCount 486
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341690300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-9009
IngestDate Tue Oct 07 09:38:46 EDT 2025
Sat Aug 16 22:51:04 EDT 2025
Wed Apr 02 07:18:31 EDT 2025
Tue Nov 18 21:56:40 EST 2025
Sat Nov 29 01:49:51 EST 2025
Sun Sep 21 06:19:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 683
Keywords trend-surface analysis
Objective analysis
Bias
climate warming
Time series
instrumental temperature record
Missing data
temperature trends
Atmospheric temperature
global change
Optimum interpolation
Planetary scale
reconstruction
climate change
coverage bias
Language English
License Attribution
http://creativecommons.org/licenses/by/3.0
http://doi.wiley.com/10.1002/tdm_license_1.1
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5217-c1b6975e8af830e1c0c24bedd0a59558efc41d035246bf662e6f6a26b6e50aed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.2297
PQID 1566297937
PQPubID 1016432
PageCount 10
ParticipantIDs proquest_miscellaneous_1566846642
proquest_journals_1566297937
pascalfrancis_primary_28760242
crossref_citationtrail_10_1002_qj_2297
crossref_primary_10_1002_qj_2297
wiley_primary_10_1002_qj_2297_QJ2297
PublicationCentury 2000
PublicationDate July 2014 Part B
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 2014 Part B
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
– name: Reading
PublicationTitle Quarterly journal of the Royal Meteorological Society
PublicationYear 2014
Publisher John Wiley & Sons, Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References 2011; 116
2011; 137
2011; 1
1990; 247
2012
2011
2010
2013; 40
2006
2003; 16
2013a; 1
2011; 6
2009; 26
1996; 77
2010; 23
2007; 112
1990; 22
2010; 48
2011; 108
2000; 13
2013; 118
2008; 21
2013b; 1
2013
2012; 117
2006; 103
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
AMAP (e_1_2_9_2_1) 2011
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – year: 2011
– year: 2012
  article-title: Global warming stopped 16 years ago, reveals Met Office report quietly released… and here is the chart to prove it
– year: 2012
  article-title: No underlying global warming in recent years
– volume: 1
  start-page: 1
  year: 2013a
  article-title: A new estimate of the average earth surface land temperature spanning 1753 to 2011
  publication-title: Geoinfor. Geostat: An Overview
– volume: 103
  start-page: 14288
  year: 2006
  end-page: 14293
  article-title: Global temperature change
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 1
  start-page: 360
  year: 2011
  end-page: 364
  article-title: Model‐based evidence of deep‐ocean heat uptake during surface‐temperature hiatus periods
  publication-title: Nat. Clim. Change
– volume: 21
  start-page: 2283
  year: 2008
  end-page: 2296
  article-title: Improvements to NOAA's historical merged land–ocean surface temperature analysis (1880–2006)
  publication-title: J. Clim.
– year: 2006
  article-title: Temperature trends in the lower atmosphere. Steps for understanding and reconciling differences
– volume: 247
  start-page: 1558
  year: 1990
  end-page: 1562
  article-title: Precise monitoring of global temperature trends
  publication-title: Science
– volume: 116
  start-page: C04015
  year: 2011
  article-title: Observations of recent Arctic sea ice volume loss and its impact on ocean–atmosphere energy exchange and ice production
  publication-title: J. Geophys. Res. Oceans
– start-page: D01110
  year: 2010
  article-title: Low‐frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets
  publication-title: J. Geophys. Res.
– volume: 40
  start-page: 761
  year: 2013
  end-page: 767
  article-title: High predictive skill of global surface temperature a year ahead
  publication-title: Geophys. Res. Lett.
– volume: 23
  start-page: 5668
  year: 2010
  end-page: 5677
  article-title: The impact of North Atlantic–Arctic multidecadal variability on Northern Hemisphere surface air temperature
  publication-title: J. Clim.
– volume: 1
  start-page: 1
  year: 2013b
  article-title: Berkeley earth temperature averaging process
  publication-title: Geoinfor. Geostat: An Overview
– start-page: D12106
  year: 2006
  article-title: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850
  publication-title: J. Geophys. Res. Atmos.
– year: 2012
  article-title: Why the Mail on Sunday was wrong to claim global warming has stopped
– year: 2013
  article-title: Look at the graph to see the evidence of global warming
– volume: 137
  start-page: 553
  year: 2011
  end-page: 597
  article-title: The ERA‐interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 6
  start-page: 044022
  year: 2011
  article-title: Global temperature evolution 1979–2010
  publication-title: Environ. Res. Lett.
– volume: 116
  start-page: D14104
  year: 2011
  article-title: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. biases and homogenization
  publication-title: J. Geophys. Res.
– volume: 48
  start-page: RG4004
  year: 2010
  article-title: Global surface temperature change
  publication-title: Rev. Geophys.
– volume: 22
  start-page: 239
  year: 1990
  end-page: 252
  article-title: The origins of kriging
  publication-title: Math. Geol.
– volume: 118
  start-page: 481
  year: 2013
  end-page: 494
  article-title: Quantifying the effect of urbanization on US historical climatology network temperature records
  publication-title: J. Geophys. Res. Atmos.
– volume: 13
  start-page: 1979
  year: 2000
  end-page: 1997
  article-title: Variations in surface air temperature observations in the arctic
  publication-title: J. Clim.
– volume: 77
  start-page: 437
  year: 1996
  end-page: 471
  article-title: The NCEP/NCAR 40‐year reanalysis project
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 137
  start-page: 1
  year: 2011
  end-page: 28
  article-title: The twentieth century reanalysis project
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 16
  start-page: 3650
  year: 2003
  end-page: 3664
  article-title: A reanalysis of the MSU channel 2 tropospheric temperature record
  publication-title: J. Clim.
– volume: 26
  start-page: 1040
  year: 2009
  end-page: 1056
  article-title: Construction of the remote sensing systems v3. 2 atmospheric temperature records from the MSU and AMSU microwave sounders
  publication-title: J. Atmos. Oceanic Technol.
– volume: 108
  start-page: 1998
  year: 2011
  end-page: 2008
  article-title: Reconciling anthropogenic climate change with observed temperature
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 112
  start-page: D06102
  year: 2007
  article-title: Tropospheric temperature change since 1979 from tropical radiosonde and satellite measurements
  publication-title: J. Geophys. Res.
– volume: 117
  start-page: D08101
  year: 2012
  article-title: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set
  publication-title: J. Geophys. Res.
– volume: 117
  start-page: D05116
  year: 2012
  article-title: Benchmarking the performance of pairwise homogenization of surface temperatures in the United States
  publication-title: J. Geophys. Res.
– ident: e_1_2_9_24_1
  doi: 10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2
– ident: e_1_2_9_30_1
  doi: 10.1126/science.247.4950.1558
– ident: e_1_2_9_15_1
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– ident: e_1_2_9_31_1
– ident: e_1_2_9_22_1
  doi: 10.1038/nclimate1229
– volume-title: Snow, Water, Ice and Permafrost in the Arctic (Swipa)
  year: 2011
  ident: e_1_2_9_2_1
– ident: e_1_2_9_25_1
  doi: 10.4172/gigs.1000101
– ident: e_1_2_9_7_1
– ident: e_1_2_9_21_1
  doi: 10.1175/1520-0442(2003)016<3650:AROTMC>2.0.CO;2
– ident: e_1_2_9_28_1
  doi: 10.1029/2009JD012442
– ident: e_1_2_9_17_1
  doi: 10.1073/pnas.1102467108
– ident: e_1_2_9_20_1
  doi: 10.1175/2008JTECHA1176.1
– ident: e_1_2_9_9_1
  doi: 10.1002/grl.50169
– ident: e_1_2_9_16_1
– ident: e_1_2_9_12_1
  doi: 10.1073/pnas.0606291103
– ident: e_1_2_9_32_1
– ident: e_1_2_9_26_1
  doi: 10.4172/gigs.1000103
– ident: e_1_2_9_27_1
  doi: 10.1175/2010JCLI3347.1
– ident: e_1_2_9_14_1
  doi: 10.1029/2012JD018509
– ident: e_1_2_9_33_1
  doi: 10.1029/2011JD016761
– ident: e_1_2_9_3_1
  doi: 10.1029/2005JD006548
– ident: e_1_2_9_10_1
  doi: 10.1088/1748-9326/6/4/044022
– ident: e_1_2_9_5_1
  doi: 10.1002/qj.776
– ident: e_1_2_9_6_1
  doi: 10.1007/BF00889887
– ident: e_1_2_9_13_1
  doi: 10.1029/2010RG000345
– ident: e_1_2_9_19_1
  doi: 10.1029/2010JC006235
– ident: e_1_2_9_29_1
  doi: 10.1175/2007JCLI2100.1
– ident: e_1_2_9_8_1
  doi: 10.1002/qj.828
– ident: e_1_2_9_18_1
  doi: 10.1029/2010JD015220
– ident: e_1_2_9_11_1
– ident: e_1_2_9_4_1
  doi: 10.1029/2005JD006881
– ident: e_1_2_9_23_1
  doi: 10.1029/2011JD017187
SSID ssj0005727
Score 2.603951
Snippet Incomplete global coverage is a potential source of bias in global temperature reconstructions if the unsampled regions are not uniformly distributed over the...
SourceID proquest
pascalfrancis
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1935
SubjectTerms Climatology. Bioclimatology. Climate change
coverage bias
Earth, ocean, space
El Nino
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Global temperatures
instrumental temperature record
Meteorology
temperature trends
Title Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.2297
https://www.proquest.com/docview/1566297937
https://www.proquest.com/docview/1566846642
Volume 140
WOSCitedRecordID wos000341690300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1477-870X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005727
  issn: 0035-9009
  databaseCode: DRFUL
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB889eHguFNPuZ7eEkF869mmaZo-yp7LISoqLvgglHxCRbq6Xf37naR1dTkOBJ9K6SSEZD5-SSe_AdgrEbM73EvHiREmZsqhSTFtYox2RrlSlbkLJK4nxdmZuL4uz9-U-ur4IeYHbt4ygr_2Bi5Ve_BKGvpw-5vSsvgEK2maFV6hKTt_ze4o-mqtWR6XiCO6-7K-6UHfcCEQfbmXLc6J64pZLKDNt5g1BJ3Rtw8Mdw2-9kiTHHaqsQ5LttmA6BRB8mQaztLJPhne1YhYw9t3uBn6dE70L0TVsiV1QxAcEnRNw8vxFSOexKpnYCZeb21LZGNIPUPRcNWSTBqC_hOj2ILsLGTdbsJ4dHQ1_Bv3xRdijRG9iHWqeFnkVkgnssSmOtGUKWtMIvMyz4V1mqXGs6kyrhzn1HLHJeWK2zyR1mRbsNxMGvsDSJJb4xR1qVCKUWeVFlJ53CYUdp-lEey_rESle2ZyXyDjruo4lWn1cFv5yYuAzAXvOzKOf0UGC0s5l8OdIfd4JIKdl7WtenNtK7-JxcYI1SLYnX9GQ_N_T2RjJ4-djPBk_NjFXljp_42hujj2j5_vE9uGzwjCWJcCvAPLs-mj_QWr-mlWt9NB0OoBrPy5HI1PngHULv0l
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD506WCD0cvWMa9dp0Lpm1fbkWT5caQLbZeGriTQh4HRFVyK08bpfv-ObDVtGIPBnozxkRA6t0_y0SeAwwIxu8O1dJwYYWKqHLoU1SbGbGeUK1TBXEviOsrHY3F9XVyGqkp_Fqbjh1huuHnPaOO1d3C_IX38xBp6f_Mly4r8BaxTNCLWg_WTq-F09FTgkYcLW_ssLhBKdEdmfePj0HQlF725kw1Oi-vus1gBnM9ha5t3hpv_M-It2Ahok3ztzGMb1mz9FqILBMqzebufTo7I4LZC1Nq-vYOfA1_SiTGGqEo2pKoJAkSC4WlwNZ1Q4omsAgsz8bZrGyJrQ6oFirbHLcmsJhhDMZOtyC7aytsdmA6_TQancbiAIdaY1fNYp4oXObNCOtFPbKoTnVFljUkkKxgT1mmaGs-oSrlynGeWOy4zrrhlibSm_x569ay2H4AkzBqnMpcKpWjmrNJCKo_dhMLu-2kER4-qKHVgJ_eXZNyWHa9yVt7flH7yIiBLwbuOkONPkf0VXS7lcHXIPSaJYO9RuWVw2ab0C1lsjHAtgoPlZ3Q2_wdF1nb20MkIT8iPXRy2qv7bGMof5_7x8d_EPsOr08nFqBydjb_vwmsEZbQrCd6D3mL-YD_BS_1rUTXz_WDkvwF5mQER
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0ighSvzG11hVK32KT3O5m8yinhx_1OKWFPghhPyGl5K6Xq39_ZzbptYcIgk8hZHZZdnZmfruZ_Q3AfoWYPeBeOs2ccik3AU2KW5ditHMmVKYSIZK4HpXTqTo9rWZDViXdhen5IdYHbmQZ0V-TgfuFC4c3rKEXZ--Loirvwj0u0MMSqzOf3aR3lEO51pFIKwQS_YVZano4NNyIRI8WusNJCX01iw24eRu0xqgzefw_430C2wPWZB_6xfEU7vj2GSTfESbPl_E0nR2w8XmDmDW-PYdfY0roRA_DTKM71rQM4SFD5zT-eXLMGdFYDRzMjFau75huHWtWKBovW7J5y9CDYhzbkF3FvNsXcDL5dDz-nA7lF1KLMb1MbW5kVQqvdFCjzOc2swU33rlMi0oI5YPluSM-VS5NkLLwMkhdSCO9yLR3o5ew1c5b_wpYJrwLpgi5MoYXwRurtCHkpgx2P8oTOLhWRW0HbnIqkXFe96zKRX1xVtPkJcDWgouejuNPkb0NXa7lcG8oCZEksHut3How2K6mbSw2RrCWwLv1ZzQ1-n-iWz-_7GUU0fFjF_tR1X8bQ_3jKz12_k3sLTyYfZzUR1-m317DQ0RkvM8H3oWt1fLSv4H79veq6ZZ7cYVfAXqY_us
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coverage+bias+in+the+HadCRUT4+temperature+series+and+its+impact+on+recent+temperature+trends&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Cowtan%2C+Kevin&rft.au=Way%2C+Robert+G.&rft.date=2014-07-01&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=140&rft.issue=683&rft.spage=1935&rft.epage=1944&rft_id=info:doi/10.1002%2Fqj.2297&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qj_2297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon