Precision Polymer Design in Microstructured Flow Reactors: Improved Control and First Upscale at Once
Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is still not fully established despite the large advantages that can be gained from switching from classical batch‐wise chemistry to flow chemis...
Uloženo v:
| Vydáno v: | Macromolecular chemistry and physics Ročník 218; číslo 2; s. np - n/a |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
Wiley Subscription Services, Inc
01.01.2017
|
| Témata: | |
| ISSN: | 1022-1352, 1521-3935 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is still not fully established despite the large advantages that can be gained from switching from classical batch‐wise chemistry to flow chemistry, often already by using relatively simple chip‐based or cheap tubular micro‐ and mesoscaled reactors. Translating a polymerization from batch to continuous flow marks not only a mere change in reactor engineering, but also leads to numerous advantages in the polymerization with respect to kinetics of processes and especially product quality. In flow, polymerizations are not only speed up, they also provide materials with better dispersities and higher chain end fidelities when conditions are chosen accordingly. The underpinning effects causing these improvements are demonstrated and discussed. Further, also information on required laboratory equipment and recent developments in online reaction monitoring are highlighted to give newcomers to the field an idea about the potential of continuous flow polymerization.
The advantages of using microreactors for precision polymer synthesis are highlighted and compared to classical polymerization methodologies, demonstrating that continuous flow reactors do not only lead to improved kinetics of processes, but also to a higher quality of the residual polymers. The field of continuous flow polymerization is still at its start, but the potential is eminent and some future developments are discussed. |
|---|---|
| AbstractList | Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is still not fully established despite the large advantages that can be gained from switching from classical batch‐wise chemistry to flow chemistry, often already by using relatively simple chip‐based or cheap tubular micro‐ and mesoscaled reactors. Translating a polymerization from batch to continuous flow marks not only a mere change in reactor engineering, but also leads to numerous advantages in the polymerization with respect to kinetics of processes and especially product quality. In flow, polymerizations are not only speed up, they also provide materials with better dispersities and higher chain end fidelities when conditions are chosen accordingly. The underpinning effects causing these improvements are demonstrated and discussed. Further, also information on required laboratory equipment and recent developments in online reaction monitoring are highlighted to give newcomers to the field an idea about the potential of continuous flow polymerization.
The advantages of using microreactors for precision polymer synthesis are highlighted and compared to classical polymerization methodologies, demonstrating that continuous flow reactors do not only lead to improved kinetics of processes, but also to a higher quality of the residual polymers. The field of continuous flow polymerization is still at its start, but the potential is eminent and some future developments are discussed. Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is still not fully established despite the large advantages that can be gained from switching from classical batch-wise chemistry to flow chemistry, often already by using relatively simple chip-based or cheap tubular micro- and mesoscaled reactors. Translating a polymerization from batch to continuous flow marks not only a mere change in reactor engineering, but also leads to numerous advantages in the polymerization with respect to kinetics of processes and especially product quality. In flow, polymerizations are not only speed up, they also provide materials with better dispersities and higher chain end fidelities when conditions are chosen accordingly. The underpinning effects causing these improvements are demonstrated and discussed. Further, also information on required laboratory equipment and recent developments in online reaction monitoring are highlighted to give newcomers to the field an idea about the potential of continuous flow polymerization. The advantages of using microreactors for precision polymer synthesis are highlighted and compared to classical polymerization methodologies, demonstrating that continuous flow reactors do not only lead to improved kinetics of processes, but also to a higher quality of the residual polymers. The field of continuous flow polymerization is still at its start, but the potential is eminent and some future developments are discussed. Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is still not fully established despite the large advantages that can be gained from switching from classical batch‐wise chemistry to flow chemistry, often already by using relatively simple chip‐based or cheap tubular micro‐ and mesoscaled reactors. Translating a polymerization from batch to continuous flow marks not only a mere change in reactor engineering, but also leads to numerous advantages in the polymerization with respect to kinetics of processes and especially product quality. In flow, polymerizations are not only speed up, they also provide materials with better dispersities and higher chain end fidelities when conditions are chosen accordingly. The underpinning effects causing these improvements are demonstrated and discussed. Further, also information on required laboratory equipment and recent developments in online reaction monitoring are highlighted to give newcomers to the field an idea about the potential of continuous flow polymerization. Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is still not fully established despite the large advantages that can be gained from switching from classical batch‐wise chemistry to flow chemistry, often already by using relatively simple chip‐based or cheap tubular micro‐ and mesoscaled reactors. Translating a polymerization from batch to continuous flow marks not only a mere change in reactor engineering, but also leads to numerous advantages in the polymerization with respect to kinetics of processes and especially product quality. In flow, polymerizations are not only speed up, they also provide materials with better dispersities and higher chain end fidelities when conditions are chosen accordingly. The underpinning effects causing these improvements are demonstrated and discussed. Further, also information on required laboratory equipment and recent developments in online reaction monitoring are highlighted to give newcomers to the field an idea about the potential of continuous flow polymerization. image |
| Author | Junkers, Thomas |
| Author_xml | – sequence: 1 givenname: Thomas surname: Junkers fullname: Junkers, Thomas email: thomas.junkers@uhasselt.be organization: Division IMOMEC |
| BookMark | eNqFkc9LHDEUx0OxULW99hzoxcuu-bEzmfQmq1ZBcSn1HDKZlxLJJNsko-x_3wwrFQTtu-QRPt_3vrzvEToIMQBCXylZUkLY6ajNdskIbQlZMfoBHdKG0QWXvDmoPWFsQXnDPqGjnB8IIR2R4hDBJoFx2cWAN9HvRkj4HLL7HbAL-NaZFHNJkylTggFf-viEf4I2Jab8HV-P2xQf6_86hpKixzpUxqVc8P02G-0B64LvgoHP6KPVPsOX5_cY3V9e_FpfLW7uflyvz24WplqtXmknjdWCG8KlbLm1LTN2IK20oqVW26EzUq56CQM1gtRW9oOAoe-7vgdg_Bid7OdWY38myEWNLhvwXgeIU1a0E7JWR2f02yv0IU4pVHeKE9qQjkkh3qNo18gVb7jglVruqflcOYFV2-RGnXaKEjVno-Zs1L9sqmD1SmBc0cXNd9TOvy2Te9mT87D7zxJ1e7bevGj_AjoBpbw |
| CitedBy_id | crossref_primary_10_1557_s43579_022_00263_9 crossref_primary_10_1039_D0RE00139B crossref_primary_10_1002_ejoc_201700851 crossref_primary_10_1002_anie_201907371 crossref_primary_10_1039_C8RE00211H crossref_primary_10_1002_adfm_202309844 crossref_primary_10_1002_anie_201810384 crossref_primary_10_3390_pr8080891 crossref_primary_10_1021_jacs_9b02450 crossref_primary_10_1016_j_progpolymsci_2020_101256 crossref_primary_10_1039_D2PY00542E crossref_primary_10_1002_mren_202400021 crossref_primary_10_1016_j_nanoen_2024_109397 crossref_primary_10_1039_D2PY01538B crossref_primary_10_1039_D0PY00276C crossref_primary_10_1039_C9PY00822E crossref_primary_10_1007_s10965_020_02290_3 crossref_primary_10_1557_s43577_021_00174_5 crossref_primary_10_1039_D4RA01956C crossref_primary_10_1002_ange_201810384 crossref_primary_10_1016_j_cej_2021_128572 crossref_primary_10_1556_1846_2017_00030 crossref_primary_10_1002_cptc_201900142 crossref_primary_10_1002_marc_201700143 crossref_primary_10_1002_pi_6475 crossref_primary_10_1039_D5PY00337G crossref_primary_10_1557_s43579_025_00813_x crossref_primary_10_1016_j_eurpolymj_2020_109834 crossref_primary_10_1039_C9PY00134D crossref_primary_10_1039_C9RE00474B crossref_primary_10_1039_C9PY00166B crossref_primary_10_1002_aic_16111 crossref_primary_10_1016_j_bmc_2017_06_010 crossref_primary_10_1002_ange_201907371 crossref_primary_10_1002_macp_202000311 crossref_primary_10_1002_pi_5374 crossref_primary_10_1016_j_chemosphere_2018_11_068 crossref_primary_10_1038_s42004_019_0241_1 crossref_primary_10_1002_cmtd_202500025 crossref_primary_10_1002_app_49905 crossref_primary_10_1021_acs_macromol_4c03171 crossref_primary_10_1016_j_eurpolymj_2025_114011 crossref_primary_10_1016_j_polymdegradstab_2023_110442 crossref_primary_10_1039_D2PY00088A crossref_primary_10_1002_aic_15850 crossref_primary_10_1002_mren_201700023 crossref_primary_10_1016_j_cocis_2017_07_003 crossref_primary_10_1002_mame_202200626 crossref_primary_10_1039_D3PY00709J |
| Cites_doi | 10.1016/j.eurpolymj.2016.05.006 10.1002/pola.27112 10.1002/macp.200700588 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 10.1039/B609428G 10.1016/j.eurpolymj.2016.04.006 10.1021/ja111346c 10.1039/C5PY00592B 10.1038/ncomms3505 10.1556/1846.2016.00018 10.1002/marc.201100429 10.1002/anie.201003707 10.1002/9780470723425 10.1016/j.progpolymsci.2016.04.002 10.1039/C5PY00299K 10.1002/marc.201500357 10.1039/C5RE00042D 10.1021/ma500803k 10.1039/C5PY00485C 10.1021/acs.macromol.6b01534 10.1016/j.eurpolymj.2007.03.010 10.1039/C5CC04319K 10.1002/anie.201409318 10.1021/ma9906837 10.1055/s-0032-1316579 10.1021/ma048369m 10.1002/pola.26593 10.1016/j.eurpolymj.2016.01.033 10.1021/mz5003867 10.1016/j.ces.2006.12.074 10.1039/C4CC10426A 10.1021/ma301671x 10.1016/j.progpolymsci.2012.06.002 10.1016/j.cej.2007.07.038 10.1021/mz4004198 10.1016/j.eurpolymj.2016.02.012 10.1021/ma402435n 10.1039/C3PY01762A 10.1071/CH12479 10.1021/cr940534g 10.1016/S0009-2509(00)00230-X 10.1039/C5CC01562F |
| ContentType | Journal Article |
| Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright 2017 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Copyright 2017 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright 2017 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright 2017 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
| DOI | 10.1002/macp.201600421 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Materials Research Database Materials Research Database Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3935 |
| EndPage | n/a |
| ExternalDocumentID | 4303549491 10_1002_macp_201600421 MACP201600421 |
| Genre | article |
| GrantInformation_xml | – fundername: FWO Odysseus scheme – fundername: Belgian Science Policy (BELSPO) |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX CITATION O8X 7SR 7U5 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c5211-3189cfa73c039963ff62cfd069f761fafd8c994b9ed1c709949bd7edbb8bbee23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393408500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1022-1352 |
| IngestDate | Fri Jul 11 10:35:56 EDT 2025 Fri Jul 25 10:29:06 EDT 2025 Fri Jul 25 12:06:18 EDT 2025 Tue Nov 18 21:51:59 EST 2025 Sat Nov 29 03:58:54 EST 2025 Sun Sep 21 06:23:52 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5211-3189cfa73c039963ff62cfd069f761fafd8c994b9ed1c709949bd7edbb8bbee23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/macp.201600421 |
| PQID | 1859435373 |
| PQPubID | 2034252 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1879999812 proquest_journals_3015082977 proquest_journals_1859435373 crossref_primary_10_1002_macp_201600421 crossref_citationtrail_10_1002_macp_201600421 wiley_primary_10_1002_macp_201600421_MACP201600421 |
| PublicationCentury | 2000 |
| PublicationDate | January 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Macromolecular chemistry and physics |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2001; 101 2015; 36 2015; 6 2013; 4 2013; 2 2015; 51 2015; 54 2008; 209 2008 2014; 47 2007 2011; 32 2001; 40 2016; 58 2011; 133 2008; 135S 2016; 6 2014; 5 2016; 1 2014; 3 2013; 38 2015; 20 2013; 51 2011; 50 1999; 32 2016 2007; 62 2016; 80 2014; 52 2001; 56 2007; 43 2005; 38 2012; 45 2016; 49 2012; 44 2012; 66 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 Pan X. (e_1_2_8_34_1) 2016 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 Gutmann B. (e_1_2_8_14_1) 2015; 20 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 50 start-page: 60 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 58 start-page: 59 year: 2016 publication-title: Prog. Polym. Sci. – volume: 6 start-page: 3847 year: 2015 publication-title: Polym. Chem. – volume: 133 start-page: 6006 year: 2011 publication-title: J. Am. Chem. Soc – volume: 6 start-page: 6488 year: 2015 publication-title: Polym. Chem. – volume: 80 start-page: 200 year: 2016 publication-title: Eur. Polym. J. – volume: 51 start-page: 4611 year: 2015 publication-title: Chem. Commun. – year: 2016 publication-title: Prog. Polym. Sci. – volume: 66 start-page: 192 year: 2012 publication-title: Aus. J. Chem. – volume: 38 start-page: 1159 year: 2005 publication-title: Macromolecules – volume: 52 start-page: 1263 year: 2014 publication-title: J. Polym. Sci. Polym. Chem. – volume: 56 start-page: 293 year: 2001 publication-title: Chem. Eng. Sci. – volume: 43 start-page: 2321 year: 2007 publication-title: Eur. Polym. J. – volume: 40 start-page: 2004 year: 2001 publication-title: Angew. Chem., Int. Ed. – volume: 32 start-page: 1820 year: 2011 publication-title: Macromol. Rapid Commun. – volume: 80 start-page: 208 year: 2016 publication-title: Eur. Polym. J. – volume: 4 start-page: 2505 year: 2013 publication-title: Nat. Commun. – volume: 135S start-page: S242 year: 2008 publication-title: Chem. Eng. J. – volume: 51 start-page: 2366 year: 2013 publication-title: J. Polym. Sci. Polym. Chem. – start-page: 443 year: 2007 publication-title: Chem. Commun. – volume: 54 start-page: 6688 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 80 start-page: 177 year: 2016 publication-title: Eur. Polym. J. – volume: 6 year: 2016 publication-title: J. Flow Chem. – volume: 80 start-page: 175 year: 2016 publication-title: Eur. Polym. J. – volume: 101 start-page: 2921 year: 2001 publication-title: Chem. Rev. – volume: 38 start-page: 63 year: 2013 publication-title: Prog. Polym. Sci. – volume: 3 start-page: 732 year: 2014 publication-title: ACS Macro Lett. – volume: 44 start-page: 2555 year: 2012 publication-title: Synthesis – volume: 49 start-page: 6888 year: 2016 publication-title: Macromolecules – volume: 5 start-page: 3053 year: 2014 publication-title: Polym. Chem. – volume: 6 start-page: 5752 year: 2015 publication-title: Polym. Chem. – volume: 51 start-page: 6742 year: 2015 publication-title: Chem. Commun. – volume: 45 start-page: 9551 year: 2012 publication-title: Macromolecules – volume: 51 start-page: 11701 year: 2015 publication-title: Chem. Commun. – volume: 62 start-page: 18 year: 2007 publication-title: Chem. Eng. Sci. – year: 2008 – volume: 209 start-page: 343 year: 2008 publication-title: Macromol. Chem. Phys. – volume: 32 start-page: 6977 year: 1999 publication-title: Macromolecules – volume: 20 start-page: 37 year: 2015 publication-title: Eur. Pharm. Rev. – volume: 36 start-page: 2149 year: 2015 publication-title: Macromol. Rapid Commun. – volume: 1 start-page: 60 year: 2016 publication-title: React. Chem. Eng. – volume: 47 start-page: 3451 year: 2014 publication-title: Macromolecules – volume: 2 start-page: 896 year: 2013 publication-title: ACS Macro Letters – volume: 47 start-page: 5051 year: 2014 publication-title: Macromolecules – ident: e_1_2_8_16_1 doi: 10.1016/j.eurpolymj.2016.05.006 – ident: e_1_2_8_26_1 doi: 10.1002/pola.27112 – ident: e_1_2_8_19_1 doi: 10.1002/macp.200700588 – ident: e_1_2_8_4_1 doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 – ident: e_1_2_8_11_1 doi: 10.1039/B609428G – ident: e_1_2_8_29_1 doi: 10.1016/j.eurpolymj.2016.04.006 – ident: e_1_2_8_31_1 doi: 10.1021/ja111346c – ident: e_1_2_8_37_1 doi: 10.1039/C5PY00592B – year: 2016 ident: e_1_2_8_34_1 publication-title: Prog. Polym. Sci. – ident: e_1_2_8_6_1 doi: 10.1038/ncomms3505 – ident: e_1_2_8_40_1 doi: 10.1556/1846.2016.00018 – ident: e_1_2_8_21_1 doi: 10.1002/marc.201100429 – ident: e_1_2_8_5_1 doi: 10.1002/anie.201003707 – ident: e_1_2_8_17_1 doi: 10.1002/9780470723425 – ident: e_1_2_8_12_1 doi: 10.1016/j.progpolymsci.2016.04.002 – ident: e_1_2_8_36_1 doi: 10.1039/C5PY00299K – ident: e_1_2_8_30_1 doi: 10.1002/marc.201500357 – ident: e_1_2_8_35_1 doi: 10.1039/C5RE00042D – ident: e_1_2_8_13_1 doi: 10.1021/ma500803k – ident: e_1_2_8_28_1 doi: 10.1039/C5PY00485C – ident: e_1_2_8_39_1 doi: 10.1021/acs.macromol.6b01534 – ident: e_1_2_8_20_1 doi: 10.1016/j.eurpolymj.2007.03.010 – ident: e_1_2_8_32_1 doi: 10.1039/C5CC04319K – ident: e_1_2_8_15_1 doi: 10.1002/anie.201409318 – ident: e_1_2_8_1_1 doi: 10.1021/ma9906837 – ident: e_1_2_8_22_1 doi: 10.1055/s-0032-1316579 – ident: e_1_2_8_25_1 doi: 10.1021/ma048369m – ident: e_1_2_8_24_1 doi: 10.1002/pola.26593 – ident: e_1_2_8_41_1 doi: 10.1016/j.eurpolymj.2016.01.033 – ident: e_1_2_8_8_1 doi: 10.1021/mz5003867 – ident: e_1_2_8_43_1 doi: 10.1016/j.ces.2006.12.074 – ident: e_1_2_8_44_1 doi: 10.1039/C4CC10426A – ident: e_1_2_8_18_1 doi: 10.1021/ma301671x – ident: e_1_2_8_3_1 doi: 10.1016/j.progpolymsci.2012.06.002 – ident: e_1_2_8_23_1 doi: 10.1016/j.cej.2007.07.038 – ident: e_1_2_8_9_1 doi: 10.1021/mz4004198 – volume: 20 start-page: 37 year: 2015 ident: e_1_2_8_14_1 publication-title: Eur. Pharm. Rev. – ident: e_1_2_8_33_1 doi: 10.1016/j.eurpolymj.2016.02.012 – ident: e_1_2_8_7_1 doi: 10.1021/ma402435n – ident: e_1_2_8_27_1 doi: 10.1039/C3PY01762A – ident: e_1_2_8_42_1 doi: 10.1071/CH12479 – ident: e_1_2_8_2_1 doi: 10.1021/cr940534g – ident: e_1_2_8_10_1 doi: 10.1016/S0009-2509(00)00230-X – ident: e_1_2_8_38_1 doi: 10.1039/C5CC01562F |
| SSID | ssj0008097 |
| Score | 2.4486926 |
| Snippet | Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | np |
| SubjectTerms | Chemical reactions Chemical synthesis Continuous flow continuous flow synthesis Design engineering Design improvements Laboratories microreactor Monitoring online monitoring Polymerization Polymers precision polymers Reaction kinetics Reactors Synthesis (chemistry) |
| Title | Precision Polymer Design in Microstructured Flow Reactors: Improved Control and First Upscale at Once |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.201600421 https://www.proquest.com/docview/1859435373 https://www.proquest.com/docview/3015082977 https://www.proquest.com/docview/1879999812 |
| Volume | 218 |
| WOSCitedRecordID | wos000393408500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3935 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008097 issn: 1022-1352 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB7kFPSlam3xWi0rCD4Fk82PzfZNTo8-VD2kB76F_TELB3c5udOW_vedzeaigiLUxySbZdmZ3fkymf0-gGPykhwV8kgpV0QZxaBIa1NEKs6VwdRmeawasQlxdVXe3srRk1P8gR-iS7j5ldHs136BK708fSQNnSnj-SaTwvsdff-sc3LevAfr5zfD8c9uNy7jILDiq9YTQhsr4saYnz7v4XlgekSbTzFrE3SG2-8f7g58aAEnOwsesgtrWH-EzcFK520PcLRodXbYaD79O8MFO2_KOtikZpe-Xi9wzD4s0LLhdP6H3WAQ6fnOQkqC7g9CxTtTNbWZEKJk47slmR-ZumfX5FifYDy8-DX4EbXiC5GhiJ74U9XSOCVSExOGKVLnCm6cjQvpRJE45WxppMy0RJsYQTgzk9oKtFqXWiPy9DP06nmN-8ASWZrS5r4nm2mdaFFgHGvaZh0XOtN9iFYzX5mWmdwLZEyrwKnMKz95VTd5fTjp2t8FTo5XWx6sDFm1a3NZEUKRBBJTkb74OPU5IH_gWPThqHtMNvF_UlSN8wffhSBgLQkc9YE3Vn9jINXl2WDUXX35n5e-whb3kKJJ_xxAj0yPh7Bhft9Plotvrdv_A7UAA48 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GO-he9j2arts0GOzJ1F-xrL2VtKFjSRZKA30z-jhBIHVK0q70v--d5bgrbBTGHm3LQki_0_18Pv0O4AuhpI8a00hrX0Q5-aDIGFtEOu5ri5nL-7Fuik3IyaQ8P1fTNpuQz8IEfYgu4MaW0ezXbOAckD64Vw290JYFJ5OCgUcfQNs5YYlAvn10OpyNuu24jEOFFU5bT4hubJQb4_TgYQ8PPdM93fydtDZeZ_jiP4z3JTxvKac4DBh5BU-wfg07g02ltzeA01VbaUdMl4vbC1yJoyaxQ8xrMeaMvaAye71CJ4aL5Y04xVCm55sIQQm6Pwg570LX1GZOnFLMLtcEABT6SvwkaL2F2fD4bHASteUXIks-PeFz1cp6LTMbE4spMu-L1HoXF8rLIvHau9IqlRuFLrGSmGaujJPojCmNQUyzd7BVL2vcBZGo0pauzz253JjEyALj2NBG61NpctODaDP1lW21yblExqIKqsppxZNXdZPXg69d-8ugyvHXlvublaxa61xXxFEU0cRMZn98nHEUiI8cyx587h7TmvC_FF3j8pq7kEStFdGjHqTNsj8ykGp8OJh2V3v_8tIn2Dk5G4-q0ffJj_fwLGWC0QSD9mGLYIAf4Kn9dTVfrz62NnAHRW4Hfw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6UtGx72bpLWdau02CwJ1PfYll9K8lMS9vMlAX6ZnQ5gkDqhKQX-u97ZDnuChuDskfbshDSOTqfj4--D-AbWckAJcaBlDYLUopBgVI6C2Q4kBoTkw5C2YhN8PE4v7wUZVtN6M7CeH6ILuHmPKPZr52D48LYg0fW0CupHeFklDnDow-gzdQpyfRgc3RRTM667TgPvcKKK1uPCG6smRvD-OBpD08j0yPc_B20NlGnePMfxrsNr1vIyY68jbyFDazfwcvhWuntPWC5bJV2WDmf3V_hko2awg42rdm5q9jzLLM3SzSsmM3v2AV6mZ5D5pMSdH_oa96ZrKnNlDAlmyxWZADI5DX7Sab1ASbFj1_D46CVXwg0xfTInasW2kqe6JBQTJZYm8XamjATlmeRldbkWohUCTSR5oQ0U6EMR6NUrhRinOxAr57X-BFYJHKdm4HryaRKRYpnGIaKNlobc5WqPgTrqa90y03uJDJmlWdVjis3eVU3eX343rVfeFaOv7bcW69k1XrnqiKMIggmJjz54-PEZYHckWPeh6_dY1oT9y9F1ji_cV1wgtaC4FEf4mbZ_zGQ6vxoWHZXn57z0hd4UY6K6uxkfLoLr2KHL5pc0B70yArwM2zp2-vparnfusADxBQG-g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+Polymer+Design+in+Microstructured+Flow+Reactors%3A+Improved+Control+and+First+Upscale+at+Once&rft.jtitle=Macromolecular+chemistry+and+physics&rft.au=Junkers%2C+Tanja&rft.date=2017-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1022-1352&rft.eissn=1521-3935&rft.volume=218&rft.issue=2&rft_id=info:doi/10.1002%2Fmacp.201600421&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1352&client=summon |