Precision Polymer Design in Microstructured Flow Reactors: Improved Control and First Upscale at Once

Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is still not fully established despite the large advantages that can be gained from switching from classical batch‐wise chemistry to flow chemis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Macromolecular chemistry and physics Ročník 218; číslo 2; s. np - n/a
Hlavní autor: Junkers, Thomas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Wiley Subscription Services, Inc 01.01.2017
Témata:
ISSN:1022-1352, 1521-3935
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is still not fully established despite the large advantages that can be gained from switching from classical batch‐wise chemistry to flow chemistry, often already by using relatively simple chip‐based or cheap tubular micro‐ and mesoscaled reactors. Translating a polymerization from batch to continuous flow marks not only a mere change in reactor engineering, but also leads to numerous advantages in the polymerization with respect to kinetics of processes and especially product quality. In flow, polymerizations are not only speed up, they also provide materials with better dispersities and higher chain end fidelities when conditions are chosen accordingly. The underpinning effects causing these improvements are demonstrated and discussed. Further, also information on required laboratory equipment and recent developments in online reaction monitoring are highlighted to give newcomers to the field an idea about the potential of continuous flow polymerization. The advantages of using microreactors for precision polymer synthesis are highlighted and compared to classical polymerization methodologies, demonstrating that continuous flow reactors do not only lead to improved kinetics of processes, but also to a higher quality of the residual polymers. The field of continuous flow polymerization is still at its start, but the potential is eminent and some future developments are discussed.
AbstractList Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is still not fully established despite the large advantages that can be gained from switching from classical batch‐wise chemistry to flow chemistry, often already by using relatively simple chip‐based or cheap tubular micro‐ and mesoscaled reactors. Translating a polymerization from batch to continuous flow marks not only a mere change in reactor engineering, but also leads to numerous advantages in the polymerization with respect to kinetics of processes and especially product quality. In flow, polymerizations are not only speed up, they also provide materials with better dispersities and higher chain end fidelities when conditions are chosen accordingly. The underpinning effects causing these improvements are demonstrated and discussed. Further, also information on required laboratory equipment and recent developments in online reaction monitoring are highlighted to give newcomers to the field an idea about the potential of continuous flow polymerization. The advantages of using microreactors for precision polymer synthesis are highlighted and compared to classical polymerization methodologies, demonstrating that continuous flow reactors do not only lead to improved kinetics of processes, but also to a higher quality of the residual polymers. The field of continuous flow polymerization is still at its start, but the potential is eminent and some future developments are discussed.
Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is still not fully established despite the large advantages that can be gained from switching from classical batch-wise chemistry to flow chemistry, often already by using relatively simple chip-based or cheap tubular micro- and mesoscaled reactors. Translating a polymerization from batch to continuous flow marks not only a mere change in reactor engineering, but also leads to numerous advantages in the polymerization with respect to kinetics of processes and especially product quality. In flow, polymerizations are not only speed up, they also provide materials with better dispersities and higher chain end fidelities when conditions are chosen accordingly. The underpinning effects causing these improvements are demonstrated and discussed. Further, also information on required laboratory equipment and recent developments in online reaction monitoring are highlighted to give newcomers to the field an idea about the potential of continuous flow polymerization. The advantages of using microreactors for precision polymer synthesis are highlighted and compared to classical polymerization methodologies, demonstrating that continuous flow reactors do not only lead to improved kinetics of processes, but also to a higher quality of the residual polymers. The field of continuous flow polymerization is still at its start, but the potential is eminent and some future developments are discussed.
Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is still not fully established despite the large advantages that can be gained from switching from classical batch‐wise chemistry to flow chemistry, often already by using relatively simple chip‐based or cheap tubular micro‐ and mesoscaled reactors. Translating a polymerization from batch to continuous flow marks not only a mere change in reactor engineering, but also leads to numerous advantages in the polymerization with respect to kinetics of processes and especially product quality. In flow, polymerizations are not only speed up, they also provide materials with better dispersities and higher chain end fidelities when conditions are chosen accordingly. The underpinning effects causing these improvements are demonstrated and discussed. Further, also information on required laboratory equipment and recent developments in online reaction monitoring are highlighted to give newcomers to the field an idea about the potential of continuous flow polymerization.
Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is still not fully established despite the large advantages that can be gained from switching from classical batch‐wise chemistry to flow chemistry, often already by using relatively simple chip‐based or cheap tubular micro‐ and mesoscaled reactors. Translating a polymerization from batch to continuous flow marks not only a mere change in reactor engineering, but also leads to numerous advantages in the polymerization with respect to kinetics of processes and especially product quality. In flow, polymerizations are not only speed up, they also provide materials with better dispersities and higher chain end fidelities when conditions are chosen accordingly. The underpinning effects causing these improvements are demonstrated and discussed. Further, also information on required laboratory equipment and recent developments in online reaction monitoring are highlighted to give newcomers to the field an idea about the potential of continuous flow polymerization. image
Author Junkers, Thomas
Author_xml – sequence: 1
  givenname: Thomas
  surname: Junkers
  fullname: Junkers, Thomas
  email: thomas.junkers@uhasselt.be
  organization: Division IMOMEC
BookMark eNqFkc9LHDEUx0OxULW99hzoxcuu-bEzmfQmq1ZBcSn1HDKZlxLJJNsko-x_3wwrFQTtu-QRPt_3vrzvEToIMQBCXylZUkLY6ajNdskIbQlZMfoBHdKG0QWXvDmoPWFsQXnDPqGjnB8IIR2R4hDBJoFx2cWAN9HvRkj4HLL7HbAL-NaZFHNJkylTggFf-viEf4I2Jab8HV-P2xQf6_86hpKixzpUxqVc8P02G-0B64LvgoHP6KPVPsOX5_cY3V9e_FpfLW7uflyvz24WplqtXmknjdWCG8KlbLm1LTN2IK20oqVW26EzUq56CQM1gtRW9oOAoe-7vgdg_Bid7OdWY38myEWNLhvwXgeIU1a0E7JWR2f02yv0IU4pVHeKE9qQjkkh3qNo18gVb7jglVruqflcOYFV2-RGnXaKEjVno-Zs1L9sqmD1SmBc0cXNd9TOvy2Te9mT87D7zxJ1e7bevGj_AjoBpbw
CitedBy_id crossref_primary_10_1557_s43579_022_00263_9
crossref_primary_10_1039_D0RE00139B
crossref_primary_10_1002_ejoc_201700851
crossref_primary_10_1002_anie_201907371
crossref_primary_10_1039_C8RE00211H
crossref_primary_10_1002_adfm_202309844
crossref_primary_10_1002_anie_201810384
crossref_primary_10_3390_pr8080891
crossref_primary_10_1021_jacs_9b02450
crossref_primary_10_1016_j_progpolymsci_2020_101256
crossref_primary_10_1039_D2PY00542E
crossref_primary_10_1002_mren_202400021
crossref_primary_10_1016_j_nanoen_2024_109397
crossref_primary_10_1039_D2PY01538B
crossref_primary_10_1039_D0PY00276C
crossref_primary_10_1039_C9PY00822E
crossref_primary_10_1007_s10965_020_02290_3
crossref_primary_10_1557_s43577_021_00174_5
crossref_primary_10_1039_D4RA01956C
crossref_primary_10_1002_ange_201810384
crossref_primary_10_1016_j_cej_2021_128572
crossref_primary_10_1556_1846_2017_00030
crossref_primary_10_1002_cptc_201900142
crossref_primary_10_1002_marc_201700143
crossref_primary_10_1002_pi_6475
crossref_primary_10_1039_D5PY00337G
crossref_primary_10_1557_s43579_025_00813_x
crossref_primary_10_1016_j_eurpolymj_2020_109834
crossref_primary_10_1039_C9PY00134D
crossref_primary_10_1039_C9RE00474B
crossref_primary_10_1039_C9PY00166B
crossref_primary_10_1002_aic_16111
crossref_primary_10_1016_j_bmc_2017_06_010
crossref_primary_10_1002_ange_201907371
crossref_primary_10_1002_macp_202000311
crossref_primary_10_1002_pi_5374
crossref_primary_10_1016_j_chemosphere_2018_11_068
crossref_primary_10_1038_s42004_019_0241_1
crossref_primary_10_1002_cmtd_202500025
crossref_primary_10_1002_app_49905
crossref_primary_10_1021_acs_macromol_4c03171
crossref_primary_10_1016_j_eurpolymj_2025_114011
crossref_primary_10_1016_j_polymdegradstab_2023_110442
crossref_primary_10_1039_D2PY00088A
crossref_primary_10_1002_aic_15850
crossref_primary_10_1002_mren_201700023
crossref_primary_10_1016_j_cocis_2017_07_003
crossref_primary_10_1002_mame_202200626
crossref_primary_10_1039_D3PY00709J
Cites_doi 10.1016/j.eurpolymj.2016.05.006
10.1002/pola.27112
10.1002/macp.200700588
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
10.1039/B609428G
10.1016/j.eurpolymj.2016.04.006
10.1021/ja111346c
10.1039/C5PY00592B
10.1038/ncomms3505
10.1556/1846.2016.00018
10.1002/marc.201100429
10.1002/anie.201003707
10.1002/9780470723425
10.1016/j.progpolymsci.2016.04.002
10.1039/C5PY00299K
10.1002/marc.201500357
10.1039/C5RE00042D
10.1021/ma500803k
10.1039/C5PY00485C
10.1021/acs.macromol.6b01534
10.1016/j.eurpolymj.2007.03.010
10.1039/C5CC04319K
10.1002/anie.201409318
10.1021/ma9906837
10.1055/s-0032-1316579
10.1021/ma048369m
10.1002/pola.26593
10.1016/j.eurpolymj.2016.01.033
10.1021/mz5003867
10.1016/j.ces.2006.12.074
10.1039/C4CC10426A
10.1021/ma301671x
10.1016/j.progpolymsci.2012.06.002
10.1016/j.cej.2007.07.038
10.1021/mz4004198
10.1016/j.eurpolymj.2016.02.012
10.1021/ma402435n
10.1039/C3PY01762A
10.1071/CH12479
10.1021/cr940534g
10.1016/S0009-2509(00)00230-X
10.1039/C5CC01562F
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright 2017 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright 2017 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright 2017 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright 2017 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
7U5
8FD
JG9
L7M
DOI 10.1002/macp.201600421
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database
Materials Research Database
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3935
EndPage n/a
ExternalDocumentID 4303549491
10_1002_macp_201600421
MACP201600421
Genre article
GrantInformation_xml – fundername: FWO Odysseus scheme
– fundername: Belgian Science Policy (BELSPO)
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
7SR
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c5211-3189cfa73c039963ff62cfd069f761fafd8c994b9ed1c709949bd7edbb8bbee23
IEDL.DBID DRFUL
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393408500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1022-1352
IngestDate Fri Jul 11 10:35:56 EDT 2025
Fri Jul 25 10:29:06 EDT 2025
Fri Jul 25 12:06:18 EDT 2025
Tue Nov 18 21:51:59 EST 2025
Sat Nov 29 03:58:54 EST 2025
Sun Sep 21 06:23:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5211-3189cfa73c039963ff62cfd069f761fafd8c994b9ed1c709949bd7edbb8bbee23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/macp.201600421
PQID 1859435373
PQPubID 2034252
PageCount 9
ParticipantIDs proquest_miscellaneous_1879999812
proquest_journals_3015082977
proquest_journals_1859435373
crossref_primary_10_1002_macp_201600421
crossref_citationtrail_10_1002_macp_201600421
wiley_primary_10_1002_macp_201600421_MACP201600421
PublicationCentury 2000
PublicationDate January 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular chemistry and physics
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2001; 101
2015; 36
2015; 6
2013; 4
2013; 2
2015; 51
2015; 54
2008; 209
2008
2014; 47
2007
2011; 32
2001; 40
2016; 58
2011; 133
2008; 135S
2016; 6
2014; 5
2016; 1
2014; 3
2013; 38
2015; 20
2013; 51
2011; 50
1999; 32
2016
2007; 62
2016; 80
2014; 52
2001; 56
2007; 43
2005; 38
2012; 45
2016; 49
2012; 44
2012; 66
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
Pan X. (e_1_2_8_34_1) 2016
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
Gutmann B. (e_1_2_8_14_1) 2015; 20
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 50
  start-page: 60
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 58
  start-page: 59
  year: 2016
  publication-title: Prog. Polym. Sci.
– volume: 6
  start-page: 3847
  year: 2015
  publication-title: Polym. Chem.
– volume: 133
  start-page: 6006
  year: 2011
  publication-title: J. Am. Chem. Soc
– volume: 6
  start-page: 6488
  year: 2015
  publication-title: Polym. Chem.
– volume: 80
  start-page: 200
  year: 2016
  publication-title: Eur. Polym. J.
– volume: 51
  start-page: 4611
  year: 2015
  publication-title: Chem. Commun.
– year: 2016
  publication-title: Prog. Polym. Sci.
– volume: 66
  start-page: 192
  year: 2012
  publication-title: Aus. J. Chem.
– volume: 38
  start-page: 1159
  year: 2005
  publication-title: Macromolecules
– volume: 52
  start-page: 1263
  year: 2014
  publication-title: J. Polym. Sci. Polym. Chem.
– volume: 56
  start-page: 293
  year: 2001
  publication-title: Chem. Eng. Sci.
– volume: 43
  start-page: 2321
  year: 2007
  publication-title: Eur. Polym. J.
– volume: 40
  start-page: 2004
  year: 2001
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  start-page: 1820
  year: 2011
  publication-title: Macromol. Rapid Commun.
– volume: 80
  start-page: 208
  year: 2016
  publication-title: Eur. Polym. J.
– volume: 4
  start-page: 2505
  year: 2013
  publication-title: Nat. Commun.
– volume: 135S
  start-page: S242
  year: 2008
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 2366
  year: 2013
  publication-title: J. Polym. Sci. Polym. Chem.
– start-page: 443
  year: 2007
  publication-title: Chem. Commun.
– volume: 54
  start-page: 6688
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 80
  start-page: 177
  year: 2016
  publication-title: Eur. Polym. J.
– volume: 6
  year: 2016
  publication-title: J. Flow Chem.
– volume: 80
  start-page: 175
  year: 2016
  publication-title: Eur. Polym. J.
– volume: 101
  start-page: 2921
  year: 2001
  publication-title: Chem. Rev.
– volume: 38
  start-page: 63
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 3
  start-page: 732
  year: 2014
  publication-title: ACS Macro Lett.
– volume: 44
  start-page: 2555
  year: 2012
  publication-title: Synthesis
– volume: 49
  start-page: 6888
  year: 2016
  publication-title: Macromolecules
– volume: 5
  start-page: 3053
  year: 2014
  publication-title: Polym. Chem.
– volume: 6
  start-page: 5752
  year: 2015
  publication-title: Polym. Chem.
– volume: 51
  start-page: 6742
  year: 2015
  publication-title: Chem. Commun.
– volume: 45
  start-page: 9551
  year: 2012
  publication-title: Macromolecules
– volume: 51
  start-page: 11701
  year: 2015
  publication-title: Chem. Commun.
– volume: 62
  start-page: 18
  year: 2007
  publication-title: Chem. Eng. Sci.
– year: 2008
– volume: 209
  start-page: 343
  year: 2008
  publication-title: Macromol. Chem. Phys.
– volume: 32
  start-page: 6977
  year: 1999
  publication-title: Macromolecules
– volume: 20
  start-page: 37
  year: 2015
  publication-title: Eur. Pharm. Rev.
– volume: 36
  start-page: 2149
  year: 2015
  publication-title: Macromol. Rapid Commun.
– volume: 1
  start-page: 60
  year: 2016
  publication-title: React. Chem. Eng.
– volume: 47
  start-page: 3451
  year: 2014
  publication-title: Macromolecules
– volume: 2
  start-page: 896
  year: 2013
  publication-title: ACS Macro Letters
– volume: 47
  start-page: 5051
  year: 2014
  publication-title: Macromolecules
– ident: e_1_2_8_16_1
  doi: 10.1016/j.eurpolymj.2016.05.006
– ident: e_1_2_8_26_1
  doi: 10.1002/pola.27112
– ident: e_1_2_8_19_1
  doi: 10.1002/macp.200700588
– ident: e_1_2_8_4_1
  doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
– ident: e_1_2_8_11_1
  doi: 10.1039/B609428G
– ident: e_1_2_8_29_1
  doi: 10.1016/j.eurpolymj.2016.04.006
– ident: e_1_2_8_31_1
  doi: 10.1021/ja111346c
– ident: e_1_2_8_37_1
  doi: 10.1039/C5PY00592B
– year: 2016
  ident: e_1_2_8_34_1
  publication-title: Prog. Polym. Sci.
– ident: e_1_2_8_6_1
  doi: 10.1038/ncomms3505
– ident: e_1_2_8_40_1
  doi: 10.1556/1846.2016.00018
– ident: e_1_2_8_21_1
  doi: 10.1002/marc.201100429
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.201003707
– ident: e_1_2_8_17_1
  doi: 10.1002/9780470723425
– ident: e_1_2_8_12_1
  doi: 10.1016/j.progpolymsci.2016.04.002
– ident: e_1_2_8_36_1
  doi: 10.1039/C5PY00299K
– ident: e_1_2_8_30_1
  doi: 10.1002/marc.201500357
– ident: e_1_2_8_35_1
  doi: 10.1039/C5RE00042D
– ident: e_1_2_8_13_1
  doi: 10.1021/ma500803k
– ident: e_1_2_8_28_1
  doi: 10.1039/C5PY00485C
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.macromol.6b01534
– ident: e_1_2_8_20_1
  doi: 10.1016/j.eurpolymj.2007.03.010
– ident: e_1_2_8_32_1
  doi: 10.1039/C5CC04319K
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.201409318
– ident: e_1_2_8_1_1
  doi: 10.1021/ma9906837
– ident: e_1_2_8_22_1
  doi: 10.1055/s-0032-1316579
– ident: e_1_2_8_25_1
  doi: 10.1021/ma048369m
– ident: e_1_2_8_24_1
  doi: 10.1002/pola.26593
– ident: e_1_2_8_41_1
  doi: 10.1016/j.eurpolymj.2016.01.033
– ident: e_1_2_8_8_1
  doi: 10.1021/mz5003867
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ces.2006.12.074
– ident: e_1_2_8_44_1
  doi: 10.1039/C4CC10426A
– ident: e_1_2_8_18_1
  doi: 10.1021/ma301671x
– ident: e_1_2_8_3_1
  doi: 10.1016/j.progpolymsci.2012.06.002
– ident: e_1_2_8_23_1
  doi: 10.1016/j.cej.2007.07.038
– ident: e_1_2_8_9_1
  doi: 10.1021/mz4004198
– volume: 20
  start-page: 37
  year: 2015
  ident: e_1_2_8_14_1
  publication-title: Eur. Pharm. Rev.
– ident: e_1_2_8_33_1
  doi: 10.1016/j.eurpolymj.2016.02.012
– ident: e_1_2_8_7_1
  doi: 10.1021/ma402435n
– ident: e_1_2_8_27_1
  doi: 10.1039/C3PY01762A
– ident: e_1_2_8_42_1
  doi: 10.1071/CH12479
– ident: e_1_2_8_2_1
  doi: 10.1021/cr940534g
– ident: e_1_2_8_10_1
  doi: 10.1016/S0009-2509(00)00230-X
– ident: e_1_2_8_38_1
  doi: 10.1039/C5CC01562F
SSID ssj0008097
Score 2.4486926
Snippet Continuous flow synthesis techniques have in recent years conquered laboratory scale synthesis, yet within the field of precision polymer synthesis its use is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Chemical reactions
Chemical synthesis
Continuous flow
continuous flow synthesis
Design engineering
Design improvements
Laboratories
microreactor
Monitoring
online monitoring
Polymerization
Polymers
precision polymers
Reaction kinetics
Reactors
Synthesis (chemistry)
Title Precision Polymer Design in Microstructured Flow Reactors: Improved Control and First Upscale at Once
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.201600421
https://www.proquest.com/docview/1859435373
https://www.proquest.com/docview/3015082977
https://www.proquest.com/docview/1879999812
Volume 218
WOSCitedRecordID wos000393408500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3935
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008097
  issn: 1022-1352
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB7kFPSlam3xWi0rCD4Fk82PzfZNTo8-VD2kB76F_TELB3c5udOW_vedzeaigiLUxySbZdmZ3fkymf0-gGPykhwV8kgpV0QZxaBIa1NEKs6VwdRmeawasQlxdVXe3srRk1P8gR-iS7j5ldHs136BK708fSQNnSnj-SaTwvsdff-sc3LevAfr5zfD8c9uNy7jILDiq9YTQhsr4saYnz7v4XlgekSbTzFrE3SG2-8f7g58aAEnOwsesgtrWH-EzcFK520PcLRodXbYaD79O8MFO2_KOtikZpe-Xi9wzD4s0LLhdP6H3WAQ6fnOQkqC7g9CxTtTNbWZEKJk47slmR-ZumfX5FifYDy8-DX4EbXiC5GhiJ74U9XSOCVSExOGKVLnCm6cjQvpRJE45WxppMy0RJsYQTgzk9oKtFqXWiPy9DP06nmN-8ASWZrS5r4nm2mdaFFgHGvaZh0XOtN9iFYzX5mWmdwLZEyrwKnMKz95VTd5fTjp2t8FTo5XWx6sDFm1a3NZEUKRBBJTkb74OPU5IH_gWPThqHtMNvF_UlSN8wffhSBgLQkc9YE3Vn9jINXl2WDUXX35n5e-whb3kKJJ_xxAj0yPh7Bhft9Plotvrdv_A7UAA48
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GO-he9j2arts0GOzJ1F-xrL2VtKFjSRZKA30z-jhBIHVK0q70v--d5bgrbBTGHm3LQki_0_18Pv0O4AuhpI8a00hrX0Q5-aDIGFtEOu5ri5nL-7Fuik3IyaQ8P1fTNpuQz8IEfYgu4MaW0ezXbOAckD64Vw290JYFJ5OCgUcfQNs5YYlAvn10OpyNuu24jEOFFU5bT4hubJQb4_TgYQ8PPdM93fydtDZeZ_jiP4z3JTxvKac4DBh5BU-wfg07g02ltzeA01VbaUdMl4vbC1yJoyaxQ8xrMeaMvaAye71CJ4aL5Y04xVCm55sIQQm6Pwg570LX1GZOnFLMLtcEABT6SvwkaL2F2fD4bHASteUXIks-PeFz1cp6LTMbE4spMu-L1HoXF8rLIvHau9IqlRuFLrGSmGaujJPojCmNQUyzd7BVL2vcBZGo0pauzz253JjEyALj2NBG61NpctODaDP1lW21yblExqIKqsppxZNXdZPXg69d-8ugyvHXlvublaxa61xXxFEU0cRMZn98nHEUiI8cyx587h7TmvC_FF3j8pq7kEStFdGjHqTNsj8ykGp8OJh2V3v_8tIn2Dk5G4-q0ffJj_fwLGWC0QSD9mGLYIAf4Kn9dTVfrz62NnAHRW4Hfw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6UtGx72bpLWdau02CwJ1PfYll9K8lMS9vMlAX6ZnQ5gkDqhKQX-u97ZDnuChuDskfbshDSOTqfj4--D-AbWckAJcaBlDYLUopBgVI6C2Q4kBoTkw5C2YhN8PE4v7wUZVtN6M7CeH6ILuHmPKPZr52D48LYg0fW0CupHeFklDnDow-gzdQpyfRgc3RRTM667TgPvcKKK1uPCG6smRvD-OBpD08j0yPc_B20NlGnePMfxrsNr1vIyY68jbyFDazfwcvhWuntPWC5bJV2WDmf3V_hko2awg42rdm5q9jzLLM3SzSsmM3v2AV6mZ5D5pMSdH_oa96ZrKnNlDAlmyxWZADI5DX7Sab1ASbFj1_D46CVXwg0xfTInasW2kqe6JBQTJZYm8XamjATlmeRldbkWohUCTSR5oQ0U6EMR6NUrhRinOxAr57X-BFYJHKdm4HryaRKRYpnGIaKNlobc5WqPgTrqa90y03uJDJmlWdVjis3eVU3eX343rVfeFaOv7bcW69k1XrnqiKMIggmJjz54-PEZYHckWPeh6_dY1oT9y9F1ji_cV1wgtaC4FEf4mbZ_zGQ6vxoWHZXn57z0hd4UY6K6uxkfLoLr2KHL5pc0B70yArwM2zp2-vparnfusADxBQG-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+Polymer+Design+in+Microstructured+Flow+Reactors%3A+Improved+Control+and+First+Upscale+at+Once&rft.jtitle=Macromolecular+chemistry+and+physics&rft.au=Junkers%2C+Tanja&rft.date=2017-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1022-1352&rft.eissn=1521-3935&rft.volume=218&rft.issue=2&rft_id=info:doi/10.1002%2Fmacp.201600421&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1352&client=summon