The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation

We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters Jg. 44; H. 22; S. 11,580 - 11,589
Hauptverfasser: Marshall, Gareth J., Thompson, David W. J., Broeke, Michiel R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States John Wiley & Sons, Inc 28.11.2017
John Wiley and Sons Inc
Schlagworte:
ISSN:0094-8276, 1944-8007
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. Key Points The primary Southern Hemisphere extratropical circulation patterns all influence the spatial distribution of Antarctic precipitation They impact not only the mean but also the incidence of extreme precipitation events Locally, extreme precipitation may be associated especially with one polarity of a circulation pattern
AbstractList We provide the first comprehensive analysis of the relationships between large-scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large-scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific-South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high-latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled-climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone.We provide the first comprehensive analysis of the relationships between large-scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large-scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific-South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high-latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled-climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone.
We provide the first comprehensive analysis of the relationships between large-scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large-scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific-South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high-latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled-climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone.
We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. The primary Southern Hemisphere extratropical circulation patterns all influence the spatial distribution of Antarctic precipitation They impact not only the mean but also the incidence of extreme precipitation events Locally, extreme precipitation may be associated especially with one polarity of a circulation pattern
We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. The primary Southern Hemisphere extratropical circulation patterns all influence the spatial distribution of Antarctic precipitationThey impact not only the mean but also the incidence of extreme precipitation eventsLocally, extreme precipitation may be associated especially with one polarity of a circulation pattern
We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. Key Points The primary Southern Hemisphere extratropical circulation patterns all influence the spatial distribution of Antarctic precipitation They impact not only the mean but also the incidence of extreme precipitation events Locally, extreme precipitation may be associated especially with one polarity of a circulation pattern
Author Broeke, Michiel R.
Marshall, Gareth J.
Thompson, David W. J.
AuthorAffiliation 2 Department of Atmospheric Science Colorado State University Fort Collins CO USA
1 British Antarctic Survey Natural Environment Research Council Cambridge UK
3 Institute for Marine and Atmospheric Research Utrecht University Utrecht Netherlands
AuthorAffiliation_xml – name: 2 Department of Atmospheric Science Colorado State University Fort Collins CO USA
– name: 3 Institute for Marine and Atmospheric Research Utrecht University Utrecht Netherlands
– name: 1 British Antarctic Survey Natural Environment Research Council Cambridge UK
Author_xml – sequence: 1
  givenname: Gareth J.
  orcidid: 0000-0001-8887-7314
  surname: Marshall
  fullname: Marshall, Gareth J.
  email: gjma@bas.ac.uk
  organization: Natural Environment Research Council
– sequence: 2
  givenname: David W. J.
  surname: Thompson
  fullname: Thompson, David W. J.
  organization: Colorado State University
– sequence: 3
  givenname: Michiel R.
  surname: Broeke
  fullname: Broeke, Michiel R.
  organization: Utrecht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29398735$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1LXDEUxUOx1NF213UJuHHRsfl8edkIw9COhYFKtes05t3nRN4kY5Jn8b9v1FGsYFc5kN89Offe7KGdEAMg9JGSI0oI-8IIVYslUVLr9g2aUC3EtCVE7aAJIbpqpppdtJfzFSGEE07foV2muW4VlxP0-3wF-MxfBlvGBDj2-CyOZQUp4BNY-7ypEvCsrOO99A7PfXLjYIuPAZ_aUiqasQ94FopNrlTiNIHzG1_umffobW-HDB-25z769e3r-fxkuvyx-D6fLadOMkqmVGhhueVNyzpLu4Z0vO_kBWWWUsda6J3om46DE65nwDvRKe0UtL2wkjJn-T46fvDdjBdr6ByEkuxgNsmvbbo10Xrz703wK3MZb4xUreC6qQaHW4MUr0fIxdT2HQyDDRDHbKjWgkvNW1bRgxfoVRxTqO1VSmkuKed31KfniZ6iPA6_AuwBcCnmnKA3bju0GtAPhhJzt2HzfMO16POLokffV_DtG3_8ALf_Zc3i51I2Tf0ifwEWl7aA
CitedBy_id crossref_primary_10_1017_jog_2023_79
crossref_primary_10_5194_cp_21_897_2025
crossref_primary_10_1029_2020JD033788
crossref_primary_10_5194_tc_14_4719_2020
crossref_primary_10_1029_2020JC016354
crossref_primary_10_1038_s41561_025_01699_z
crossref_primary_10_5194_cp_20_2539_2024
crossref_primary_10_3390_rs17020324
crossref_primary_10_1029_2018JD029321
crossref_primary_10_1029_2019GL084329
crossref_primary_10_1029_2018GL081517
crossref_primary_10_1029_2020GL092281
crossref_primary_10_5194_tc_18_683_2024
crossref_primary_10_1038_s41598_020_59223_9
crossref_primary_10_3390_atmos11121270
crossref_primary_10_1002_wcc_652
crossref_primary_10_5194_hess_24_2003_2020
crossref_primary_10_5194_esd_11_1153_2020
crossref_primary_10_1029_2024GL112814
crossref_primary_10_1038_s43247_022_00502_w
crossref_primary_10_1029_2023GL104256
crossref_primary_10_1088_2752_5295_acee9e
crossref_primary_10_1177_09596836231157059
crossref_primary_10_1029_2018RG000600
crossref_primary_10_1029_2018JD029601
crossref_primary_10_1029_2019RG000663
crossref_primary_10_1029_2021JD035294
crossref_primary_10_1016_j_atmosres_2024_107568
crossref_primary_10_1002_joc_7856
crossref_primary_10_3389_fmars_2020_547188
crossref_primary_10_1029_2019JD031028
crossref_primary_10_1007_s00376_025_4461_2
crossref_primary_10_1038_s41558_020_0815_z
crossref_primary_10_5194_tc_15_3615_2021
crossref_primary_10_5194_tc_15_4315_2021
crossref_primary_10_1029_2022GL099543
crossref_primary_10_1175_JCLI_D_21_0834_1
crossref_primary_10_1038_s41561_019_0460_1
crossref_primary_10_1007_s00376_019_9196_5
crossref_primary_10_1016_j_soilbio_2019_107682
crossref_primary_10_1175_JCLI_D_21_0323_1
crossref_primary_10_1029_2022GL099577
crossref_primary_10_1029_2020JD032863
crossref_primary_10_5194_tc_17_1675_2023
crossref_primary_10_1029_2018RG000622
crossref_primary_10_1029_2021JD035397
crossref_primary_10_1007_s00382_021_05667_2
crossref_primary_10_1016_j_polar_2021_100642
crossref_primary_10_1007_s00300_023_03154_4
crossref_primary_10_1029_2023JD039388
crossref_primary_10_5194_tc_16_4163_2022
crossref_primary_10_5194_tc_19_1915_2025
crossref_primary_10_1038_s41467_023_36990_3
crossref_primary_10_3390_geosciences9090374
crossref_primary_10_1029_2019JF005354
crossref_primary_10_1088_2515_7620_adc5ce
crossref_primary_10_1017_jog_2023_53
Cites_doi 10.1002/qj.828
10.1007/s00382-016-3071-1
10.1175/JAS-D-13-0185.1
10.1175/2007JAS2498.1
10.1038/nclimate2574
10.1126/science.1069270
10.1038/ngeo761
10.1029/2012GL054199
10.1002/joc.1130
10.1002/2015JD024546
10.1175/JCLI-D-12-00813.1
10.1175/JCLI-D-15-0843.1
10.1007/s00382-013-1749-1
10.5194/tc-8-1577-2014
10.1126/science.1128243
10.1126/science.1247660
10.1175/1520-0442(2004)017<1914:POTIEA>2.0.CO;2
10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2
10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2
10.1175/JCLI3844.1
10.1029/2007GL032529
10.1038/ngeo1671
10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
10.1002/joc.1407
10.1038/ngeo1129
10.1038/nclimate1840
10.1038/srep01277
10.1007/s00382-014-2406-z
10.5194/tc-10-271-2016
10.1175/2008BAMS2543.1
10.1080/01621459.1952.10483441
10.3189/172756404781814654
10.1002/joc.685
10.5194/tc-10-459-2016
10.1002/2015JD024665
10.1029/2005JD006495
10.1175/2007JCLI1695.1
10.1175/1520-0442(2004)017<0448:MAPPIE>2.0.CO;2
10.1007/s00382-003-0329-1
10.1002/grl.50560
10.1029/2011GL050713
ContentType Journal Article
Copyright 2017. The Authors.
2017. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2017. The Authors.
– notice: 2017. American Geophysical Union. All Rights Reserved.
DBID 24P
AAYXX
CITATION
NPM
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7X8
5PM
DOI 10.1002/2017GL075998
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database
CrossRef
PubMed


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
DocumentTitleAlternate Antarctic Precipitation Variability
EISSN 1944-8007
EndPage 11,589
ExternalDocumentID PMC5784396
29398735
10_1002_2017GL075998
GRL56630
Genre article
Journal Article
GrantInformation_xml – fundername: U.S. National Science Foundation Climate Dynamics
– fundername: National Aeronautics and Space Administration Physical Oceanography
– fundername: UK Natural Environment Research Council
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AAYXX
ACTHY
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
NPM
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7X8
5PM
ID FETCH-LOGICAL-c5210-1494a3a3682da1d60d3fd5b12a11c28efc4f6d3ec4cf2e3d4d79c7e8f4a512ca3
IEDL.DBID 24P
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419102300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Tue Sep 30 16:25:08 EDT 2025
Tue Aug 05 10:46:37 EDT 2025
Fri Jul 25 10:47:50 EDT 2025
Thu Apr 03 06:59:41 EDT 2025
Sat Nov 29 02:57:25 EST 2025
Tue Nov 18 22:34:28 EST 2025
Wed Jan 22 16:50:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords precipitation
Antarctica
climate
mass balance
circulation
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5210-1494a3a3682da1d60d3fd5b12a11c28efc4f6d3ec4cf2e3d4d79c7e8f4a512ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8887-7314
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL075998
PMID 29398735
PQID 1979351332
PQPubID 54723
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5784396
proquest_miscellaneous_1994359382
proquest_journals_1979351332
pubmed_primary_29398735
crossref_citationtrail_10_1002_2017GL075998
crossref_primary_10_1002_2017GL075998
wiley_primary_10_1002_2017GL075998_GRL56630
PublicationCentury 2000
PublicationDate 28 November 2017
PublicationDateYYYYMMDD 2017-11-28
PublicationDate_xml – month: 11
  year: 2017
  text: 28 November 2017
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: Hoboken
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys Res Lett
PublicationYear 2017
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2011; 137
2013; 3
2013; 26
2015; 5
2002; 296
2013; 40
2013; 41
2016; 10
2016; 121
2006; 19
2008; 35
2012; 39
2011; 4
2006; 313
2013; 6
2006; 111
2001; 21
2005; 25
2015; 45
1952; 47
2004; 17
2000; 13
2004; 39
2008; 89
1998; 126
2008; 65
2008; 21
2016; 29
2010; 3
2014; 8
2016; 48
2014; 71
2003; 21
1998; 55
2014; 343
2007; 27
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 6
  start-page: 139
  issue: 2
  year: 2013
  end-page: 145
  article-title: Central West Antarctica among the most rapidly warming regions on Earth
  publication-title: Nature Geoscience
– volume: 29
  start-page: 6109
  issue: 17
  year: 2016
  end-page: 6125
  article-title: A new method for identifying the Pacific‐South American pattern and its influence on regional climate variability
  publication-title: Journal of Climate
– volume: 27
  start-page: 373
  issue: 3
  year: 2007
  end-page: 383
  article-title: Half‐century seasonal relationships between the southern annular mode and Antarctic temperatures
  publication-title: International Journal of Climatology
– volume: 89
  start-page: 1295
  issue: 9
  year: 2008
  end-page: 1306
  article-title: Advances in describing recent Antarctic climate variability
  publication-title: Bulletin of the American Meteorological Society
– volume: 55
  start-page: 1303
  issue: 8
  year: 1998
  end-page: 1315
  article-title: Wave‐driven zonal flow vacillation in the Southern Hemisphere
  publication-title: Journal of the Atmospheric Sciences
– volume: 3
  start-page: 267
  issue: 4
  year: 2010
  end-page: 272
  article-title: Snowfall increase in coastal East Antarctica linked with southwest western Australian drought
  publication-title: Nature Geoscience
– volume: 10
  start-page: 459
  issue: 1
  year: 2016
  end-page: 463
  article-title: Upper‐air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica
  publication-title: The Cryosphere
– volume: 40
  start-page: 3237
  year: 2013
  end-page: 3241
  article-title: Close interactions between the Antarctic cyclone budget and large‐scale atmospheric circulation
  publication-title: Geophysical Research Letters
– volume: 121
  start-page: 3276
  year: 2016
  end-page: 3289
  article-title: The signatures of large‐scale patterns of atmospheric variability in Antarctic surface temperatures
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 45
  start-page: 1513
  issue: 5‐6
  year: 2015
  end-page: 1535
  article-title: An examination of the relationship between the southern annular mode and Antarctic surface air temperatures in the CMIP5 historical runs
  publication-title: Climate Dynamics
– volume: 65
  start-page: 1396
  issue: 4
  year: 2008
  end-page: 1413
  article-title: Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds
  publication-title: Journal of the Atmospheric Sciences
– volume: 25
  start-page: 279
  issue: 3
  year: 2005
  end-page: 294
  article-title: Antarctic climate change during the last 50 years
  publication-title: International Journal of Climatology
– volume: 48
  start-page: 225
  issue: 1‐2
  year: 2016
  end-page: 239
  article-title: Evaluation of current and projected Antarctic precipitation in CMIP5 models
  publication-title: Climate Dynamics
– volume: 19
  start-page: 5388
  issue: 20
  year: 2006
  end-page: 5404
  article-title: The impact of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer temperatures
  publication-title: Journal of Climate
– volume: 8
  start-page: 1577
  issue: 4
  year: 2014
  end-page: 1587
  article-title: How much snow falls on the Antarctic ice sheet?
  publication-title: The Cryosphere
– volume: 17
  start-page: 448
  issue: 3
  year: 2004
  end-page: 465
  article-title: Modeled Antarctic precipitation. Part II: ENSO modulation over West Antarctica
  publication-title: Journal of Climate
– volume: 39
  issue: 23
  year: 2012
  article-title: Human influence on extratropical Southern Hemisphere summer precipitation
  publication-title: Geophysical Research Letters
– volume: 35
  year: 2008
  article-title: A doubling of snow accumulation in the western Antarctic Peninsula
  publication-title: Geophysical Research Letters
– volume: 343
  start-page: 641
  issue: 6171
  year: 2014
  end-page: 645
  article-title: Periodic variability in the large‐scale Southern Hemisphere atmospheric circulation
  publication-title: Science
– volume: 3
  start-page: 571
  year: 2013
  end-page: 576
  article-title: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific
  publication-title: Nature Climate Change
– volume: 13
  start-page: 1000
  issue: 5
  year: 2000
  end-page: 1016
  article-title: Annular modes in the extratropical circulation. Part I: Month‐to‐month variability
  publication-title: Journal of Climate
– volume: 71
  start-page: 1480
  issue: 4
  year: 2014
  end-page: 1493
  article-title: Barotropic and baroclinic annular variability in the Southern Hemisphere
  publication-title: Journal of the Atmospheric Sciences
– volume: 39
  start-page: 119
  year: 2004
  end-page: 126
  article-title: Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation
  publication-title: Annals of Glaciology
– volume: 111
  year: 2006
  article-title: Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 121
  start-page: 4468
  year: 2016
  end-page: 4486
  article-title: Status of high‐latitude precipitation estimates from observations and reanalyses
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 10
  start-page: 271
  issue: 1
  year: 2016
  end-page: 285
  article-title: The modelled surface mass balance of the Antarctic Peninsula at 5.5. km horizontal resolution
  publication-title: The Cryopshere
– volume: 3
  start-page: 1277
  issue: 1
  year: 2013
  article-title: La Niña forces unprecedented Leeuwin Current warming in 2011
  publication-title: Scientific Reports
– volume: 21
  start-page: 289
  issue: 3‐4
  year: 2003
  end-page: 307
  article-title: Interannual Antarctic tropospheric circulation and precipitation variability
  publication-title: Climate Dynamics
– volume: 39
  year: 2012
  article-title: A new, high‐resolution surface mass balance map of Antarctica (1979‐2010) based on regional atmospheric climate modelling
  publication-title: Geophysical Research Letters
– volume: 21
  start-page: 1211
  issue: 10
  year: 2001
  end-page: 1229
  article-title: The Pacific‐South American modes and their downstream effects
  publication-title: International Journal of Climatology
– volume: 126
  start-page: 1581
  issue: 6
  year: 1998
  end-page: 1596
  article-title: The Pacific‐South American modes and tropical convection during the Southern Hemisphere winter
  publication-title: Monthly Weather Review
– volume: 21
  start-page: 1649
  issue: 8
  year: 2008
  end-page: 1668
  article-title: The relationship between the Southern Hemisphere annular mode and Antarctic Peninsula summer temperatures: Analysis of a high‐resolution model climatology
  publication-title: Journal of Climate
– volume: 4
  start-page: 398
  issue: 6
  year: 2011
  end-page: 403
  article-title: Winter warming in West Antarctica caused by central tropical Pacific warming
  publication-title: Nature Geoscience
– volume: 17
  start-page: 1914
  issue: 10
  year: 2004
  end-page: 1928
  article-title: Precipitation over the interior East Antarctic ice sheet related to midlatitude blocking‐high activity
  publication-title: Journal of Climate
– volume: 41
  start-page: 867
  issue: 3‐4
  year: 2013
  end-page: 884
  article-title: Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model
  publication-title: Climate Dynamics
– volume: 296
  start-page: 895
  issue: 5569
  year: 2002
  end-page: 899
  article-title: Interpretation of recent Southern Hemisphere climate change
  publication-title: Science
– volume: 313
  start-page: 827
  issue: 5788
  year: 2006
  end-page: 831
  article-title: Insignificant change in Antarctic snowfall since the International Geophysical Year
  publication-title: Science
– volume: 5
  start-page: 348
  issue: 4
  year: 2015
  end-page: 352
  article-title: Consistent evidence of increasing Antarctic accumulation with warming
  publication-title: Nature Climate Change
– volume: 26
  start-page: 6633
  issue: 17
  year: 2013
  end-page: 6648
  article-title: The influence of the Amundsen‐Bellingshausen Seas Low on the climate of West Antarctica and its representation in coupled climate model simulations
  publication-title: Journal of Climate
– volume: 47
  start-page: 583
  issue: 260
  year: 1952
  end-page: 621
  article-title: Use of ranks in one‐criterion variance analysis
  publication-title: Journal of the American Statistical Association
– volume: 137
  start-page: 553
  issue: 656
  year: 2011
  end-page: 597
  article-title: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Quarterly Journal of the Royal Meteorological Society
– ident: e_1_2_6_4_1
  doi: 10.1002/qj.828
– ident: e_1_2_6_28_1
  doi: 10.1007/s00382-016-3071-1
– ident: e_1_2_6_34_1
  doi: 10.1175/JAS-D-13-0185.1
– ident: e_1_2_6_27_1
  doi: 10.1175/2007JAS2498.1
– ident: e_1_2_6_7_1
  doi: 10.1038/nclimate2574
– ident: e_1_2_6_32_1
  doi: 10.1126/science.1069270
– ident: e_1_2_6_41_1
  doi: 10.1038/ngeo761
– ident: e_1_2_6_8_1
  doi: 10.1029/2012GL054199
– ident: e_1_2_6_35_1
  doi: 10.1002/joc.1130
– ident: e_1_2_6_2_1
  doi: 10.1002/2015JD024546
– ident: e_1_2_6_12_1
  doi: 10.1175/JCLI-D-12-00813.1
– ident: e_1_2_6_13_1
  doi: 10.1175/JCLI-D-15-0843.1
– ident: e_1_2_6_17_1
  doi: 10.1007/s00382-013-1749-1
– ident: e_1_2_6_29_1
  doi: 10.5194/tc-8-1577-2014
– ident: e_1_2_6_26_1
  doi: 10.1126/science.1128243
– ident: e_1_2_6_31_1
  doi: 10.1126/science.1247660
– ident: e_1_2_6_22_1
  doi: 10.1175/1520-0442(2004)017<1914:POTIEA>2.0.CO;2
– ident: e_1_2_6_23_1
  doi: 10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2
– ident: e_1_2_6_11_1
  doi: 10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2
– ident: e_1_2_6_20_1
  doi: 10.1175/JCLI3844.1
– ident: e_1_2_6_30_1
  doi: 10.1029/2007GL032529
– ident: e_1_2_6_3_1
  doi: 10.1038/ngeo1671
– ident: e_1_2_6_33_1
  doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
– ident: e_1_2_6_18_1
  doi: 10.1002/joc.1407
– ident: e_1_2_6_5_1
  doi: 10.1038/ngeo1129
– ident: e_1_2_6_15_1
  doi: 10.1038/nclimate1840
– ident: e_1_2_6_6_1
  doi: 10.1038/srep01277
– ident: e_1_2_6_19_1
  doi: 10.1007/s00382-014-2406-z
– ident: e_1_2_6_42_1
  doi: 10.5194/tc-10-271-2016
– ident: e_1_2_6_25_1
  doi: 10.1175/2008BAMS2543.1
– ident: e_1_2_6_14_1
  doi: 10.1080/01621459.1952.10483441
– ident: e_1_2_6_39_1
  doi: 10.3189/172756404781814654
– ident: e_1_2_6_24_1
  doi: 10.1002/joc.685
– ident: e_1_2_6_37_1
  doi: 10.5194/tc-10-459-2016
– ident: e_1_2_6_21_1
  doi: 10.1002/2015JD024665
– ident: e_1_2_6_38_1
  doi: 10.1029/2005JD006495
– ident: e_1_2_6_40_1
  doi: 10.1175/2007JCLI1695.1
– ident: e_1_2_6_10_1
  doi: 10.1175/1520-0442(2004)017<0448:MAPPIE>2.0.CO;2
– ident: e_1_2_6_9_1
  doi: 10.1007/s00382-003-0329-1
– ident: e_1_2_6_36_1
  doi: 10.1002/grl.50560
– ident: e_1_2_6_16_1
  doi: 10.1029/2011GL050713
SSID ssj0003031
Score 2.5056283
Snippet We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed...
We provide the first comprehensive analysis of the relationships between large-scale patterns of Southern Hemisphere climate variability and the detailed...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11,580
SubjectTerms Antarctic climate
Antarctic Oscillation
Antarctic precipitation
Antarctica
Arctic and Antarctic oceanography
Atmospheric circulation
Atmospheric circulation patterns
Atmospheric models
Atmospheric Processes
Atmospheric variability
Biogeosciences
circulation
Circulation patterns
Climate
Climate and Interannual Variability
Climate Change and Variability
Climate Dynamics
Climate models
Climate Variability
Climatology
Cryosphere
Decadal Ocean Variability
Extreme weather
Fluxes
Geodesy and Gravity
Geographic Location
Global Change
Mass Balance
Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions
Oceanography: General
Oceanography: Physical
Oceans
Precipitation
Precipitation variability
Research Letter
Research Letters
Southern Hemisphere
Spatial discrimination
Spatial resolution
Teleconnection patterns
Variability
Title The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL075998
https://www.ncbi.nlm.nih.gov/pubmed/29398735
https://www.proquest.com/docview/1979351332
https://www.proquest.com/docview/1994359382
https://pubmed.ncbi.nlm.nih.gov/PMC5784396
Volume 44
WOSCitedRecordID wos000419102300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZdu8Fetu7SLV1bNNiehql1sSU9hrZJCyGEbmV58xRJbg2bUuJ0sH_fI9n1EsoGpS9Gto_Q7dxsy9-H0CdlCRfpTCSpYS7hmdCJTq1OhBM8Y1Q4yk0kmxDjsZxO1aR94Rb-hWnwIboXbsEyor8OBq5n9eFf0FCIXGI4gogHDwxP0BYhTAStpnzSeWJwzw1jnuKJpCJvN75D_cPV2ush6V6eeX-75GoaG-PQ4OVjR7CNXrQZKO43KvMKbTj_Gj0bRobfP1CKe0JN_Qb9ABXCX6vLBvsTz0sc-fbcwuPTwBIXAAkc7i9_zWOxMvioWpiWDgxPInCnr3Hlcd8vwZ6gPTwJYBrXLS74W3QxOPl2dJq0hAyJgSifJvA0xTXTLJfUamLz1LLSZjNCNSGGSlcaXuaWOcNNSR2z3AplhJMl15BXGM120Kafe_c-7KjKVTlTNqOgLFxQaUpt85w6naWWWNNDX-7WpDBtrwJpxs-iwVmmxers9dDnTvq6Qen4h9ze3fIWra3WBVHgowLNDe2hj91tmMbw6UR7N78JMgrySsUkyLxrtKFrCBImJQXLekis6UknEBC81-_46ioieYO7hIQwh8FGPflv34vh-Qhyb5buPkj6A3oeroffJ6ncQ5vLxY3bR0_N72VVLw6ivcBRTOUB2jo-H1yM4Oz72fgWA5EYlA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CDgQv3C-FAUaCJxQtsZ3YfqwGbRGhqsYm7S24tgORwJ3aDol_z7GThVYTSIg3Sz6JY_vc7NjfB_BK2YyLdCGS1DCX8FzoRKdWJ8IJnjMqHOUmkk2I2Uyenqp5x3Ma7sK0-BD9hluwjOivg4GHDemD36ihGLrEpMSQhyuGq7DHUZPyAey9PRqflL0zRg_dkuYpnkgqiu7sO77hYPv53ah0KdW8fGJyO5ONoWh8-787cQdudVkoGbVqcxeuOH8Prk8iy-9PLMVzoWZ9Hz6jGpFPzZcW_5MsaxI599zKk2lgigugBI6MNt-XsdgYctisTEcJRuYRvNOvSePJyG_QprA9Mg-AGmcdNvgDOBm_Oz6cJh0pQ2Iw0qcJrqi4ZpoVklqd2SK1rLb5IqM6ywyVrja8LixzhpuaOma5FcoIJ2uuMbcwmj2EgV969zicqipUvVA2p6gwXFBpam2LgjqdpzazZghvLialMt1XBeKMb1WLtUyr7dEbwute-qxF6viD3P7F_Fadva6rTKGfClQ3dAgv-2ocxvD7RHu3PA8yCnNLxSTKPGrVoW8IkyYlBcuHIHYUpRcIKN67Nb75GtG80WViUlhgZ6Oi_PXbq8lRifk3S5_8k_QLuDE9_lhW5fvZh6dwM8iE65RU7sNgszp3z-Ca-bFp1qvnnfn8AssbGno
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZbt5W-dLde0nabBtvTMLUl2ZIeQ7ekYyGYXaBvnqLLZmiVkKSF_vseya6bUDYYexPoCMnSudk--j6E3kmTMZ5OeJJqahOWc5Wo1KiEW85ySrglTEeyCT4ei7MzWbY8p-EuTIMP0X1wC5YR_XUwcDsz7vgONRRCFx-OIOTBG8ND9AjmyUJNF2Fl54rBPzeUeZIlgvCirXyH8cero9dj0r1E83695GoeGwPR4Ol_P8IztN3moLjfKM1z9MD6F-jJMHL8XkMrVoXqxUv0E5QIf6t_NeifeOpwZNyzc49PA09cgCSwuL-8mMZmrfFJPdctIRguI3SnX-Da475fgkXBfLgMcBqzFhl8B_0YfPp-cpq0lAyJhjifJvA-xRRVtBDEqMwUqaHO5JOMqCzTRFinmSsMtZppRyw1zHCpuRWOKcgstKK7aMNPvd0PNVWFdBNpcgLqwjgR2ilTFMSqPDWZ0T304fZQKt2uKtBmnFcN0jKpVnevh9530rMGp-MPcke351u11rqoMgleKhDdkB5623XDNoafJ8rb6WWQkZBZSipAZq9Rh24iSJmk4DTvIb6mKJ1AwPBe7_H174jlDQ4TUsICHjYqyl_XXg2_jiD7punBP0m_QZvlx0E1-jz-coi2gki4S0nEEdpYzi_tK_RYXy3rxfx1tJ0bKnwYYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Signature+of+Southern+Hemisphere+Atmospheric+Circulation+Patterns+in+Antarctic+Precipitation&rft.jtitle=Geophysical+research+letters&rft.au=Marshall%2C+Gareth+J&rft.au=Thompson%2C+David+W+J&rft.au=Broeke%2C+Michiel+R&rft.date=2017-11-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=22&rft.spage=11%2C580&rft_id=info:doi/10.1002%2F2017GL075998&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon