The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation
We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and...
Gespeichert in:
| Veröffentlicht in: | Geophysical research letters Jg. 44; H. 22; S. 11,580 - 11,589 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
John Wiley & Sons, Inc
28.11.2017
John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 0094-8276, 1944-8007 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone.
Key Points
The primary Southern Hemisphere extratropical circulation patterns all influence the spatial distribution of Antarctic precipitation
They impact not only the mean but also the incidence of extreme precipitation events
Locally, extreme precipitation may be associated especially with one polarity of a circulation pattern |
|---|---|
| AbstractList | We provide the first comprehensive analysis of the relationships between large-scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large-scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific-South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high-latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled-climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone.We provide the first comprehensive analysis of the relationships between large-scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large-scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific-South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high-latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled-climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. We provide the first comprehensive analysis of the relationships between large-scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large-scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific-South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high-latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled-climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. The primary Southern Hemisphere extratropical circulation patterns all influence the spatial distribution of Antarctic precipitation They impact not only the mean but also the incidence of extreme precipitation events Locally, extreme precipitation may be associated especially with one polarity of a circulation pattern We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. The primary Southern Hemisphere extratropical circulation patterns all influence the spatial distribution of Antarctic precipitationThey impact not only the mean but also the incidence of extreme precipitation eventsLocally, extreme precipitation may be associated especially with one polarity of a circulation pattern We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. Key Points The primary Southern Hemisphere extratropical circulation patterns all influence the spatial distribution of Antarctic precipitation They impact not only the mean but also the incidence of extreme precipitation events Locally, extreme precipitation may be associated especially with one polarity of a circulation pattern |
| Author | Broeke, Michiel R. Marshall, Gareth J. Thompson, David W. J. |
| AuthorAffiliation | 2 Department of Atmospheric Science Colorado State University Fort Collins CO USA 1 British Antarctic Survey Natural Environment Research Council Cambridge UK 3 Institute for Marine and Atmospheric Research Utrecht University Utrecht Netherlands |
| AuthorAffiliation_xml | – name: 2 Department of Atmospheric Science Colorado State University Fort Collins CO USA – name: 3 Institute for Marine and Atmospheric Research Utrecht University Utrecht Netherlands – name: 1 British Antarctic Survey Natural Environment Research Council Cambridge UK |
| Author_xml | – sequence: 1 givenname: Gareth J. orcidid: 0000-0001-8887-7314 surname: Marshall fullname: Marshall, Gareth J. email: gjma@bas.ac.uk organization: Natural Environment Research Council – sequence: 2 givenname: David W. J. surname: Thompson fullname: Thompson, David W. J. organization: Colorado State University – sequence: 3 givenname: Michiel R. surname: Broeke fullname: Broeke, Michiel R. organization: Utrecht University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29398735$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1LXDEUxUOx1NF213UJuHHRsfl8edkIw9COhYFKtes05t3nRN4kY5Jn8b9v1FGsYFc5kN89Offe7KGdEAMg9JGSI0oI-8IIVYslUVLr9g2aUC3EtCVE7aAJIbpqpppdtJfzFSGEE07foV2muW4VlxP0-3wF-MxfBlvGBDj2-CyOZQUp4BNY-7ypEvCsrOO99A7PfXLjYIuPAZ_aUiqasQ94FopNrlTiNIHzG1_umffobW-HDB-25z769e3r-fxkuvyx-D6fLadOMkqmVGhhueVNyzpLu4Z0vO_kBWWWUsda6J3om46DE65nwDvRKe0UtL2wkjJn-T46fvDdjBdr6ByEkuxgNsmvbbo10Xrz703wK3MZb4xUreC6qQaHW4MUr0fIxdT2HQyDDRDHbKjWgkvNW1bRgxfoVRxTqO1VSmkuKed31KfniZ6iPA6_AuwBcCnmnKA3bju0GtAPhhJzt2HzfMO16POLokffV_DtG3_8ALf_Zc3i51I2Tf0ifwEWl7aA |
| CitedBy_id | crossref_primary_10_1017_jog_2023_79 crossref_primary_10_5194_cp_21_897_2025 crossref_primary_10_1029_2020JD033788 crossref_primary_10_5194_tc_14_4719_2020 crossref_primary_10_1029_2020JC016354 crossref_primary_10_1038_s41561_025_01699_z crossref_primary_10_5194_cp_20_2539_2024 crossref_primary_10_3390_rs17020324 crossref_primary_10_1029_2018JD029321 crossref_primary_10_1029_2019GL084329 crossref_primary_10_1029_2018GL081517 crossref_primary_10_1029_2020GL092281 crossref_primary_10_5194_tc_18_683_2024 crossref_primary_10_1038_s41598_020_59223_9 crossref_primary_10_3390_atmos11121270 crossref_primary_10_1002_wcc_652 crossref_primary_10_5194_hess_24_2003_2020 crossref_primary_10_5194_esd_11_1153_2020 crossref_primary_10_1029_2024GL112814 crossref_primary_10_1038_s43247_022_00502_w crossref_primary_10_1029_2023GL104256 crossref_primary_10_1088_2752_5295_acee9e crossref_primary_10_1177_09596836231157059 crossref_primary_10_1029_2018RG000600 crossref_primary_10_1029_2018JD029601 crossref_primary_10_1029_2019RG000663 crossref_primary_10_1029_2021JD035294 crossref_primary_10_1016_j_atmosres_2024_107568 crossref_primary_10_1002_joc_7856 crossref_primary_10_3389_fmars_2020_547188 crossref_primary_10_1029_2019JD031028 crossref_primary_10_1007_s00376_025_4461_2 crossref_primary_10_1038_s41558_020_0815_z crossref_primary_10_5194_tc_15_3615_2021 crossref_primary_10_5194_tc_15_4315_2021 crossref_primary_10_1029_2022GL099543 crossref_primary_10_1175_JCLI_D_21_0834_1 crossref_primary_10_1038_s41561_019_0460_1 crossref_primary_10_1007_s00376_019_9196_5 crossref_primary_10_1016_j_soilbio_2019_107682 crossref_primary_10_1175_JCLI_D_21_0323_1 crossref_primary_10_1029_2022GL099577 crossref_primary_10_1029_2020JD032863 crossref_primary_10_5194_tc_17_1675_2023 crossref_primary_10_1029_2018RG000622 crossref_primary_10_1029_2021JD035397 crossref_primary_10_1007_s00382_021_05667_2 crossref_primary_10_1016_j_polar_2021_100642 crossref_primary_10_1007_s00300_023_03154_4 crossref_primary_10_1029_2023JD039388 crossref_primary_10_5194_tc_16_4163_2022 crossref_primary_10_5194_tc_19_1915_2025 crossref_primary_10_1038_s41467_023_36990_3 crossref_primary_10_3390_geosciences9090374 crossref_primary_10_1029_2019JF005354 crossref_primary_10_1088_2515_7620_adc5ce crossref_primary_10_1017_jog_2023_53 |
| Cites_doi | 10.1002/qj.828 10.1007/s00382-016-3071-1 10.1175/JAS-D-13-0185.1 10.1175/2007JAS2498.1 10.1038/nclimate2574 10.1126/science.1069270 10.1038/ngeo761 10.1029/2012GL054199 10.1002/joc.1130 10.1002/2015JD024546 10.1175/JCLI-D-12-00813.1 10.1175/JCLI-D-15-0843.1 10.1007/s00382-013-1749-1 10.5194/tc-8-1577-2014 10.1126/science.1128243 10.1126/science.1247660 10.1175/1520-0442(2004)017<1914:POTIEA>2.0.CO;2 10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2 10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2 10.1175/JCLI3844.1 10.1029/2007GL032529 10.1038/ngeo1671 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2 10.1002/joc.1407 10.1038/ngeo1129 10.1038/nclimate1840 10.1038/srep01277 10.1007/s00382-014-2406-z 10.5194/tc-10-271-2016 10.1175/2008BAMS2543.1 10.1080/01621459.1952.10483441 10.3189/172756404781814654 10.1002/joc.685 10.5194/tc-10-459-2016 10.1002/2015JD024665 10.1029/2005JD006495 10.1175/2007JCLI1695.1 10.1175/1520-0442(2004)017<0448:MAPPIE>2.0.CO;2 10.1007/s00382-003-0329-1 10.1002/grl.50560 10.1029/2011GL050713 |
| ContentType | Journal Article |
| Copyright | 2017. The Authors. 2017. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2017. The Authors. – notice: 2017. American Geophysical Union. All Rights Reserved. |
| DBID | 24P AAYXX CITATION NPM 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7X8 5PM |
| DOI | 10.1002/2017GL075998 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Aerospace Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| DocumentTitleAlternate | Antarctic Precipitation Variability |
| EISSN | 1944-8007 |
| EndPage | 11,589 |
| ExternalDocumentID | PMC5784396 29398735 10_1002_2017GL075998 GRL56630 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: U.S. National Science Foundation Climate Dynamics – fundername: National Aeronautics and Space Administration Physical Oceanography – fundername: UK Natural Environment Research Council |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAMMB AAYXX ACTHY AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION NPM 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7X8 5PM |
| ID | FETCH-LOGICAL-c5210-1494a3a3682da1d60d3fd5b12a11c28efc4f6d3ec4cf2e3d4d79c7e8f4a512ca3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000419102300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Tue Sep 30 16:25:08 EDT 2025 Tue Aug 05 10:46:37 EDT 2025 Fri Jul 25 10:47:50 EDT 2025 Thu Apr 03 06:59:41 EDT 2025 Sat Nov 29 02:57:25 EST 2025 Tue Nov 18 22:34:28 EST 2025 Wed Jan 22 16:50:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Keywords | precipitation Antarctica climate mass balance circulation |
| Language | English |
| License | Attribution http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5210-1494a3a3682da1d60d3fd5b12a11c28efc4f6d3ec4cf2e3d4d79c7e8f4a512ca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8887-7314 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL075998 |
| PMID | 29398735 |
| PQID | 1979351332 |
| PQPubID | 54723 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5784396 proquest_miscellaneous_1994359382 proquest_journals_1979351332 pubmed_primary_29398735 crossref_citationtrail_10_1002_2017GL075998 crossref_primary_10_1002_2017GL075998 wiley_primary_10_1002_2017GL075998_GRL56630 |
| PublicationCentury | 2000 |
| PublicationDate | 28 November 2017 |
| PublicationDateYYYYMMDD | 2017-11-28 |
| PublicationDate_xml | – month: 11 year: 2017 text: 28 November 2017 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington – name: Hoboken |
| PublicationTitle | Geophysical research letters |
| PublicationTitleAlternate | Geophys Res Lett |
| PublicationYear | 2017 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | 2011; 137 2013; 3 2013; 26 2015; 5 2002; 296 2013; 40 2013; 41 2016; 10 2016; 121 2006; 19 2008; 35 2012; 39 2011; 4 2006; 313 2013; 6 2006; 111 2001; 21 2005; 25 2015; 45 1952; 47 2004; 17 2000; 13 2004; 39 2008; 89 1998; 126 2008; 65 2008; 21 2016; 29 2010; 3 2014; 8 2016; 48 2014; 71 2003; 21 1998; 55 2014; 343 2007; 27 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – volume: 6 start-page: 139 issue: 2 year: 2013 end-page: 145 article-title: Central West Antarctica among the most rapidly warming regions on Earth publication-title: Nature Geoscience – volume: 29 start-page: 6109 issue: 17 year: 2016 end-page: 6125 article-title: A new method for identifying the Pacific‐South American pattern and its influence on regional climate variability publication-title: Journal of Climate – volume: 27 start-page: 373 issue: 3 year: 2007 end-page: 383 article-title: Half‐century seasonal relationships between the southern annular mode and Antarctic temperatures publication-title: International Journal of Climatology – volume: 89 start-page: 1295 issue: 9 year: 2008 end-page: 1306 article-title: Advances in describing recent Antarctic climate variability publication-title: Bulletin of the American Meteorological Society – volume: 55 start-page: 1303 issue: 8 year: 1998 end-page: 1315 article-title: Wave‐driven zonal flow vacillation in the Southern Hemisphere publication-title: Journal of the Atmospheric Sciences – volume: 3 start-page: 267 issue: 4 year: 2010 end-page: 272 article-title: Snowfall increase in coastal East Antarctica linked with southwest western Australian drought publication-title: Nature Geoscience – volume: 10 start-page: 459 issue: 1 year: 2016 end-page: 463 article-title: Upper‐air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica publication-title: The Cryosphere – volume: 40 start-page: 3237 year: 2013 end-page: 3241 article-title: Close interactions between the Antarctic cyclone budget and large‐scale atmospheric circulation publication-title: Geophysical Research Letters – volume: 121 start-page: 3276 year: 2016 end-page: 3289 article-title: The signatures of large‐scale patterns of atmospheric variability in Antarctic surface temperatures publication-title: Journal of Geophysical Research: Atmospheres – volume: 45 start-page: 1513 issue: 5‐6 year: 2015 end-page: 1535 article-title: An examination of the relationship between the southern annular mode and Antarctic surface air temperatures in the CMIP5 historical runs publication-title: Climate Dynamics – volume: 65 start-page: 1396 issue: 4 year: 2008 end-page: 1413 article-title: Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds publication-title: Journal of the Atmospheric Sciences – volume: 25 start-page: 279 issue: 3 year: 2005 end-page: 294 article-title: Antarctic climate change during the last 50 years publication-title: International Journal of Climatology – volume: 48 start-page: 225 issue: 1‐2 year: 2016 end-page: 239 article-title: Evaluation of current and projected Antarctic precipitation in CMIP5 models publication-title: Climate Dynamics – volume: 19 start-page: 5388 issue: 20 year: 2006 end-page: 5404 article-title: The impact of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer temperatures publication-title: Journal of Climate – volume: 8 start-page: 1577 issue: 4 year: 2014 end-page: 1587 article-title: How much snow falls on the Antarctic ice sheet? publication-title: The Cryosphere – volume: 17 start-page: 448 issue: 3 year: 2004 end-page: 465 article-title: Modeled Antarctic precipitation. Part II: ENSO modulation over West Antarctica publication-title: Journal of Climate – volume: 39 issue: 23 year: 2012 article-title: Human influence on extratropical Southern Hemisphere summer precipitation publication-title: Geophysical Research Letters – volume: 35 year: 2008 article-title: A doubling of snow accumulation in the western Antarctic Peninsula publication-title: Geophysical Research Letters – volume: 343 start-page: 641 issue: 6171 year: 2014 end-page: 645 article-title: Periodic variability in the large‐scale Southern Hemisphere atmospheric circulation publication-title: Science – volume: 3 start-page: 571 year: 2013 end-page: 576 article-title: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific publication-title: Nature Climate Change – volume: 13 start-page: 1000 issue: 5 year: 2000 end-page: 1016 article-title: Annular modes in the extratropical circulation. Part I: Month‐to‐month variability publication-title: Journal of Climate – volume: 71 start-page: 1480 issue: 4 year: 2014 end-page: 1493 article-title: Barotropic and baroclinic annular variability in the Southern Hemisphere publication-title: Journal of the Atmospheric Sciences – volume: 39 start-page: 119 year: 2004 end-page: 126 article-title: Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation publication-title: Annals of Glaciology – volume: 111 year: 2006 article-title: Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model publication-title: Journal of Geophysical Research: Atmospheres – volume: 121 start-page: 4468 year: 2016 end-page: 4486 article-title: Status of high‐latitude precipitation estimates from observations and reanalyses publication-title: Journal of Geophysical Research: Atmospheres – volume: 10 start-page: 271 issue: 1 year: 2016 end-page: 285 article-title: The modelled surface mass balance of the Antarctic Peninsula at 5.5. km horizontal resolution publication-title: The Cryopshere – volume: 3 start-page: 1277 issue: 1 year: 2013 article-title: La Niña forces unprecedented Leeuwin Current warming in 2011 publication-title: Scientific Reports – volume: 21 start-page: 289 issue: 3‐4 year: 2003 end-page: 307 article-title: Interannual Antarctic tropospheric circulation and precipitation variability publication-title: Climate Dynamics – volume: 39 year: 2012 article-title: A new, high‐resolution surface mass balance map of Antarctica (1979‐2010) based on regional atmospheric climate modelling publication-title: Geophysical Research Letters – volume: 21 start-page: 1211 issue: 10 year: 2001 end-page: 1229 article-title: The Pacific‐South American modes and their downstream effects publication-title: International Journal of Climatology – volume: 126 start-page: 1581 issue: 6 year: 1998 end-page: 1596 article-title: The Pacific‐South American modes and tropical convection during the Southern Hemisphere winter publication-title: Monthly Weather Review – volume: 21 start-page: 1649 issue: 8 year: 2008 end-page: 1668 article-title: The relationship between the Southern Hemisphere annular mode and Antarctic Peninsula summer temperatures: Analysis of a high‐resolution model climatology publication-title: Journal of Climate – volume: 4 start-page: 398 issue: 6 year: 2011 end-page: 403 article-title: Winter warming in West Antarctica caused by central tropical Pacific warming publication-title: Nature Geoscience – volume: 17 start-page: 1914 issue: 10 year: 2004 end-page: 1928 article-title: Precipitation over the interior East Antarctic ice sheet related to midlatitude blocking‐high activity publication-title: Journal of Climate – volume: 41 start-page: 867 issue: 3‐4 year: 2013 end-page: 884 article-title: Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model publication-title: Climate Dynamics – volume: 296 start-page: 895 issue: 5569 year: 2002 end-page: 899 article-title: Interpretation of recent Southern Hemisphere climate change publication-title: Science – volume: 313 start-page: 827 issue: 5788 year: 2006 end-page: 831 article-title: Insignificant change in Antarctic snowfall since the International Geophysical Year publication-title: Science – volume: 5 start-page: 348 issue: 4 year: 2015 end-page: 352 article-title: Consistent evidence of increasing Antarctic accumulation with warming publication-title: Nature Climate Change – volume: 26 start-page: 6633 issue: 17 year: 2013 end-page: 6648 article-title: The influence of the Amundsen‐Bellingshausen Seas Low on the climate of West Antarctica and its representation in coupled climate model simulations publication-title: Journal of Climate – volume: 47 start-page: 583 issue: 260 year: 1952 end-page: 621 article-title: Use of ranks in one‐criterion variance analysis publication-title: Journal of the American Statistical Association – volume: 137 start-page: 553 issue: 656 year: 2011 end-page: 597 article-title: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system publication-title: Quarterly Journal of the Royal Meteorological Society – ident: e_1_2_6_4_1 doi: 10.1002/qj.828 – ident: e_1_2_6_28_1 doi: 10.1007/s00382-016-3071-1 – ident: e_1_2_6_34_1 doi: 10.1175/JAS-D-13-0185.1 – ident: e_1_2_6_27_1 doi: 10.1175/2007JAS2498.1 – ident: e_1_2_6_7_1 doi: 10.1038/nclimate2574 – ident: e_1_2_6_32_1 doi: 10.1126/science.1069270 – ident: e_1_2_6_41_1 doi: 10.1038/ngeo761 – ident: e_1_2_6_8_1 doi: 10.1029/2012GL054199 – ident: e_1_2_6_35_1 doi: 10.1002/joc.1130 – ident: e_1_2_6_2_1 doi: 10.1002/2015JD024546 – ident: e_1_2_6_12_1 doi: 10.1175/JCLI-D-12-00813.1 – ident: e_1_2_6_13_1 doi: 10.1175/JCLI-D-15-0843.1 – ident: e_1_2_6_17_1 doi: 10.1007/s00382-013-1749-1 – ident: e_1_2_6_29_1 doi: 10.5194/tc-8-1577-2014 – ident: e_1_2_6_26_1 doi: 10.1126/science.1128243 – ident: e_1_2_6_31_1 doi: 10.1126/science.1247660 – ident: e_1_2_6_22_1 doi: 10.1175/1520-0442(2004)017<1914:POTIEA>2.0.CO;2 – ident: e_1_2_6_23_1 doi: 10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2 – ident: e_1_2_6_11_1 doi: 10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2 – ident: e_1_2_6_20_1 doi: 10.1175/JCLI3844.1 – ident: e_1_2_6_30_1 doi: 10.1029/2007GL032529 – ident: e_1_2_6_3_1 doi: 10.1038/ngeo1671 – ident: e_1_2_6_33_1 doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2 – ident: e_1_2_6_18_1 doi: 10.1002/joc.1407 – ident: e_1_2_6_5_1 doi: 10.1038/ngeo1129 – ident: e_1_2_6_15_1 doi: 10.1038/nclimate1840 – ident: e_1_2_6_6_1 doi: 10.1038/srep01277 – ident: e_1_2_6_19_1 doi: 10.1007/s00382-014-2406-z – ident: e_1_2_6_42_1 doi: 10.5194/tc-10-271-2016 – ident: e_1_2_6_25_1 doi: 10.1175/2008BAMS2543.1 – ident: e_1_2_6_14_1 doi: 10.1080/01621459.1952.10483441 – ident: e_1_2_6_39_1 doi: 10.3189/172756404781814654 – ident: e_1_2_6_24_1 doi: 10.1002/joc.685 – ident: e_1_2_6_37_1 doi: 10.5194/tc-10-459-2016 – ident: e_1_2_6_21_1 doi: 10.1002/2015JD024665 – ident: e_1_2_6_38_1 doi: 10.1029/2005JD006495 – ident: e_1_2_6_40_1 doi: 10.1175/2007JCLI1695.1 – ident: e_1_2_6_10_1 doi: 10.1175/1520-0442(2004)017<0448:MAPPIE>2.0.CO;2 – ident: e_1_2_6_9_1 doi: 10.1007/s00382-003-0329-1 – ident: e_1_2_6_36_1 doi: 10.1002/grl.50560 – ident: e_1_2_6_16_1 doi: 10.1029/2011GL050713 |
| SSID | ssj0003031 |
| Score | 2.5056283 |
| Snippet | We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed... We provide the first comprehensive analysis of the relationships between large-scale patterns of Southern Hemisphere climate variability and the detailed... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 11,580 |
| SubjectTerms | Antarctic climate Antarctic Oscillation Antarctic precipitation Antarctica Arctic and Antarctic oceanography Atmospheric circulation Atmospheric circulation patterns Atmospheric models Atmospheric Processes Atmospheric variability Biogeosciences circulation Circulation patterns Climate Climate and Interannual Variability Climate Change and Variability Climate Dynamics Climate models Climate Variability Climatology Cryosphere Decadal Ocean Variability Extreme weather Fluxes Geodesy and Gravity Geographic Location Global Change Mass Balance Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions Oceanography: General Oceanography: Physical Oceans Precipitation Precipitation variability Research Letter Research Letters Southern Hemisphere Spatial discrimination Spatial resolution Teleconnection patterns Variability |
| Title | The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017GL075998 https://www.ncbi.nlm.nih.gov/pubmed/29398735 https://www.proquest.com/docview/1979351332 https://www.proquest.com/docview/1994359382 https://pubmed.ncbi.nlm.nih.gov/PMC5784396 |
| Volume | 44 |
| WOSCitedRecordID | wos000419102300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-8007 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZdu8Fetu7SLV1bNNiehql1sSU9hrZJCyGEbmV58xRJbg2bUuJ0sH_fI9n1EsoGpS9Gto_Q7dxsy9-H0CdlCRfpTCSpYS7hmdCJTq1OhBM8Y1Q4yk0kmxDjsZxO1aR94Rb-hWnwIboXbsEyor8OBq5n9eFf0FCIXGI4gogHDwxP0BYhTAStpnzSeWJwzw1jnuKJpCJvN75D_cPV2ush6V6eeX-75GoaG-PQ4OVjR7CNXrQZKO43KvMKbTj_Gj0bRobfP1CKe0JN_Qb9ABXCX6vLBvsTz0sc-fbcwuPTwBIXAAkc7i9_zWOxMvioWpiWDgxPInCnr3Hlcd8vwZ6gPTwJYBrXLS74W3QxOPl2dJq0hAyJgSifJvA0xTXTLJfUamLz1LLSZjNCNSGGSlcaXuaWOcNNSR2z3AplhJMl15BXGM120Kafe_c-7KjKVTlTNqOgLFxQaUpt85w6naWWWNNDX-7WpDBtrwJpxs-iwVmmxers9dDnTvq6Qen4h9ze3fIWra3WBVHgowLNDe2hj91tmMbw6UR7N78JMgrySsUkyLxrtKFrCBImJQXLekis6UknEBC81-_46ioieYO7hIQwh8FGPflv34vh-Qhyb5buPkj6A3oeroffJ6ncQ5vLxY3bR0_N72VVLw6ivcBRTOUB2jo-H1yM4Oz72fgWA5EYlA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CDgQv3C-FAUaCJxQtsZ3YfqwGbRGhqsYm7S24tgORwJ3aDol_z7GThVYTSIg3Sz6JY_vc7NjfB_BK2YyLdCGS1DCX8FzoRKdWJ8IJnjMqHOUmkk2I2Uyenqp5x3Ma7sK0-BD9hluwjOivg4GHDemD36ihGLrEpMSQhyuGq7DHUZPyAey9PRqflL0zRg_dkuYpnkgqiu7sO77hYPv53ah0KdW8fGJyO5ONoWh8-787cQdudVkoGbVqcxeuOH8Prk8iy-9PLMVzoWZ9Hz6jGpFPzZcW_5MsaxI599zKk2lgigugBI6MNt-XsdgYctisTEcJRuYRvNOvSePJyG_QprA9Mg-AGmcdNvgDOBm_Oz6cJh0pQ2Iw0qcJrqi4ZpoVklqd2SK1rLb5IqM6ywyVrja8LixzhpuaOma5FcoIJ2uuMbcwmj2EgV969zicqipUvVA2p6gwXFBpam2LgjqdpzazZghvLialMt1XBeKMb1WLtUyr7dEbwute-qxF6viD3P7F_Fadva6rTKGfClQ3dAgv-2ocxvD7RHu3PA8yCnNLxSTKPGrVoW8IkyYlBcuHIHYUpRcIKN67Nb75GtG80WViUlhgZ6Oi_PXbq8lRifk3S5_8k_QLuDE9_lhW5fvZh6dwM8iE65RU7sNgszp3z-Ca-bFp1qvnnfn8AssbGno |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBZbt5W-dLde0nabBtvTMLUl2ZIeQ7ekYyGYXaBvnqLLZmiVkKSF_vseya6bUDYYexPoCMnSudk--j6E3kmTMZ5OeJJqahOWc5Wo1KiEW85ySrglTEeyCT4ei7MzWbY8p-EuTIMP0X1wC5YR_XUwcDsz7vgONRRCFx-OIOTBG8ND9AjmyUJNF2Fl54rBPzeUeZIlgvCirXyH8cero9dj0r1E83695GoeGwPR4Ol_P8IztN3moLjfKM1z9MD6F-jJMHL8XkMrVoXqxUv0E5QIf6t_NeifeOpwZNyzc49PA09cgCSwuL-8mMZmrfFJPdctIRguI3SnX-Da475fgkXBfLgMcBqzFhl8B_0YfPp-cpq0lAyJhjifJvA-xRRVtBDEqMwUqaHO5JOMqCzTRFinmSsMtZppRyw1zHCpuRWOKcgstKK7aMNPvd0PNVWFdBNpcgLqwjgR2ilTFMSqPDWZ0T304fZQKt2uKtBmnFcN0jKpVnevh9530rMGp-MPcke351u11rqoMgleKhDdkB5623XDNoafJ8rb6WWQkZBZSipAZq9Rh24iSJmk4DTvIb6mKJ1AwPBe7_H174jlDQ4TUsICHjYqyl_XXg2_jiD7punBP0m_QZvlx0E1-jz-coi2gki4S0nEEdpYzi_tK_RYXy3rxfx1tJ0bKnwYYw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Signature+of+Southern+Hemisphere+Atmospheric+Circulation+Patterns+in+Antarctic+Precipitation&rft.jtitle=Geophysical+research+letters&rft.au=Marshall%2C+Gareth+J&rft.au=Thompson%2C+David+W+J&rft.au=Broeke%2C+Michiel+R&rft.date=2017-11-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=22&rft.spage=11%2C580&rft_id=info:doi/10.1002%2F2017GL075998&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |