Parallel subgradient algorithm with block dual decomposition for large-scale optimization

•Trade-off between minimizing the number of dualized constraints and detecting a structure amenable to parallel optimization.•Our approach accelerates the convergence of the distributed sub-gradient method when compared to the dual decomposition.•Denser constraint matrix leads to a higher number of...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research Vol. 299; no. 1; pp. 60 - 74
Main Authors: Zheng, Yuchen, Xie, Yujia, Lee, Ilbin, Dehghanian, Amin, Serban, Nicoleta
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 16.05.2022
Subjects:
ISSN:0377-2217, 1872-6860
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Trade-off between minimizing the number of dualized constraints and detecting a structure amenable to parallel optimization.•Our approach accelerates the convergence of the distributed sub-gradient method when compared to the dual decomposition.•Denser constraint matrix leads to a higher number of dualized constraints and more iterations for convergence.•It is crucial to employ prior knowledge about the structure of the problem when solving large scale optimization problems. This paper studies computational approaches for solving large-scale optimization problems using a Lagrangian dual reformulation, solved by parallel sub-gradient methods. Since there are many possible reformulations for a given problem, an important question is: Which reformulation leads to the fastest solution time? One approach is to detect a block diagonal structure in the constraint matrix, and reformulate the problem by dualizing the constraints outside of the blocks; the approach is defined herein as block dual decomposition. Main advantage of such a reformulation is that the Lagrangian relaxation has a block diagonal constraint matrix, thus decomposable into smaller sub-problems that can solved in parallel. We show that the block decomposition can critically affect convergence rate of the sub-gradient method. We propose various decomposition methods that use domain knowledge or apply algorithms using knowledge about the structure in the constraint matrix or the dependence in the decision variables, towards reducing the computational effort to solve large-scale optimization problems. In particular, we introduce a block decomposition approach that reduces the number of dualized constraints by utilizing a community detection algorithm. We present empirical experiments on an extensive set of problem instances including a real application. We illustrate that if the number of the dualized constraints in the decomposition increases, the computational effort within each iteration of the sub-gradient method decreases while the number of iterations required for convergence increases. The key message is that it is crucial to employ prior knowledge about the structure of the problem when solving large scale optimization problems using dual decomposition.
AbstractList This paper studies computational approaches for solving large-scale optimization problems using a Lagrangian dual reformulation, solved by parallel sub-gradient methods. Since there are many possible reformulations for a given problem, an important question is: Which reformulation leads to the fastest solution time? One approach is to detect a block diagonal structure in the constraint matrix, and reformulate the problem by dualizing the constraints outside of the blocks; the approach is defined herein as block dual decomposition. Main advantage of such a reformulation is that the Lagrangian relaxation has a block diagonal constraint matrix, thus decomposable into smaller sub-problems that can solved in parallel. We show that the block decomposition can critically affect convergence rate of the sub-gradient method. We propose various decomposition methods that use domain knowledge or apply algorithms using knowledge about the structure in the constraint matrix or the dependence in the decision variables, towards reducing the computational effort to solve large-scale optimization problems. In particular, we introduce a block decomposition approach that reduces the number of dualized constraints by utilizing a community detection algorithm. We present empirical experiments on an extensive set of problem instances including a real application. We illustrate that if the number of the dualized constraints in the decomposition increases, the computational effort within each iteration of the sub-gradient method decreases while the number of iterations required for convergence increases. The key message is that it is crucial to employ prior knowledge about the structure of the problem when solving large scale optimization problems using dual decomposition.This paper studies computational approaches for solving large-scale optimization problems using a Lagrangian dual reformulation, solved by parallel sub-gradient methods. Since there are many possible reformulations for a given problem, an important question is: Which reformulation leads to the fastest solution time? One approach is to detect a block diagonal structure in the constraint matrix, and reformulate the problem by dualizing the constraints outside of the blocks; the approach is defined herein as block dual decomposition. Main advantage of such a reformulation is that the Lagrangian relaxation has a block diagonal constraint matrix, thus decomposable into smaller sub-problems that can solved in parallel. We show that the block decomposition can critically affect convergence rate of the sub-gradient method. We propose various decomposition methods that use domain knowledge or apply algorithms using knowledge about the structure in the constraint matrix or the dependence in the decision variables, towards reducing the computational effort to solve large-scale optimization problems. In particular, we introduce a block decomposition approach that reduces the number of dualized constraints by utilizing a community detection algorithm. We present empirical experiments on an extensive set of problem instances including a real application. We illustrate that if the number of the dualized constraints in the decomposition increases, the computational effort within each iteration of the sub-gradient method decreases while the number of iterations required for convergence increases. The key message is that it is crucial to employ prior knowledge about the structure of the problem when solving large scale optimization problems using dual decomposition.
This paper studies computational approaches for solving large-scale optimization problems using a Lagrangian dual reformulation, solved by parallel sub-gradient methods. Since there are many possible reformulations for a given problem, an important question is: Which reformulation leads to the fastest solution time? One approach is to detect a block diagonal structure in the constraint matrix, and reformulate the problem by dualizing the constraints outside of the blocks; the approach is defined herein as block dual decomposition. Main advantage of such a reformulation is that the Lagrangian relaxation has a block diagonal constraint matrix, thus decomposable into smaller sub-problems that can solved in parallel. We show that the block decomposition can critically affect convergence rate of the sub-gradient method. We propose various decomposition methods that use domain knowledge or apply algorithms using knowledge about the structure in the constraint matrix or the dependence in the decision variables, towards reducing the computational effort to solve large-scale optimization problems. In particular, we introduce a block decomposition approach that reduces the number of dualized constraints by utilizing a community detection algorithm. We present empirical experiments on an extensive set of problem instances including a real application. We illustrate that if the number of the dualized constraints in the decomposition increases, the computational effort within each iteration of the sub-gradient method decreases while the number of iterations required for convergence increases. The key message is that it is crucial to employ prior knowledge about the structure of the problem when solving large scale optimization problems using dual decomposition.
•Trade-off between minimizing the number of dualized constraints and detecting a structure amenable to parallel optimization.•Our approach accelerates the convergence of the distributed sub-gradient method when compared to the dual decomposition.•Denser constraint matrix leads to a higher number of dualized constraints and more iterations for convergence.•It is crucial to employ prior knowledge about the structure of the problem when solving large scale optimization problems. This paper studies computational approaches for solving large-scale optimization problems using a Lagrangian dual reformulation, solved by parallel sub-gradient methods. Since there are many possible reformulations for a given problem, an important question is: Which reformulation leads to the fastest solution time? One approach is to detect a block diagonal structure in the constraint matrix, and reformulate the problem by dualizing the constraints outside of the blocks; the approach is defined herein as block dual decomposition. Main advantage of such a reformulation is that the Lagrangian relaxation has a block diagonal constraint matrix, thus decomposable into smaller sub-problems that can solved in parallel. We show that the block decomposition can critically affect convergence rate of the sub-gradient method. We propose various decomposition methods that use domain knowledge or apply algorithms using knowledge about the structure in the constraint matrix or the dependence in the decision variables, towards reducing the computational effort to solve large-scale optimization problems. In particular, we introduce a block decomposition approach that reduces the number of dualized constraints by utilizing a community detection algorithm. We present empirical experiments on an extensive set of problem instances including a real application. We illustrate that if the number of the dualized constraints in the decomposition increases, the computational effort within each iteration of the sub-gradient method decreases while the number of iterations required for convergence increases. The key message is that it is crucial to employ prior knowledge about the structure of the problem when solving large scale optimization problems using dual decomposition.
Author Zheng, Yuchen
Serban, Nicoleta
Lee, Ilbin
Dehghanian, Amin
Xie, Yujia
AuthorAffiliation b Alberta School of Business, University of Alberta, 2-29B Business Building, Edmonton, Alberta T6G 2R6, Canada
a H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Dr. NW Atlanta, GA 30332
AuthorAffiliation_xml – name: b Alberta School of Business, University of Alberta, 2-29B Business Building, Edmonton, Alberta T6G 2R6, Canada
– name: a H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Dr. NW Atlanta, GA 30332
Author_xml – sequence: 1
  givenname: Yuchen
  surname: Zheng
  fullname: Zheng, Yuchen
  email: yzheng67@gmail.com
  organization: H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Dr. NW, Atlanta, GA 30332, USA
– sequence: 2
  givenname: Yujia
  surname: Xie
  fullname: Xie, Yujia
  email: yxie@gatech.edu
  organization: H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Dr. NW, Atlanta, GA 30332, USA
– sequence: 3
  givenname: Ilbin
  orcidid: 0000-0003-1323-0393
  surname: Lee
  fullname: Lee, Ilbin
  email: ilbin@ualberta.ca
  organization: Alberta School of Business, University of Alberta, 2-29B Business Building, Edmonton, Alberta T6G 2R6, Canada
– sequence: 4
  givenname: Amin
  surname: Dehghanian
  fullname: Dehghanian, Amin
  email: adehghanian3@gatech.edu
  organization: H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Dr. NW, Atlanta, GA 30332, USA
– sequence: 5
  givenname: Nicoleta
  orcidid: 0000-0002-5813-7435
  surname: Serban
  fullname: Serban, Nicoleta
  email: nserban@isye.gatech.edu
  organization: H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Dr. NW, Atlanta, GA 30332, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35035056$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAQtVAR3Rb-AAeUI5eEsRPHjoSQUMWXVAkOcOBkOfZ468WJFztpBb8eL1sq4FDJGh_mvTcz752RkznOSMhTCg0F2r_YNbiLqWHAaENpA7x7QDZUClb3socTsoFWiJoxKk7JWc47AKCc8kfktOVQHu835OsnnXQIGKq8jtukrcd5qXTYxuSXq6m6KbUaQzTfKrvqUFk0cdrH7Bcf58rFVAWdtlhnowNWcb_4yf_Uh-Zj8tDpkPHJ7X9Ovrx98_nifX358d2Hi9eXteEMlto5AA6D6PjoNBohB255y52RnNtuYFYPnXHGUInCaOlGpmnLOUo3QDcitOfk1VF3v44TWlP2LxepffKTTj9U1F7925n9ldrGayUF79pBFIHntwIpfl8xL2ry2WAIesa4ZsV6BoLzAWSBPvt71t2QP34WADsCTIo5J3R3EArqEJraqUNo6hCaolSV0ApJ_kcyfvntYdnXh_upL49ULA5fe0wqm5KgQesTmkXZ6O-j_wI29bWY
CitedBy_id crossref_primary_10_1016_j_trb_2025_103279
crossref_primary_10_1007_s11081_023_09838_4
crossref_primary_10_1287_ijoc_2022_0342
Cites_doi 10.1023/A:1009642405419
10.1016/j.ejor.2020.08.037
10.1109/TAC.2011.2161027
10.1016/j.compag.2011.01.006
10.1109/TNN.2005.845141
10.1016/0020-0190(92)90140-Q
10.1007/BF01584346
10.1016/j.physrep.2009.11.002
10.1007/s10107-014-0761-5
10.1007/BF02023050
10.1137/S1064827502401953
10.1016/j.tcs.2009.08.035
10.1073/pnas.0601602103
10.1109/TSMCA.2009.2025507
10.1007/s10107-015-0901-6
10.1007/s10107-004-0552-5
10.1007/s40745-015-0040-1
10.1111/1475-6773.12722
10.1287/opre.48.3.461.12439
10.1126/science.1136800
10.1103/PhysRevE.70.066111
10.1007/s12532-013-0061-8
10.1109/JSAC.2006.879350
10.1007/s10957-015-0758-0
10.1103/PhysRevE.69.066133
10.3182/20110828-6-IT-1002.01959
10.1109/TSP.2003.814623
10.1073/pnas.122653799
10.1287/ijoc.2017.0797
10.1016/S0167-6377(98)00050-9
10.1103/PhysRevE.69.026113
10.1109/TCOMM.2004.831346
10.1007/BF01582130
10.1016/0743-7315(90)90086-5
10.1126/science.1242072
10.1561/2200000016
10.1007/s10107-015-0892-3
10.1109/TAC.2008.2009515
10.1109/TKDE.2007.190689
10.1137/070708111
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.ejor.2021.11.054
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 74
ExternalDocumentID PMC8754397
35035056
10_1016_j_ejor_2021_11_054
S0377221721010055
Genre Journal Article
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R01 DE028283
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
BNPGV
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c520t-ff00509745bfaec7895d535fc855d492da94cfcc18e7ca8fb2a1355e8f904be03
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000743574900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Tue Sep 30 17:13:49 EDT 2025
Thu Oct 02 18:00:20 EDT 2025
Thu Apr 03 07:07:24 EDT 2025
Sat Nov 29 07:19:12 EST 2025
Tue Nov 18 20:47:29 EST 2025
Fri Feb 23 02:40:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Block dual decomposition
Large scale optimization
Community detection
Parallel subgradient algorithm
Distributed decision making
Block Dual Decomposition
Parallel Subgradient Algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-ff00509745bfaec7895d535fc855d492da94cfcc18e7ca8fb2a1355e8f904be03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5813-7435
0000-0003-1323-0393
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8754397
PMID 35035056
PQID 2620755908
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8754397
proquest_miscellaneous_2620755908
pubmed_primary_35035056
crossref_primary_10_1016_j_ejor_2021_11_054
crossref_citationtrail_10_1016_j_ejor_2021_11_054
elsevier_sciencedirect_doi_10_1016_j_ejor_2021_11_054
PublicationCentury 2000
PublicationDate 2022-05-16
PublicationDateYYYYMMDD 2022-05-16
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-16
  day: 16
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle European journal of operational research
PublicationTitleAlternate Eur J Oper Res
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Medhi (bib0032) 1990; 22
Goffin (bib0023) 1977; 13
Brandes, Delling, Gaertler, Gorke, Hoefer, Nikoloski, Wagner (bib0009) 2007; 20
Simonetto, Jamali-Rad (bib0047) 2016; 168
Boyd (bib0007) 2014
Khaniyev, Elhedhli, Erenay (bib0027) 2018; 30
Wright (bib0050) 2015; 151
Newman (bib0037) 2006; 103
Shastri, Hansen, Rodríguez, Ting (bib0046) 2011; 76
Raffard, Tomlin, Boyd (bib0042) 2004; vol. 3
Hromkovič (bib0025) 2013
Gentili, Serban, Harati, O’Connor, Swann (bib0021) 2017; 53
Holmberg, Yuan (bib0024) 2000; 48
Androulakis, Visweswaran, Floudas (bib0001) 1996
Wolfe, Haghighi, Klein (bib0049) 2008
Girvan, Newman (bib0022) 2002; 99
Bertsekas (bib0005) 2011; 2010
Aykanat, Pinar, Çatalyürek (bib0002) 2004; 25
Nedic, Ozdaglar (bib0034) 2009; 54
Maher (bib0030) 2021; 290
Boyd, Parikh, Chu, Peleato, Eckstein (bib0008) 2011; 3
Xiao, Johansson, Boyd (bib0051) 2004; 52
Campegiani, Presti (bib0011) 2009
Rehfeldt, Hobbie, Schönheit, Koch, Möst, Gleixner (bib0043) 2021; in press
Richtárik, Takáč (bib0044) 2016; 156
Xu, Tian (bib0052) 2015; 2
Newman (bib0036) 2004; 69
Parikh, Boyd (bib0041) 2014; 6
Nedic, Ozdaglar (bib0033) 2009; 19
Rodriguez, Laio (bib0045) 2014; 344
Bui, Jones (bib0010) 1992; 42
Duchi, Hazan, Singer (bib0016) 2011; 12
Knobe, Lukas, Steele (bib0028) 1990; 8
Nesterov (bib0035) 2005; 103
Lyaudet (bib0029) 2010; 411
Martin (bib0031) 1999
Newman, Girvan (bib0038) 2004; 69
Bezanson, J., Karpinski, S., Shah, V. B., & Edelman, A. (2012). Julia: A fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145,.
Palomar, Mung (bib0040) 2006; 24
Nowak (bib0039) 2003; 51
Chu, Beasley (bib0014) 1998; 4
Bertsekas (bib0004) 1995
Bergner, Caprara, Ceselli, Furini, Lübbecke, Malaguti, Traversi (bib0003) 2015; 149
Xu, Wunsch (bib0053) 2005; 16
Camponogara, De Oliveira (bib0012) 2009; 39
Frey, Dueck (bib0020) 2007; 315
Clauset, Newman, Moore (bib0015) 2004; 70
Duchi, Agarwal, Wainwright (bib0017) 2012; 57
Ferris, Horn (bib0018) 1998; 80
Fortunato (bib0019) 2010; 486
Terelius, Topcu, Murray (bib0048) 2011; 44
Carøe, Schultz (bib0013) 1999; 24
Inalhan, Stipanovic, Tomlin (bib0026) 2002; vol. 1
Gentili (10.1016/j.ejor.2021.11.054_bib0021) 2017; 53
Nowak (10.1016/j.ejor.2021.11.054_bib0039) 2003; 51
Shastri (10.1016/j.ejor.2021.11.054_bib0046) 2011; 76
Wright (10.1016/j.ejor.2021.11.054_bib0050) 2015; 151
Inalhan (10.1016/j.ejor.2021.11.054_bib0026) 2002; vol. 1
Frey (10.1016/j.ejor.2021.11.054_bib0020) 2007; 315
Wolfe (10.1016/j.ejor.2021.11.054_bib0049) 2008
Bergner (10.1016/j.ejor.2021.11.054_bib0003) 2015; 149
Campegiani (10.1016/j.ejor.2021.11.054_bib0011) 2009
Girvan (10.1016/j.ejor.2021.11.054_bib0022) 2002; 99
Carøe (10.1016/j.ejor.2021.11.054_bib0013) 1999; 24
Duchi (10.1016/j.ejor.2021.11.054_bib0016) 2011; 12
Aykanat (10.1016/j.ejor.2021.11.054_bib0002) 2004; 25
Lyaudet (10.1016/j.ejor.2021.11.054_bib0029) 2010; 411
10.1016/j.ejor.2021.11.054_bib0006
Medhi (10.1016/j.ejor.2021.11.054_bib0032) 1990; 22
Xu (10.1016/j.ejor.2021.11.054_bib0053) 2005; 16
Newman (10.1016/j.ejor.2021.11.054_bib0037) 2006; 103
Chu (10.1016/j.ejor.2021.11.054_bib0014) 1998; 4
Newman (10.1016/j.ejor.2021.11.054_bib0036) 2004; 69
Maher (10.1016/j.ejor.2021.11.054_bib0030) 2021; 290
Clauset (10.1016/j.ejor.2021.11.054_bib0015) 2004; 70
Hromkovič (10.1016/j.ejor.2021.11.054_bib0025) 2013
Camponogara (10.1016/j.ejor.2021.11.054_bib0012) 2009; 39
Knobe (10.1016/j.ejor.2021.11.054_bib0028) 1990; 8
Xiao (10.1016/j.ejor.2021.11.054_bib0051) 2004; 52
Goffin (10.1016/j.ejor.2021.11.054_bib0023) 1977; 13
Androulakis (10.1016/j.ejor.2021.11.054_bib0001) 1996
Duchi (10.1016/j.ejor.2021.11.054_bib0017) 2012; 57
Khaniyev (10.1016/j.ejor.2021.11.054_bib0027) 2018; 30
Nesterov (10.1016/j.ejor.2021.11.054_bib0035) 2005; 103
Boyd (10.1016/j.ejor.2021.11.054_bib0008) 2011; 3
Terelius (10.1016/j.ejor.2021.11.054_bib0048) 2011; 44
Ferris (10.1016/j.ejor.2021.11.054_bib0018) 1998; 80
Rodriguez (10.1016/j.ejor.2021.11.054_bib0045) 2014; 344
Simonetto (10.1016/j.ejor.2021.11.054_bib0047) 2016; 168
Newman (10.1016/j.ejor.2021.11.054_bib0038) 2004; 69
Nedic (10.1016/j.ejor.2021.11.054_bib0034) 2009; 54
Rehfeldt (10.1016/j.ejor.2021.11.054_bib0043) 2021; in press
Parikh (10.1016/j.ejor.2021.11.054_bib0041) 2014; 6
Martin (10.1016/j.ejor.2021.11.054_bib0031) 1999
Richtárik (10.1016/j.ejor.2021.11.054_bib0044) 2016; 156
Boyd (10.1016/j.ejor.2021.11.054_bib0007) 2014
Raffard (10.1016/j.ejor.2021.11.054_bib0042) 2004; vol. 3
Nedic (10.1016/j.ejor.2021.11.054_bib0033) 2009; 19
Xu (10.1016/j.ejor.2021.11.054_bib0052) 2015; 2
Holmberg (10.1016/j.ejor.2021.11.054_bib0024) 2000; 48
Bertsekas (10.1016/j.ejor.2021.11.054_bib0005) 2011; 2010
Bui (10.1016/j.ejor.2021.11.054_bib0010) 1992; 42
Palomar (10.1016/j.ejor.2021.11.054_bib0040) 2006; 24
Fortunato (10.1016/j.ejor.2021.11.054_bib0019) 2010; 486
Brandes (10.1016/j.ejor.2021.11.054_bib0009) 2007; 20
Bertsekas (10.1016/j.ejor.2021.11.054_bib0004) 1995
References_xml – volume: 69
  start-page: 026113
  year: 2004
  ident: bib0038
  article-title: Finding and evaluating community structure in networks
  publication-title: Physical Review E
– volume: 168
  start-page: 172
  year: 2016
  end-page: 197
  ident: bib0047
  article-title: Primal recovery from consensus-based dual decomposition for distributed convex optimization
  publication-title: Journal of Optimization Theory and Applications
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: bib0045
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: in press
  year: 2021
  ident: bib0043
  article-title: A massively parallel interior-point solver for LPs with generalized arrowhead structure, and applications to energy system models
  publication-title: European Journal of Operational Research
– volume: 6
  start-page: 77
  year: 2014
  end-page: 102
  ident: bib0041
  article-title: Block splitting for distributed optimization
  publication-title: Mathematical Programming Computation
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: bib0008
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: bib0020
  article-title: Clustering by passing messages between data points
  publication-title: Science
– year: 1999
  ident: bib0031
  article-title: Large scale linear and integer optimization: A unified approach
– volume: 19
  start-page: 1757
  year: 2009
  end-page: 1780
  ident: bib0033
  article-title: Approximate primal solutions and rate analysis for dual subgradient methods
  publication-title: SIAM Journal on Optimization
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: bib0016
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: Journal of Machine Learning Research
– volume: 411
  start-page: 10
  year: 2010
  end-page: 21
  ident: bib0029
  article-title: NP-hard and linear variants of hypergraph partitioning
  publication-title: Theoretical Computer Science
– volume: 8
  start-page: 102
  year: 1990
  end-page: 118
  ident: bib0028
  article-title: Data optimization: Allocation of arrays to reduce communication on SIMD machines
  publication-title: Journal of parallel and Distributed Computing
– reference: Bezanson, J., Karpinski, S., Shah, V. B., & Edelman, A. (2012). Julia: A fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145,.
– volume: 24
  start-page: 37
  year: 1999
  end-page: 45
  ident: bib0013
  article-title: Dual decomposition in stochastic integer programming
  publication-title: Operations Research Letters
– volume: 48
  start-page: 461
  year: 2000
  end-page: 481
  ident: bib0024
  article-title: A Lagrangian heuristic based branch-and-bound approach for the capacitated network design problem
  publication-title: Operations Research
– volume: vol. 3
  start-page: 2453
  year: 2004
  end-page: 2459
  ident: bib0042
  article-title: Distributed optimization for cooperative agents: Application to formation flight
  publication-title: Proceedings of the 43rd IEEE conference on decision and control, 2004 CDC
– volume: 99
  start-page: 7821
  year: 2002
  end-page: 7826
  ident: bib0022
  article-title: Community structure in social and biological networks
  publication-title: Proceedings of the National Academy of Sciences
– volume: vol. 1
  start-page: 1147
  year: 2002
  end-page: 1155
  ident: bib0026
  article-title: Decentralized optimization, with application to multiple aircraft coordination
  publication-title: Proceedings of the 41st IEEE conference on decision and control, 2002.
– volume: 52
  start-page: 1136
  year: 2004
  end-page: 1144
  ident: bib0051
  article-title: Simultaneous routing and resource allocation via dual decomposition
  publication-title: IEEE Transactions on Communications
– year: 1995
  ident: bib0004
  article-title: Nonlinear programming
– start-page: 285
  year: 1996
  end-page: 301)
  ident: bib0001
  article-title: Distributed decomposition-based approaches in global optimization
  publication-title: State of the art in global optimization: Computational methods and applications
– volume: 20
  start-page: 172
  year: 2007
  end-page: 188
  ident: bib0009
  article-title: On modularity clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 13
  start-page: 329
  year: 1977
  end-page: 347
  ident: bib0023
  article-title: On convergence rates of subgradient optimization methods
  publication-title: Mathematical Programming
– volume: 22
  start-page: 101
  year: 1990
  end-page: 127
  ident: bib0032
  article-title: Parallel bundle-based decomposition for large-scale structured mathematical programming problems
  publication-title: Annals of Operations Research
– volume: 2
  start-page: 165
  year: 2015
  end-page: 193
  ident: bib0052
  article-title: A comprehensive survey of clustering algorithms
  publication-title: Annals of Data Science
– start-page: 1184
  year: 2008
  end-page: 1191
  ident: bib0049
  article-title: Fully distributed em for very large datasets
  publication-title: Proceedings of the 25th international conference on machine learning
– volume: 51
  start-page: 2245
  year: 2003
  end-page: 2253
  ident: bib0039
  article-title: Distributed em algorithms for density estimation and clustering in sensor networks
  publication-title: IEEE Transactions on Signal Processing
– volume: 54
  start-page: 48
  year: 2009
  end-page: 61
  ident: bib0034
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Transactions on Automatic Control
– volume: 30
  start-page: 570
  year: 2018
  end-page: 587
  ident: bib0027
  article-title: Structure detection in mixed-integer programs
  publication-title: INFORMS Journal on Computing
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: bib0053
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transactions on Neural Networks
– volume: 290
  start-page: 479
  year: 2021
  end-page: 498
  ident: bib0030
  article-title: Implementing the branch-and-cut approach for a general purpose Benders decomposition framework
  publication-title: European Journal of Operational Research
– volume: 44
  start-page: 11245
  year: 2011
  end-page: 11251
  ident: bib0048
  article-title: Decentralized multi-agent optimization via dual decomposition
  publication-title: IFAC Proceedings Volumes
– volume: 4
  start-page: 63
  year: 1998
  end-page: 86
  ident: bib0014
  article-title: A genetic algorithm for the multidimensional knapsack problem
  publication-title: Journal of Heuristics
– year: 2014
  ident: bib0007
  article-title: Subgradient methods
– volume: 70
  start-page: 066111
  year: 2004
  ident: bib0015
  article-title: Finding community structure in very large networks
  publication-title: Physical Review E
– volume: 42
  start-page: 153
  year: 1992
  end-page: 159
  ident: bib0010
  article-title: Finding good approximate vertex and edge partitions is NP-hard
  publication-title: Information Processing Letters
– volume: 57
  start-page: 592
  year: 2012
  end-page: 606
  ident: bib0017
  article-title: Dual averaging for distributed optimization: Convergence analysis and network scaling
  publication-title: IEEE Transactions on Automatic Control
– volume: 486
  start-page: 75
  year: 2010
  end-page: 174
  ident: bib0019
  article-title: Community detection in graphs
  publication-title: Physics Reports
– year: 2013
  ident: bib0025
  article-title: Communication complexity and parallel computing
– volume: 25
  start-page: 1860
  year: 2004
  end-page: 1879
  ident: bib0002
  article-title: Permuting sparse rectangular matrices into block-diagonal form
  publication-title: SIAM Journal on Scientific Computing
– volume: 156
  start-page: 433
  year: 2016
  end-page: 484
  ident: bib0044
  article-title: Parallel coordinate descent methods for big data optimization
  publication-title: Mathematical Programming
– volume: 39
  start-page: 1331
  year: 2009
  end-page: 1338
  ident: bib0012
  article-title: Distributed optimization for model predictive control of linear-dynamic networks
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
– volume: 103
  start-page: 127
  year: 2005
  end-page: 152
  ident: bib0035
  article-title: Smooth minimization of non-smooth functions
  publication-title: Mathematical Programming
– start-page: 162
  year: 2009
  end-page: 167
  ident: bib0011
  article-title: A general model for virtual machines resources allocation in multi-tier distributed systems
  publication-title: Proceedings of the fifth international conference on autonomic and autonomous systems
– volume: 53
  start-page: 1458
  year: 2017
  end-page: 1477
  ident: bib0021
  article-title: Quantifying disparities in accessibility and availability of pediatric primary care with implications for policy
  publication-title: Health Services Research
– volume: 69
  start-page: 066133
  year: 2004
  ident: bib0036
  article-title: Fast algorithm for detecting community structure in networks
  publication-title: Physical Review E
– volume: 80
  start-page: 35
  year: 1998
  end-page: 61
  ident: bib0018
  article-title: Partitioning mathematical programs for parallel solution
  publication-title: Mathematical Programming
– volume: 151
  start-page: 3
  year: 2015
  end-page: 34
  ident: bib0050
  article-title: Coordinate descent algorithms
  publication-title: Mathematical Programming
– volume: 149
  start-page: 391
  year: 2015
  end-page: 424
  ident: bib0003
  article-title: Automatic Dantzig–Wolfe reformulation of mixed integer programs
  publication-title: Mathematical Programming
– volume: 103
  start-page: 8577
  year: 2006
  end-page: 8582
  ident: bib0037
  article-title: Modularity and community structure in networks
  publication-title: Proceedings of the National Academy of Sciences
– volume: 2010
  start-page: 3
  year: 2011
  ident: bib0005
  article-title: Incremental gradient, subgradient, and proximal methods for convex optimization: A survey
  publication-title: Optimization for Machine Learning
– volume: 24
  start-page: 1439
  year: 2006
  end-page: 1451
  ident: bib0040
  article-title: A tutorial on decomposition methods for network utility maximization
  publication-title: IEEE Journal on Selected Areas in Communications
– volume: 76
  start-page: 69
  year: 2011
  end-page: 79
  ident: bib0046
  article-title: A novel decomposition and distributed computing approach for the solution of large scale optimization models
  publication-title: Computers and Electronics in Agriculture
– volume: 4
  start-page: 63
  issue: 1
  year: 1998
  ident: 10.1016/j.ejor.2021.11.054_bib0014
  article-title: A genetic algorithm for the multidimensional knapsack problem
  publication-title: Journal of Heuristics
  doi: 10.1023/A:1009642405419
– volume: 290
  start-page: 479
  issue: 2
  year: 2021
  ident: 10.1016/j.ejor.2021.11.054_bib0030
  article-title: Implementing the branch-and-cut approach for a general purpose Benders decomposition framework
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2020.08.037
– volume: 57
  start-page: 592
  issue: 3
  year: 2012
  ident: 10.1016/j.ejor.2021.11.054_bib0017
  article-title: Dual averaging for distributed optimization: Convergence analysis and network scaling
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2011.2161027
– volume: 76
  start-page: 69
  issue: 1
  year: 2011
  ident: 10.1016/j.ejor.2021.11.054_bib0046
  article-title: A novel decomposition and distributed computing approach for the solution of large scale optimization models
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2011.01.006
– year: 1999
  ident: 10.1016/j.ejor.2021.11.054_bib0031
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10.1016/j.ejor.2021.11.054_bib0053
  article-title: Survey of clustering algorithms
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2005.845141
– volume: 42
  start-page: 153
  issue: 3
  year: 1992
  ident: 10.1016/j.ejor.2021.11.054_bib0010
  article-title: Finding good approximate vertex and edge partitions is NP-hard
  publication-title: Information Processing Letters
  doi: 10.1016/0020-0190(92)90140-Q
– volume: 13
  start-page: 329
  issue: 1
  year: 1977
  ident: 10.1016/j.ejor.2021.11.054_bib0023
  article-title: On convergence rates of subgradient optimization methods
  publication-title: Mathematical Programming
  doi: 10.1007/BF01584346
– volume: 486
  start-page: 75
  issue: 3
  year: 2010
  ident: 10.1016/j.ejor.2021.11.054_bib0019
  article-title: Community detection in graphs
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2009.11.002
– volume: 149
  start-page: 391
  issue: 1-2
  year: 2015
  ident: 10.1016/j.ejor.2021.11.054_bib0003
  article-title: Automatic Dantzig–Wolfe reformulation of mixed integer programs
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-014-0761-5
– volume: 22
  start-page: 101
  issue: 1
  year: 1990
  ident: 10.1016/j.ejor.2021.11.054_bib0032
  article-title: Parallel bundle-based decomposition for large-scale structured mathematical programming problems
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02023050
– volume: 25
  start-page: 1860
  issue: 6
  year: 2004
  ident: 10.1016/j.ejor.2021.11.054_bib0002
  article-title: Permuting sparse rectangular matrices into block-diagonal form
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/S1064827502401953
– volume: 411
  start-page: 10
  issue: 1
  year: 2010
  ident: 10.1016/j.ejor.2021.11.054_bib0029
  article-title: NP-hard and linear variants of hypergraph partitioning
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2009.08.035
– volume: 2010
  start-page: 3
  issue: 1–38
  year: 2011
  ident: 10.1016/j.ejor.2021.11.054_bib0005
  article-title: Incremental gradient, subgradient, and proximal methods for convex optimization: A survey
  publication-title: Optimization for Machine Learning
– volume: in press
  year: 2021
  ident: 10.1016/j.ejor.2021.11.054_bib0043
  article-title: A massively parallel interior-point solver for LPs with generalized arrowhead structure, and applications to energy system models
  publication-title: European Journal of Operational Research
– volume: 103
  start-page: 8577
  issue: 23
  year: 2006
  ident: 10.1016/j.ejor.2021.11.054_bib0037
  article-title: Modularity and community structure in networks
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0601602103
– volume: 39
  start-page: 1331
  issue: 6
  year: 2009
  ident: 10.1016/j.ejor.2021.11.054_bib0012
  article-title: Distributed optimization for model predictive control of linear-dynamic networks
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
  doi: 10.1109/TSMCA.2009.2025507
– volume: vol. 1
  start-page: 1147
  year: 2002
  ident: 10.1016/j.ejor.2021.11.054_bib0026
  article-title: Decentralized optimization, with application to multiple aircraft coordination
– volume: 156
  start-page: 433
  issue: 1-2
  year: 2016
  ident: 10.1016/j.ejor.2021.11.054_bib0044
  article-title: Parallel coordinate descent methods for big data optimization
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-015-0901-6
– volume: 103
  start-page: 127
  issue: 1
  year: 2005
  ident: 10.1016/j.ejor.2021.11.054_bib0035
  article-title: Smooth minimization of non-smooth functions
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-004-0552-5
– volume: 12
  start-page: 2121
  issue: Jul
  year: 2011
  ident: 10.1016/j.ejor.2021.11.054_bib0016
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: Journal of Machine Learning Research
– volume: 2
  start-page: 165
  issue: 2
  year: 2015
  ident: 10.1016/j.ejor.2021.11.054_bib0052
  article-title: A comprehensive survey of clustering algorithms
  publication-title: Annals of Data Science
  doi: 10.1007/s40745-015-0040-1
– year: 2013
  ident: 10.1016/j.ejor.2021.11.054_bib0025
– volume: 53
  start-page: 1458
  issue: 3
  year: 2017
  ident: 10.1016/j.ejor.2021.11.054_bib0021
  article-title: Quantifying disparities in accessibility and availability of pediatric primary care with implications for policy
  publication-title: Health Services Research
  doi: 10.1111/1475-6773.12722
– volume: 48
  start-page: 461
  issue: 3
  year: 2000
  ident: 10.1016/j.ejor.2021.11.054_bib0024
  article-title: A Lagrangian heuristic based branch-and-bound approach for the capacitated network design problem
  publication-title: Operations Research
  doi: 10.1287/opre.48.3.461.12439
– year: 1995
  ident: 10.1016/j.ejor.2021.11.054_bib0004
– year: 2014
  ident: 10.1016/j.ejor.2021.11.054_bib0007
– volume: 315
  start-page: 972
  issue: 5814
  year: 2007
  ident: 10.1016/j.ejor.2021.11.054_bib0020
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– start-page: 162
  year: 2009
  ident: 10.1016/j.ejor.2021.11.054_bib0011
  article-title: A general model for virtual machines resources allocation in multi-tier distributed systems
– volume: 70
  start-page: 066111
  issue: 6
  year: 2004
  ident: 10.1016/j.ejor.2021.11.054_bib0015
  article-title: Finding community structure in very large networks
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.70.066111
– volume: 6
  start-page: 77
  issue: 1
  year: 2014
  ident: 10.1016/j.ejor.2021.11.054_bib0041
  article-title: Block splitting for distributed optimization
  publication-title: Mathematical Programming Computation
  doi: 10.1007/s12532-013-0061-8
– volume: 24
  start-page: 1439
  issue: 8
  year: 2006
  ident: 10.1016/j.ejor.2021.11.054_bib0040
  article-title: A tutorial on decomposition methods for network utility maximization
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2006.879350
– volume: 168
  start-page: 172
  issue: 1
  year: 2016
  ident: 10.1016/j.ejor.2021.11.054_bib0047
  article-title: Primal recovery from consensus-based dual decomposition for distributed convex optimization
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-015-0758-0
– volume: 69
  start-page: 066133
  issue: 6
  year: 2004
  ident: 10.1016/j.ejor.2021.11.054_bib0036
  article-title: Fast algorithm for detecting community structure in networks
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.69.066133
– volume: 44
  start-page: 11245
  issue: 1
  year: 2011
  ident: 10.1016/j.ejor.2021.11.054_bib0048
  article-title: Decentralized multi-agent optimization via dual decomposition
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20110828-6-IT-1002.01959
– volume: 51
  start-page: 2245
  issue: 8
  year: 2003
  ident: 10.1016/j.ejor.2021.11.054_bib0039
  article-title: Distributed em algorithms for density estimation and clustering in sensor networks
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2003.814623
– volume: 99
  start-page: 7821
  issue: 12
  year: 2002
  ident: 10.1016/j.ejor.2021.11.054_bib0022
  article-title: Community structure in social and biological networks
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.122653799
– volume: 30
  start-page: 570
  issue: 3
  year: 2018
  ident: 10.1016/j.ejor.2021.11.054_bib0027
  article-title: Structure detection in mixed-integer programs
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.2017.0797
– volume: 24
  start-page: 37
  issue: 1–2
  year: 1999
  ident: 10.1016/j.ejor.2021.11.054_bib0013
  article-title: Dual decomposition in stochastic integer programming
  publication-title: Operations Research Letters
  doi: 10.1016/S0167-6377(98)00050-9
– volume: vol. 3
  start-page: 2453
  year: 2004
  ident: 10.1016/j.ejor.2021.11.054_bib0042
  article-title: Distributed optimization for cooperative agents: Application to formation flight
– start-page: 285
  year: 1996
  ident: 10.1016/j.ejor.2021.11.054_bib0001
  article-title: Distributed decomposition-based approaches in global optimization
– volume: 69
  start-page: 026113
  issue: 2
  year: 2004
  ident: 10.1016/j.ejor.2021.11.054_bib0038
  article-title: Finding and evaluating community structure in networks
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.69.026113
– volume: 52
  start-page: 1136
  issue: 7
  year: 2004
  ident: 10.1016/j.ejor.2021.11.054_bib0051
  article-title: Simultaneous routing and resource allocation via dual decomposition
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2004.831346
– volume: 80
  start-page: 35
  issue: 1
  year: 1998
  ident: 10.1016/j.ejor.2021.11.054_bib0018
  article-title: Partitioning mathematical programs for parallel solution
  publication-title: Mathematical Programming
  doi: 10.1007/BF01582130
– volume: 8
  start-page: 102
  issue: 2
  year: 1990
  ident: 10.1016/j.ejor.2021.11.054_bib0028
  article-title: Data optimization: Allocation of arrays to reduce communication on SIMD machines
  publication-title: Journal of parallel and Distributed Computing
  doi: 10.1016/0743-7315(90)90086-5
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.ejor.2021.11.054_bib0045
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.ejor.2021.11.054_bib0008
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000016
– volume: 151
  start-page: 3
  issue: 1
  year: 2015
  ident: 10.1016/j.ejor.2021.11.054_bib0050
  article-title: Coordinate descent algorithms
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-015-0892-3
– ident: 10.1016/j.ejor.2021.11.054_bib0006
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 10.1016/j.ejor.2021.11.054_bib0034
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2008.2009515
– volume: 20
  start-page: 172
  issue: 2
  year: 2007
  ident: 10.1016/j.ejor.2021.11.054_bib0009
  article-title: On modularity clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.190689
– volume: 19
  start-page: 1757
  issue: 4
  year: 2009
  ident: 10.1016/j.ejor.2021.11.054_bib0033
  article-title: Approximate primal solutions and rate analysis for dual subgradient methods
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/070708111
– start-page: 1184
  year: 2008
  ident: 10.1016/j.ejor.2021.11.054_bib0049
  article-title: Fully distributed em for very large datasets
SSID ssj0001515
Score 2.4053578
Snippet •Trade-off between minimizing the number of dualized constraints and detecting a structure amenable to parallel optimization.•Our approach accelerates the...
This paper studies computational approaches for solving large-scale optimization problems using a Lagrangian dual reformulation, solved by parallel...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 60
SubjectTerms Block dual decomposition
Community detection
Distributed decision making
Large scale optimization
Parallel subgradient algorithm
Title Parallel subgradient algorithm with block dual decomposition for large-scale optimization
URI https://dx.doi.org/10.1016/j.ejor.2021.11.054
https://www.ncbi.nlm.nih.gov/pubmed/35035056
https://www.proquest.com/docview/2620755908
https://pubmed.ncbi.nlm.nih.gov/PMC8754397
Volume 299
WOSCitedRecordID wos000743574900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9owFLYonaruYRd2Y5fKk_aGUpGLsfPIRqd1qro-dBLsJXISB8JCQCFUfdtf33FsZ4GKanvYS4RsJ0R8H-ccH58LQh9sOvC5nYSWcGGL4tkc5CDoIcsOOXPj2OYiqerMXtDLSzYe-1et1i-TC3OT0Txnt7f-6r9CDWMAtkyd_Qe464fCAHwG0OEKsMP1r4C_4oXsj5JJmTAtqoiusjfMpssiLWcL5Xj9CCrsZ28kU0dGQkaV69CtKujwQgaHW2sAT_S-gURZ6FTNvU58bdDCQGFci7qGUO1r_jETSqhMNsCSmpBjdToy2czTWj3o0KDzLEzrdSMxm854nipv7XChZ7S3AkCXhU4HDaHmUmo5jsrXNBLYUT2Stqim5KnqNXBHzCuPw_xUzJeypqtjn8pKrKoadQPi1aLC2CXy-JTsVNxWOlxPHaBDhxKftdHh8Pxs_LVW5tLeqw6i9GvrvCsVIrj79cfoyDxwn5lzdxuzG43bMG-un6BHel-Ch4pPT1FL5B10ZNIiOuixaf-BtTbooIeNWpbP0MTwDjd4h2veYck7XPEOS97hLd5h4B1u8A43efccff98dv3pi6X7dlgRcfqllSRVVSHqkTDhIqLMJzFxZbAgIbHnOzH3vSiJIpsJGnGWhA63wewVLPH7Xij67gvUzpe5eIUwY2HSDx3BaRx5oI1CKugg5oRRHkehP-gi2_zMQaSL2sveKllgohfngUQpkCjBbjcAlLqoV9-zUiVd7l1NDHqBNkqVsRkAGe-9772BOgCJLY_heC6Wm3UgW0BQ2Mj3WRe9VNDX72Ho00V0ixT1AlkNfnsmT2dVVXhGidxcvN77zDfo-M8_8i1ql8VGvEMPopsyXRcn6ICO2Ymm_2_DhdKS
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Subgradient+Algorithm+with+Block+Dual+Decomposition+for+Large-scale+Optimization&rft.jtitle=European+journal+of+operational+research&rft.au=Zheng%2C+Yuchen&rft.au=Xie%2C+Yujia&rft.au=Lee%2C+Ilbin&rft.au=Dehghanian%2C+Amin&rft.date=2022-05-16&rft.issn=0377-2217&rft.volume=299&rft.issue=1&rft.spage=60&rft_id=info:doi/10.1016%2Fj.ejor.2021.11.054&rft_id=info%3Apmid%2F35035056&rft.externalDocID=35035056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon