On the hypercomplex numbers and normed division algebras in all dimensions: A unified multiplication
Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton disc...
Uloženo v:
| Vydáno v: | PloS one Ročník 19; číslo 10; s. e0312502 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
25.10.2024
|
| Témata: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton discovered quaternions, constituting a non-commutative division algebra of quadruples. Subsequent investigations revealed the existence of only four division algebras over reals, each with dimensions 1, 2, 4, and 8. This study transcends such limitations by introducing generalized hypercomplex numbers extending across all dimensions, serving as extensions of traditional complex numbers. The space formed by these numbers constitutes a non-distributive normed division algebra extendable to all finite dimensions. The derivation of these extensions involves the definitions of two new
π
-periodic functions and a unified multiplication operation, designated as spherical multiplication, that is fully compatible with the existing multiplication structures. Importantly, these new hypercomplex numbers and their associated algebras are compatible with the existing real and complex number systems, ensuring continuity across dimensionalities. Most importantly, like the addition operation, the proposed multiplication in all dimensions forms an Abelian group while simultaneously preserving the norm. In summary, this study presents a comprehensive generalization of complex numbers and the Euler identity in higher dimensions, shedding light on the geometric properties of vectors within these extended spaces. Finally, we elucidate the practical applications of the proposed methodology as a viable alternative for expressing a quantum state through the multiplication of specified quantum states, thereby offering a potential complement to the established superposition paradigm. Additionally, we explore its utility in point cloud image processing. |
|---|---|
| AbstractList | Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton discovered quaternions, constituting a non-commutative division algebra of quadruples. Subsequent investigations revealed the existence of only four division algebras over reals, each with dimensions 1, 2, 4, and 8. This study transcends such limitations by introducing generalized hypercomplex numbers extending across all dimensions, serving as extensions of traditional complex numbers. The space formed by these numbers constitutes a non-distributive normed division algebra extendable to all finite dimensions. The derivation of these extensions involves the definitions of two new π-periodic functions and a unified multiplication operation, designated as spherical multiplication, that is fully compatible with the existing multiplication structures. Importantly, these new hypercomplex numbers and their associated algebras are compatible with the existing real and complex number systems, ensuring continuity across dimensionalities. Most importantly, like the addition operation, the proposed multiplication in all dimensions forms an Abelian group while simultaneously preserving the norm. In summary, this study presents a comprehensive generalization of complex numbers and the Euler identity in higher dimensions, shedding light on the geometric properties of vectors within these extended spaces. Finally, we elucidate the practical applications of the proposed methodology as a viable alternative for expressing a quantum state through the multiplication of specified quantum states, thereby offering a potential complement to the established superposition paradigm. Additionally, we explore its utility in point cloud image processing. Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton discovered quaternions, constituting a non-commutative division algebra of quadruples. Subsequent investigations revealed the existence of only four division algebras over reals, each with dimensions 1, 2, 4, and 8. This study transcends such limitations by introducing generalized hypercomplex numbers extending across all dimensions, serving as extensions of traditional complex numbers. The space formed by these numbers constitutes a non-distributive normed division algebra extendable to all finite dimensions. The derivation of these extensions involves the definitions of two new [qi]-periodic functions and a unified multiplication operation, designated as spherical multiplication, that is fully compatible with the existing multiplication structures. Importantly, these new hypercomplex numbers and their associated algebras are compatible with the existing real and complex number systems, ensuring continuity across dimensionalities. Most importantly, like the addition operation, the proposed multiplication in all dimensions forms an Abelian group while simultaneously preserving the norm. In summary, this study presents a comprehensive generalization of complex numbers and the Euler identity in higher dimensions, shedding light on the geometric properties of vectors within these extended spaces. Finally, we elucidate the practical applications of the proposed methodology as a viable alternative for expressing a quantum state through the multiplication of specified quantum states, thereby offering a potential complement to the established superposition paradigm. Additionally, we explore its utility in point cloud image processing. Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton discovered quaternions, constituting a non-commutative division algebra of quadruples. Subsequent investigations revealed the existence of only four division algebras over reals, each with dimensions 1, 2, 4, and 8. This study transcends such limitations by introducing generalized hypercomplex numbers extending across all dimensions, serving as extensions of traditional complex numbers. The space formed by these numbers constitutes a non-distributive normed division algebra extendable to all finite dimensions. The derivation of these extensions involves the definitions of two new π -periodic functions and a unified multiplication operation, designated as spherical multiplication, that is fully compatible with the existing multiplication structures. Importantly, these new hypercomplex numbers and their associated algebras are compatible with the existing real and complex number systems, ensuring continuity across dimensionalities. Most importantly, like the addition operation, the proposed multiplication in all dimensions forms an Abelian group while simultaneously preserving the norm. In summary, this study presents a comprehensive generalization of complex numbers and the Euler identity in higher dimensions, shedding light on the geometric properties of vectors within these extended spaces. Finally, we elucidate the practical applications of the proposed methodology as a viable alternative for expressing a quantum state through the multiplication of specified quantum states, thereby offering a potential complement to the established superposition paradigm. Additionally, we explore its utility in point cloud image processing. Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton discovered quaternions, constituting a non-commutative division algebra of quadruples. Subsequent investigations revealed the existence of only four division algebras over reals, each with dimensions 1, 2, 4, and 8. This study transcends such limitations by introducing generalized hypercomplex numbers extending across all dimensions, serving as extensions of traditional complex numbers. The space formed by these numbers constitutes a non-distributive normed division algebra extendable to all finite dimensions. The derivation of these extensions involves the definitions of two new π-periodic functions and a unified multiplication operation, designated as spherical multiplication, that is fully compatible with the existing multiplication structures. Importantly, these new hypercomplex numbers and their associated algebras are compatible with the existing real and complex number systems, ensuring continuity across dimensionalities. Most importantly, like the addition operation, the proposed multiplication in all dimensions forms an Abelian group while simultaneously preserving the norm. In summary, this study presents a comprehensive generalization of complex numbers and the Euler identity in higher dimensions, shedding light on the geometric properties of vectors within these extended spaces. Finally, we elucidate the practical applications of the proposed methodology as a viable alternative for expressing a quantum state through the multiplication of specified quantum states, thereby offering a potential complement to the established superposition paradigm. Additionally, we explore its utility in point cloud image processing.Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton discovered quaternions, constituting a non-commutative division algebra of quadruples. Subsequent investigations revealed the existence of only four division algebras over reals, each with dimensions 1, 2, 4, and 8. This study transcends such limitations by introducing generalized hypercomplex numbers extending across all dimensions, serving as extensions of traditional complex numbers. The space formed by these numbers constitutes a non-distributive normed division algebra extendable to all finite dimensions. The derivation of these extensions involves the definitions of two new π-periodic functions and a unified multiplication operation, designated as spherical multiplication, that is fully compatible with the existing multiplication structures. Importantly, these new hypercomplex numbers and their associated algebras are compatible with the existing real and complex number systems, ensuring continuity across dimensionalities. Most importantly, like the addition operation, the proposed multiplication in all dimensions forms an Abelian group while simultaneously preserving the norm. In summary, this study presents a comprehensive generalization of complex numbers and the Euler identity in higher dimensions, shedding light on the geometric properties of vectors within these extended spaces. Finally, we elucidate the practical applications of the proposed methodology as a viable alternative for expressing a quantum state through the multiplication of specified quantum states, thereby offering a potential complement to the established superposition paradigm. Additionally, we explore its utility in point cloud image processing. |
| Audience | Academic |
| Author | Singh, Pushpendra Gupta, Anubha Joshi, Shiv Dutt |
| Author_xml | – sequence: 1 givenname: Pushpendra orcidid: 0000-0001-5615-519X surname: Singh fullname: Singh, Pushpendra – sequence: 2 givenname: Anubha surname: Gupta fullname: Gupta, Anubha – sequence: 3 givenname: Shiv Dutt surname: Joshi fullname: Joshi, Shiv Dutt |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39453926$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1r3DAQhkVJaZJt_0FpBYXSHnarj5W07m0JbRoILKQfVyHb410FWXIkuyT_vjLrhGzJIZqDhplnBmbmPUVHPnhA6C0lC8oV_XIdhuiNW3Q5vCCcMkHYC3RCC87mkhF-9Mg_RqcpXRMi-ErKV-iYF0vBCyZPUL3xuN8B3t11EKvQdg5usR_aEmLCxtfYh9hCjWv71yYbPDZuC2U0CdvRdznRgh8z6Ste48Hbxma8HVxvO2cr0-fUa_SyMS7Bm-mfod_fv_06-zG_3JxfnK0v55VgpJ-XBVWGApeqAFYruqQCTKUUqIaLmkKR_ZpSKer8pFIlVELl6VYlp5Isgc_Q-33fzoWkpwUlnXdDVlzIPP4MfZqIGG4GSL1ubarAOeMhDHu0oJRxktEP_6FPN5yorXGgrW9CH001NtXrFeWSSUZlphZPUNlqaG2VD9jYHD8o-HxQkJkebvutGVLSFz-vns9u_hyyHx-xOzCu36XghvFK6RB8N00_lPn-uou2NfFO3ysnA8s9UMWQUoTmAaFEjwK9X5ceBaongfJ_btXV8Q |
| Cites_doi | 10.2307/1970147 10.3390/axioms10040250 10.1007/BF02940993 10.1090/S0002-9904-1958-10166-4 10.32323/ujma.423045 10.1088/0143-0807/5/1/007 10.1007/s12045-016-0358-9 10.1002/mma.5831 10.2307/1967865 10.1090/S0002-9904-1958-10225-6 10.1073/pnas.44.3.280 10.1007/s00006-013-0386-4 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 |
| DOI | 10.1371/journal.pone.0312502 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3120835605 A813626216 39453926 10_1371_journal_pone_0312502 |
| Genre | Journal Article |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c520t-b917a1e3679e2d71415eac77e7f35d1e9c77d1165dddd677bec572038b31604e3 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001345620600054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Wed Aug 13 01:19:45 EDT 2025 Thu Oct 02 10:08:42 EDT 2025 Tue Oct 07 07:52:04 EDT 2025 Sat Nov 29 13:55:07 EST 2025 Sat Nov 29 10:31:51 EST 2025 Wed Nov 26 10:57:00 EST 2025 Wed Nov 26 10:54:27 EST 2025 Thu May 22 21:24:27 EDT 2025 Mon Jul 21 06:05:40 EDT 2025 Sat Nov 29 03:11:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | Copyright: © 2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c520t-b917a1e3679e2d71415eac77e7f35d1e9c77d1165dddd677bec572038b31604e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5615-519X |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pone.0312502 |
| PMID | 39453926 |
| PQID | 3120835605 |
| PQPubID | 1436336 |
| PageCount | e0312502 |
| ParticipantIDs | plos_journals_3120835605 proquest_miscellaneous_3120911230 proquest_journals_3120835605 gale_infotracmisc_A813626216 gale_infotracacademiconefile_A813626216 gale_incontextgauss_ISR_A813626216 gale_incontextgauss_IOV_A813626216 gale_healthsolutions_A813626216 pubmed_primary_39453926 crossref_primary_10_1371_journal_pone_0312502 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-25 |
| PublicationDateYYYYMMDD | 2024-10-25 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2024 |
| Publisher | Public Library of Science |
| Publisher_xml | – name: Public Library of Science |
| References | JT Graves (pone.0312502.ref002) 1845; 26 M Fernández-Guasti (pone.0312502.ref016) 2021; 10 JF Adams (pone.0312502.ref009) 1960; 72 GS Krishnaswami (pone.0312502.ref014) 2016; 21 WR Hamilton (pone.0312502.ref001); 2 M Zorn (pone.0312502.ref007) 1930; 8 M Fernández-Guasti (pone.0312502.ref015) 2020; 43 FG Frobenius (pone.0312502.ref005) 1878; 84 pone.0312502.ref006 JF Adams (pone.0312502.ref008) 1958; 64 A Cayley (pone.0312502.ref003) 1845; 26 R Bott (pone.0312502.ref011) 1958; 64 PR Girard (pone.0312502.ref013) 1984; 5 M Fernández-Guasti (pone.0312502.ref012) 2013; 23 M Fernández-Guasti (pone.0312502.ref017) 2018; 1 LE Dickson (pone.0312502.ref004) 1919; 20 M Kervaire (pone.0312502.ref010) 1958; 44 |
| References_xml | – volume: 26 start-page: 315 issue: 173 year: 1845 ident: pone.0312502.ref002 article-title: On a connection between the general theory of normal couples and the theory of complete quadratic functions of two variables publication-title: Philosophical Magazine – volume: 72 start-page: 20 year: 1960 ident: pone.0312502.ref009 article-title: On the non-existence of elements of Hopf invariant one publication-title: Ann. of Math doi: 10.2307/1970147 – volume: 10 start-page: 250 issue: 4 year: 2021 ident: pone.0312502.ref016 article-title: Powers of elliptic scator numbers publication-title: Axioms doi: 10.3390/axioms10040250 – volume: 8 start-page: 123 year: 1930 ident: pone.0312502.ref007 article-title: Theorie der alternativen Ringe publication-title: Abh Math Sem Univ Hamburg doi: 10.1007/BF02940993 – ident: pone.0312502.ref006 – volume: 64 start-page: 87 year: 1958 ident: pone.0312502.ref011 article-title: On the parallelizability of the spheres publication-title: Bull Amer Math Soc doi: 10.1090/S0002-9904-1958-10166-4 – volume: 1 start-page: 80 issue: 2 year: 2018 ident: pone.0312502.ref017 article-title: Product associativity in scator algebras and the quantum wave function collapse publication-title: Universal Journal of Mathematics and Applications doi: 10.32323/ujma.423045 – volume: 5 start-page: 25 year: 1984 ident: pone.0312502.ref013 article-title: The quaternion group and modern physics publication-title: European Journal of Physics doi: 10.1088/0143-0807/5/1/007 – volume: 21 start-page: 529 year: 2016 ident: pone.0312502.ref014 article-title: Algebra and geometry of Hamilton’s quaternions: ‘Well, Papa, can you multiply triplets?’ publication-title: Resonance doi: 10.1007/s12045-016-0358-9 – volume: 26 start-page: 208 issue: 172 year: 1845 ident: pone.0312502.ref003 article-title: On Jacobi’s Elliptic functions, in reply to the Rev. Brice Bronwin; and on Quaternions publication-title: Philosophical Magazine – volume: 43 start-page: 1017 issue: 3 year: 2020 ident: pone.0312502.ref015 article-title: Components exponential scator holomorphic function publication-title: Mathematical Methods in the Applied Sciences doi: 10.1002/mma.5831 – volume: 2 start-page: 424 issue: 1843 ident: pone.0312502.ref001 article-title: On a new species of imaginary quantities connected with a theory of quaternions publication-title: Proc. Royal Irish Acad – volume: 20 start-page: 155 issue: 3 year: 1919 ident: pone.0312502.ref004 article-title: On quaternions and their generalization and the history of the eight square theorem publication-title: Ann. Math doi: 10.2307/1967865 – volume: 64 start-page: 279 year: 1958 ident: pone.0312502.ref008 article-title: On the nonexistence of elements of Hopf invariant one publication-title: Bull. Amer. Math. Soc doi: 10.1090/S0002-9904-1958-10225-6 – volume: 44 start-page: 280 year: 1958 ident: pone.0312502.ref010 article-title: Non-parallelizability of the n sphere for n > 7 publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.44.3.280 – volume: 23 start-page: 639 issue: 3 year: 2013 ident: pone.0312502.ref012 article-title: A hyperbolic non distributive algebra in 1 + 2 dimensions publication-title: Advances in Applied Clifford Algebras doi: 10.1007/s00006-013-0386-4 – volume: 84 start-page: 1 year: 1878 ident: pone.0312502.ref005 article-title: Über lineare Substitutionen und bilineare publication-title: Formen J Reine Angew Math |
| SSID | ssj0053866 |
| Score | 2.462541 |
| Snippet | Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions... |
| SourceID | plos proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | e0312502 |
| SubjectTerms | Algebra Algebra, Abstract Algorithms Complex numbers Dimensional analysis Dividing (mathematics) Group theory Image processing Mathematical analysis Mathematical research Mathematics Methods Models, Theoretical Multiplication Multiplication & division Number systems Numbers, Complex Periodic functions Quantum physics Quaternions State vectors Vector space |
| SummonAdditionalLinks | – databaseName: Nursing & Allied Health Database dbid: 7RV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BwoEegJaPLhQwCAk4pI3tJE64oBWiggMtKlD1FiW2Q1cqzrLeRfx8ZhJnUSRASOwpkmejJPPG88YezwA8FZWqYtlUkaiMiJImTqNa1xjzGCp4V-c5l7prNqGOjvKzs-JDWHDzIa1ymBO7idq0mtbIDyQXxBaQfb9afIuoaxTtroYWGpfhCidujHhWJ6fDTIy2nGXhuJxU_CBoZ3_ROruPYEbvL0buKEzKk8VF6__MODvPc3jjf5_5JlwPnJPNepBswyXrdmDr_aZgq9-B7WDjnj0Phahf3AJz7BjKsHOMVZdd7rn9wfoWIp5VzjCHhNcaRke6aNGNUc8QjL49m9P1BQ58pfx4BPZLNmNrN2-Q8LKQwxgWC2_D58M3n16_jUJXhkinIl5FNQZ4FbcyU4UVRnFkADh5K2VVI1HDtsBrQ0V9DP4ypRAkKe315rXkWZxYeQcmDjWwC6zRMtFcWcFtlmgd1yiX28ImNXpMJe0UokE55aIvvlF2O3AKg5b-25WkzDIocwqPSINlf4R0Y7vlDBGHgZvg2RSedBJU-cJRas2Xau19-e749B-EPp6MhJ4FoaZdLStdheMM-DhUUWskuTeSRPvVo-FdwtvwQr78hRr854Cr3w8_3gzTTSldztl23cugF8Pwcgp3e-xuPqAskhRJcXbv7ze_D9cE8jdy0yLdg8lqubYP4Kr-vpr75cPOzn4CeS0wtQ priority: 102 providerName: ProQuest |
| Title | On the hypercomplex numbers and normed division algebras in all dimensions: A unified multiplication |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39453926 https://www.proquest.com/docview/3120835605 https://www.proquest.com/docview/3120911230 http://dx.doi.org/10.1371/journal.pone.0312502 |
| Volume | 19 |
| WOSCitedRecordID | wos001345620600054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BxwN7ADZgK4xiEBLsISWxEzvhrZtWMY12UQdT4SVKHAcqjbRqWsSfz13iFhVRCfJwiuRzPs5n3_3s8xngFU9V6ooidXiac8cv3MDJdIaYJ6eEd1kYekLXh02o4TAcj6P4N1D8YwVfKO-tlWl3Ni1NF1UQbTYOuTtcSElgqx9_WI282HeltNvjttXcMD92EG7NbqbVdg-ztjT9-__7jQ_gnvUpWa9Rgj24Zcp92B2sE7JW-7Bn-3DF3thE08cPIb8sGfKwb4hF53VsufnJmiNCKpaWOSvRoTU5oy1bNKnG6EwQRNcVm9D9DRZ8p_h3VNx3rMeW5aRAh5bZGEU7GfgIPvXPPp6-d-ypC44OuLtwMgRwqWeEVJHhufLQwuPgrJRRhcAWNBHe55S0J8dLKoVKENBabpgJT7q-EY-hVaIcDoEVWvjaU4Z7RvpauxnyhSYyfoYWUQnTBmfVGMmsSa6R1CtsCkFJI7uERJpYkbbhObVY0mwRXffNpIcahcCMe7INL2sOymxRUujM13RZVcn55fU_MF2NNpheW6ZiupinOrXbFfBzKGPWBufRBif2T71RfEj6tfqhKsF_Ib8XcSTWXOnc34tfrIvpoRQOV5rpsuFBK4XwsQ0Hja6uBSgiP0CnVz7Z_t6ncJejb0YmmAdH0FrMl-YZ3NE_FpNq3oHbanRNdKxqGiINT70O7JycDeNRp5626NQ9D-nFSRfpwL0gquKaXiGNgy9YIz4fxJ9_AdrWK28 |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBQk4AC2PLhRqEAh6SJvYSZwgIbQCqq7abisoVcUlJI4DK5VkiXd5_Cl-IzOJs2glQFx6YE-RPGvFzjy-secB8JCnMnVFkTo8zbnjF27gZCpDnyengndZFHlCNc0m5GgUnZzEh0vwo8uFobDKTic2ijqvFJ2RbwmPE1pA9P188tmhrlF0u9q10GjZYld__4oum3k2fInf9xHn26-OXuw4tquAowLuTp0MHZTU0yKUsea59NCCofKRUstC4BvqGJ9zKkqT4y-UEhcZ0F1llAkvdH0tcN5zcN73uUtSdBi86zQ_6o4wtOl5Qnpblhs2J1WpN1F4EG3wBfNnjUBvclqZPyPcxtJtX_3f9ugaXLGYmg1aIViGJV2uwOX9eUFaswLLVocZ9sQW2t64DvlByZCGfURfvG5i6_U31rZIMSwtc1YioNc5o5Q1OlRk1BMlq1PDxvR8igOfKP4fBfcpG7BZOS4Q0DMbo2kPQ2_A2zNZ-03olfjFV4EVSvjKk5p7OvSVcjOki3Ss_QwRgRS6D07HDMmkLS6SNDeMEp2ydu8SYp7EMk8f1oljkjZFdq6bkgFKFDqm3Av78KChoMoeJYUOfUhnxiTDg-N_IHrzeoHosSUqqmmdqtSma-DrUMWwBcq1BUrUT2pheJX4u1uQSX5xKf6z4-PfD9-fD9OkFA5Y6mrW0qCVRve5D7daWZlvoIj9AEF_ePvvk6_DxZ2j_b1kbzjavQOXOGJVgiQ8WIPetJ7pu3BBfZmOTX2vkXEG789aYH4CPcqM0w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aBSF4ADYuKwxmEAj2kDWxkzhBQqhiVFSDrhowTbyExHGg0khK0nL5a_w6zkmcokiAeNkDfYrkUyt2vnOzzwXgPo9lbIsstniccsvNbM9KVII-T0oF75IgcISqm03IySQ4Pg6na_CjzYWhsMpWJtaCOi0UnZEPhMPJWkDre5CZsIjp3ujp_LNFHaToprVtp9FAZF9__4ruW_VkvIff-gHno-dvnr2wTIcBS3ncXlgJOiuxo4UvQ81T6aA2Q0EkpZaZwLfVIT6nVKAmxZ8vJS7Yo3vLIBGOb7ta4Lxn4KxEH5PCCafeu1YLoBzxfZOqJ6QzMMjYnRe53kVGQsuDd1ShUQi9-UlR_dnarbXe6PL_vF9X4JKxtdmwYY51WNP5Blx8tSpUW23AupFtFXtkCnDvXIX0IGdIwz6ij17WMff6G2tap1QszlOWo6GvU0apbHTYyKhXSlLGFZvR8wkOfKK8AGTox2zIlvksQ0OfmdhNc0h6Dd6eytqvQy_Hr78JLFPCVY7U3NG-q5SdIF2gQ-0maClIoftgtcCI5k3Rkai-eZTorDV7FxGQIgOkPmwTeqImdXYls6Ihcho6rNzx-3CvpqCKHzlh4UO8rKpofHD0D0SvDztEDw1RVizKWMUmjQNfhyqJdSi3OpQot1RneJOw3i6oin4hFv_ZYvr3w3dXwzQphQnmulg2NKi90a3uw42Gb1YbKELXQ2fAv_n3ybfhPPJJ9HI82b8FFziasGSpcG8LeotyqW_DOfVlMavKOzW7M3h_2vzyE5YflZ0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+hypercomplex+numbers+and+normed+division+algebras+in+all+dimensions%3A+A+unified+multiplication&rft.jtitle=PloS+one&rft.au=Singh%2C+Pushpendra&rft.au=Gupta%2C+Anubha&rft.au=Joshi%2C+Shiv+Dutt&rft.date=2024-10-25&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=10&rft.spage=e0312502&rft_id=info:doi/10.1371%2Fjournal.pone.0312502&rft.externalDBID=IOV&rft.externalDocID=A813626216 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |