On the hypercomplex numbers and normed division algebras in all dimensions: A unified multiplication

Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton disc...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 19; no. 10; p. e0312502
Main Authors: Singh, Pushpendra, Gupta, Anubha, Joshi, Shiv Dutt
Format: Journal Article
Language:English
Published: United States Public Library of Science 25.10.2024
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton discovered quaternions, constituting a non-commutative division algebra of quadruples. Subsequent investigations revealed the existence of only four division algebras over reals, each with dimensions 1, 2, 4, and 8. This study transcends such limitations by introducing generalized hypercomplex numbers extending across all dimensions, serving as extensions of traditional complex numbers. The space formed by these numbers constitutes a non-distributive normed division algebra extendable to all finite dimensions. The derivation of these extensions involves the definitions of two new π -periodic functions and a unified multiplication operation, designated as spherical multiplication, that is fully compatible with the existing multiplication structures. Importantly, these new hypercomplex numbers and their associated algebras are compatible with the existing real and complex number systems, ensuring continuity across dimensionalities. Most importantly, like the addition operation, the proposed multiplication in all dimensions forms an Abelian group while simultaneously preserving the norm. In summary, this study presents a comprehensive generalization of complex numbers and the Euler identity in higher dimensions, shedding light on the geometric properties of vectors within these extended spaces. Finally, we elucidate the practical applications of the proposed methodology as a viable alternative for expressing a quantum state through the multiplication of specified quantum states, thereby offering a potential complement to the established superposition paradigm. Additionally, we explore its utility in point cloud image processing.
AbstractList Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton discovered quaternions, constituting a non-commutative division algebra of quadruples. Subsequent investigations revealed the existence of only four division algebras over reals, each with dimensions 1, 2, 4, and 8. This study transcends such limitations by introducing generalized hypercomplex numbers extending across all dimensions, serving as extensions of traditional complex numbers. The space formed by these numbers constitutes a non-distributive normed division algebra extendable to all finite dimensions. The derivation of these extensions involves the definitions of two new π-periodic functions and a unified multiplication operation, designated as spherical multiplication, that is fully compatible with the existing multiplication structures. Importantly, these new hypercomplex numbers and their associated algebras are compatible with the existing real and complex number systems, ensuring continuity across dimensionalities. Most importantly, like the addition operation, the proposed multiplication in all dimensions forms an Abelian group while simultaneously preserving the norm. In summary, this study presents a comprehensive generalization of complex numbers and the Euler identity in higher dimensions, shedding light on the geometric properties of vectors within these extended spaces. Finally, we elucidate the practical applications of the proposed methodology as a viable alternative for expressing a quantum state through the multiplication of specified quantum states, thereby offering a potential complement to the established superposition paradigm. Additionally, we explore its utility in point cloud image processing.
Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton discovered quaternions, constituting a non-commutative division algebra of quadruples. Subsequent investigations revealed the existence of only four division algebras over reals, each with dimensions 1, 2, 4, and 8. This study transcends such limitations by introducing generalized hypercomplex numbers extending across all dimensions, serving as extensions of traditional complex numbers. The space formed by these numbers constitutes a non-distributive normed division algebra extendable to all finite dimensions. The derivation of these extensions involves the definitions of two new [qi]-periodic functions and a unified multiplication operation, designated as spherical multiplication, that is fully compatible with the existing multiplication structures. Importantly, these new hypercomplex numbers and their associated algebras are compatible with the existing real and complex number systems, ensuring continuity across dimensionalities. Most importantly, like the addition operation, the proposed multiplication in all dimensions forms an Abelian group while simultaneously preserving the norm. In summary, this study presents a comprehensive generalization of complex numbers and the Euler identity in higher dimensions, shedding light on the geometric properties of vectors within these extended spaces. Finally, we elucidate the practical applications of the proposed methodology as a viable alternative for expressing a quantum state through the multiplication of specified quantum states, thereby offering a potential complement to the established superposition paradigm. Additionally, we explore its utility in point cloud image processing.
Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton discovered quaternions, constituting a non-commutative division algebra of quadruples. Subsequent investigations revealed the existence of only four division algebras over reals, each with dimensions 1, 2, 4, and 8. This study transcends such limitations by introducing generalized hypercomplex numbers extending across all dimensions, serving as extensions of traditional complex numbers. The space formed by these numbers constitutes a non-distributive normed division algebra extendable to all finite dimensions. The derivation of these extensions involves the definitions of two new π -periodic functions and a unified multiplication operation, designated as spherical multiplication, that is fully compatible with the existing multiplication structures. Importantly, these new hypercomplex numbers and their associated algebras are compatible with the existing real and complex number systems, ensuring continuity across dimensionalities. Most importantly, like the addition operation, the proposed multiplication in all dimensions forms an Abelian group while simultaneously preserving the norm. In summary, this study presents a comprehensive generalization of complex numbers and the Euler identity in higher dimensions, shedding light on the geometric properties of vectors within these extended spaces. Finally, we elucidate the practical applications of the proposed methodology as a viable alternative for expressing a quantum state through the multiplication of specified quantum states, thereby offering a potential complement to the established superposition paradigm. Additionally, we explore its utility in point cloud image processing.
Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton discovered quaternions, constituting a non-commutative division algebra of quadruples. Subsequent investigations revealed the existence of only four division algebras over reals, each with dimensions 1, 2, 4, and 8. This study transcends such limitations by introducing generalized hypercomplex numbers extending across all dimensions, serving as extensions of traditional complex numbers. The space formed by these numbers constitutes a non-distributive normed division algebra extendable to all finite dimensions. The derivation of these extensions involves the definitions of two new π-periodic functions and a unified multiplication operation, designated as spherical multiplication, that is fully compatible with the existing multiplication structures. Importantly, these new hypercomplex numbers and their associated algebras are compatible with the existing real and complex number systems, ensuring continuity across dimensionalities. Most importantly, like the addition operation, the proposed multiplication in all dimensions forms an Abelian group while simultaneously preserving the norm. In summary, this study presents a comprehensive generalization of complex numbers and the Euler identity in higher dimensions, shedding light on the geometric properties of vectors within these extended spaces. Finally, we elucidate the practical applications of the proposed methodology as a viable alternative for expressing a quantum state through the multiplication of specified quantum states, thereby offering a potential complement to the established superposition paradigm. Additionally, we explore its utility in point cloud image processing.Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions represents a paramount mathematical objective. In the quest for a real three-dimensional, normed, associative division algebra, Hamilton discovered quaternions, constituting a non-commutative division algebra of quadruples. Subsequent investigations revealed the existence of only four division algebras over reals, each with dimensions 1, 2, 4, and 8. This study transcends such limitations by introducing generalized hypercomplex numbers extending across all dimensions, serving as extensions of traditional complex numbers. The space formed by these numbers constitutes a non-distributive normed division algebra extendable to all finite dimensions. The derivation of these extensions involves the definitions of two new π-periodic functions and a unified multiplication operation, designated as spherical multiplication, that is fully compatible with the existing multiplication structures. Importantly, these new hypercomplex numbers and their associated algebras are compatible with the existing real and complex number systems, ensuring continuity across dimensionalities. Most importantly, like the addition operation, the proposed multiplication in all dimensions forms an Abelian group while simultaneously preserving the norm. In summary, this study presents a comprehensive generalization of complex numbers and the Euler identity in higher dimensions, shedding light on the geometric properties of vectors within these extended spaces. Finally, we elucidate the practical applications of the proposed methodology as a viable alternative for expressing a quantum state through the multiplication of specified quantum states, thereby offering a potential complement to the established superposition paradigm. Additionally, we explore its utility in point cloud image processing.
Audience Academic
Author Singh, Pushpendra
Gupta, Anubha
Joshi, Shiv Dutt
Author_xml – sequence: 1
  givenname: Pushpendra
  orcidid: 0000-0001-5615-519X
  surname: Singh
  fullname: Singh, Pushpendra
– sequence: 2
  givenname: Anubha
  surname: Gupta
  fullname: Gupta, Anubha
– sequence: 3
  givenname: Shiv Dutt
  surname: Joshi
  fullname: Joshi, Shiv Dutt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39453926$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1r3DAQhkVJaZJt_0FpBYXSHnarj5W07m0JbRoILKQfVyHb410FWXIkuyT_vjLrhGzJIZqDhplnBmbmPUVHPnhA6C0lC8oV_XIdhuiNW3Q5vCCcMkHYC3RCC87mkhF-9Mg_RqcpXRMi-ErKV-iYF0vBCyZPUL3xuN8B3t11EKvQdg5usR_aEmLCxtfYh9hCjWv71yYbPDZuC2U0CdvRdznRgh8z6Ste48Hbxma8HVxvO2cr0-fUa_SyMS7Bm-mfod_fv_06-zG_3JxfnK0v55VgpJ-XBVWGApeqAFYruqQCTKUUqIaLmkKR_ZpSKer8pFIlVELl6VYlp5Isgc_Q-33fzoWkpwUlnXdDVlzIPP4MfZqIGG4GSL1ubarAOeMhDHu0oJRxktEP_6FPN5yorXGgrW9CH001NtXrFeWSSUZlphZPUNlqaG2VD9jYHD8o-HxQkJkebvutGVLSFz-vns9u_hyyHx-xOzCu36XghvFK6RB8N00_lPn-uou2NfFO3ysnA8s9UMWQUoTmAaFEjwK9X5ceBaongfJ_btXV8Q
Cites_doi 10.2307/1970147
10.3390/axioms10040250
10.1007/BF02940993
10.1090/S0002-9904-1958-10166-4
10.32323/ujma.423045
10.1088/0143-0807/5/1/007
10.1007/s12045-016-0358-9
10.1002/mma.5831
10.2307/1967865
10.1090/S0002-9904-1958-10225-6
10.1073/pnas.44.3.280
10.1007/s00006-013-0386-4
ContentType Journal Article
Copyright Copyright: © 2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
DOI 10.1371/journal.pone.0312502
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database (ProQuest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (Proquest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
MEDLINE - Academic
Agricultural Science Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1932-6203
ExternalDocumentID 3120835605
A813626216
39453926
10_1371_journal_pone_0312502
Genre Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c520t-b917a1e3679e2d71415eac77e7f35d1e9c77d1165dddd677bec572038b31604e3
IEDL.DBID FPL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001345620600054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Wed Aug 13 01:19:45 EDT 2025
Thu Oct 02 10:08:42 EDT 2025
Tue Oct 07 07:52:04 EDT 2025
Sat Nov 29 13:55:07 EST 2025
Sat Nov 29 10:31:51 EST 2025
Wed Nov 26 10:57:00 EST 2025
Wed Nov 26 10:54:27 EST 2025
Thu May 22 21:24:27 EDT 2025
Mon Jul 21 06:05:40 EDT 2025
Sat Nov 29 03:11:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Copyright: © 2024 Singh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-b917a1e3679e2d71415eac77e7f35d1e9c77d1165dddd677bec572038b31604e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5615-519X
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0312502
PMID 39453926
PQID 3120835605
PQPubID 1436336
PageCount e0312502
ParticipantIDs plos_journals_3120835605
proquest_miscellaneous_3120911230
proquest_journals_3120835605
gale_infotracmisc_A813626216
gale_infotracacademiconefile_A813626216
gale_incontextgauss_ISR_A813626216
gale_incontextgauss_IOV_A813626216
gale_healthsolutions_A813626216
pubmed_primary_39453926
crossref_primary_10_1371_journal_pone_0312502
PublicationCentury 2000
PublicationDate 2024-10-25
PublicationDateYYYYMMDD 2024-10-25
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Publisher_xml – name: Public Library of Science
References JT Graves (pone.0312502.ref002) 1845; 26
M Fernández-Guasti (pone.0312502.ref016) 2021; 10
JF Adams (pone.0312502.ref009) 1960; 72
GS Krishnaswami (pone.0312502.ref014) 2016; 21
WR Hamilton (pone.0312502.ref001); 2
M Zorn (pone.0312502.ref007) 1930; 8
M Fernández-Guasti (pone.0312502.ref015) 2020; 43
FG Frobenius (pone.0312502.ref005) 1878; 84
pone.0312502.ref006
JF Adams (pone.0312502.ref008) 1958; 64
A Cayley (pone.0312502.ref003) 1845; 26
R Bott (pone.0312502.ref011) 1958; 64
PR Girard (pone.0312502.ref013) 1984; 5
M Fernández-Guasti (pone.0312502.ref012) 2013; 23
M Fernández-Guasti (pone.0312502.ref017) 2018; 1
LE Dickson (pone.0312502.ref004) 1919; 20
M Kervaire (pone.0312502.ref010) 1958; 44
References_xml – volume: 26
  start-page: 315
  issue: 173
  year: 1845
  ident: pone.0312502.ref002
  article-title: On a connection between the general theory of normal couples and the theory of complete quadratic functions of two variables
  publication-title: Philosophical Magazine
– volume: 72
  start-page: 20
  year: 1960
  ident: pone.0312502.ref009
  article-title: On the non-existence of elements of Hopf invariant one
  publication-title: Ann. of Math
  doi: 10.2307/1970147
– volume: 10
  start-page: 250
  issue: 4
  year: 2021
  ident: pone.0312502.ref016
  article-title: Powers of elliptic scator numbers
  publication-title: Axioms
  doi: 10.3390/axioms10040250
– volume: 8
  start-page: 123
  year: 1930
  ident: pone.0312502.ref007
  article-title: Theorie der alternativen Ringe
  publication-title: Abh Math Sem Univ Hamburg
  doi: 10.1007/BF02940993
– ident: pone.0312502.ref006
– volume: 64
  start-page: 87
  year: 1958
  ident: pone.0312502.ref011
  article-title: On the parallelizability of the spheres
  publication-title: Bull Amer Math Soc
  doi: 10.1090/S0002-9904-1958-10166-4
– volume: 1
  start-page: 80
  issue: 2
  year: 2018
  ident: pone.0312502.ref017
  article-title: Product associativity in scator algebras and the quantum wave function collapse
  publication-title: Universal Journal of Mathematics and Applications
  doi: 10.32323/ujma.423045
– volume: 5
  start-page: 25
  year: 1984
  ident: pone.0312502.ref013
  article-title: The quaternion group and modern physics
  publication-title: European Journal of Physics
  doi: 10.1088/0143-0807/5/1/007
– volume: 21
  start-page: 529
  year: 2016
  ident: pone.0312502.ref014
  article-title: Algebra and geometry of Hamilton’s quaternions: ‘Well, Papa, can you multiply triplets?’
  publication-title: Resonance
  doi: 10.1007/s12045-016-0358-9
– volume: 26
  start-page: 208
  issue: 172
  year: 1845
  ident: pone.0312502.ref003
  article-title: On Jacobi’s Elliptic functions, in reply to the Rev. Brice Bronwin; and on Quaternions
  publication-title: Philosophical Magazine
– volume: 43
  start-page: 1017
  issue: 3
  year: 2020
  ident: pone.0312502.ref015
  article-title: Components exponential scator holomorphic function
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.5831
– volume: 2
  start-page: 424
  issue: 1843
  ident: pone.0312502.ref001
  article-title: On a new species of imaginary quantities connected with a theory of quaternions
  publication-title: Proc. Royal Irish Acad
– volume: 20
  start-page: 155
  issue: 3
  year: 1919
  ident: pone.0312502.ref004
  article-title: On quaternions and their generalization and the history of the eight square theorem
  publication-title: Ann. Math
  doi: 10.2307/1967865
– volume: 64
  start-page: 279
  year: 1958
  ident: pone.0312502.ref008
  article-title: On the nonexistence of elements of Hopf invariant one
  publication-title: Bull. Amer. Math. Soc
  doi: 10.1090/S0002-9904-1958-10225-6
– volume: 44
  start-page: 280
  year: 1958
  ident: pone.0312502.ref010
  article-title: Non-parallelizability of the n sphere for n > 7
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.44.3.280
– volume: 23
  start-page: 639
  issue: 3
  year: 2013
  ident: pone.0312502.ref012
  article-title: A hyperbolic non distributive algebra in 1 + 2 dimensions
  publication-title: Advances in Applied Clifford Algebras
  doi: 10.1007/s00006-013-0386-4
– volume: 84
  start-page: 1
  year: 1878
  ident: pone.0312502.ref005
  article-title: Über lineare Substitutionen und bilineare
  publication-title: Formen J Reine Angew Math
SSID ssj0053866
Score 2.462541
Snippet Mathematics is the foundational discipline for all sciences, engineering, and technology, and the pursuit of normed division algebras in all finite dimensions...
SourceID plos
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage e0312502
SubjectTerms Algebra
Algebra, Abstract
Algorithms
Complex numbers
Dimensional analysis
Dividing (mathematics)
Group theory
Image processing
Mathematical analysis
Mathematical research
Mathematics
Methods
Models, Theoretical
Multiplication
Multiplication & division
Number systems
Numbers, Complex
Periodic functions
Quantum physics
Quaternions
State vectors
Vector space
SummonAdditionalLinks – databaseName: Nursing & Allied Health Database (ProQuest)
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgM90AePLm3BICTgkHbtbOykl2qFqOBAiwpUvUWJ7dCVirOsdxE_vzOJsygSICRySSRPoiTz-sYezwC8kLFIjbLjqMi4oBZmRZRmAgNXdHcyLTMteNk0m1Cnp-nlZfYxTLj5kFbZ2cTGUJta0xz5YcwFoQVE38ez7xF1jaLV1dBC4zasccLGKM_q_KKzxKjLUobtcrHih4E7B7Pa2QMUZvT-oueOglEezK5r_2fE2Xiek43_fedNuBcwJ5u0QrIFt6zbhvUPq4Ktfhu2go579ioUon59H8yZY0jDrjBWnTe55_Yna1uIeFY4wxwCXmsYbemiSTdGPUMw-vZsStfXOPCN8uNRsI_YhC3dtELAy0IOY5gsfABfTt5-fvMuCl0ZIp2I0SIqMcAruI2lyqwwiiMCQOOtlFVVnBhuM7w2VNTH4CGVQiFJaK03LWMuR2MbP4SBQw7sALNSJ1ZWAk-jcSVtKqtUZdqMRClVoe0Qoo45-awtvpE3K3AKg5b23-XEzDwwcwhPiYN5u4V0pbv5JOVUdUdwOYTnDQVVvnCUWvO1WHqfvz-7-AeiT-c9opeBqKoX80IXYTsDvg5V1OpR7vUoUX91b3iH5K37IJ__khq8s5Or3w8_Ww3TQyldztl62dKgF8PwcgiPWtld_cA4GycIiuXjvz98F-4KxG_kpkWyB4PFfGn34Y7-sZj6-ZNGz24AeIowMA
  priority: 102
  providerName: ProQuest
Title On the hypercomplex numbers and normed division algebras in all dimensions: A unified multiplication
URI https://www.ncbi.nlm.nih.gov/pubmed/39453926
https://www.proquest.com/docview/3120835605
https://www.proquest.com/docview/3120911230
http://dx.doi.org/10.1371/journal.pone.0312502
Volume 19
WOSCitedRecordID wos001345620600054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (Proquest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9NAzIKOB_YAbMBWGOVASLCHlNylubvw1k2rmEa7qIOp8BLl4wKVRlo1LeLnYyfXoiAqQR6cSOfLh2Of7TufDfBKekJnyvScOOCCSpjFjg4EOq6o7qROglTwpCo2oUYjPZkE4W9H8Y8VfE_xt5am3fmsMF1kQdTZOOTuCE9KcrYG4Yf1yIuyK6XdHretZ0P92EG4Nb-ZldstzErTDO7_7zs-gHvWpmT9mgn24JYp9mF3uEnIWu7DnpXhkr2xiaaPH0J2WTDEYd_QF11UseXmJ6tLhJQsLjJWoEFrMkZbtmhSjVFNEPSuSzal6xts-E7x78i471ifrYppjgYtszGKdjLwEXwanH08fe_YqgtO6gt36STowMXceFIFRmSKo4bHwVkpo3LPz7gJ8DqjpD0ZHlIpZAKf1nJ14nHp9oz3GFoF0uEQmJGpb2Qu8OT2cmm0zLUK0swViVRxatrgrH9GNK-Ta0TVCptCp6SmXUQkjSxJ2_Cc_lhUbxHdyGbU15yy6ggu2_CywqDMFgWFznyNV2UZnV9e_wPS1biB9Noi5bPlIk5ju10BX4cyZjUwjxqYKJ9po_mQ-Gv9QWWE30J2L_qR2HPNc39vfrFppptSOFxhZqsaB7UUuo9tOKh5dUNAL-j5aPTKJ9uf-xTuCrTNSAUL_whay8XKPIM76Y_ltFx04LYaXxOcqApqhPqUd2Dn5GwUjjvVtEWnkjyEFyddhEP3gqAKK3iFMPS_YI_wfBh-_gXTyyrq
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aBQl4ADYuKwxmEAj2kC12EjtBQqgCplXbugnGNPEScnGg0khK3HL5U_xGzkmcokqAeNkDfWkkn1q1cy7fsc8F4KH0RJgr7TtJxAW1MEucMBLouKK5k2EaZYKnTbMJNRqFJyfR4RL86HJhKKyy04mNos6rjM7ItzwuCC0g-n4--exQ1yi6Xe1aaLRssau_f0WXzTwbvsT3-0iI7VdHL3Yc21XAyQLhTp0UHZSEa0-qSItccbRgqHyU0qrwgpzrCJ9zKkqT40cqhYsM6K4yTD0uXV97OO85OO_7wiUpOgzedZofdYeUNj3PU3zLcsPmpCr1JgoPog2xYP6sEehNTivzZ4TbWLrtq__bHl2DKxZTs0ErBMuwpMsVuLw_L0hrVmDZ6jDDnthC2xvXIT8oGdKwj-iL101svf7G2hYphiVlzkoE9DpnlLJGh4qMeqKkdWLYmJ5PceATxf-j4D5lAzYrxwUCemZjNO1h6A14eyZrvwm9Et_4KjAts0DLQuCX6xdSh7IIVZTlrkilSjLdB6djhnjSFheJmxtGhU5Zu3cxMU9smacP68QxcZsiO9dN8SDkVFVIcNmHBw0FVfYoKXToQzIzJh4eHP8D0ZvXC0SPLVFRTeskS2y6Bv4dqhi2QLm2QIn6KVsYXiX-7hZk4l9cir_s-Pj3w_fnwzQphQOWupq1NGil0X3uw61WVuYb6EV-gKBf3v775Otwcedofy_eG45278AlgViVIIkI1qA3rWf6LlzIvkzHpr7XyDiD92ctMD8BKm2MTg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aBSF4ADYuKwxmEAj2kLVxGjtBQqhiVFSDrhowTbyEJHag0khK3HL5a_w6zkmcokiAeNkDfWkkn1q1852bfS4A94XHAyX1wIlDl1MLs9gJQo6OK6o7ESRhyt2kajYhJ5Pg-DicrsGPJheGwiobmVgJalWkdEbe81xO1gJa373MhkVM90ZP558d6iBFN61NO40aIvv6-1d038yT8R6-6wecj56_efbCsR0GnNTn_YWToLMSu9oTMtRcSRe1GQoiKbXMPF-5OsRnRQVqFH6ElLhgn-4tg8RzRX-gPZz3DJyV6GNSOOHUf9doAZQjQthUPU-6PYuM3XmR611kJLQ8eEsVWoXQmZ8U5s_WbqX1Rpf_5_26Apesrc2GNXOsw5rON-Diq1WhWrMB61a2GfbIFuDeuQrqIGdIwz6ij15WMff6G6tbpxgW54rlaOhrxSiVjQ4bGfVKScrYsBk9n-DAJ8oLQIZ-zIZsmc8yNPSZjd20h6TX4O2prP06dHJ8-5vAtEh9LTKOX_1BJnQgskCGqerzRMg41V1wGmBE87roSFTdPEp01uq9iwhIkQVSF7YJPVGdOruSWdEwcKnaEHdFF-5VFFTxIycsfIiXxkTjg6N_IHp92CJ6aImyYlHGaWzTOPDvUCWxFuVWixLlVtoa3iSsNwsy0S_E4i8bTP9--O5qmCalMMFcF8uaBrU3utVduFHzzWoDvXDgozMgbv598m04j3wSvRxP9m_BBY4mLFkq3N-CzqJc6ttwLv2ymJnyTsXuDN6fNr_8BGwHlRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+hypercomplex+numbers+and+normed+division+algebras+in+all+dimensions%3A+A+unified+multiplication&rft.jtitle=PloS+one&rft.au=Singh%2C+Pushpendra&rft.au=Gupta%2C+Anubha&rft.au=Joshi%2C+Shiv+Dutt&rft.date=2024-10-25&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=10&rft.spage=e0312502&rft_id=info:doi/10.1371%2Fjournal.pone.0312502&rft.externalDocID=A813626216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon