Breakout Prediction Based on Twin Support Vector Machine of Improved Whale Optimization Algorithm

Breakout is one of the hazardous industrial accidents in continuous casting production, which has adverse effects on operational stability, product quality, personal safety and equipment life. Therefore, the study of the breakout prediction model is of great significance. A hybrid intelligent algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISIJ International Jg. 63; H. 5; S. 880 - 888
Hauptverfasser: Zhong, Ruxin, Ma, Zhicai, Guo, Shiyu, Wang, Baoshuai, Chen, Jin, Sun, Peng, Shi, Chunyang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Iron and Steel Institute of Japan 15.05.2023
Schlagworte:
ISSN:0915-1559, 1347-5460
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Breakout is one of the hazardous industrial accidents in continuous casting production, which has adverse effects on operational stability, product quality, personal safety and equipment life. Therefore, the study of the breakout prediction model is of great significance. A hybrid intelligent algorithm is proposed based on twin support vector machine of improved whale optimization (LWOA-TSVR) by introducing the Levy flight algorithm. It uses the LWOA algorithm to solve the optimization problem of the objective function in the TSVR algorithm, so as to obtain a new breakout prediction model. The simulation and industrial trials results show that the model has higher recognition accuracy than the traditional detection method, and can predict all the breakout signals accurately and timely. Five advanced algorithms are compared to further verify the performance of the model. The results prove that LWOA-TSVR has the advantages of fast convergence speed and high prediction accuracy compared with the other four algorithms. The model is applied to the practical production of a steel mill. Finally, the reported ratio of the model is 100% and the prediction accuracy is 98.2%, which is found to be more effective than the practical application system used in continuous casting production. Hence, this model provides a theoretical basis for breakout detection technology.
AbstractList Breakout is one of the hazardous industrial accidents in continuous casting production, which has adverse effects on operational stability, product quality, personal safety and equipment life. Therefore, the study of the breakout prediction model is of great significance. A hybrid intelligent algorithm is proposed based on twin support vector machine of improved whale optimization (LWOA-TSVR) by introducing the Levy flight algorithm. It uses the LWOA algorithm to solve the optimization problem of the objective function in the TSVR algorithm, so as to obtain a new breakout prediction model. The simulation and industrial trials results show that the model has higher recognition accuracy than the traditional detection method, and can predict all the breakout signals accurately and timely. Five advanced algorithms are compared to further verify the performance of the model. The results prove that LWOA-TSVR has the advantages of fast convergence speed and high prediction accuracy compared with the other four algorithms. The model is applied to the practical production of a steel mill. Finally, the reported ratio of the model is 100% and the prediction accuracy is 98.2%, which is found to be more effective than the practical application system used in continuous casting production. Hence, this model provides a theoretical basis for breakout detection technology.
ArticleNumber ISIJINT-2022-372
Author Zhong, Ruxin
Shi, Chunyang
Chen, Jin
Ma, Zhicai
Wang, Baoshuai
Sun, Peng
Guo, Shiyu
Author_xml – sequence: 1
  fullname: Zhong, Ruxin
  organization: Institute of Global 100-100, Liaoning Institute of Science and Technology
– sequence: 1
  fullname: Ma, Zhicai
  organization: Institute of Global 100-100, Liaoning Institute of Science and Technology
– sequence: 1
  fullname: Guo, Shiyu
  organization: Institute of Global 100-100, Liaoning Institute of Science and Technology
– sequence: 1
  fullname: Wang, Baoshuai
  organization: Institute of Global 100-100, Liaoning Institute of Science and Technology
– sequence: 1
  fullname: Chen, Jin
  organization: Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University
– sequence: 1
  fullname: Sun, Peng
  organization: Institute of Global 100-100, Liaoning Institute of Science and Technology
– sequence: 1
  orcidid: 0000-0002-4846-4707
  fullname: Shi, Chunyang
  organization: Institute of Global 100-100, Liaoning Institute of Science and Technology
BookMark eNpt0FtPwyAUwHFiZuKc-w48m3RSKO143BYvNd4S5-WNnALdmF1pKNPop7fTxQf1hcMD_HLyP0S92tUGoeOYjCjj_MS2dmXrYHwNwboaqlF-n1_mN_OIEkojltE91I9ZkkU8SUkP9YmIeRRzLg7QsG1tQQhNxgmLWR_B1Bt4cZuA77zRVm1BPIXWaNxd5m-2xvebpnE-4EejgvP4GtTS1ga7EufrxrvX7unTEiqDb5tg1_bjayk8qRbO27BcH6H9EqrWDHdzgB7OTuezi-jq9jyfTa4ixSkJEWjGKNECdJFpIoCPtSrLmFMhyrQQICArVaKLcapVQnSaZSJNeVYwrhinnLEBmn67yru29aaUjbdr8O8yJnLbTf7pJnfd5Lab7Lp1yPM3smoDLMwPAT5YVZl_iJRJvj1-Uz9f1BK8NDX7BELwjT8
Cites_doi 10.3390/ma15020670
10.1007/s00170-017-1517-1
10.2355/isijinternational.54.119
10.1007/s10845-021-01754-7
10.1016/j.neunet.2009.07.002
10.1179/030192304225019225
10.1007/s00170-020-05817-6
10.1007/s00170-015-6945-1
10.1007/s00170-016-8792-0
10.1016/j.advengsoft.2016.01.008
10.1002/srin.201700312
10.2355/isijinternational.ISIJINT-2020-540
10.1051/matecconf/20166105020
10.1007/s00231-011-0822-8
10.1007/s12666-019-01767-0
10.1007/BF00994018
10.1007/BF02696937
10.2355/isijinternational.ISIJINT-2018-423
10.1108/EC-07-2017-0264
10.2355/isijinternational.ISIJINT-2021-517
10.1007/s12666-018-1479-5
10.2355/isijinternational.46.1047
10.1016/j.cam.2017.02.031
10.2355/isijinternational.ISIJINT-2020-637
10.2355/isijinternational.55.845
10.1080/25742558.2018.1483565
10.1016/j.ijrmms.2018.10.033
10.2355/isijinternational.30.435
10.5539/mas.v4n12p60
10.1016/S0378-4371(01)00057-7
ContentType Journal Article
Copyright 2023 The Iron and Steel Institute of Japan.
Copyright_xml – notice: 2023 The Iron and Steel Institute of Japan.
DBID AAYXX
CITATION
DOI 10.2355/isijinternational.ISIJINT-2022-372
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5460
EndPage 888
ExternalDocumentID 10_2355_isijinternational_ISIJINT_2022_372
article_isijinternational_63_5_63_ISIJINT_2022_372_article_char_en
GroupedDBID 5GY
AAFWJ
ABEFU
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HH5
JSF
JSH
KQ8
OK1
RJT
RZJ
SJN
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c520t-ad3320d9adb7d09a58dcff15299f6b9a9a7fc4db86dc40d67796657b35c352533
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001021733100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0915-1559
IngestDate Sat Nov 29 03:24:48 EST 2025
Wed Sep 03 06:30:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-ad3320d9adb7d09a58dcff15299f6b9a9a7fc4db86dc40d67796657b35c352533
ORCID 0000-0002-4846-4707
OpenAccessLink http://dx.doi.org/10.2355/isijinternational.ISIJINT-2022-372
PageCount 9
ParticipantIDs crossref_primary_10_2355_isijinternational_ISIJINT_2022_372
jstage_primary_article_isijinternational_63_5_63_ISIJINT_2022_372_article_char_en
PublicationCentury 2000
PublicationDate 2023/05/15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023/05/15
  day: 15
PublicationDecade 2020
PublicationTitle ISIJ International
PublicationTitleAlternate ISIJ Int.
PublicationYear 2023
Publisher The Iron and Steel Institute of Japan
Publisher_xml – name: The Iron and Steel Institute of Japan
References 23) J. Nasiri and F. M. Khiyabani: Cogent Math. Stat., 5 (2018), 1483565. https://doi.org/10.1080/25742558.2018.1483565
24) M. Wang, C. Gao, X. Ai, B. Zhai and S. Li: ISIJ Int., 62 (2022), 1684. https://doi.org/10.2355/isijinternational.ISIJINT-2021-517
21) M. Chu, R. Gong and A. Wang: ISIJ Int., 54 (2014), 119. https://doi.org/10.2355/isijinternational.54.119
27) G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, S. Havlin, M. G. E da Luz, E. P. Raposo and H. E. Stanley: Phys. A, 295 (2001), 85. https://doi.org/10.1016/S0378-4371(01)00057-7
3) J. K. Brimacombe and K. Sorimachi: Metall. Trans. B, 8 (1977), 489. https://doi.org/10.1007/BF02696937
30) M. O. Ansari, S. Chattopadhyaya, J. Ghose, S. Sharma, D. Kozak, C. Li, S. Wojciechowski, S. P. Dwivedi, H. C. Kilinc, J. B. Królczyk and D. Walczak: Materials, 15 (2022), 670. https://doi.org/10.3390/ma15020670
16) W. Zhang, F. Wang and N. Li: ISIJ Int., 61 (2021), 1915. https://doi.org/10.2355/isijinternational.ISIJINT-2020-637
5) V. Singh and S. K. Das: ISIJ Int., 58 (2018), 2308. https://doi.org/10.2355/isijinternational.ISIJINT-2018-423
7) H. Duan, X. Wang, Y. Bai, M. Yao, Y. Liu and Q. Guo: Int. J. Adv. Manuf. Technol., 109 (2020), 2707. https://doi.org/10.1007/s00170-020-05817-6
9) W. Xudong, Y. Man and C. Xingfu: ISIJ Int., 47 (2006), 1047. https://doi.org/10.2355/isijinternational.46.1047
13) B. G. Thomas: Steel Res. Int., 89 (2018), 1700312. https://doi.org/10.1002/srin.201700312
15) B. Zhang, X. Zhang and L. Fan: MATEC Web Conf., 61 (2016), 05020. https://doi.org/10.1051/matecconf/20166105020
26) C. Gao, M. Shen, X. Liu, L. Wang and M. Chen: Trans. Indian Inst. Met., 72 (2019), 257. https://doi.org/10.1007/s12666-018-1479-5
1) S. I. Luk’yanov, E. S. Suspitsyn, S. S. Krasilnikov and D. V. Shvidchenko: Int. J. Adv. Manuf. Technol., 79 (2015), 1861. https://doi.org/10.1007/s00170-015-6945-1
6) M. Sadat, A. Honarvar Gheysari and S. Sadat: Heat Mass Transf., 47 (2011), 1601. https://doi.org/10.1007/s00231-011-0822-8
20) P. J. García Nieto, E. García-Gonzalo, J. C. Á. Antón, V. M. González Suárez, R. M. Bayón and F. M. Martín: J. Comput. Appl. Math., 330 (2018), 877. https://doi.org/10.1016/j.cam.2017.02.031
29) D. Cemernek, S. Cemernek, H. Gursch, A. Pandeshwar, T. Leitner, M. Berger, G. Klösch and R. Kern: J. Intell. Manuf., 33 (2022), 1561. https://doi.org/10.1007/s10845-021-01754-7
10) Y. Liu, X. Wang, F. Du, M. Yao, Y. Gao, F. Wang and J. Wang: Int. J. Adv. Manuf. Technol., 88 (2017), 557. https://doi.org/10.1007/s00170-016-8792-0
4) A. S. Normanton, P. N. Hewitt, N. S. Hunter, D. Scoones and B. Harris: Ironmaking Steelmaking, 31 (2004), 357. https://doi.org/10.1179/030192304225019225
25) S. Mirjalili and A. Lewis: Adv. Eng. Softw., 95 (2016), 51. https://doi.org/10.1016/j.advengsoft.2016.01.008
17) J. Yang, J. Zhang, W. Guo, S. Gao and Q. Liu: ISIJ Int., 61 (2021), 2100. https://doi.org/10.2355/isijinternational.ISIJINT-2020-540
2) K. E. Blazek and I. G. Saucedo: ISIJ Int., 30 (1990), 435. https://doi.org/10.2355/isijinternational.30.435
19) L. Jian, Y. Song, S. Shen, Y. Wang and H. Yin: ISIJ Int., 55 (2015), 845. https://doi.org/10.2355/isijinternational.55.845
28) Y. Zhou, Y. Ling and Q. Luo: Eng. Comput., 35 (2018), 2406. https://doi.org/10.1108/EC-07-2017-0264
18) C. Cortes and V. Vapnik: Mach. Learn., 20 (1995), 273. https://doi.org/10.1007/BF00994018
22) X. J. Peng: Neural Netw., 23 (2010), 365. https://doi.org/10.1016/j.neunet.2009.07.002
12) C. Chen and X. Wang: Mod. Appl. Sci., 4 (2010), 13. https://doi.org/10.5539/mas.v4n11p13
11) S. Hore, S. K. Das, M. M. Humane and A. K. Peethala: Trans. Indian Inst. Met., 72 (2019), 3015. https://doi.org/10.1007/s12666-019-01767-0
14) F. He and L. Zhang: Int. J. Adv. Manuf. Technol., 95 (2018), 4081. https://doi.org/10.1007/s00170-017-1517-1
8) N. B. Setiawan and R. W. Zimmerman: Int. J. Rock Mech. Min. Sci., 112 (2018), 313. https://doi.org/10.1016/j.ijrmms.2018.10.033
22
23
24
25
26
27
28
29
30
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 4) A. S. Normanton, P. N. Hewitt, N. S. Hunter, D. Scoones and B. Harris: Ironmaking Steelmaking, 31 (2004), 357. https://doi.org/10.1179/030192304225019225
– reference: 12) C. Chen and X. Wang: Mod. Appl. Sci., 4 (2010), 13. https://doi.org/10.5539/mas.v4n11p13
– reference: 19) L. Jian, Y. Song, S. Shen, Y. Wang and H. Yin: ISIJ Int., 55 (2015), 845. https://doi.org/10.2355/isijinternational.55.845
– reference: 25) S. Mirjalili and A. Lewis: Adv. Eng. Softw., 95 (2016), 51. https://doi.org/10.1016/j.advengsoft.2016.01.008
– reference: 22) X. J. Peng: Neural Netw., 23 (2010), 365. https://doi.org/10.1016/j.neunet.2009.07.002
– reference: 8) N. B. Setiawan and R. W. Zimmerman: Int. J. Rock Mech. Min. Sci., 112 (2018), 313. https://doi.org/10.1016/j.ijrmms.2018.10.033
– reference: 30) M. O. Ansari, S. Chattopadhyaya, J. Ghose, S. Sharma, D. Kozak, C. Li, S. Wojciechowski, S. P. Dwivedi, H. C. Kilinc, J. B. Królczyk and D. Walczak: Materials, 15 (2022), 670. https://doi.org/10.3390/ma15020670
– reference: 5) V. Singh and S. K. Das: ISIJ Int., 58 (2018), 2308. https://doi.org/10.2355/isijinternational.ISIJINT-2018-423
– reference: 27) G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, S. Havlin, M. G. E da Luz, E. P. Raposo and H. E. Stanley: Phys. A, 295 (2001), 85. https://doi.org/10.1016/S0378-4371(01)00057-7
– reference: 29) D. Cemernek, S. Cemernek, H. Gursch, A. Pandeshwar, T. Leitner, M. Berger, G. Klösch and R. Kern: J. Intell. Manuf., 33 (2022), 1561. https://doi.org/10.1007/s10845-021-01754-7
– reference: 24) M. Wang, C. Gao, X. Ai, B. Zhai and S. Li: ISIJ Int., 62 (2022), 1684. https://doi.org/10.2355/isijinternational.ISIJINT-2021-517
– reference: 7) H. Duan, X. Wang, Y. Bai, M. Yao, Y. Liu and Q. Guo: Int. J. Adv. Manuf. Technol., 109 (2020), 2707. https://doi.org/10.1007/s00170-020-05817-6
– reference: 21) M. Chu, R. Gong and A. Wang: ISIJ Int., 54 (2014), 119. https://doi.org/10.2355/isijinternational.54.119
– reference: 14) F. He and L. Zhang: Int. J. Adv. Manuf. Technol., 95 (2018), 4081. https://doi.org/10.1007/s00170-017-1517-1
– reference: 16) W. Zhang, F. Wang and N. Li: ISIJ Int., 61 (2021), 1915. https://doi.org/10.2355/isijinternational.ISIJINT-2020-637
– reference: 2) K. E. Blazek and I. G. Saucedo: ISIJ Int., 30 (1990), 435. https://doi.org/10.2355/isijinternational.30.435
– reference: 9) W. Xudong, Y. Man and C. Xingfu: ISIJ Int., 47 (2006), 1047. https://doi.org/10.2355/isijinternational.46.1047
– reference: 15) B. Zhang, X. Zhang and L. Fan: MATEC Web Conf., 61 (2016), 05020. https://doi.org/10.1051/matecconf/20166105020
– reference: 13) B. G. Thomas: Steel Res. Int., 89 (2018), 1700312. https://doi.org/10.1002/srin.201700312
– reference: 18) C. Cortes and V. Vapnik: Mach. Learn., 20 (1995), 273. https://doi.org/10.1007/BF00994018
– reference: 6) M. Sadat, A. Honarvar Gheysari and S. Sadat: Heat Mass Transf., 47 (2011), 1601. https://doi.org/10.1007/s00231-011-0822-8
– reference: 20) P. J. García Nieto, E. García-Gonzalo, J. C. Á. Antón, V. M. González Suárez, R. M. Bayón and F. M. Martín: J. Comput. Appl. Math., 330 (2018), 877. https://doi.org/10.1016/j.cam.2017.02.031
– reference: 1) S. I. Luk’yanov, E. S. Suspitsyn, S. S. Krasilnikov and D. V. Shvidchenko: Int. J. Adv. Manuf. Technol., 79 (2015), 1861. https://doi.org/10.1007/s00170-015-6945-1
– reference: 17) J. Yang, J. Zhang, W. Guo, S. Gao and Q. Liu: ISIJ Int., 61 (2021), 2100. https://doi.org/10.2355/isijinternational.ISIJINT-2020-540
– reference: 26) C. Gao, M. Shen, X. Liu, L. Wang and M. Chen: Trans. Indian Inst. Met., 72 (2019), 257. https://doi.org/10.1007/s12666-018-1479-5
– reference: 11) S. Hore, S. K. Das, M. M. Humane and A. K. Peethala: Trans. Indian Inst. Met., 72 (2019), 3015. https://doi.org/10.1007/s12666-019-01767-0
– reference: 23) J. Nasiri and F. M. Khiyabani: Cogent Math. Stat., 5 (2018), 1483565. https://doi.org/10.1080/25742558.2018.1483565
– reference: 28) Y. Zhou, Y. Ling and Q. Luo: Eng. Comput., 35 (2018), 2406. https://doi.org/10.1108/EC-07-2017-0264
– reference: 10) Y. Liu, X. Wang, F. Du, M. Yao, Y. Gao, F. Wang and J. Wang: Int. J. Adv. Manuf. Technol., 88 (2017), 557. https://doi.org/10.1007/s00170-016-8792-0
– reference: 3) J. K. Brimacombe and K. Sorimachi: Metall. Trans. B, 8 (1977), 489. https://doi.org/10.1007/BF02696937
– ident: 30
  doi: 10.3390/ma15020670
– ident: 14
  doi: 10.1007/s00170-017-1517-1
– ident: 21
  doi: 10.2355/isijinternational.54.119
– ident: 29
  doi: 10.1007/s10845-021-01754-7
– ident: 22
  doi: 10.1016/j.neunet.2009.07.002
– ident: 4
  doi: 10.1179/030192304225019225
– ident: 7
  doi: 10.1007/s00170-020-05817-6
– ident: 1
  doi: 10.1007/s00170-015-6945-1
– ident: 10
  doi: 10.1007/s00170-016-8792-0
– ident: 25
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 13
  doi: 10.1002/srin.201700312
– ident: 17
  doi: 10.2355/isijinternational.ISIJINT-2020-540
– ident: 15
  doi: 10.1051/matecconf/20166105020
– ident: 6
  doi: 10.1007/s00231-011-0822-8
– ident: 11
  doi: 10.1007/s12666-019-01767-0
– ident: 18
  doi: 10.1007/BF00994018
– ident: 3
  doi: 10.1007/BF02696937
– ident: 5
  doi: 10.2355/isijinternational.ISIJINT-2018-423
– ident: 28
  doi: 10.1108/EC-07-2017-0264
– ident: 24
  doi: 10.2355/isijinternational.ISIJINT-2021-517
– ident: 26
  doi: 10.1007/s12666-018-1479-5
– ident: 9
  doi: 10.2355/isijinternational.46.1047
– ident: 20
  doi: 10.1016/j.cam.2017.02.031
– ident: 16
  doi: 10.2355/isijinternational.ISIJINT-2020-637
– ident: 19
  doi: 10.2355/isijinternational.55.845
– ident: 23
  doi: 10.1080/25742558.2018.1483565
– ident: 8
  doi: 10.1016/j.ijrmms.2018.10.033
– ident: 2
  doi: 10.2355/isijinternational.30.435
– ident: 12
  doi: 10.5539/mas.v4n12p60
– ident: 27
  doi: 10.1016/S0378-4371(01)00057-7
SSID ssib002484313
ssj0027274
Score 2.413935
Snippet Breakout is one of the hazardous industrial accidents in continuous casting production, which has adverse effects on operational stability, product quality,...
SourceID crossref
jstage
SourceType Index Database
Publisher
StartPage 880
SubjectTerms breakout prediction
continuous casting
prediction accuracy
reported ratio
twin support vector machine of improved whale optimization algorithm
Title Breakout Prediction Based on Twin Support Vector Machine of Improved Whale Optimization Algorithm
URI https://www.jstage.jst.go.jp/article/isijinternational/63/5/63_ISIJINT-2022-372/_article/-char/en
Volume 63
WOSCitedRecordID wos001021733100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ISIJ International, 2023/05/15, Vol.63(5), pp.880-888
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1347-5460
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027274
  issn: 0915-1559
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKmNB4QFy1jYv8wBNVoM3FicXTNoEoQmVAGRMvkWMnJLukVdeM7qft3-0c20nTgsQQ4sWK3ObI8fnsc3x8LoQ8l30mACiBw_3Md3yVSUeAHHA8rtxQ-lwwXYfs4EM4HEaHh3y_07msY2HOT8KyjOZzPvmvrIY-YDaGzv4Fuxui0AHPwHRoge3QXovxu6AGHqO38f4UL2E0f3dBVim8Fxj9LGA9VxPUursH2mKPtYdy1DUxqESbGOCv33IQHN2PsJ-c2kDN7s7Jj_G0mOWnbX128GXwXqecaKyKjclGVwvu7uVVeSGseEQ_n0rbZuHXi2rhWmAjRIoGqd9z6yr8uZrbXmuacLUjoAnOrG2MfeywKb9Ts8N6fugEvikiUG_Bdo8r2pfcRhibMk-1aDYVAFd3fRd0JuBKcVYcLX3wS5yDwXAE8MCQBVMiaDnl9ooobBwU4WiEVONfaMaWZow0Y6B5g9x0w4BHrdO80XwiUM28xdnfNQnB6xm5RV7Ykb_687iXdKb1Izg21C6HWgsa3SV37PGF7hjY3SOdtLxPbreSWj4gogYgXQCQagBSeEAAUgtAagBILQDpOKM1AKkGIG0DkDYAfEi-vn0z2nvn2EIejgzc3swRyvPcnuJCJaHqcRFESmYZaI6cZyzhgoswk75KIqak31MsDDleCCZeIDFbr-c9ImvluEw3CWX9LM1SJoSbCl8wFkkuXbwtT4SQURpskdf1VMUTk68lvj4zt8gnM7vNu3YZ_-Zd5sUBNqs0mlcwbBI2pO1_GtFjsrFYWU_I2mxapU_JujyfFWfTZxpzVyj0vdU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breakout+Prediction+Based+on+Twin+Support+Vector+Machine+of+Improved+Whale+Optimization+Algorithm&rft.jtitle=ISIJ+international&rft.au=Shi%2C+Chunyang&rft.au=Guo%2C+Shiyu&rft.au=Chen%2C+Jin&rft.au=Zhong%2C+Ruxin&rft.date=2023-05-15&rft.issn=0915-1559&rft.eissn=1347-5460&rft.volume=63&rft.issue=5&rft.spage=880&rft.epage=888&rft_id=info:doi/10.2355%2Fisijinternational.ISIJINT-2022-372&rft.externalDBID=n%2Fa&rft.externalDocID=10_2355_isijinternational_ISIJINT_2022_372
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-1559&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-1559&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-1559&client=summon