Decoding the Fundamental Drivers of Phylodynamic Inference

Abstract Despite its increasing role in the understanding of infectious disease transmission at the applied and theoretical levels, phylodynamics lacks a well-defined notion of ideal data and optimal sampling. We introduce a method to visualize and quantify the relative impact of pathogen genome seq...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Molecular biology and evolution Ročník 40; číslo 6
Hlavní autoři: Featherstone, Leo A, Duchene, Sebastian, Vaughan, Timothy G
Médium: Journal Article
Jazyk:angličtina
Vydáno: US Oxford University Press 01.06.2023
Témata:
ISSN:0737-4038, 1537-1719, 1537-1719
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Abstract Despite its increasing role in the understanding of infectious disease transmission at the applied and theoretical levels, phylodynamics lacks a well-defined notion of ideal data and optimal sampling. We introduce a method to visualize and quantify the relative impact of pathogen genome sequence and sampling times—two fundamental sources of data for phylodynamics under birth–death-sampling models—to understand how each drives phylodynamic inference. Applying our method to simulated data and real-world SARS-CoV-2 and H1N1 Influenza data, we use this insight to elucidate fundamental trade-offs and guidelines for phylodynamic analyses to draw the most from sequence data. Phylodynamics promises to be a staple of future responses to infectious disease threats globally. Continuing research into the inherent requirements and trade-offs of phylodynamic data and inference will help ensure phylodynamic tools are wielded in ever more targeted and efficient ways.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors supervised this work equally.
ISSN:0737-4038
1537-1719
1537-1719
DOI:10.1093/molbev/msad132