Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy

Tryptophan is commonly used to study protein structure and dynamics, such as protein folding, as a donor in fluorescence resonant energy transfer (FRET) studies. By using ultra-broadband ultrafast two-dimensional (2D) spectroscopy in the ultraviolet (UV) and transient absorption in the visible range...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) Vol. 339; no. 6127; p. 1586
Main Authors: Consani, Cristina, Auböck, Gerald, van Mourik, Frank, Chergui, Majed
Format: Journal Article
Language:English
Published: United States 29.03.2013
Subjects:
ISSN:1095-9203, 1095-9203
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Tryptophan is commonly used to study protein structure and dynamics, such as protein folding, as a donor in fluorescence resonant energy transfer (FRET) studies. By using ultra-broadband ultrafast two-dimensional (2D) spectroscopy in the ultraviolet (UV) and transient absorption in the visible range, we have disentangled the excited state decay pathways of the tryptophan amino acid residues in ferric myoglobins (MbCN and metMb). Whereas the more distant tryptophan (Trp(7)) relaxes by energy transfer to the heme, Trp(14) excitation predominantly decays by electron transfer to the heme. The excited Trp(14)→heme electron transfer occurs in <40 picoseconds with a quantum yield of more than 60%, over an edge-to-edge distance below ~10 angstroms, outcompeting the FRET process. Our results raise the question of whether such electron transfer pathways occur in a larger class of proteins.
AbstractList Tryptophan is commonly used to study protein structure and dynamics, such as protein folding, as a donor in fluorescence resonant energy transfer (FRET) studies. By using ultra-broadband ultrafast two-dimensional (2D) spectroscopy in the ultraviolet (UV) and transient absorption in the visible range, we have disentangled the excited state decay pathways of the tryptophan amino acid residues in ferric myoglobins (MbCN and metMb). Whereas the more distant tryptophan (Trp(7)) relaxes by energy transfer to the heme, Trp(14) excitation predominantly decays by electron transfer to the heme. The excited Trp(14)→heme electron transfer occurs in <40 picoseconds with a quantum yield of more than 60%, over an edge-to-edge distance below ~10 angstroms, outcompeting the FRET process. Our results raise the question of whether such electron transfer pathways occur in a larger class of proteins.Tryptophan is commonly used to study protein structure and dynamics, such as protein folding, as a donor in fluorescence resonant energy transfer (FRET) studies. By using ultra-broadband ultrafast two-dimensional (2D) spectroscopy in the ultraviolet (UV) and transient absorption in the visible range, we have disentangled the excited state decay pathways of the tryptophan amino acid residues in ferric myoglobins (MbCN and metMb). Whereas the more distant tryptophan (Trp(7)) relaxes by energy transfer to the heme, Trp(14) excitation predominantly decays by electron transfer to the heme. The excited Trp(14)→heme electron transfer occurs in <40 picoseconds with a quantum yield of more than 60%, over an edge-to-edge distance below ~10 angstroms, outcompeting the FRET process. Our results raise the question of whether such electron transfer pathways occur in a larger class of proteins.
Tryptophan is commonly used to study protein structure and dynamics, such as protein folding, as a donor in fluorescence resonant energy transfer (FRET) studies. By using ultra-broadband ultrafast two-dimensional (2D) spectroscopy in the ultraviolet (UV) and transient absorption in the visible range, we have disentangled the excited state decay pathways of the tryptophan amino acid residues in ferric myoglobins (MbCN and metMb). Whereas the more distant tryptophan (Trp(7)) relaxes by energy transfer to the heme, Trp(14) excitation predominantly decays by electron transfer to the heme. The excited Trp(14)→heme electron transfer occurs in <40 picoseconds with a quantum yield of more than 60%, over an edge-to-edge distance below ~10 angstroms, outcompeting the FRET process. Our results raise the question of whether such electron transfer pathways occur in a larger class of proteins.
Author van Mourik, Frank
Auböck, Gerald
Chergui, Majed
Consani, Cristina
Author_xml – sequence: 1
  givenname: Cristina
  surname: Consani
  fullname: Consani, Cristina
  organization: Laboratory of Ultrafast Spectroscopy, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
– sequence: 2
  givenname: Gerald
  surname: Auböck
  fullname: Auböck, Gerald
– sequence: 3
  givenname: Frank
  surname: van Mourik
  fullname: van Mourik, Frank
– sequence: 4
  givenname: Majed
  surname: Chergui
  fullname: Chergui, Majed
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23393092$$D View this record in MEDLINE/PubMed
BookMark eNpNUDtPwzAYtFARfcDMhjyyBOzPdhOPqDylSiyUhSFynC80KLGD7SLl31NBkZjuTvcYbk4mzjsk5JyzK85heR1ti87iFQfBclUckRlnWmUamJj841Myj_GDsb3W4oRMQQgtmIYZedt0KZjGxERTGIfkh61xWfLZFnuk2KFNwbu9Z1xsMNDW0X70752vWhdpwC80Hda0GunmlcItjcNPI1o_jKfkuDFdxLMDLsjm_u5l9Zitnx-eVjfrzCpgKdNMQVPUoLHJpUDJcpDIcm6YBchzJeuKF6AMl5ZJI7hYCoAaEZY15ygVLMjl7-4Q_OcOYyr7NlrsOuPQ72LJBfBcK17IffTiEN1VPdblENrehLH8OwS-AZC0ZMs
CitedBy_id crossref_primary_10_1007_s12039_023_02160_7
crossref_primary_10_1002_anie_201502974
crossref_primary_10_1016_j_jmb_2017_12_009
crossref_primary_10_1039_C6CP04936B
crossref_primary_10_1016_j_molstruc_2022_133865
crossref_primary_10_1039_C3CP54521K
crossref_primary_10_1063_1_5055244
crossref_primary_10_1016_j_molliq_2019_04_008
crossref_primary_10_1002_jcc_24793
crossref_primary_10_1002_ange_202008757
crossref_primary_10_1016_j_jphotobiol_2015_06_014
crossref_primary_10_1007_s00339_014_8340_4
crossref_primary_10_1088_2515_7647_ac0805
crossref_primary_10_1016_j_procbio_2017_05_004
crossref_primary_10_1016_j_chemphys_2013_01_036
crossref_primary_10_1016_S1872_2040_21_60101_9
crossref_primary_10_1063_1_4996505
crossref_primary_10_1146_annurev_physchem_040513_103623
crossref_primary_10_1063_1_4991853
crossref_primary_10_1073_pnas_2202713119
crossref_primary_10_1016_j_jinorgbio_2018_05_008
crossref_primary_10_1007_s00340_015_6105_1
crossref_primary_10_1021_acs_jchemed_7b00035
crossref_primary_10_1126_science_1235761
crossref_primary_10_1039_C5CC08949B
crossref_primary_10_1007_s11426_018_9346_0
crossref_primary_10_3390_photonics12010050
crossref_primary_10_1016_j_saa_2021_120434
crossref_primary_10_1073_pnas_1323792111
crossref_primary_10_1016_j_cclet_2019_02_023
crossref_primary_10_1002_chir_22784
crossref_primary_10_1021_jacs_7b06322
crossref_primary_10_1002_anie_202008757
crossref_primary_10_1063_1_4861467
crossref_primary_10_1063_1_4902938
crossref_primary_10_1016_j_chemphys_2013_06_027
crossref_primary_10_1021_jacs_7b02769
crossref_primary_10_1039_C6CC09921A
crossref_primary_10_1515_pac_2014_0939
crossref_primary_10_1177_0003702816669730
crossref_primary_10_1021_jacs_9b10533
crossref_primary_10_1016_j_jlumin_2019_116953
crossref_primary_10_1109_JPHOT_2016_2527709
crossref_primary_10_1364_JOSAB_33_001143
crossref_primary_10_1016_j_chemphys_2022_111508
crossref_primary_10_1039_C8CP00605A
crossref_primary_10_1063_1_4899120
crossref_primary_10_1039_C7CP03007J
crossref_primary_10_1002_ange_201502974
crossref_primary_10_1007_s41061_018_0206_3
crossref_primary_10_1002_ijch_201300141
crossref_primary_10_1140_epjh_e2013_40007_9
crossref_primary_10_1063_1_4996448
crossref_primary_10_1039_D0RA09341F
crossref_primary_10_3390_molecules26020396
crossref_primary_10_1039_C9SC03871J
crossref_primary_10_3390_pr13020290
crossref_primary_10_1007_s41061_017_0180_1
crossref_primary_10_1063_1_4865234
crossref_primary_10_1016_j_bbabio_2018_12_006
crossref_primary_10_1002_aenm_201700236
crossref_primary_10_1063_1_4879822
crossref_primary_10_1111_php_12246
crossref_primary_10_1364_AO_53_007603
crossref_primary_10_1038_nphoton_2017_79
crossref_primary_10_1073_pnas_1423186112
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1126/science.1230758
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID 23393092
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQAM
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CGR
CS3
CUY
CVF
DB2
DCCCD
DU5
EBS
ECM
EIF
EJD
EMOBN
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
NPM
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UIG
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
2XV
7X8
ADXHL
AFBNE
ID FETCH-LOGICAL-c520t-9052f8d29ef743e40724e071a0c227754db1825a14c04a3136322dee26d11e452
IEDL.DBID 7X8
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316731600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1095-9203
IngestDate Sun Sep 28 04:29:25 EDT 2025
Thu Apr 03 06:59:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6127
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-9052f8d29ef743e40724e071a0c227754db1825a14c04a3136322dee26d11e452
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/92161
PMID 23393092
PQID 1321795184
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1321795184
pubmed_primary_23393092
PublicationCentury 2000
PublicationDate 2013-Mar-29
20130329
PublicationDateYYYYMMDD 2013-03-29
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-Mar-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2013
References 23539587 - Science. 2013 Mar 29;339(6127):1530-1
References_xml – reference: 23539587 - Science. 2013 Mar 29;339(6127):1530-1
SSID ssj0009593
Score 2.4541478
Snippet Tryptophan is commonly used to study protein structure and dynamics, such as protein folding, as a donor in fluorescence resonant energy transfer (FRET)...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1586
SubjectTerms Animals
Electron Transport
Fluorescence Resonance Energy Transfer
Heme - chemistry
Horses
Myoglobin - chemistry
Protein Structure, Secondary
Spectrophotometry, Ultraviolet - methods
Tryptophan - chemistry
Title Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy
URI https://www.ncbi.nlm.nih.gov/pubmed/23393092
https://www.proquest.com/docview/1321795184
Volume 339
WOSCitedRecordID wos000316731600043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnhRd32tLyJ40EO0TV_JSURdPOiyB1cWPJQ0D1xw29pWof_epM2iCILgpZdQCJPJzDdJ5vsAOCFYhW7IOGIB0QWKm0QoUZwixQjjNIhE2z72dB8Nh2QyoSN74FbaZ5XzmNgEapFxc0Z-oasm7TuBLkgu8zdkVKPM7aqV0FgEHU9DGePV0YT8JN11HaNHiB3PUvt8a5o5d81D6ID8ji-bPDNY_-8MN8CaRZjwqnWJLliQaQ-stJqTdQ907W4u4amlnD7bBM_j16pgipUVrIo6N2QDLEVVhl7kTMK5VI4eMyhXFnCawlmdGTKRaVpCwwKl84yASQ3HTxDfwKZ_0_BkZnm9BcaD28frO2RlFxAPsFMh6gRYEYGpVBpeSMOg5kuNRJjDMTaEeSLRRUnAXJ87PtN2D3VQEFLiULiu9AO8DZbSLJW7AArKhCKMeEp4vggl5YmKdFb2BIscl8g-OJ6bMtZube4qWCqz9zL-MmYf7LTrEect_0aMPY96DsV7f_h7H6ziRsDCKNYdgI7Sm1oegmX-UU3L4qjxF_0djh4-AQ8Wy74
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+tryptophan-to-heme+electron+transfer+in+myoglobins+revealed+by+UV+2D+spectroscopy&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Consani%2C+Cristina&rft.au=Aub%C3%B6ck%2C+Gerald&rft.au=van+Mourik%2C+Frank&rft.au=Chergui%2C+Majed&rft.date=2013-03-29&rft.eissn=1095-9203&rft.volume=339&rft.issue=6127&rft.spage=1586&rft_id=info:doi/10.1126%2Fscience.1230758&rft_id=info%3Apmid%2F23393092&rft_id=info%3Apmid%2F23393092&rft.externalDocID=23393092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1095-9203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1095-9203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1095-9203&client=summon