Semantically enabling a genome-wide association study database

Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and compari...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of biomedical semantics Ročník 3; číslo 1; s. 9
Hlavní autoři: Beck, Tim, Free, Robert C, Thorisson, Gudmundur A, Brookes, Anthony J
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 17.12.2012
Springer Nature B.V
BMC
Témata:
ISSN:2041-1480, 2041-1480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. Results A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. Conclusions We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web.
AbstractList Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. Results A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. Conclusions We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web.
The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central - a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data.BACKGROUNDThe amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central - a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data.A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications.RESULTSA pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications.We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web.CONCLUSIONSWe present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web.
Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. Results A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. Conclusions We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web.
The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central - a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web.
Abstract Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. Results A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. Conclusions We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web.
Author Thorisson, Gudmundur A
Brookes, Anthony J
Free, Robert C
Beck, Tim
AuthorAffiliation 1 Department of Genetics, University of Leicester, University Road, Leicester, UK
AuthorAffiliation_xml – name: 1 Department of Genetics, University of Leicester, University Road, Leicester, UK
Author_xml – sequence: 1
  givenname: Tim
  surname: Beck
  fullname: Beck, Tim
  email: tb143@leicester.ac.uk
  organization: Department of Genetics, University of Leicester, University Road
– sequence: 2
  givenname: Robert C
  surname: Free
  fullname: Free, Robert C
  organization: Department of Genetics, University of Leicester, University Road
– sequence: 3
  givenname: Gudmundur A
  surname: Thorisson
  fullname: Thorisson, Gudmundur A
  organization: Department of Genetics, University of Leicester, University Road
– sequence: 4
  givenname: Anthony J
  surname: Brookes
  fullname: Brookes, Anthony J
  organization: Department of Genetics, University of Leicester, University Road
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23244533$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1vFSEUxSemxtbapVsziRs3U4HLMLBpYho_mjRxoa4JMHdGXmagwkzN--_l9bW1bZQNXDj3lwOHl9VBiAGr6jUlp5RK8Z4RThvKJWmgUc-qo_v64MH6sDrJeUPKAKBEwovqkAHjvAU4qs6-4WzC4p2Zpm2NwdjJh7E29Yghztj89j3WJufovFl8DHVe1n5b92Yx1mR8VT0fzJTx5HY-rn58-vj9_Etz-fXzxfmHy8a1jCyNGJyginIYBgvCdgBOIsiecw6cKS5aBoRIAtgO3KAUHbPOENpL4gaUDo6riz23j2ajr5KfTdrqaLy-2Yhp1CaVW0yoHXa2QzsojoL3wJQFx3srXYeSSi4K62zPulrtjL3DsCQzPYI-Pgn-px7jtYa2Ux2wAnh3C0jx14p50bPPDqfJBIxr1hQoE4Ix3hXp2yfSTVxTKE-lGSjJuVJqB3zz0NG9lbuYigD2ApdizgkH7fxyk0cx6CdNid79B73LXO8y16BV6WqedN2B_6c_3etz0YUR01-z_274A0K0wuA
CitedBy_id crossref_primary_10_1016_j_clon_2014_09_008
crossref_primary_10_1186_1471_2105_15_S1_S2
crossref_primary_10_3233_SW_150189
crossref_primary_10_1038_ejhg_2013_274
crossref_primary_10_1093_nar_gkac1017
crossref_primary_10_1186_s13326_016_0047_3
Cites_doi 10.1186/2041-1480-2-S2-S2
10.1093/bfgp/elm004
10.1002/humu.22079
10.1186/1471-2164-10-22
10.1038/ng.785
10.1186/gb-2012-13-1-r5
10.1073/pnas.0903103106
10.1016/j.jbi.2008.03.004
10.1186/1471-2164-11-S4-S24
10.1016/j.ajhg.2008.09.017
10.1186/1471-2164-10-S1-S6
10.2527/jas.2008-0930
10.1186/1471-2105-12-32
10.1186/2041-1480-2-8
10.2217/14622416.10.2.171
10.1186/gb-2010-11-1-r2
10.1038/75556
10.1111/j.1399-0004.2010.01436.x
10.1038/ng.361
10.1016/j.ymeth.2010.12.017
10.1038/nbt1346
10.1186/1471-2105-12-S4-S6
10.1186/1471-2105-11-S12-S12
10.1016/j.websem.2009.07.002
10.1007/s00335-009-9208-3
10.1056/NEJMp0808934
10.1186/1471-2105-13-S4-S7
10.1186/1471-2105-10-S5-S2
10.1186/2041-1480-1-S1-S7
10.1001/archneurol.2007.3
10.1093/bioinformatics/btp249
ContentType Journal Article
Copyright Beck et al.; licensee BioMed Central Ltd. 2012
2012. This work is licensed under http://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright ©2012 Beck et al.; licensee BioMed Central Ltd. 2012 Beck et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Beck et al.; licensee BioMed Central Ltd. 2012
– notice: 2012. This work is licensed under http://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright ©2012 Beck et al.; licensee BioMed Central Ltd. 2012 Beck et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/2041-1480-3-9
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Mathematics
EISSN 2041-1480
EndPage 9
ExternalDocumentID oai_doaj_org_article_ce7b7ebf94e64d329b3c4db8c7e81846
PMC3579732
23244533
10_1186_2041_1480_3_9
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
IPNFZ
ITC
KQ8
M1P
M48
M7P
M7S
ML~
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PSQYO
PTHSS
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SMT
SOJ
TUS
UKHRP
2VQ
8FE
8FG
8FH
AAYXX
AFFHD
BPHCQ
BVXVI
CITATION
H13
L6V
LK8
PQQKQ
PROAC
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c520t-6fc619143ffb36b733c8e38d44434294652300803e5f4ae8672bca01d80cfe8c3
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000209110000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1480
IngestDate Fri Oct 03 12:51:12 EDT 2025
Tue Nov 04 01:52:05 EST 2025
Thu Sep 04 17:36:28 EDT 2025
Sat Oct 18 23:50:52 EDT 2025
Thu Apr 03 07:04:22 EDT 2025
Sat Nov 29 06:03:06 EST 2025
Tue Nov 18 21:11:06 EST 2025
Sat Sep 06 07:27:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Phenotype
GWAS
Ontology
RDF
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-6fc619143ffb36b733c8e38d44434294652300803e5f4ae8672bca01d80cfe8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/ce7b7ebf94e64d329b3c4db8c7e81846
PMID 23244533
PQID 2398449992
PQPubID 2040220
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ce7b7ebf94e64d329b3c4db8c7e81846
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3579732
proquest_miscellaneous_1312662247
proquest_journals_2398449992
pubmed_primary_23244533
crossref_citationtrail_10_1186_2041_1480_3_9
crossref_primary_10_1186_2041_1480_3_9
springer_journals_10_1186_2041_1480_3_9
PublicationCentury 2000
PublicationDate 20121217
PublicationDateYYYYMMDD 2012-12-17
PublicationDate_xml – month: 12
  year: 2012
  text: 20121217
  day: 17
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of biomedical semantics
PublicationTitleAbbrev J Biomed Semant
PublicationTitleAlternate J Biomed Semantics
PublicationYear 2012
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References 10.1186/2041-1480-3-9-B16
10.1186/2041-1480-3-9-B15
10.1186/2041-1480-3-9-B36
10.1186/2041-1480-3-9-B11
10.1186/2041-1480-3-9-B33
10.1186/2041-1480-3-9-B32
10.1186/2041-1480-3-9-B31
10.1186/2041-1480-3-9-B53
10.1186/2041-1480-3-9-B9
10.1186/2041-1480-3-9-B8
10.1186/2041-1480-3-9-B7
10.1186/2041-1480-3-9-B6
10.1186/2041-1480-3-9-B5
10.1186/2041-1480-3-9-B4
10.1186/2041-1480-3-9-B19
10.1186/2041-1480-3-9-B17
10.1186/2041-1480-3-9-B30
10.1186/2041-1480-3-9-B50
10.1186/2041-1480-3-9-B27
10.1186/2041-1480-3-9-B26
10.1186/2041-1480-3-9-B25
10.1186/2041-1480-3-9-B69
10.1186/2041-1480-3-9-B22
10.1186/2041-1480-3-9-B65
10.1186/2041-1480-3-9-B20
10.1186/2041-1480-3-9-B42
-
10.1186/2041-1480-3-9-B29
10.1186/2041-1480-3-9-B1
10.1186/2041-1480-3-9-B63
10.1186/2041-1480-3-9-B40
15642099 - Genome Biol. 2005;6(1):R7
19594883 - BMC Genomics. 2009;10 Suppl 1:S6
19964203 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:7069-72
20412080 - Clin Genet. 2010 Jun;77(6):525-34
22536974 - BMC Bioinformatics. 2012;13 Suppl 4:S7
17401136 - Brief Funct Genomic Proteomic. 2007 Mar;6(1):3-7
18472304 - J Biomed Inform. 2008 Oct;41(5):706-16
22118330 - Inform Prim Care. 2011;19(1):3-5
22293552 - Genome Biol. 2012;13(1):R5
21261995 - BMC Bioinformatics. 2011;12:32
11825149 - Proc AMIA Symp. 2001;:17-21
21992079 - BMC Bioinformatics. 2011;12 Suppl 4:S6
22024447 - J Biomed Semantics. 2011;2(1):8
18842627 - Nucleic Acids Res. 2009 Jan;37(Database issue):D793-6
22058129 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1036-40
21347171 - Summit on Translat Bioinforma. 2009;2009:56-60
21210979 - BMC Bioinformatics. 2010;11 Suppl 12:S12
10802651 - Nat Genet. 2000 May;25(1):25-9
20507906 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W165-74
20427557 - Dis Model Mech. 2010 May-Jun;3(5-6):281-9
22139925 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1047-54
19910364 - Nucleic Acids Res. 2010 Jan;38(Database issue):D5-16
19474294 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7
18948288 - Nucleic Acids Res. 2009 Jan;37(Database issue):D797-802
19430483 - Nat Genet. 2009 Jun;41(6):666-76
21185382 - Methods. 2011 Apr;53(4):394-404
20064205 - Genome Biol. 2010;11(1):R2
21051359 - Nucleic Acids Res. 2011 Jan;39(Database issue):D842-8
19649761 - Mamm Genome. 2009 Aug;20(8):457-61
21143808 - BMC Genomics. 2010;11 Suppl 4:S24
18272850 - J Anim Sci. 2008 Jun;86(6):1485-91
21423179 - Nat Genet. 2011 Apr;43(4):295-301
19144180 - BMC Genomics. 2009;10:22
22415892 - Hum Mutat. 2012 May;33(5):813-6
17989687 - Nat Biotechnol. 2007 Nov;25(11):1251-5
19161620 - BMC Med Genet. 2009;10:6
18753767 - Genome Dyn. 2006;2:33-45
17998437 - Arch Neurol. 2008 Jan;65(1):45-53
19369661 - N Engl J Med. 2009 Apr 23;360(17):1699-701
20626927 - J Biomed Semantics. 2010;1 Suppl 1:S7
22102590 - Nucleic Acids Res. 2012 Jan;40(Database issue):D71-5
19933761 - Nucleic Acids Res. 2010 Jan;38(Database issue):D577-85
19426459 - BMC Bioinformatics. 2009;10 Suppl 5:S2
21624157 - J Biomed Semantics. 2011;2 Suppl 2:S2
18950739 - Am J Hum Genet. 2008 Nov;83(5):610-5
19376821 - Bioinformatics. 2009 Jun 1;25(11):1412-8
20501605 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W677-82
19898446 - Nat Biotechnol. 2009 Nov;27(11):984-5
19207018 - Pharmacogenomics. 2009 Feb;10(2):171-9
21672956 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W541-5
16845108 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W729-32
References_xml – ident: 10.1186/2041-1480-3-9-B15
  doi: 10.1186/2041-1480-2-S2-S2
– ident: 10.1186/2041-1480-3-9-B6
  doi: 10.1093/bfgp/elm004
– ident: 10.1186/2041-1480-3-9-B22
  doi: 10.1002/humu.22079
– ident: 10.1186/2041-1480-3-9-B65
  doi: 10.1186/1471-2164-10-22
– ident: 10.1186/2041-1480-3-9-B36
  doi: 10.1038/ng.785
– ident: 10.1186/2041-1480-3-9-B25
  doi: 10.1186/gb-2012-13-1-r5
– ident: 10.1186/2041-1480-3-9-B4
  doi: 10.1073/pnas.0903103106
– ident: 10.1186/2041-1480-3-9-B33
  doi: 10.1016/j.jbi.2008.03.004
– ident: 10.1186/2041-1480-3-9-B31
  doi: 10.1186/1471-2164-11-S4-S24
– ident: 10.1186/2041-1480-3-9-B42
  doi: 10.1016/j.ajhg.2008.09.017
– ident: 10.1186/2041-1480-3-9-B40
  doi: 10.1186/1471-2164-10-S1-S6
– ident: 10.1186/2041-1480-3-9-B16
  doi: 10.2527/jas.2008-0930
– ident: 10.1186/2041-1480-3-9-B7
  doi: 10.1186/1471-2105-12-32
– ident: 10.1186/2041-1480-3-9-B29
  doi: 10.1186/2041-1480-2-8
– ident: 10.1186/2041-1480-3-9-B20
  doi: 10.2217/14622416.10.2.171
– ident: 10.1186/2041-1480-3-9-B26
  doi: 10.1186/gb-2010-11-1-r2
– ident: 10.1186/2041-1480-3-9-B5
  doi: 10.1038/75556
– ident: 10.1186/2041-1480-3-9-B11
  doi: 10.1111/j.1399-0004.2010.01436.x
– ident: 10.1186/2041-1480-3-9-B17
  doi: 10.1038/ng.361
– ident: 10.1186/2041-1480-3-9-B50
  doi: 10.1016/j.ymeth.2010.12.017
– ident: 10.1186/2041-1480-3-9-B9
  doi: 10.1038/nbt1346
– ident: 10.1186/2041-1480-3-9-B32
  doi: 10.1186/1471-2105-12-S4-S6
– ident: 10.1186/2041-1480-3-9-B63
  doi: 10.1186/1471-2105-11-S12-S12
– ident: -
  doi: 10.1016/j.websem.2009.07.002
– ident: 10.1186/2041-1480-3-9-B27
  doi: 10.1007/s00335-009-9208-3
– ident: 10.1186/2041-1480-3-9-B1
  doi: 10.1056/NEJMp0808934
– ident: 10.1186/2041-1480-3-9-B30
  doi: 10.1186/1471-2105-13-S4-S7
– ident: 10.1186/2041-1480-3-9-B8
  doi: 10.1186/1471-2105-10-S5-S2
– ident: 10.1186/2041-1480-3-9-B69
  doi: 10.1186/2041-1480-1-S1-S7
– ident: 10.1186/2041-1480-3-9-B19
  doi: 10.1001/archneurol.2007.3
– ident: 10.1186/2041-1480-3-9-B53
  doi: 10.1093/bioinformatics/btp249
– reference: 20501605 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W677-82
– reference: 11825149 - Proc AMIA Symp. 2001;:17-21
– reference: 20626927 - J Biomed Semantics. 2010;1 Suppl 1:S7
– reference: 19594883 - BMC Genomics. 2009;10 Suppl 1:S6
– reference: 17998437 - Arch Neurol. 2008 Jan;65(1):45-53
– reference: 18950739 - Am J Hum Genet. 2008 Nov;83(5):610-5
– reference: 22536974 - BMC Bioinformatics. 2012;13 Suppl 4:S7
– reference: 21261995 - BMC Bioinformatics. 2011;12:32
– reference: 18948288 - Nucleic Acids Res. 2009 Jan;37(Database issue):D797-802
– reference: 21210979 - BMC Bioinformatics. 2010;11 Suppl 12:S12
– reference: 10802651 - Nat Genet. 2000 May;25(1):25-9
– reference: 18472304 - J Biomed Inform. 2008 Oct;41(5):706-16
– reference: 19898446 - Nat Biotechnol. 2009 Nov;27(11):984-5
– reference: 20064205 - Genome Biol. 2010;11(1):R2
– reference: 18272850 - J Anim Sci. 2008 Jun;86(6):1485-91
– reference: 19376821 - Bioinformatics. 2009 Jun 1;25(11):1412-8
– reference: 19964203 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:7069-72
– reference: 21992079 - BMC Bioinformatics. 2011;12 Suppl 4:S6
– reference: 22024447 - J Biomed Semantics. 2011;2(1):8
– reference: 19649761 - Mamm Genome. 2009 Aug;20(8):457-61
– reference: 20412080 - Clin Genet. 2010 Jun;77(6):525-34
– reference: 21423179 - Nat Genet. 2011 Apr;43(4):295-301
– reference: 19910364 - Nucleic Acids Res. 2010 Jan;38(Database issue):D5-16
– reference: 20507906 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W165-74
– reference: 18842627 - Nucleic Acids Res. 2009 Jan;37(Database issue):D793-6
– reference: 20427557 - Dis Model Mech. 2010 May-Jun;3(5-6):281-9
– reference: 21624157 - J Biomed Semantics. 2011;2 Suppl 2:S2
– reference: 21051359 - Nucleic Acids Res. 2011 Jan;39(Database issue):D842-8
– reference: 19207018 - Pharmacogenomics. 2009 Feb;10(2):171-9
– reference: 21347171 - Summit on Translat Bioinforma. 2009;2009:56-60
– reference: 22139925 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1047-54
– reference: 17989687 - Nat Biotechnol. 2007 Nov;25(11):1251-5
– reference: 17401136 - Brief Funct Genomic Proteomic. 2007 Mar;6(1):3-7
– reference: 21185382 - Methods. 2011 Apr;53(4):394-404
– reference: 19161620 - BMC Med Genet. 2009;10:6
– reference: 19474294 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7
– reference: 22415892 - Hum Mutat. 2012 May;33(5):813-6
– reference: 21672956 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W541-5
– reference: 22058129 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1036-40
– reference: 22293552 - Genome Biol. 2012;13(1):R5
– reference: 19369661 - N Engl J Med. 2009 Apr 23;360(17):1699-701
– reference: 18753767 - Genome Dyn. 2006;2:33-45
– reference: 19430483 - Nat Genet. 2009 Jun;41(6):666-76
– reference: 21143808 - BMC Genomics. 2010;11 Suppl 4:S24
– reference: 22118330 - Inform Prim Care. 2011;19(1):3-5
– reference: 22102590 - Nucleic Acids Res. 2012 Jan;40(Database issue):D71-5
– reference: 15642099 - Genome Biol. 2005;6(1):R7
– reference: 16845108 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W729-32
– reference: 19426459 - BMC Bioinformatics. 2009;10 Suppl 5:S2
– reference: 19144180 - BMC Genomics. 2009;10:22
– reference: 19933761 - Nucleic Acids Res. 2010 Jan;38(Database issue):D577-85
SSID ssj0000331083
Score 1.9420869
Snippet Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and...
The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange...
Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and...
Abstract Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms Abnormalities
Algorithms
Annotations
Automation
Biocompatibility
Bioinformatics
Blood pressure
Combinatorial Libraries
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data Mining and Knowledge Discovery
Disease
Genome-wide association studies
Genomes
Genotype & phenotype
Genotypes
GWAS
Integration
Linked Data
Mathematics
Mathematics and Statistics
Medical Subject Headings-MeSH
Ontology
Phenotype
Phenotypes
Principles
RDF
Resource Description Framework-RDF
Semantic technologies in healthcare and life sciences 2012
Semantic web
Semantics
Signs and symptoms
Species
Studies
Terminology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B4cCFb0qgICOhcsEiyTi2cwEBouJQVUiAtDcrsR1Yqc22m20R_x6P18lqoXDhFCnxYeyZ8bwZO28AnguFEqWQwdOqkgcLQV5jJTii85VwufNOx2YT6uhIz2b1p1RwG9K1ynFPjBu1W1iqkb8injpB8Lx8c3rGqWsUna6mFhpX4Rq1zSY7VzM11VhyDOBF40itqWVI9UXBQwYQ9h5eb4WiyNh_Gcz887bkb0emMRId3PrfOdyGmwmDsrdro7kDV3x_F3YPU-VyYPvscCJbHu7B68_-JKw_afP4J_P0s1WQizWM-F1PPP8xd541GzWzSFnL6O4pxcj78PXgw5f3H3lqu8BtVeYrLjsrifUNu65F2SpEqz1qJ4TAEL2EpEJyAJroq040XktVtrbJC6dz23lt8QHs9IvePwRWSEc5Wid0WYgQFZq6zXV4eK0bUbZlBi9HDRibOMmpNcaxibmJloYUZkhhBk2dwf40_HRNxvG3ge9IndMg4tCOLxbLbya5pLFetcq3XS28FA7LukUrXKut8gHFCJnB3qhFkxx7MBsVZvBs-hxcks5Zmt4vzgdTYBFgT8BGKoPdte1MkhCAFQFiZ6C2rGpL1O0v_fx7pP3GShG1UgYvRvvbiHXpKjz69wQew42A_mJrm0Ltwc5qee6fwHV7sZoPy6fRk34BbQ4k3w
  priority: 102
  providerName: ProQuest
– databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9UwDLbG4MAO_BgwCgMFCY0L1draTdILEiAmDmNCGqDdojZJ4Umjb3p9A_Hf4-S1nd4YEpxaNalqJXb92Uk-AzwnhRIlSba0skhZQzCtsKQU0fmSXOa807HYhDo60icn1ccN2B_PwsTd7uOSZPxTR7PWkqN0ylMG7_zbSKtrcL0MRDMhPD_-MiVVMmS0onHk0rz81prviRT9V-HKP7dHXlojja7n4PZ_C30Hbg0oU7xeqcVd2PDdNuwcDrnJXuyJw4lOud-GrQ8TeWt_D14d820Xc9ynv4QPh6v4k6IWgc_1u09_zpwX9cW0ikhRK8Je0-AT78Png3ef3r5PhzILqS2LbJnK1srA8oZt26BsFKLVHrUjImRvRTIkjhlYoi9bqr2WqmhsneVOZ7b12uID2OzmnX8IIpcuxGQt6SIn9gJ11WSaL17rmoqmSODlOAHGDhzkoRTGqYmxiJYmDJgJA2bQVAnsTd3PVuQbf-v4Jszm1ClwZscH88VXM5igsV41yjdtRV6Sw6Jq0JJrtFWeUQvJBHZHXTCDIfcm0CNSiApZ9mdTM5tgWFepOz8_702OOcMcxkIqgZ2V6kySBMBKDKkTUGtKtSbqeks3-xZpvrFUgUopgRejal2IdeUoPPrnno_hJgO_WNUmV7uwuVyc-ydww_5YzvrF02hTvwGlGxuW
  priority: 102
  providerName: Springer Nature
Title Semantically enabling a genome-wide association study database
URI https://link.springer.com/article/10.1186/2041-1480-3-9
https://www.ncbi.nlm.nih.gov/pubmed/23244533
https://www.proquest.com/docview/2398449992
https://www.proquest.com/docview/1312662247
https://pubmed.ncbi.nlm.nih.gov/PMC3579732
https://doaj.org/article/ce7b7ebf94e64d329b3c4db8c7e81846
Volume 3
WOSCitedRecordID wos000209110000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: RBZ
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: M7S
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 2041-1480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331083
  issn: 2041-1480
  databaseCode: RSV
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4cAF8SyBsjISKheiJrFjOxckilqBVFZRF9ByshLbUVdqU9RsW_HvmXGyaReKuHBJFNuKJjNjz-dHvgF4LRSXXAqJPS3PYvQQHhc8FzHnzufCJc47HZJNqOlUz-dFeS3VF50J6-mBe8XtWK9q5eumEF4Kx7Oi5la4WlvlMdaIQLadqOLaZCqMwRxhS-DgzBKRxoj5kxXBppY7Y1mMkq0FpMDbfxPY_PPM5G8bpyEe7T-A-wOQZO_7D3gIt3z7CDYPhuXHjm2zg5ExuXsM72b-BJVIJjn-yTz9MYWvZRUjktYTH18unGfVla1Y4J1ldICUAt0T-Lq_9-XDx3jInRDbPEuWsWysJOo23jQ1l7Xi3GrPtRNCcAxBQtJqMKJF7vNGVF5LldW2SlKnE9t4bflT2GhPW_8MWCodTbQaobNU4NBeFXWi8ea1rkRWZxG8XSnQ2IFYnPJbHJswwdDSkL4N6dtwU0SwPTb_0TNq_K3hLlljbERE2KEA3cMM7mH-5R4RbK1saYbe2RniPBQ01UPZX43V2K9os6Rq_el5Z1KeInZBgKMi2OxNP0pCKFQgTo5ArTnFmqjrNe3iKHB381wRP1IEb1bucyXWjVp4_j-08ALuIdALWWxStQUby7Nz_xLu2ovlojubwG01V-GqJ3Bnd29aHk5Cd5rQSdgyXGdYU376XH7Hp8PZt1-KJCGl
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceNMGChgJyoWoie3YzgEQr6qrblcrUaRyMont0JXabNlsqfqn-I14sklWC4VbD5wiJVbkx-fxN2P7G4BnXDLBBBd-piU09AhhYcoSHjJmXcJtZJ1VdbIJORyqg4N0tAI_27sweKyytYm1obYTgzHyLdSp40jP6ZuT7yFmjcLd1TaFxhwWu-78zLts1av-Bz--zynd_rj_fidssgqEJqHRLBSFEShqxooiZyKXjBnlmLKcc-aNMxcYJ_U8irmk4JlTQtLcZFFsVWQKpwzz_70Cq9yDPerB6qi_N_rSRXUi5umSYq2YpxJbNOJx6H0Ob-3CdGnxq3MEXERs_zyf-dsmbb32bd_833rtFtxoWDZ5O58Wt2HFlXdgbdDEZiuySQadnHR1F15_csceYYjXo3Pi8DqZ7weSEVSwPXbh2dg6ki2ATGpRXoKna5EF3IPPl9KY-9ArJ6VbBxILi15owRWNuV_3sjSPlH84pTJOcxrAy3bEtWlU1zH5x5GuvS8lNAJEI0A002kAm13xk7ncyN8KvkP4dIVQJbx-MZl-043R0cbJXLq8SLkT3DKa5sxwmysjnedpXASw0aJGN6ar0gvIBPC0--yNDu4kZaWbnFY6ZrEndp79yQDW5ljtaoIUnXsnIgC5hOKlqi5_KceHtbA5SySKRwXwosX7oloX9sKDfzfgCVzb2d8b6EF_uPsQrnuuWyfyieUG9GbTU_cIrpofs3E1fdzMYwJfL3sS_ALr3IFN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_OU0Qf_Dj1rJ4aQc4Xi21nmqQIgl-L4rocnsq9hTZJdeHsHts9xf_eJP049jxB8KmlndJpMtP5zST5BeARCeTIiTtPy7PYWQjGBeYUIxqbk0mMNTJsNiFmM3lwUOxtwLNhLUyY7T4MSXZrGjxLU7N6emTqzsUldxk7pbED8u4XEhfn4Dy5JMbP5_q4_2UssCTokIvEgVfz9FNrcSjQ9Z-FMf-cKnlqvDSEocnV__qAa3ClR5_sRWcu12HDNluwPe1rli3bZdORZrndgssfRlLX9gY833enTah9H_5i1i-6cq9nJfM8r99t_HNuLCtPupsF6lrm56D6WHkTPk_efHr1Nu63X4h1niWrmNeae_Y3rOsKeSUQtbQoDRGhi2LEfUHZAU60eU2llVxklS6T1MhE11ZqvAWbzaKxt4Gl3PhcrSaZpeSiQ1lUiXQHK2VJWZVF8GToDKV7bnK_RcahCjmK5Mo3mPINplAVEeyO4kcdKcffBF_6nh2FPJd2uLBYflW9ayptRSVsVRdkORnMigo1mUpqYR2aIR7BzmAXqnfwVnnaRPLZotP94XjbuaYfbykbuzhuVYqpgz8OI4kItjszGjXxQJYc1I5ArBnYmqrrd5r5t0D_jbnwFEsRPB7M7EStM1vhzj9LPoCLe68navpu9v4uXHLYMGx8k4od2Fwtj-09uKB_rObt8n5wtd-Tnyde
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantically+enabling+a+genome-wide+association+study+database&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Beck%2C+Tim&rft.au=Free%2C+Robert+C&rft.au=Thorisson%2C+Gudmundur+A&rft.au=Brookes%2C+Anthony+J&rft.date=2012-12-17&rft.eissn=2041-1480&rft.volume=3&rft.issue=1&rft.spage=9&rft_id=info:doi/10.1186%2F2041-1480-3-9&rft_id=info%3Apmid%2F23244533&rft.externalDocID=23244533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon