Semantically enabling a genome-wide association study database
Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and compari...
Uloženo v:
| Vydáno v: | Journal of biomedical semantics Ročník 3; číslo 1; s. 9 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
BioMed Central
17.12.2012
Springer Nature B.V BMC |
| Témata: | |
| ISSN: | 2041-1480, 2041-1480 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background
The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data.
Results
A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications.
Conclusions
We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web. |
|---|---|
| AbstractList | Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. Results A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. Conclusions We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web. The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central - a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data.BACKGROUNDThe amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central - a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data.A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications.RESULTSA pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications.We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web.CONCLUSIONSWe present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web. Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. Results A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. Conclusions We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web. The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central - a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web. Abstract Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits), and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. Results A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH) terminology suitable for describing all traits (diseases and medical signs and symptoms) at various levels of granularity and the Human Phenotype Ontology (HPO) most suitable for describing phenotypic abnormalities (medical signs and symptoms) at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. Conclusions We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic phenotype comparisons. The provision of GWAS nanopublications enables a new dimension for exploring GWAS data, by way of intrinsic links to related data resources within the Linked Data web. The value of such annotation and integration will grow as more biomedical resources adopt the standards of the Semantic Web. |
| Author | Thorisson, Gudmundur A Brookes, Anthony J Free, Robert C Beck, Tim |
| AuthorAffiliation | 1 Department of Genetics, University of Leicester, University Road, Leicester, UK |
| AuthorAffiliation_xml | – name: 1 Department of Genetics, University of Leicester, University Road, Leicester, UK |
| Author_xml | – sequence: 1 givenname: Tim surname: Beck fullname: Beck, Tim email: tb143@leicester.ac.uk organization: Department of Genetics, University of Leicester, University Road – sequence: 2 givenname: Robert C surname: Free fullname: Free, Robert C organization: Department of Genetics, University of Leicester, University Road – sequence: 3 givenname: Gudmundur A surname: Thorisson fullname: Thorisson, Gudmundur A organization: Department of Genetics, University of Leicester, University Road – sequence: 4 givenname: Anthony J surname: Brookes fullname: Brookes, Anthony J organization: Department of Genetics, University of Leicester, University Road |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23244533$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1vFSEUxSemxtbapVsziRs3U4HLMLBpYho_mjRxoa4JMHdGXmagwkzN--_l9bW1bZQNXDj3lwOHl9VBiAGr6jUlp5RK8Z4RThvKJWmgUc-qo_v64MH6sDrJeUPKAKBEwovqkAHjvAU4qs6-4WzC4p2Zpm2NwdjJh7E29Yghztj89j3WJufovFl8DHVe1n5b92Yx1mR8VT0fzJTx5HY-rn58-vj9_Etz-fXzxfmHy8a1jCyNGJyginIYBgvCdgBOIsiecw6cKS5aBoRIAtgO3KAUHbPOENpL4gaUDo6riz23j2ajr5KfTdrqaLy-2Yhp1CaVW0yoHXa2QzsojoL3wJQFx3srXYeSSi4K62zPulrtjL3DsCQzPYI-Pgn-px7jtYa2Ux2wAnh3C0jx14p50bPPDqfJBIxr1hQoE4Ix3hXp2yfSTVxTKE-lGSjJuVJqB3zz0NG9lbuYigD2ApdizgkH7fxyk0cx6CdNid79B73LXO8y16BV6WqedN2B_6c_3etz0YUR01-z_274A0K0wuA |
| CitedBy_id | crossref_primary_10_1016_j_clon_2014_09_008 crossref_primary_10_1186_1471_2105_15_S1_S2 crossref_primary_10_3233_SW_150189 crossref_primary_10_1038_ejhg_2013_274 crossref_primary_10_1093_nar_gkac1017 crossref_primary_10_1186_s13326_016_0047_3 |
| Cites_doi | 10.1186/2041-1480-2-S2-S2 10.1093/bfgp/elm004 10.1002/humu.22079 10.1186/1471-2164-10-22 10.1038/ng.785 10.1186/gb-2012-13-1-r5 10.1073/pnas.0903103106 10.1016/j.jbi.2008.03.004 10.1186/1471-2164-11-S4-S24 10.1016/j.ajhg.2008.09.017 10.1186/1471-2164-10-S1-S6 10.2527/jas.2008-0930 10.1186/1471-2105-12-32 10.1186/2041-1480-2-8 10.2217/14622416.10.2.171 10.1186/gb-2010-11-1-r2 10.1038/75556 10.1111/j.1399-0004.2010.01436.x 10.1038/ng.361 10.1016/j.ymeth.2010.12.017 10.1038/nbt1346 10.1186/1471-2105-12-S4-S6 10.1186/1471-2105-11-S12-S12 10.1016/j.websem.2009.07.002 10.1007/s00335-009-9208-3 10.1056/NEJMp0808934 10.1186/1471-2105-13-S4-S7 10.1186/1471-2105-10-S5-S2 10.1186/2041-1480-1-S1-S7 10.1001/archneurol.2007.3 10.1093/bioinformatics/btp249 |
| ContentType | Journal Article |
| Copyright | Beck et al.; licensee BioMed Central Ltd. 2012 2012. This work is licensed under http://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright ©2012 Beck et al.; licensee BioMed Central Ltd. 2012 Beck et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Beck et al.; licensee BioMed Central Ltd. 2012 – notice: 2012. This work is licensed under http://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright ©2012 Beck et al.; licensee BioMed Central Ltd. 2012 Beck et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.1186/2041-1480-3-9 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Languages & Literatures Mathematics |
| EISSN | 2041-1480 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_ce7b7ebf94e64d329b3c4db8c7e81846 PMC3579732 23244533 10_1186_2041_1480_3_9 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEGXH AENEX AFKRA AFPKN AHBYD AHSBF AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC C6C CCPQU DIK E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR IPNFZ ITC KQ8 M1P M48 M7P M7S ML~ M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PSQYO PTHSS PUEGO RBZ RIG RNS ROL RPM RSV SMT SOJ TUS UKHRP 2VQ 8FE 8FG 8FH AAYXX AFFHD BPHCQ BVXVI CITATION H13 L6V LK8 PQQKQ PROAC ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c520t-6fc619143ffb36b733c8e38d44434294652300803e5f4ae8672bca01d80cfe8c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000209110000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1480 |
| IngestDate | Fri Oct 03 12:51:12 EDT 2025 Tue Nov 04 01:52:05 EST 2025 Thu Sep 04 17:36:28 EDT 2025 Sat Oct 18 23:50:52 EDT 2025 Thu Apr 03 07:04:22 EDT 2025 Sat Nov 29 06:03:06 EST 2025 Tue Nov 18 21:11:06 EST 2025 Sat Sep 06 07:27:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Phenotype GWAS Ontology RDF |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c520t-6fc619143ffb36b733c8e38d44434294652300803e5f4ae8672bca01d80cfe8c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/ce7b7ebf94e64d329b3c4db8c7e81846 |
| PMID | 23244533 |
| PQID | 2398449992 |
| PQPubID | 2040220 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ce7b7ebf94e64d329b3c4db8c7e81846 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3579732 proquest_miscellaneous_1312662247 proquest_journals_2398449992 pubmed_primary_23244533 crossref_citationtrail_10_1186_2041_1480_3_9 crossref_primary_10_1186_2041_1480_3_9 springer_journals_10_1186_2041_1480_3_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20121217 |
| PublicationDateYYYYMMDD | 2012-12-17 |
| PublicationDate_xml | – month: 12 year: 2012 text: 20121217 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Journal of biomedical semantics |
| PublicationTitleAbbrev | J Biomed Semant |
| PublicationTitleAlternate | J Biomed Semantics |
| PublicationYear | 2012 |
| Publisher | BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| References | 10.1186/2041-1480-3-9-B16 10.1186/2041-1480-3-9-B15 10.1186/2041-1480-3-9-B36 10.1186/2041-1480-3-9-B11 10.1186/2041-1480-3-9-B33 10.1186/2041-1480-3-9-B32 10.1186/2041-1480-3-9-B31 10.1186/2041-1480-3-9-B53 10.1186/2041-1480-3-9-B9 10.1186/2041-1480-3-9-B8 10.1186/2041-1480-3-9-B7 10.1186/2041-1480-3-9-B6 10.1186/2041-1480-3-9-B5 10.1186/2041-1480-3-9-B4 10.1186/2041-1480-3-9-B19 10.1186/2041-1480-3-9-B17 10.1186/2041-1480-3-9-B30 10.1186/2041-1480-3-9-B50 10.1186/2041-1480-3-9-B27 10.1186/2041-1480-3-9-B26 10.1186/2041-1480-3-9-B25 10.1186/2041-1480-3-9-B69 10.1186/2041-1480-3-9-B22 10.1186/2041-1480-3-9-B65 10.1186/2041-1480-3-9-B20 10.1186/2041-1480-3-9-B42 - 10.1186/2041-1480-3-9-B29 10.1186/2041-1480-3-9-B1 10.1186/2041-1480-3-9-B63 10.1186/2041-1480-3-9-B40 15642099 - Genome Biol. 2005;6(1):R7 19594883 - BMC Genomics. 2009;10 Suppl 1:S6 19964203 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:7069-72 20412080 - Clin Genet. 2010 Jun;77(6):525-34 22536974 - BMC Bioinformatics. 2012;13 Suppl 4:S7 17401136 - Brief Funct Genomic Proteomic. 2007 Mar;6(1):3-7 18472304 - J Biomed Inform. 2008 Oct;41(5):706-16 22118330 - Inform Prim Care. 2011;19(1):3-5 22293552 - Genome Biol. 2012;13(1):R5 21261995 - BMC Bioinformatics. 2011;12:32 11825149 - Proc AMIA Symp. 2001;:17-21 21992079 - BMC Bioinformatics. 2011;12 Suppl 4:S6 22024447 - J Biomed Semantics. 2011;2(1):8 18842627 - Nucleic Acids Res. 2009 Jan;37(Database issue):D793-6 22058129 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1036-40 21347171 - Summit on Translat Bioinforma. 2009;2009:56-60 21210979 - BMC Bioinformatics. 2010;11 Suppl 12:S12 10802651 - Nat Genet. 2000 May;25(1):25-9 20507906 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W165-74 20427557 - Dis Model Mech. 2010 May-Jun;3(5-6):281-9 22139925 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1047-54 19910364 - Nucleic Acids Res. 2010 Jan;38(Database issue):D5-16 19474294 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7 18948288 - Nucleic Acids Res. 2009 Jan;37(Database issue):D797-802 19430483 - Nat Genet. 2009 Jun;41(6):666-76 21185382 - Methods. 2011 Apr;53(4):394-404 20064205 - Genome Biol. 2010;11(1):R2 21051359 - Nucleic Acids Res. 2011 Jan;39(Database issue):D842-8 19649761 - Mamm Genome. 2009 Aug;20(8):457-61 21143808 - BMC Genomics. 2010;11 Suppl 4:S24 18272850 - J Anim Sci. 2008 Jun;86(6):1485-91 21423179 - Nat Genet. 2011 Apr;43(4):295-301 19144180 - BMC Genomics. 2009;10:22 22415892 - Hum Mutat. 2012 May;33(5):813-6 17989687 - Nat Biotechnol. 2007 Nov;25(11):1251-5 19161620 - BMC Med Genet. 2009;10:6 18753767 - Genome Dyn. 2006;2:33-45 17998437 - Arch Neurol. 2008 Jan;65(1):45-53 19369661 - N Engl J Med. 2009 Apr 23;360(17):1699-701 20626927 - J Biomed Semantics. 2010;1 Suppl 1:S7 22102590 - Nucleic Acids Res. 2012 Jan;40(Database issue):D71-5 19933761 - Nucleic Acids Res. 2010 Jan;38(Database issue):D577-85 19426459 - BMC Bioinformatics. 2009;10 Suppl 5:S2 21624157 - J Biomed Semantics. 2011;2 Suppl 2:S2 18950739 - Am J Hum Genet. 2008 Nov;83(5):610-5 19376821 - Bioinformatics. 2009 Jun 1;25(11):1412-8 20501605 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W677-82 19898446 - Nat Biotechnol. 2009 Nov;27(11):984-5 19207018 - Pharmacogenomics. 2009 Feb;10(2):171-9 21672956 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W541-5 16845108 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W729-32 |
| References_xml | – ident: 10.1186/2041-1480-3-9-B15 doi: 10.1186/2041-1480-2-S2-S2 – ident: 10.1186/2041-1480-3-9-B6 doi: 10.1093/bfgp/elm004 – ident: 10.1186/2041-1480-3-9-B22 doi: 10.1002/humu.22079 – ident: 10.1186/2041-1480-3-9-B65 doi: 10.1186/1471-2164-10-22 – ident: 10.1186/2041-1480-3-9-B36 doi: 10.1038/ng.785 – ident: 10.1186/2041-1480-3-9-B25 doi: 10.1186/gb-2012-13-1-r5 – ident: 10.1186/2041-1480-3-9-B4 doi: 10.1073/pnas.0903103106 – ident: 10.1186/2041-1480-3-9-B33 doi: 10.1016/j.jbi.2008.03.004 – ident: 10.1186/2041-1480-3-9-B31 doi: 10.1186/1471-2164-11-S4-S24 – ident: 10.1186/2041-1480-3-9-B42 doi: 10.1016/j.ajhg.2008.09.017 – ident: 10.1186/2041-1480-3-9-B40 doi: 10.1186/1471-2164-10-S1-S6 – ident: 10.1186/2041-1480-3-9-B16 doi: 10.2527/jas.2008-0930 – ident: 10.1186/2041-1480-3-9-B7 doi: 10.1186/1471-2105-12-32 – ident: 10.1186/2041-1480-3-9-B29 doi: 10.1186/2041-1480-2-8 – ident: 10.1186/2041-1480-3-9-B20 doi: 10.2217/14622416.10.2.171 – ident: 10.1186/2041-1480-3-9-B26 doi: 10.1186/gb-2010-11-1-r2 – ident: 10.1186/2041-1480-3-9-B5 doi: 10.1038/75556 – ident: 10.1186/2041-1480-3-9-B11 doi: 10.1111/j.1399-0004.2010.01436.x – ident: 10.1186/2041-1480-3-9-B17 doi: 10.1038/ng.361 – ident: 10.1186/2041-1480-3-9-B50 doi: 10.1016/j.ymeth.2010.12.017 – ident: 10.1186/2041-1480-3-9-B9 doi: 10.1038/nbt1346 – ident: 10.1186/2041-1480-3-9-B32 doi: 10.1186/1471-2105-12-S4-S6 – ident: 10.1186/2041-1480-3-9-B63 doi: 10.1186/1471-2105-11-S12-S12 – ident: - doi: 10.1016/j.websem.2009.07.002 – ident: 10.1186/2041-1480-3-9-B27 doi: 10.1007/s00335-009-9208-3 – ident: 10.1186/2041-1480-3-9-B1 doi: 10.1056/NEJMp0808934 – ident: 10.1186/2041-1480-3-9-B30 doi: 10.1186/1471-2105-13-S4-S7 – ident: 10.1186/2041-1480-3-9-B8 doi: 10.1186/1471-2105-10-S5-S2 – ident: 10.1186/2041-1480-3-9-B69 doi: 10.1186/2041-1480-1-S1-S7 – ident: 10.1186/2041-1480-3-9-B19 doi: 10.1001/archneurol.2007.3 – ident: 10.1186/2041-1480-3-9-B53 doi: 10.1093/bioinformatics/btp249 – reference: 20501605 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W677-82 – reference: 11825149 - Proc AMIA Symp. 2001;:17-21 – reference: 20626927 - J Biomed Semantics. 2010;1 Suppl 1:S7 – reference: 19594883 - BMC Genomics. 2009;10 Suppl 1:S6 – reference: 17998437 - Arch Neurol. 2008 Jan;65(1):45-53 – reference: 18950739 - Am J Hum Genet. 2008 Nov;83(5):610-5 – reference: 22536974 - BMC Bioinformatics. 2012;13 Suppl 4:S7 – reference: 21261995 - BMC Bioinformatics. 2011;12:32 – reference: 18948288 - Nucleic Acids Res. 2009 Jan;37(Database issue):D797-802 – reference: 21210979 - BMC Bioinformatics. 2010;11 Suppl 12:S12 – reference: 10802651 - Nat Genet. 2000 May;25(1):25-9 – reference: 18472304 - J Biomed Inform. 2008 Oct;41(5):706-16 – reference: 19898446 - Nat Biotechnol. 2009 Nov;27(11):984-5 – reference: 20064205 - Genome Biol. 2010;11(1):R2 – reference: 18272850 - J Anim Sci. 2008 Jun;86(6):1485-91 – reference: 19376821 - Bioinformatics. 2009 Jun 1;25(11):1412-8 – reference: 19964203 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:7069-72 – reference: 21992079 - BMC Bioinformatics. 2011;12 Suppl 4:S6 – reference: 22024447 - J Biomed Semantics. 2011;2(1):8 – reference: 19649761 - Mamm Genome. 2009 Aug;20(8):457-61 – reference: 20412080 - Clin Genet. 2010 Jun;77(6):525-34 – reference: 21423179 - Nat Genet. 2011 Apr;43(4):295-301 – reference: 19910364 - Nucleic Acids Res. 2010 Jan;38(Database issue):D5-16 – reference: 20507906 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W165-74 – reference: 18842627 - Nucleic Acids Res. 2009 Jan;37(Database issue):D793-6 – reference: 20427557 - Dis Model Mech. 2010 May-Jun;3(5-6):281-9 – reference: 21624157 - J Biomed Semantics. 2011;2 Suppl 2:S2 – reference: 21051359 - Nucleic Acids Res. 2011 Jan;39(Database issue):D842-8 – reference: 19207018 - Pharmacogenomics. 2009 Feb;10(2):171-9 – reference: 21347171 - Summit on Translat Bioinforma. 2009;2009:56-60 – reference: 22139925 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1047-54 – reference: 17989687 - Nat Biotechnol. 2007 Nov;25(11):1251-5 – reference: 17401136 - Brief Funct Genomic Proteomic. 2007 Mar;6(1):3-7 – reference: 21185382 - Methods. 2011 Apr;53(4):394-404 – reference: 19161620 - BMC Med Genet. 2009;10:6 – reference: 19474294 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7 – reference: 22415892 - Hum Mutat. 2012 May;33(5):813-6 – reference: 21672956 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W541-5 – reference: 22058129 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1036-40 – reference: 22293552 - Genome Biol. 2012;13(1):R5 – reference: 19369661 - N Engl J Med. 2009 Apr 23;360(17):1699-701 – reference: 18753767 - Genome Dyn. 2006;2:33-45 – reference: 19430483 - Nat Genet. 2009 Jun;41(6):666-76 – reference: 21143808 - BMC Genomics. 2010;11 Suppl 4:S24 – reference: 22118330 - Inform Prim Care. 2011;19(1):3-5 – reference: 22102590 - Nucleic Acids Res. 2012 Jan;40(Database issue):D71-5 – reference: 15642099 - Genome Biol. 2005;6(1):R7 – reference: 16845108 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W729-32 – reference: 19426459 - BMC Bioinformatics. 2009;10 Suppl 5:S2 – reference: 19144180 - BMC Genomics. 2009;10:22 – reference: 19933761 - Nucleic Acids Res. 2010 Jan;38(Database issue):D577-85 |
| SSID | ssj0000331083 |
| Score | 1.9420869 |
| Snippet | Background
The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and... The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and interchange... Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data reuse and... Abstract Background The amount of data generated from genome-wide association studies (GWAS) has grown rapidly, but considerations for GWAS phenotype data... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9 |
| SubjectTerms | Abnormalities Algorithms Annotations Automation Biocompatibility Bioinformatics Blood pressure Combinatorial Libraries Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data Mining and Knowledge Discovery Disease Genome-wide association studies Genomes Genotype & phenotype Genotypes GWAS Integration Linked Data Mathematics Mathematics and Statistics Medical Subject Headings-MeSH Ontology Phenotype Phenotypes Principles RDF Resource Description Framework-RDF Semantic technologies in healthcare and life sciences 2012 Semantic web Semantics Signs and symptoms Species Studies Terminology |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1B4cCFb0qgICOhcsEiyTi2cwEBouJQVUiAtDcrsR1Yqc22m20R_x6P18lqoXDhFCnxYeyZ8bwZO28AnguFEqWQwdOqkgcLQV5jJTii85VwufNOx2YT6uhIz2b1p1RwG9K1ynFPjBu1W1iqkb8injpB8Lx8c3rGqWsUna6mFhpX4Rq1zSY7VzM11VhyDOBF40itqWVI9UXBQwYQ9h5eb4WiyNh_Gcz887bkb0emMRId3PrfOdyGmwmDsrdro7kDV3x_F3YPU-VyYPvscCJbHu7B68_-JKw_afP4J_P0s1WQizWM-F1PPP8xd541GzWzSFnL6O4pxcj78PXgw5f3H3lqu8BtVeYrLjsrifUNu65F2SpEqz1qJ4TAEL2EpEJyAJroq040XktVtrbJC6dz23lt8QHs9IvePwRWSEc5Wid0WYgQFZq6zXV4eK0bUbZlBi9HDRibOMmpNcaxibmJloYUZkhhBk2dwf40_HRNxvG3ge9IndMg4tCOLxbLbya5pLFetcq3XS28FA7LukUrXKut8gHFCJnB3qhFkxx7MBsVZvBs-hxcks5Zmt4vzgdTYBFgT8BGKoPdte1MkhCAFQFiZ6C2rGpL1O0v_fx7pP3GShG1UgYvRvvbiHXpKjz69wQew42A_mJrm0Ltwc5qee6fwHV7sZoPy6fRk34BbQ4k3w priority: 102 providerName: ProQuest – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9UwDLbG4MAO_BgwCgMFCY0L1draTdILEiAmDmNCGqDdojZJ4Umjb3p9A_Hf4-S1nd4YEpxaNalqJXb92Uk-AzwnhRIlSba0skhZQzCtsKQU0fmSXOa807HYhDo60icn1ccN2B_PwsTd7uOSZPxTR7PWkqN0ylMG7_zbSKtrcL0MRDMhPD_-MiVVMmS0onHk0rz81prviRT9V-HKP7dHXlojja7n4PZ_C30Hbg0oU7xeqcVd2PDdNuwcDrnJXuyJw4lOud-GrQ8TeWt_D14d820Xc9ynv4QPh6v4k6IWgc_1u09_zpwX9cW0ikhRK8Je0-AT78Png3ef3r5PhzILqS2LbJnK1srA8oZt26BsFKLVHrUjImRvRTIkjhlYoi9bqr2WqmhsneVOZ7b12uID2OzmnX8IIpcuxGQt6SIn9gJ11WSaL17rmoqmSODlOAHGDhzkoRTGqYmxiJYmDJgJA2bQVAnsTd3PVuQbf-v4Jszm1ClwZscH88VXM5igsV41yjdtRV6Sw6Jq0JJrtFWeUQvJBHZHXTCDIfcm0CNSiApZ9mdTM5tgWFepOz8_702OOcMcxkIqgZ2V6kySBMBKDKkTUGtKtSbqeks3-xZpvrFUgUopgRejal2IdeUoPPrnno_hJgO_WNUmV7uwuVyc-ydww_5YzvrF02hTvwGlGxuW priority: 102 providerName: Springer Nature |
| Title | Semantically enabling a genome-wide association study database |
| URI | https://link.springer.com/article/10.1186/2041-1480-3-9 https://www.ncbi.nlm.nih.gov/pubmed/23244533 https://www.proquest.com/docview/2398449992 https://www.proquest.com/docview/1312662247 https://pubmed.ncbi.nlm.nih.gov/PMC3579732 https://doaj.org/article/ce7b7ebf94e64d329b3c4db8c7e81846 |
| Volume | 3 |
| WOSCitedRecordID | wos000209110000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: RBZ dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: M7S dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 2041-1480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331083 issn: 2041-1480 databaseCode: RSV dateStart: 20101201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4cAF8SyBsjISKheiJrFjOxckilqBVFZRF9ByshLbUVdqU9RsW_HvmXGyaReKuHBJFNuKJjNjz-dHvgF4LRSXXAqJPS3PYvQQHhc8FzHnzufCJc47HZJNqOlUz-dFeS3VF50J6-mBe8XtWK9q5eumEF4Kx7Oi5la4WlvlMdaIQLadqOLaZCqMwRxhS-DgzBKRxoj5kxXBppY7Y1mMkq0FpMDbfxPY_PPM5G8bpyEe7T-A-wOQZO_7D3gIt3z7CDYPhuXHjm2zg5ExuXsM72b-BJVIJjn-yTz9MYWvZRUjktYTH18unGfVla1Y4J1ldICUAt0T-Lq_9-XDx3jInRDbPEuWsWysJOo23jQ1l7Xi3GrPtRNCcAxBQtJqMKJF7vNGVF5LldW2SlKnE9t4bflT2GhPW_8MWCodTbQaobNU4NBeFXWi8ea1rkRWZxG8XSnQ2IFYnPJbHJswwdDSkL4N6dtwU0SwPTb_0TNq_K3hLlljbERE2KEA3cMM7mH-5R4RbK1saYbe2RniPBQ01UPZX43V2K9os6Rq_el5Z1KeInZBgKMi2OxNP0pCKFQgTo5ArTnFmqjrNe3iKHB381wRP1IEb1bucyXWjVp4_j-08ALuIdALWWxStQUby7Nz_xLu2ovlojubwG01V-GqJ3Bnd29aHk5Cd5rQSdgyXGdYU376XH7Hp8PZt1-KJCGl |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceNMGChgJyoWoie3YzgEQr6qrblcrUaRyMont0JXabNlsqfqn-I14sklWC4VbD5wiJVbkx-fxN2P7G4BnXDLBBBd-piU09AhhYcoSHjJmXcJtZJ1VdbIJORyqg4N0tAI_27sweKyytYm1obYTgzHyLdSp40jP6ZuT7yFmjcLd1TaFxhwWu-78zLts1av-Bz--zynd_rj_fidssgqEJqHRLBSFEShqxooiZyKXjBnlmLKcc-aNMxcYJ_U8irmk4JlTQtLcZFFsVWQKpwzz_70Cq9yDPerB6qi_N_rSRXUi5umSYq2YpxJbNOJx6H0Ob-3CdGnxq3MEXERs_zyf-dsmbb32bd_833rtFtxoWDZ5O58Wt2HFlXdgbdDEZiuySQadnHR1F15_csceYYjXo3Pi8DqZ7weSEVSwPXbh2dg6ki2ATGpRXoKna5EF3IPPl9KY-9ArJ6VbBxILi15owRWNuV_3sjSPlH84pTJOcxrAy3bEtWlU1zH5x5GuvS8lNAJEI0A002kAm13xk7ncyN8KvkP4dIVQJbx-MZl-043R0cbJXLq8SLkT3DKa5sxwmysjnedpXASw0aJGN6ar0gvIBPC0--yNDu4kZaWbnFY6ZrEndp79yQDW5ljtaoIUnXsnIgC5hOKlqi5_KceHtbA5SySKRwXwosX7oloX9sKDfzfgCVzb2d8b6EF_uPsQrnuuWyfyieUG9GbTU_cIrpofs3E1fdzMYwJfL3sS_ALr3IFN |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_OU0Qf_Dj1rJ4aQc4Xi21nmqQIgl-L4rocnsq9hTZJdeHsHts9xf_eJP049jxB8KmlndJpMtP5zST5BeARCeTIiTtPy7PYWQjGBeYUIxqbk0mMNTJsNiFmM3lwUOxtwLNhLUyY7T4MSXZrGjxLU7N6emTqzsUldxk7pbED8u4XEhfn4Dy5JMbP5_q4_2UssCTokIvEgVfz9FNrcSjQ9Z-FMf-cKnlqvDSEocnV__qAa3ClR5_sRWcu12HDNluwPe1rli3bZdORZrndgssfRlLX9gY833enTah9H_5i1i-6cq9nJfM8r99t_HNuLCtPupsF6lrm56D6WHkTPk_efHr1Nu63X4h1niWrmNeae_Y3rOsKeSUQtbQoDRGhi2LEfUHZAU60eU2llVxklS6T1MhE11ZqvAWbzaKxt4Gl3PhcrSaZpeSiQ1lUiXQHK2VJWZVF8GToDKV7bnK_RcahCjmK5Mo3mPINplAVEeyO4kcdKcffBF_6nh2FPJd2uLBYflW9ayptRSVsVRdkORnMigo1mUpqYR2aIR7BzmAXqnfwVnnaRPLZotP94XjbuaYfbykbuzhuVYqpgz8OI4kItjszGjXxQJYc1I5ArBnYmqrrd5r5t0D_jbnwFEsRPB7M7EStM1vhzj9LPoCLe68navpu9v4uXHLYMGx8k4od2Fwtj-09uKB_rObt8n5wtd-Tnyde |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantically+enabling+a+genome-wide+association+study+database&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Beck%2C+Tim&rft.au=Free%2C+Robert+C&rft.au=Thorisson%2C+Gudmundur+A&rft.au=Brookes%2C+Anthony+J&rft.date=2012-12-17&rft.eissn=2041-1480&rft.volume=3&rft.issue=1&rft.spage=9&rft_id=info:doi/10.1186%2F2041-1480-3-9&rft_id=info%3Apmid%2F23244533&rft.externalDocID=23244533 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon |