Artificial Intelligence-Based Robust Hybrid Algorithm Design and Implementation for Real-Time Detection of Plant Diseases in Agricultural Environments

The early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing agricultural product productivity. Not only the early detection of the plant disease but also the determination of its type play a critical role...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biology (Basel, Switzerland) Ročník 11; číslo 12; s. 1732
Hlavní autori: Yağ, İlayda, Altan, Aytaç
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 29.11.2022
MDPI
Predmet:
ISSN:2079-7737, 2079-7737
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing agricultural product productivity. Not only the early detection of the plant disease but also the determination of its type play a critical role in determining the appropriate treatment. The fact that visual inspection, which is frequently used in determining plant disease and types, is tiring and prone to human error, necessitated the development of algorithms that can automatically classify plant disease with high accuracy and low computational cost. In this study, a new hybrid plant leaf disease classification model with high accuracy and low computational complexity, consisting of the wrapper approach, including the flower pollination algorithm (FPA) and support vector machine (SVM), and a convolutional neural network (CNN) classifier, is developed with a wrapper-based feature selection approach using metaheuristic optimization techniques. The features of the image dataset consisting of apple, grape, and tomato plants have been extracted by a two-dimensional discrete wavelet transform (2D-DWT) using wavelet families such as biorthogonal, Coiflets, Daubechies, Fejer–Korovkin, and symlets. Features that keep classifier performance high for each family are selected by the wrapper approach, consisting of the population-based metaheuristics FPA and SVM. The performance of the proposed optimization algorithm is compared with the particle swarm optimization (PSO) algorithm. Afterwards, the classification performance is obtained by using the lowest number of features that can keep the classification performance high for the CNN classifier. The CNN classifier with a single layer of classification without a feature extraction layer is used to minimize the complexity of the model and to deal with the model hyperparameter problem. The obtained model is embedded in the NVIDIA Jetson Nano developer kit on the unmanned aerial vehicle (UAV), and real-time classification tests are performed on apple, grape, and tomato plants. The experimental results obtained show that the proposed model classifies the specified plant leaf diseases in real time with high accuracy. Moreover, it is concluded that the robust hybrid classification model, which is created by selecting the lowest number of features with the optimization algorithm with low computational complexity, can classify plant leaf diseases in real time with precision.
AbstractList The early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing agricultural product productivity. Not only the early detection of the plant disease but also the determination of its type play a critical role in determining the appropriate treatment. The fact that visual inspection, which is frequently used in determining plant disease and types, is tiring and prone to human error, necessitated the development of algorithms that can automatically classify plant disease with high accuracy and low computational cost. In this study, a new hybrid plant leaf disease classification model with high accuracy and low computational complexity, consisting of the wrapper approach, including the flower pollination algorithm (FPA) and support vector machine (SVM), and a convolutional neural network (CNN) classifier, is developed with a wrapper-based feature selection approach using metaheuristic optimization techniques. The features of the image dataset consisting of apple, grape, and tomato plants have been extracted by a two-dimensional discrete wavelet transform (2D-DWT) using wavelet families such as biorthogonal, Coiflets, Daubechies, Fejer–Korovkin, and symlets. Features that keep classifier performance high for each family are selected by the wrapper approach, consisting of the population-based metaheuristics FPA and SVM. The performance of the proposed optimization algorithm is compared with the particle swarm optimization (PSO) algorithm. Afterwards, the classification performance is obtained by using the lowest number of features that can keep the classification performance high for the CNN classifier. The CNN classifier with a single layer of classification without a feature extraction layer is used to minimize the complexity of the model and to deal with the model hyperparameter problem. The obtained model is embedded in the NVIDIA Jetson Nano developer kit on the unmanned aerial vehicle (UAV), and real-time classification tests are performed on apple, grape, and tomato plants. The experimental results obtained show that the proposed model classifies the specified plant leaf diseases in real time with high accuracy. Moreover, it is concluded that the robust hybrid classification model, which is created by selecting the lowest number of features with the optimization algorithm with low computational complexity, can classify plant leaf diseases in real time with precision.
Simple SummaryPlant disease, defined as an abnormal condition that disrupts the normal growth of the plant, is one of the main causes of economic losses in the agricultural industry. Early diagnosis of plant disease is critical to increasing agricultural crop productivity. In this paper, a new robust hybrid classification model based on swarm optimization-supported feature selection, including machine learning and deep learning algorithms, that allows real-time classification of diseases in apple, grape, and tomato plants has been developed. In this way, it will be possible to diagnose the plant disease at an early phase and apply the appropriate treatment.AbstractThe early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing agricultural product productivity. Not only the early detection of the plant disease but also the determination of its type play a critical role in determining the appropriate treatment. The fact that visual inspection, which is frequently used in determining plant disease and types, is tiring and prone to human error, necessitated the development of algorithms that can automatically classify plant disease with high accuracy and low computational cost. In this study, a new hybrid plant leaf disease classification model with high accuracy and low computational complexity, consisting of the wrapper approach, including the flower pollination algorithm (FPA) and support vector machine (SVM), and a convolutional neural network (CNN) classifier, is developed with a wrapper-based feature selection approach using metaheuristic optimization techniques. The features of the image dataset consisting of apple, grape, and tomato plants have been extracted by a two-dimensional discrete wavelet transform (2D-DWT) using wavelet families such as biorthogonal, Coiflets, Daubechies, Fejer–Korovkin, and symlets. Features that keep classifier performance high for each family are selected by the wrapper approach, consisting of the population-based metaheuristics FPA and SVM. The performance of the proposed optimization algorithm is compared with the particle swarm optimization (PSO) algorithm. Afterwards, the classification performance is obtained by using the lowest number of features that can keep the classification performance high for the CNN classifier. The CNN classifier with a single layer of classification without a feature extraction layer is used to minimize the complexity of the model and to deal with the model hyperparameter problem. The obtained model is embedded in the NVIDIA Jetson Nano developer kit on the unmanned aerial vehicle (UAV), and real-time classification tests are performed on apple, grape, and tomato plants. The experimental results obtained show that the proposed model classifies the specified plant leaf diseases in real time with high accuracy. Moreover, it is concluded that the robust hybrid classification model, which is created by selecting the lowest number of features with the optimization algorithm with low computational complexity, can classify plant leaf diseases in real time with precision.
The early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing agricultural product productivity. Not only the early detection of the plant disease but also the determination of its type play a critical role in determining the appropriate treatment. The fact that visual inspection, which is frequently used in determining plant disease and types, is tiring and prone to human error, necessitated the development of algorithms that can automatically classify plant disease with high accuracy and low computational cost. In this study, a new hybrid plant leaf disease classification model with high accuracy and low computational complexity, consisting of the wrapper approach, including the flower pollination algorithm (FPA) and support vector machine (SVM), and a convolutional neural network (CNN) classifier, is developed with a wrapper-based feature selection approach using metaheuristic optimization techniques. The features of the image dataset consisting of apple, grape, and tomato plants have been extracted by a two-dimensional discrete wavelet transform (2D-DWT) using wavelet families such as biorthogonal, Coiflets, Daubechies, Fejer-Korovkin, and symlets. Features that keep classifier performance high for each family are selected by the wrapper approach, consisting of the population-based metaheuristics FPA and SVM. The performance of the proposed optimization algorithm is compared with the particle swarm optimization (PSO) algorithm. Afterwards, the classification performance is obtained by using the lowest number of features that can keep the classification performance high for the CNN classifier. The CNN classifier with a single layer of classification without a feature extraction layer is used to minimize the complexity of the model and to deal with the model hyperparameter problem. The obtained model is embedded in the NVIDIA Jetson Nano developer kit on the unmanned aerial vehicle (UAV), and real-time classification tests are performed on apple, grape, and tomato plants. The experimental results obtained show that the proposed model classifies the specified plant leaf diseases in real time with high accuracy. Moreover, it is concluded that the robust hybrid classification model, which is created by selecting the lowest number of features with the optimization algorithm with low computational complexity, can classify plant leaf diseases in real time with precision.The early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing agricultural product productivity. Not only the early detection of the plant disease but also the determination of its type play a critical role in determining the appropriate treatment. The fact that visual inspection, which is frequently used in determining plant disease and types, is tiring and prone to human error, necessitated the development of algorithms that can automatically classify plant disease with high accuracy and low computational cost. In this study, a new hybrid plant leaf disease classification model with high accuracy and low computational complexity, consisting of the wrapper approach, including the flower pollination algorithm (FPA) and support vector machine (SVM), and a convolutional neural network (CNN) classifier, is developed with a wrapper-based feature selection approach using metaheuristic optimization techniques. The features of the image dataset consisting of apple, grape, and tomato plants have been extracted by a two-dimensional discrete wavelet transform (2D-DWT) using wavelet families such as biorthogonal, Coiflets, Daubechies, Fejer-Korovkin, and symlets. Features that keep classifier performance high for each family are selected by the wrapper approach, consisting of the population-based metaheuristics FPA and SVM. The performance of the proposed optimization algorithm is compared with the particle swarm optimization (PSO) algorithm. Afterwards, the classification performance is obtained by using the lowest number of features that can keep the classification performance high for the CNN classifier. The CNN classifier with a single layer of classification without a feature extraction layer is used to minimize the complexity of the model and to deal with the model hyperparameter problem. The obtained model is embedded in the NVIDIA Jetson Nano developer kit on the unmanned aerial vehicle (UAV), and real-time classification tests are performed on apple, grape, and tomato plants. The experimental results obtained show that the proposed model classifies the specified plant leaf diseases in real time with high accuracy. Moreover, it is concluded that the robust hybrid classification model, which is created by selecting the lowest number of features with the optimization algorithm with low computational complexity, can classify plant leaf diseases in real time with precision.
Author Yağ, İlayda
Altan, Aytaç
AuthorAffiliation Department of Electrical Electronics Engineering, Zonguldak Bülent Ecevit University, Zonguldak 67100, Turkey
AuthorAffiliation_xml – name: Department of Electrical Electronics Engineering, Zonguldak Bülent Ecevit University, Zonguldak 67100, Turkey
Author_xml – sequence: 1
  givenname: İlayda
  surname: Yağ
  fullname: Yağ, İlayda
– sequence: 2
  givenname: Aytaç
  orcidid: 0000-0001-7923-4528
  surname: Altan
  fullname: Altan, Aytaç
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36552243$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1rHCEYx4eS0qRpzr0VoZdepvFlRsdLYfPSZiHQEtKzqONMXBzdqhPYL9LPWzeblGSh1Ivy-H9-z-vb6sAHb6rqPYKfCeHwVNngwrhBCGHECH5VHWHIeM0YYQfP3ofVSUorWA6DmBL6pjoktG0xbshR9XsRsx2sttKBpc_GOTsar019JpPpwU1Qc8rgaqOi7cHCjSHafDeBC5Ps6IH0PVhOa2cm47PMNngwhAhujHT1rZ1M0WWjH-xhAD-c9Blc2GQKOwHrwWKMVs8uz7GEv_T3Nga_RaV31etBumROHu_j6ufXy9vzq_r6-7fl-eK61i2GuUZIYTpwSqQcZCN5zwfaKAmxRphjSs3QYE2bvoMIdrrrYC-xMZy1lAy8oYQcV8sdtw9yJdbRTjJuRJBWPBhCHIUsDdLOiK6AtcKkUVQ1qtGyLw1ltNN9CdRRVlhfdqz1rCbT61JHKesF9OWPt3diDPeCM9ZC0hbAp0dADL9mk7KYbNJlJNKbMCeBu45RxDCH_5eytkOQE7wt8eOedBXm6EtXtypKadOyLfDD8-T_Zv20KUXQ7gQ6hpSiGYS2u5GXWqwTCIrtUoq9pSx-p3t-T-h_efwBouPnKA
CitedBy_id crossref_primary_10_1007_s11071_023_08977_8
crossref_primary_10_3390_brainsci13020267
crossref_primary_10_1007_s11571_023_10035_3
crossref_primary_10_1016_j_heliyon_2024_e26937
crossref_primary_10_1007_s10846_023_01981_5
crossref_primary_10_1016_j_imavis_2023_104855
crossref_primary_10_1007_s10341_024_01085_w
crossref_primary_10_1016_j_ijbiomac_2024_134701
crossref_primary_10_1016_j_patcog_2024_110899
crossref_primary_10_1371_journal_pone_0293978
crossref_primary_10_1016_j_image_2025_117326
crossref_primary_10_1016_j_patcog_2024_110813
crossref_primary_10_1016_j_image_2025_117332
crossref_primary_10_3390_inventions9010008
crossref_primary_10_1108_RIA_05_2023_0068
crossref_primary_10_1007_s40974_023_00288_3
crossref_primary_10_1016_j_apenergy_2023_121457
crossref_primary_10_1016_j_neunet_2024_106937
crossref_primary_10_1016_j_image_2024_117170
crossref_primary_10_1016_j_patrec_2025_04_003
crossref_primary_10_7717_peerj_cs_2365
crossref_primary_10_1016_j_aei_2024_102470
crossref_primary_10_1016_j_patrec_2024_08_007
crossref_primary_10_1016_j_imavis_2024_105273
crossref_primary_10_1016_j_asej_2024_102742
crossref_primary_10_1016_j_imavis_2024_105154
crossref_primary_10_1038_s41598_024_76587_4
crossref_primary_10_1016_j_dsp_2024_104558
crossref_primary_10_1016_j_chaos_2023_114432
crossref_primary_10_1016_j_bspc_2023_105478
crossref_primary_10_1371_journal_pone_0290117
crossref_primary_10_1016_j_phycom_2024_102533
crossref_primary_10_1016_j_patcog_2024_110701
crossref_primary_10_1016_j_image_2025_117337
crossref_primary_10_1016_j_imavis_2024_105145
crossref_primary_10_1016_j_sigpro_2023_109289
crossref_primary_10_1016_j_image_2023_117063
crossref_primary_10_1016_j_ins_2024_120098
crossref_primary_10_1016_j_neunet_2023_06_021
crossref_primary_10_1016_j_sigpro_2023_109046
crossref_primary_10_1016_j_patrec_2024_03_018
crossref_primary_10_1371_journal_pone_0283751
crossref_primary_10_1016_j_patcog_2024_111194
crossref_primary_10_3389_fpls_2025_1612800
crossref_primary_10_1016_j_ins_2024_120534
crossref_primary_10_1016_j_patcog_2023_109937
crossref_primary_10_1016_j_imavis_2025_105442
crossref_primary_10_3390_plants13172435
crossref_primary_10_1016_j_applthermaleng_2023_121901
crossref_primary_10_1007_s11571_023_09941_3
crossref_primary_10_1016_j_imavis_2023_104716
crossref_primary_10_1016_j_patcog_2024_110358
crossref_primary_10_1016_j_bspc_2024_107086
crossref_primary_10_1016_j_ins_2023_03_062
crossref_primary_10_1016_j_patcog_2024_110876
crossref_primary_10_1016_j_image_2024_117199
crossref_primary_10_1371_journal_pone_0287349
crossref_primary_10_1016_j_sigpro_2023_109133
crossref_primary_10_1177_00202940231193022
crossref_primary_10_1016_j_ins_2023_119186
crossref_primary_10_1155_cplx_7838841
crossref_primary_10_1038_s41598_024_59562_x
crossref_primary_10_1049_ell2_13213
crossref_primary_10_1007_s10586_023_04161_0
crossref_primary_10_1007_s00530_025_01745_1
crossref_primary_10_1007_s11571_024_10087_z
crossref_primary_10_1049_ell2_70214
crossref_primary_10_1016_j_ins_2024_120868
crossref_primary_10_1016_j_heliyon_2023_e18466
crossref_primary_10_1016_j_heliyon_2024_e40035
crossref_primary_10_1016_j_patcog_2023_109994
crossref_primary_10_1007_s11571_023_10000_0
crossref_primary_10_1016_j_imavis_2024_104988
crossref_primary_10_1016_j_heliyon_2023_e21471
crossref_primary_10_1016_j_patrec_2025_03_023
crossref_primary_10_1109_ACCESS_2025_3555142
crossref_primary_10_1016_j_ins_2023_118948
crossref_primary_10_3390_horticulturae9111213
crossref_primary_10_1016_j_chaos_2024_115163
crossref_primary_10_1007_s11694_025_03385_5
crossref_primary_10_3390_rs16183541
crossref_primary_10_1016_j_ymssp_2025_112935
crossref_primary_10_1038_s41598_024_75807_1
crossref_primary_10_1049_ell2_70043
crossref_primary_10_1016_j_imavis_2023_104698
crossref_primary_10_1016_j_fbio_2025_106404
crossref_primary_10_1016_j_patcog_2024_111171
crossref_primary_10_1016_j_ins_2024_120836
crossref_primary_10_1016_j_patcog_2024_111022
crossref_primary_10_1177_00202940231186674
crossref_primary_10_1007_s11042_024_19642_6
crossref_primary_10_3390_app13031386
crossref_primary_10_3390_horticulturae10070676
crossref_primary_10_1016_j_aei_2025_103255
crossref_primary_10_1016_j_bspc_2024_106413
crossref_primary_10_1016_j_patrec_2024_07_004
crossref_primary_10_1016_j_image_2023_117099
crossref_primary_10_1177_00202940231173752
crossref_primary_10_1016_j_csbj_2024_09_010
crossref_primary_10_1016_j_ins_2024_121252
crossref_primary_10_1016_j_image_2025_117373
crossref_primary_10_1016_j_ins_2025_121896
crossref_primary_10_1016_j_ins_2024_120447
crossref_primary_10_1016_j_vehcom_2024_100768
crossref_primary_10_1007_s11227_023_05717_y
crossref_primary_10_1016_j_patcog_2024_110982
crossref_primary_10_1016_j_bspc_2023_105433
crossref_primary_10_1016_j_patcog_2024_110506
crossref_primary_10_1016_j_patcog_2024_110748
crossref_primary_10_1371_journal_pone_0308788
crossref_primary_10_1016_j_ecoinf_2024_102501
crossref_primary_10_1016_j_bspc_2023_104984
crossref_primary_10_3390_rs15174273
crossref_primary_10_1016_j_sigpro_2023_109120
crossref_primary_10_1016_j_image_2023_117024
crossref_primary_10_1016_j_eja_2024_127384
crossref_primary_10_1016_j_neucom_2025_129426
crossref_primary_10_3390_s23052612
crossref_primary_10_1016_j_image_2023_117020
crossref_primary_10_1016_j_heliyon_2024_e28062
crossref_primary_10_1016_j_patrec_2025_04_036
crossref_primary_10_1049_ell2_13248
crossref_primary_10_1016_j_patcog_2024_110580
crossref_primary_10_1016_j_patrec_2023_12_019
crossref_primary_10_3390_app14156710
crossref_primary_10_1016_j_image_2025_117380
crossref_primary_10_59324_ejeba_2025_2_4__05
crossref_primary_10_1016_j_imavis_2023_104793
crossref_primary_10_1049_ell2_13001
crossref_primary_10_3390_drones7100620
crossref_primary_10_7717_peerj_cs_2393
crossref_primary_10_1016_j_patcog_2024_110399
crossref_primary_10_1016_j_patcog_2024_111004
crossref_primary_10_1016_j_bspc_2023_105263
crossref_primary_10_1016_j_chaos_2023_113314
crossref_primary_10_1016_j_compbiomed_2024_108089
crossref_primary_10_1016_j_patcog_2024_110550
crossref_primary_10_1016_j_jnca_2024_104089
crossref_primary_10_1088_1361_6501_ad7488
crossref_primary_10_1371_journal_pone_0281294
crossref_primary_10_1016_j_knosys_2025_113868
crossref_primary_10_1016_j_compbiomed_2025_109899
crossref_primary_10_3390_horticulturae11070783
crossref_primary_10_1016_j_image_2025_117305
crossref_primary_10_3390_ani13111824
crossref_primary_10_3390_math13050840
crossref_primary_10_1016_j_patrec_2024_02_012
crossref_primary_10_1049_ell2_70093
crossref_primary_10_1007_s11571_024_10102_3
crossref_primary_10_7717_peerj_cs_2545
crossref_primary_10_7717_peerj_cs_1611
crossref_primary_10_1016_j_image_2024_117154
crossref_primary_10_1016_j_image_2025_117273
crossref_primary_10_1007_s40974_024_00320_0
crossref_primary_10_1016_j_imavis_2023_104887
crossref_primary_10_7717_peerj_cs_2266
crossref_primary_10_1016_j_patcog_2025_111682
crossref_primary_10_1177_00202940231215378
crossref_primary_10_1371_journal_pone_0315395
crossref_primary_10_1002_rob_22391
crossref_primary_10_1371_journal_pone_0282812
crossref_primary_10_31893_multirev_2025364
crossref_primary_10_1016_j_patcog_2024_111136
crossref_primary_10_1049_ell2_13271
crossref_primary_10_1016_j_imj_2024_100095
crossref_primary_10_21015_vtse_v12i2_1869
crossref_primary_10_1016_j_compbiomed_2024_109104
crossref_primary_10_1016_j_patcog_2023_110025
crossref_primary_10_1016_j_chaos_2023_113442
crossref_primary_10_1371_journal_pone_0282250
crossref_primary_10_1016_j_patcog_2024_110327
crossref_primary_10_1016_j_patcog_2024_110328
crossref_primary_10_1016_j_ins_2024_121480
crossref_primary_10_29407_intensif_v9i1_23834
crossref_primary_10_1016_j_image_2025_117321
crossref_primary_10_3390_biology14010035
crossref_primary_10_1007_s11571_024_10133_w
crossref_primary_10_1016_j_image_2024_117140
crossref_primary_10_3390_s23104770
crossref_primary_10_1049_ell2_70363
crossref_primary_10_1007_s10115_025_02458_7
crossref_primary_10_1016_j_ins_2024_120435
crossref_primary_10_1016_j_patcog_2024_111092
crossref_primary_10_1016_j_imavis_2024_105243
Cites_doi 10.1016/j.sigpro.2019.07.024
10.1049/pe:20000210
10.1007/s10462-018-9624-4
10.1109/34.192463
10.1007/978-3-642-32894-7_27
10.1016/B978-0-323-85193-0.00012-7
10.1007/s10658-019-01775-2
10.1016/j.compag.2018.08.013
10.1002/cpa.3160410705
10.1006/acha.1999.0266
10.1016/j.compag.2020.105803
10.1016/j.compag.2019.104948
10.1137/0515056
10.3390/agriengineering3030035
10.3390/rs12193188
10.1006/jath.2000.3514
10.1006/acha.1994.1002
10.1007/s00500-017-2744-y
10.1016/j.biosystemseng.2016.03.012
10.1137/0524078
10.1016/j.compag.2018.03.032
10.1016/B978-012466606-1/50008-8
10.1007/s42161-022-01178-z
10.1007/s41348-020-00403-0
10.1109/TSP.2010.2053028
10.1016/j.cogsys.2022.05.001
10.1016/j.swevo.2019.100616
10.1137/1.9781611970104
10.1007/s12571-012-0200-5
10.1016/j.ecoinf.2020.101182
10.1016/j.patcog.2017.10.013
10.1016/j.tplants.2014.08.004
10.1016/j.compag.2017.04.008
10.3390/s21113830
10.1016/j.asoc.2021.107164
10.1109/18.57199
10.3390/microorganisms8121930
10.3389/fpls.2016.01419
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7QP
7TK
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/biology11121732
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database
MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2079-7737
ExternalDocumentID oai_doaj_org_article_84bacb234b6b4b4cad007768cd266867
PMC9775035
36552243
10_3390_biology11121732
Genre Journal Article
GroupedDBID 2XV
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EBD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
ISR
NPM
7QP
7TK
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
PUEGO
5PM
ID FETCH-LOGICAL-c520t-11b26f963aafa4a9d9f64ba02c129266ef42c64d80108c880da2ee97563f94633
IEDL.DBID DOA
ISICitedReferencesCount 218
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900490800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-7737
IngestDate Fri Oct 03 12:52:25 EDT 2025
Tue Nov 04 02:06:55 EST 2025
Fri Sep 05 12:13:39 EDT 2025
Sun Nov 09 11:34:27 EST 2025
Fri Jul 25 12:04:52 EDT 2025
Thu Jan 02 22:54:47 EST 2025
Sat Nov 29 07:13:52 EST 2025
Tue Nov 18 21:59:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords plant leaf disease classification
2D discrete wavelet transform
2D signal processing
real-time detection
flower pollination optimization
agricultural plant
artificial intelligence
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-11b26f963aafa4a9d9f64ba02c129266ef42c64d80108c880da2ee97563f94633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7923-4528
OpenAccessLink https://doaj.org/article/84bacb234b6b4b4cad007768cd266867
PMID 36552243
PQID 2756664570
PQPubID 2032427
ParticipantIDs doaj_primary_oai_doaj_org_article_84bacb234b6b4b4cad007768cd266867
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9775035
proquest_miscellaneous_2887617290
proquest_miscellaneous_2758109323
proquest_journals_2756664570
pubmed_primary_36552243
crossref_citationtrail_10_3390_biology11121732
crossref_primary_10_3390_biology11121732
PublicationCentury 2000
PublicationDate 20221129
PublicationDateYYYYMMDD 2022-11-29
PublicationDate_xml – month: 11
  year: 2022
  text: 20221129
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biology (Basel, Switzerland)
PublicationTitleAlternate Biology (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tan (ref_15) 2021; 3
Zhong (ref_22) 2010; 58
Ma (ref_40) 2014; 19
Ali (ref_10) 2017; 138
ref_36
ref_35
ref_34
Ozguven (ref_14) 2022; 104
Grossmann (ref_25) 1984; 15
Wen (ref_11) 2019; 155
Beylkin (ref_28) 1999; 7
Barbedo (ref_7) 2016; 147
Daubechies (ref_32) 1990; 36
Li (ref_18) 2020; 178
Nielsen (ref_33) 2001; 108
Barbedo (ref_8) 2018; 153
Kamal (ref_16) 2019; 165
Too (ref_20) 2019; 161
Keinert (ref_27) 1994; 1
Darwish (ref_21) 2020; 52
Mohanty (ref_5) 2016; 7
Li (ref_23) 2020; 166
Atila (ref_17) 2021; 61
Cohen (ref_30) 1993; 24
Sangaiah (ref_37) 2018; 22
Daubechies (ref_31) 1988; 41
Gu (ref_39) 2018; 77
Saeed (ref_13) 2021; 103
Kim (ref_24) 2000; 14
Karasu (ref_41) 2022; 75
Savary (ref_1) 2012; 4
Singh (ref_12) 2017; 4
ref_2
Shawky (ref_38) 2019; 52
ref_29
Tewari (ref_3) 2020; 4
Mallat (ref_26) 1989; 11
ref_9
ref_4
ref_6
Thangaraj (ref_19) 2021; 128
References_xml – volume: 166
  start-page: 107231
  year: 2020
  ident: ref_23
  article-title: Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.07.024
– volume: 14
  start-page: 81
  year: 2000
  ident: ref_24
  article-title: Wavelet transforms in power systems. Part 1: General introduction to the wavelet transforms
  publication-title: Power Eng. J.
  doi: 10.1049/pe:20000210
– volume: 52
  start-page: 2533
  year: 2019
  ident: ref_38
  article-title: Flower pollination algorithm: A comprehensive review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-9624-4
– volume: 11
  start-page: 674
  year: 1989
  ident: ref_26
  article-title: A theory for multiresolution signal decomposition: The wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192463
– ident: ref_36
  doi: 10.1007/978-3-642-32894-7_27
– ident: ref_4
  doi: 10.1016/B978-0-323-85193-0.00012-7
– volume: 4
  start-page: 41
  year: 2017
  ident: ref_12
  article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques
  publication-title: Inf. Process. Agric.
– volume: 155
  start-page: 405
  year: 2019
  ident: ref_11
  article-title: Use of thermal imaging and Fourier transform infrared spectroscopy for the pre-symptomatic detection of cucumber downy mildew
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-019-01775-2
– volume: 153
  start-page: 46
  year: 2018
  ident: ref_8
  article-title: Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.08.013
– volume: 41
  start-page: 909
  year: 1988
  ident: ref_31
  article-title: Orthonormal bases of compactly supported wavelets
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160410705
– volume: 7
  start-page: 184
  year: 1999
  ident: ref_28
  article-title: Compactly supported wavelets based on almost interpolating and nearly linear phase filters (coiflets)
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.1999.0266
– volume: 178
  start-page: 105803
  year: 2020
  ident: ref_18
  article-title: Do we really need deep CNN for plant diseases identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105803
– ident: ref_35
– volume: 165
  start-page: 104948
  year: 2019
  ident: ref_16
  article-title: Depthwise separable convolution architectures for plant disease classification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104948
– volume: 15
  start-page: 723
  year: 1984
  ident: ref_25
  article-title: Decomposition of Hardy functions into square integrable wavelets of constant shape
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0515056
– volume: 3
  start-page: 542
  year: 2021
  ident: ref_15
  article-title: Tomato leaf diseases classification based on leaf images: A comparison between classical machine learning and deep learning methods
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering3030035
– ident: ref_6
  doi: 10.3390/rs12193188
– volume: 108
  start-page: 36
  year: 2001
  ident: ref_33
  article-title: On the construction and frequency localization of finite orthogonal quadrature filters
  publication-title: J. Approx. Theory
  doi: 10.1006/jath.2000.3514
– volume: 1
  start-page: 147
  year: 1994
  ident: ref_27
  article-title: Biorthogonal wavelets for fast matrix computations
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.1994.1002
– volume: 22
  start-page: 4221
  year: 2018
  ident: ref_37
  article-title: A modified flower pollination algorithm for the multidimensional knapsack problem: Human-centric decision making
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2744-y
– volume: 147
  start-page: 104
  year: 2016
  ident: ref_7
  article-title: Identifying multiple plant diseases using digital image processing
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.03.012
– volume: 24
  start-page: 1355
  year: 1993
  ident: ref_30
  article-title: An arithmetic characterization of the conjugate quadrature filters associated to orthonormal wavelet bases
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0524078
– volume: 161
  start-page: 272
  year: 2019
  ident: ref_20
  article-title: A comparative study of fine-tuning deep learning models for plant disease identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.032
– ident: ref_34
  doi: 10.1016/B978-012466606-1/50008-8
– volume: 104
  start-page: 1
  year: 2022
  ident: ref_14
  article-title: A new approach to detect mildew disease on cucumber (Pseudoperonospora cubensis) leaves with image processing
  publication-title: J. Plant Pathol.
  doi: 10.1007/s42161-022-01178-z
– volume: 128
  start-page: 73
  year: 2021
  ident: ref_19
  article-title: Automated tomato leaf disease classification using transfer learning-based deep convolution neural network
  publication-title: J. Plant Dis. Prot.
  doi: 10.1007/s41348-020-00403-0
– volume: 58
  start-page: 5118
  year: 2010
  ident: ref_22
  article-title: Time-frequency representation based on an adaptive short-time Fourier transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2053028
– volume: 75
  start-page: 1
  year: 2022
  ident: ref_41
  article-title: The effects on classifier performance of 2D discrete wavelet transform analysis and whale optimization algorithm for recognition of power quality disturbances
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2022.05.001
– volume: 52
  start-page: 100616
  year: 2020
  ident: ref_21
  article-title: An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.100616
– ident: ref_29
  doi: 10.1137/1.9781611970104
– volume: 4
  start-page: 519
  year: 2012
  ident: ref_1
  article-title: Crop losses due to diseases and their implications for global food production losses and food security
  publication-title: Food Secur.
  doi: 10.1007/s12571-012-0200-5
– volume: 61
  start-page: 101182
  year: 2021
  ident: ref_17
  article-title: Plant leaf disease classification using EfficientNet deep learning model
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101182
– volume: 77
  start-page: 354
  year: 2018
  ident: ref_39
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.10.013
– volume: 19
  start-page: 798
  year: 2014
  ident: ref_40
  article-title: Machine learning for big data analytics in plants
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.08.004
– volume: 4
  start-page: 21
  year: 2020
  ident: ref_3
  article-title: Image processing based real-time variable-rate chemical spraying system for disease control in paddy crop
  publication-title: Artif. Intell. Agric.
– volume: 138
  start-page: 92
  year: 2017
  ident: ref_10
  article-title: Symptom based automated detection of citrus diseases using color histogram and textural descriptors
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.04.008
– ident: ref_9
  doi: 10.3390/s21113830
– volume: 103
  start-page: 107164
  year: 2021
  ident: ref_13
  article-title: Deep neural network features fusion and selection based on PLS regression with an application for crops diseases classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107164
– volume: 36
  start-page: 961
  year: 1990
  ident: ref_32
  article-title: The wavelet transform, time-frequency localization and signal analysis
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.57199
– ident: ref_2
  doi: 10.3390/microorganisms8121930
– volume: 7
  start-page: 1419
  year: 2016
  ident: ref_5
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01419
SSID ssj0000702636
Score 2.642294
Snippet The early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing...
Simple SummaryPlant disease, defined as an abnormal condition that disrupts the normal growth of the plant, is one of the main causes of economic losses in the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1732
SubjectTerms 2D discrete wavelet transform
2D signal processing
agricultural plant
apples
Artificial intelligence
Classification
Computer applications
data collection
Deep learning
famine
flower pollination optimization
Flowers & plants
foliar diseases
Food security
grapes
Learning algorithms
Leaves
Neural networks
Plant diseases
plant leaf disease classification
Pollination
support vector machines
tomatoes
unmanned aerial vehicles
wavelet
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFd2GhICNx4GKa2I6TnNCWtiqXqqpA6i3yI9mu1Dplk0XqH-H3MuN4w24FvXBdT7J2PGN_Y898Q8iHRstUJ04zp1LHZKMzZpxQLAXLU5lLpCtcKDaRHx8XZ2flSTxw62JY5WpNDAu1ay2eke8iTblSMsuTz1c_GFaNwtvVWELjLrmHLAk8hO6djGcsoM5c4e0kMvoI8O53I7MRGDhAccE3NqPA2f83oHkzXnJtAzp8_L9df0IeRehJp4OuPCV3av-MPBiKUV4_J7-wYeCToF_XiDrZHmx0jp62Ztn19OgaU7zo9GIG_9CfX9L9EAJCtXc0MA1fxmQmTwEO01PAoQzTTECuD1FfnrYNxVJJPd0fLoc6Ovd0OluMLCD0YC377gX5fnjw7csRi1UbmM140rM0NVw1YNdagyLo0pWNkkYn3AK0ADhQN5JbBToAnmBhYflwmtd1Cd9INKVUQmyTLd_6-hWh4Atm2nINmAfe1FijyoybHCBM6QrV6An5tJq-ykZKc6yscVGBa4PzXd2Y7wn5OD5wNbB5_Ft0D_VhFEMa7vBDu5hV0aqrAgZmDRfSKCONtNoFeqTCOhhoofIJ2VlpRBXXhq76ow4T8n5sBqvGqxrt63YZZAok-uLiFhnYHxB_lvCel4OCjr0VKgNgLeHpfEN1N4az2eLn54FdHByCLBHZ69u7_oY85JgIkqaMlztkq18s67fkvv3Zz7vFu2CGvwGHqkFP
  priority: 102
  providerName: ProQuest
Title Artificial Intelligence-Based Robust Hybrid Algorithm Design and Implementation for Real-Time Detection of Plant Diseases in Agricultural Environments
URI https://www.ncbi.nlm.nih.gov/pubmed/36552243
https://www.proquest.com/docview/2756664570
https://www.proquest.com/docview/2758109323
https://www.proquest.com/docview/2887617290
https://pubmed.ncbi.nlm.nih.gov/PMC9775035
https://doaj.org/article/84bacb234b6b4b4cad007768cd266867
Volume 11
WOSCitedRecordID wos000900490800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2079-7737
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000702636
  issn: 2079-7737
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-7737
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000702636
  issn: 2079-7737
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2079-7737
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000702636
  issn: 2079-7737
  databaseCode: M7P
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-7737
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000702636
  issn: 2079-7737
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-7737
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000702636
  issn: 2079-7737
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaggMQF8SwLZWUkDlxME78SH3fpVu2BVbQCaTlFfiTtSm2CdrNIvfRn9PcydtIoW_G4cMkhnkSxZyb-Rp75BqEPpeaxjpwmTsaO8FILYhyTJAbPk8JF3KUuNJtI5vN0uVTZoNWXzwlr6YHbhTtMudHWUMaNNNxwq11goEmtg60llaGOPErUIJgK_-AEYgt_Lum5fBjE9YcdpxG4NoBwRne2ocDW_zuIeTdTcrD1HD9FTzrMiCfttz5D94rqOXrUdpG8eoFu_EBLBIFPBwybZAo7lMOL2mw3DT658rVZeHJxVq9XzfklPgq5G1hXDgeK4MuuCqnCgGPxAgAk8fUhINeEdK0K1yX2PY4afNSe6mzwqsKTs3VP34Fng7K5l-jb8ezr5xPStVsgVtCoIXFsqCzBIbUGDWrlVClh8SNqARPAYhclp1aC8iCESy34vdO0KFQiJCsVl4y9QntVXRWvEYYgTmhLNYAVeFNpjVSCmgSwh3KpLPUIfbpd_dx2XOS-JcZFDjGJV1d-R10j9LF_4EdLw_Fn0alXZy_m-bPDDbCqvLOq_F9WNUIHt8aQd069yT1TvpRcJNEIve-HwR39GYuuinobZFLP0EXZX2Tgx-6Bo4L37Lf21X8tkwIQMYenkx3L25nO7ki1Og-04IDkRcTEm_8x_7foMfV1HnFMqDpAe816W7xDD-3PZrVZj9H9ZJmO0YPpbJ4txsHzxj5pNvPX6xmMZKdfsu-_AMISOZk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoILb-hCASOBxMU0cRwnPiC0ZVvtqmVVVUXqLfUj2a7UJu0mC9o_ws_gNzJ2HuxW0FsPXONJYifztGe-QehdJpkvPSOJ4b4hLJMhUSbgxAfJ46HxmImNazYRjcfx8bE4WEO_2loYm1bZ6kSnqE2h7R75loUp55yFkff54pLYrlH2dLVtoVGzxV66-AEhW_lpNID_-57S3Z2jL0PSdBUgOqReRXxfUZ4B30kJE5XCiIwzJT2qwfSBuUozRjWHOUKkEmtgbyNpmgp4fZAJxu0GKKj8W-BG-LFLFTzo9nRAfCi3p6EWQSgIhLfVICmBQgHXP6Arxs_1CPibY3s1P3PJ4O0--N8-1UN0v3Gtcb-WhUdoLc0fozt1s83FE_TTDtR4GXi0BERKtsGQG3xYqHlZ4eHClrDh_tkEVlSdnuOBS3HBMjfYISmfN8VaOQZ3Hx-Cn01sGQ3QVS6rLcdFhm0rqAoP6sOvEk9z3J_MOpQTvLNUXfgUfbuRj_IMredFnm4gDLFuKDWV4NPBkzKtuAipisBFEybmmeyhjy27JLqBbLedQ84SCN0sfyVX-KuHPnQ3XNRoJf8m3bb815FZmHF3oZhNkkZrJTEsTCsaMMUVU0xL4-CfYm1goTGPemiz5cCk0X1l8of9euhtNwxayx5FyTwt5o4mtkBmNLiGBuyf9a8FPOd5LRDdbAMeQuDA4O5oRVRWlrM6kk9PHXo6BDyhF4Qvrp_6G3R3ePR1P9kfjfdeonvUFr34PqFiE61Xs3n6Ct3W36tpOXvtVABGJzctSL8BKric0g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKSAuvB-BAosEEpdt7PV6bR8QSkiiRkVRFIHUm1nv2mmk1i6xA8of4cfw65jxi6SC3nrgmh1bs848d2e-IeRNooStLKOYkbZhIlEui4wjmQ2aJ11jCeObctiEN536JyfBbI_8anphsKyysYmloTaZxjPyHsKUSylcz-oldVnEbDj-cPGN4QQpvGltxmlUInIcb35A-pa_nwzhv37L-Xj0-eMRqycMMO1yq2C2HXGZgAwqBUyrwASJFJGyuAY3CK4rTgTXEviFrMXXIOpG8TgOgBUnCYTEw1Aw__seoqx3yP5gNJ3N2xMeUCYu8W4U8YQcJ7B6Na4SmBdIBBy-4wrLiQF_C3MvV2tuub_x3f_5w90jd-qgm_YrLblP9uL0AblZjeHcPCQ_caFC0qCTLYhSNgAXb-g8i9Z5QY822NxG-2cL2FFxek6HZfELVamhJcbyed3GlVJIBOgcInCGDTZAV5T1binNEopDogo6rK7FcrpMaX-xavFP6Gir7_AR-XItH-Ux6aRZGj8lFLJgV2muINqDNyU6koHLIw-Ct8D4MlFdctiITqhrMHecKXIWQlKHshZekrUuedc-cFHhmPybdICy2JIhAHn5Q7ZahLU9C33YmI64IyIZiUhoZUpgKF8b2KgvvS45aKQxrK1iHv4RxS553S6DPcNLKpXG2bqk8RHijDtX0IBnxMg7gPc8qZSj5daRLqQUAp72dtRmZzu7K-nytMRVh1TItRz32dWsvyK3QH_CT5Pp8XNym2M3jG0zHhyQTrFaxy_IDf29WOarl7U9oOTrdWvSb0V8puE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Based+Robust+Hybrid+Algorithm+Design+and+Implementation+for+Real-Time+Detection+of+Plant+Diseases+in+Agricultural+Environments&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=%C4%B0layda+Ya%C4%9F&rft.au=Ayta%C3%A7+Altan&rft.date=2022-11-29&rft.pub=MDPI+AG&rft.eissn=2079-7737&rft.volume=11&rft.issue=12&rft.spage=1732&rft_id=info:doi/10.3390%2Fbiology11121732&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_84bacb234b6b4b4cad007768cd266867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon