Artificial Intelligence-Based Robust Hybrid Algorithm Design and Implementation for Real-Time Detection of Plant Diseases in Agricultural Environments
The early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing agricultural product productivity. Not only the early detection of the plant disease but also the determination of its type play a critical role...
Uložené v:
| Vydané v: | Biology (Basel, Switzerland) Ročník 11; číslo 12; s. 1732 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
29.11.2022
MDPI |
| Predmet: | |
| ISSN: | 2079-7737, 2079-7737 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing agricultural product productivity. Not only the early detection of the plant disease but also the determination of its type play a critical role in determining the appropriate treatment. The fact that visual inspection, which is frequently used in determining plant disease and types, is tiring and prone to human error, necessitated the development of algorithms that can automatically classify plant disease with high accuracy and low computational cost. In this study, a new hybrid plant leaf disease classification model with high accuracy and low computational complexity, consisting of the wrapper approach, including the flower pollination algorithm (FPA) and support vector machine (SVM), and a convolutional neural network (CNN) classifier, is developed with a wrapper-based feature selection approach using metaheuristic optimization techniques. The features of the image dataset consisting of apple, grape, and tomato plants have been extracted by a two-dimensional discrete wavelet transform (2D-DWT) using wavelet families such as biorthogonal, Coiflets, Daubechies, Fejer–Korovkin, and symlets. Features that keep classifier performance high for each family are selected by the wrapper approach, consisting of the population-based metaheuristics FPA and SVM. The performance of the proposed optimization algorithm is compared with the particle swarm optimization (PSO) algorithm. Afterwards, the classification performance is obtained by using the lowest number of features that can keep the classification performance high for the CNN classifier. The CNN classifier with a single layer of classification without a feature extraction layer is used to minimize the complexity of the model and to deal with the model hyperparameter problem. The obtained model is embedded in the NVIDIA Jetson Nano developer kit on the unmanned aerial vehicle (UAV), and real-time classification tests are performed on apple, grape, and tomato plants. The experimental results obtained show that the proposed model classifies the specified plant leaf diseases in real time with high accuracy. Moreover, it is concluded that the robust hybrid classification model, which is created by selecting the lowest number of features with the optimization algorithm with low computational complexity, can classify plant leaf diseases in real time with precision. |
|---|---|
| AbstractList | The early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing agricultural product productivity. Not only the early detection of the plant disease but also the determination of its type play a critical role in determining the appropriate treatment. The fact that visual inspection, which is frequently used in determining plant disease and types, is tiring and prone to human error, necessitated the development of algorithms that can automatically classify plant disease with high accuracy and low computational cost. In this study, a new hybrid plant leaf disease classification model with high accuracy and low computational complexity, consisting of the wrapper approach, including the flower pollination algorithm (FPA) and support vector machine (SVM), and a convolutional neural network (CNN) classifier, is developed with a wrapper-based feature selection approach using metaheuristic optimization techniques. The features of the image dataset consisting of apple, grape, and tomato plants have been extracted by a two-dimensional discrete wavelet transform (2D-DWT) using wavelet families such as biorthogonal, Coiflets, Daubechies, Fejer–Korovkin, and symlets. Features that keep classifier performance high for each family are selected by the wrapper approach, consisting of the population-based metaheuristics FPA and SVM. The performance of the proposed optimization algorithm is compared with the particle swarm optimization (PSO) algorithm. Afterwards, the classification performance is obtained by using the lowest number of features that can keep the classification performance high for the CNN classifier. The CNN classifier with a single layer of classification without a feature extraction layer is used to minimize the complexity of the model and to deal with the model hyperparameter problem. The obtained model is embedded in the NVIDIA Jetson Nano developer kit on the unmanned aerial vehicle (UAV), and real-time classification tests are performed on apple, grape, and tomato plants. The experimental results obtained show that the proposed model classifies the specified plant leaf diseases in real time with high accuracy. Moreover, it is concluded that the robust hybrid classification model, which is created by selecting the lowest number of features with the optimization algorithm with low computational complexity, can classify plant leaf diseases in real time with precision. Simple SummaryPlant disease, defined as an abnormal condition that disrupts the normal growth of the plant, is one of the main causes of economic losses in the agricultural industry. Early diagnosis of plant disease is critical to increasing agricultural crop productivity. In this paper, a new robust hybrid classification model based on swarm optimization-supported feature selection, including machine learning and deep learning algorithms, that allows real-time classification of diseases in apple, grape, and tomato plants has been developed. In this way, it will be possible to diagnose the plant disease at an early phase and apply the appropriate treatment.AbstractThe early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing agricultural product productivity. Not only the early detection of the plant disease but also the determination of its type play a critical role in determining the appropriate treatment. The fact that visual inspection, which is frequently used in determining plant disease and types, is tiring and prone to human error, necessitated the development of algorithms that can automatically classify plant disease with high accuracy and low computational cost. In this study, a new hybrid plant leaf disease classification model with high accuracy and low computational complexity, consisting of the wrapper approach, including the flower pollination algorithm (FPA) and support vector machine (SVM), and a convolutional neural network (CNN) classifier, is developed with a wrapper-based feature selection approach using metaheuristic optimization techniques. The features of the image dataset consisting of apple, grape, and tomato plants have been extracted by a two-dimensional discrete wavelet transform (2D-DWT) using wavelet families such as biorthogonal, Coiflets, Daubechies, Fejer–Korovkin, and symlets. Features that keep classifier performance high for each family are selected by the wrapper approach, consisting of the population-based metaheuristics FPA and SVM. The performance of the proposed optimization algorithm is compared with the particle swarm optimization (PSO) algorithm. Afterwards, the classification performance is obtained by using the lowest number of features that can keep the classification performance high for the CNN classifier. The CNN classifier with a single layer of classification without a feature extraction layer is used to minimize the complexity of the model and to deal with the model hyperparameter problem. The obtained model is embedded in the NVIDIA Jetson Nano developer kit on the unmanned aerial vehicle (UAV), and real-time classification tests are performed on apple, grape, and tomato plants. The experimental results obtained show that the proposed model classifies the specified plant leaf diseases in real time with high accuracy. Moreover, it is concluded that the robust hybrid classification model, which is created by selecting the lowest number of features with the optimization algorithm with low computational complexity, can classify plant leaf diseases in real time with precision. The early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing agricultural product productivity. Not only the early detection of the plant disease but also the determination of its type play a critical role in determining the appropriate treatment. The fact that visual inspection, which is frequently used in determining plant disease and types, is tiring and prone to human error, necessitated the development of algorithms that can automatically classify plant disease with high accuracy and low computational cost. In this study, a new hybrid plant leaf disease classification model with high accuracy and low computational complexity, consisting of the wrapper approach, including the flower pollination algorithm (FPA) and support vector machine (SVM), and a convolutional neural network (CNN) classifier, is developed with a wrapper-based feature selection approach using metaheuristic optimization techniques. The features of the image dataset consisting of apple, grape, and tomato plants have been extracted by a two-dimensional discrete wavelet transform (2D-DWT) using wavelet families such as biorthogonal, Coiflets, Daubechies, Fejer-Korovkin, and symlets. Features that keep classifier performance high for each family are selected by the wrapper approach, consisting of the population-based metaheuristics FPA and SVM. The performance of the proposed optimization algorithm is compared with the particle swarm optimization (PSO) algorithm. Afterwards, the classification performance is obtained by using the lowest number of features that can keep the classification performance high for the CNN classifier. The CNN classifier with a single layer of classification without a feature extraction layer is used to minimize the complexity of the model and to deal with the model hyperparameter problem. The obtained model is embedded in the NVIDIA Jetson Nano developer kit on the unmanned aerial vehicle (UAV), and real-time classification tests are performed on apple, grape, and tomato plants. The experimental results obtained show that the proposed model classifies the specified plant leaf diseases in real time with high accuracy. Moreover, it is concluded that the robust hybrid classification model, which is created by selecting the lowest number of features with the optimization algorithm with low computational complexity, can classify plant leaf diseases in real time with precision.The early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing agricultural product productivity. Not only the early detection of the plant disease but also the determination of its type play a critical role in determining the appropriate treatment. The fact that visual inspection, which is frequently used in determining plant disease and types, is tiring and prone to human error, necessitated the development of algorithms that can automatically classify plant disease with high accuracy and low computational cost. In this study, a new hybrid plant leaf disease classification model with high accuracy and low computational complexity, consisting of the wrapper approach, including the flower pollination algorithm (FPA) and support vector machine (SVM), and a convolutional neural network (CNN) classifier, is developed with a wrapper-based feature selection approach using metaheuristic optimization techniques. The features of the image dataset consisting of apple, grape, and tomato plants have been extracted by a two-dimensional discrete wavelet transform (2D-DWT) using wavelet families such as biorthogonal, Coiflets, Daubechies, Fejer-Korovkin, and symlets. Features that keep classifier performance high for each family are selected by the wrapper approach, consisting of the population-based metaheuristics FPA and SVM. The performance of the proposed optimization algorithm is compared with the particle swarm optimization (PSO) algorithm. Afterwards, the classification performance is obtained by using the lowest number of features that can keep the classification performance high for the CNN classifier. The CNN classifier with a single layer of classification without a feature extraction layer is used to minimize the complexity of the model and to deal with the model hyperparameter problem. The obtained model is embedded in the NVIDIA Jetson Nano developer kit on the unmanned aerial vehicle (UAV), and real-time classification tests are performed on apple, grape, and tomato plants. The experimental results obtained show that the proposed model classifies the specified plant leaf diseases in real time with high accuracy. Moreover, it is concluded that the robust hybrid classification model, which is created by selecting the lowest number of features with the optimization algorithm with low computational complexity, can classify plant leaf diseases in real time with precision. |
| Author | Yağ, İlayda Altan, Aytaç |
| AuthorAffiliation | Department of Electrical Electronics Engineering, Zonguldak Bülent Ecevit University, Zonguldak 67100, Turkey |
| AuthorAffiliation_xml | – name: Department of Electrical Electronics Engineering, Zonguldak Bülent Ecevit University, Zonguldak 67100, Turkey |
| Author_xml | – sequence: 1 givenname: İlayda surname: Yağ fullname: Yağ, İlayda – sequence: 2 givenname: Aytaç orcidid: 0000-0001-7923-4528 surname: Altan fullname: Altan, Aytaç |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36552243$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1rHCEYx4eS0qRpzr0VoZdepvFlRsdLYfPSZiHQEtKzqONMXBzdqhPYL9LPWzeblGSh1Ivy-H9-z-vb6sAHb6rqPYKfCeHwVNngwrhBCGHECH5VHWHIeM0YYQfP3ofVSUorWA6DmBL6pjoktG0xbshR9XsRsx2sttKBpc_GOTsar019JpPpwU1Qc8rgaqOi7cHCjSHafDeBC5Ps6IH0PVhOa2cm47PMNngwhAhujHT1rZ1M0WWjH-xhAD-c9Blc2GQKOwHrwWKMVs8uz7GEv_T3Nga_RaV31etBumROHu_j6ufXy9vzq_r6-7fl-eK61i2GuUZIYTpwSqQcZCN5zwfaKAmxRphjSs3QYE2bvoMIdrrrYC-xMZy1lAy8oYQcV8sdtw9yJdbRTjJuRJBWPBhCHIUsDdLOiK6AtcKkUVQ1qtGyLw1ltNN9CdRRVlhfdqz1rCbT61JHKesF9OWPt3diDPeCM9ZC0hbAp0dADL9mk7KYbNJlJNKbMCeBu45RxDCH_5eytkOQE7wt8eOedBXm6EtXtypKadOyLfDD8-T_Zv20KUXQ7gQ6hpSiGYS2u5GXWqwTCIrtUoq9pSx-p3t-T-h_efwBouPnKA |
| CitedBy_id | crossref_primary_10_1007_s11071_023_08977_8 crossref_primary_10_3390_brainsci13020267 crossref_primary_10_1007_s11571_023_10035_3 crossref_primary_10_1016_j_heliyon_2024_e26937 crossref_primary_10_1007_s10846_023_01981_5 crossref_primary_10_1016_j_imavis_2023_104855 crossref_primary_10_1007_s10341_024_01085_w crossref_primary_10_1016_j_ijbiomac_2024_134701 crossref_primary_10_1016_j_patcog_2024_110899 crossref_primary_10_1371_journal_pone_0293978 crossref_primary_10_1016_j_image_2025_117326 crossref_primary_10_1016_j_patcog_2024_110813 crossref_primary_10_1016_j_image_2025_117332 crossref_primary_10_3390_inventions9010008 crossref_primary_10_1108_RIA_05_2023_0068 crossref_primary_10_1007_s40974_023_00288_3 crossref_primary_10_1016_j_apenergy_2023_121457 crossref_primary_10_1016_j_neunet_2024_106937 crossref_primary_10_1016_j_image_2024_117170 crossref_primary_10_1016_j_patrec_2025_04_003 crossref_primary_10_7717_peerj_cs_2365 crossref_primary_10_1016_j_aei_2024_102470 crossref_primary_10_1016_j_patrec_2024_08_007 crossref_primary_10_1016_j_imavis_2024_105273 crossref_primary_10_1016_j_asej_2024_102742 crossref_primary_10_1016_j_imavis_2024_105154 crossref_primary_10_1038_s41598_024_76587_4 crossref_primary_10_1016_j_dsp_2024_104558 crossref_primary_10_1016_j_chaos_2023_114432 crossref_primary_10_1016_j_bspc_2023_105478 crossref_primary_10_1371_journal_pone_0290117 crossref_primary_10_1016_j_phycom_2024_102533 crossref_primary_10_1016_j_patcog_2024_110701 crossref_primary_10_1016_j_image_2025_117337 crossref_primary_10_1016_j_imavis_2024_105145 crossref_primary_10_1016_j_sigpro_2023_109289 crossref_primary_10_1016_j_image_2023_117063 crossref_primary_10_1016_j_ins_2024_120098 crossref_primary_10_1016_j_neunet_2023_06_021 crossref_primary_10_1016_j_sigpro_2023_109046 crossref_primary_10_1016_j_patrec_2024_03_018 crossref_primary_10_1371_journal_pone_0283751 crossref_primary_10_1016_j_patcog_2024_111194 crossref_primary_10_3389_fpls_2025_1612800 crossref_primary_10_1016_j_ins_2024_120534 crossref_primary_10_1016_j_patcog_2023_109937 crossref_primary_10_1016_j_imavis_2025_105442 crossref_primary_10_3390_plants13172435 crossref_primary_10_1016_j_applthermaleng_2023_121901 crossref_primary_10_1007_s11571_023_09941_3 crossref_primary_10_1016_j_imavis_2023_104716 crossref_primary_10_1016_j_patcog_2024_110358 crossref_primary_10_1016_j_bspc_2024_107086 crossref_primary_10_1016_j_ins_2023_03_062 crossref_primary_10_1016_j_patcog_2024_110876 crossref_primary_10_1016_j_image_2024_117199 crossref_primary_10_1371_journal_pone_0287349 crossref_primary_10_1016_j_sigpro_2023_109133 crossref_primary_10_1177_00202940231193022 crossref_primary_10_1016_j_ins_2023_119186 crossref_primary_10_1155_cplx_7838841 crossref_primary_10_1038_s41598_024_59562_x crossref_primary_10_1049_ell2_13213 crossref_primary_10_1007_s10586_023_04161_0 crossref_primary_10_1007_s00530_025_01745_1 crossref_primary_10_1007_s11571_024_10087_z crossref_primary_10_1049_ell2_70214 crossref_primary_10_1016_j_ins_2024_120868 crossref_primary_10_1016_j_heliyon_2023_e18466 crossref_primary_10_1016_j_heliyon_2024_e40035 crossref_primary_10_1016_j_patcog_2023_109994 crossref_primary_10_1007_s11571_023_10000_0 crossref_primary_10_1016_j_imavis_2024_104988 crossref_primary_10_1016_j_heliyon_2023_e21471 crossref_primary_10_1016_j_patrec_2025_03_023 crossref_primary_10_1109_ACCESS_2025_3555142 crossref_primary_10_1016_j_ins_2023_118948 crossref_primary_10_3390_horticulturae9111213 crossref_primary_10_1016_j_chaos_2024_115163 crossref_primary_10_1007_s11694_025_03385_5 crossref_primary_10_3390_rs16183541 crossref_primary_10_1016_j_ymssp_2025_112935 crossref_primary_10_1038_s41598_024_75807_1 crossref_primary_10_1049_ell2_70043 crossref_primary_10_1016_j_imavis_2023_104698 crossref_primary_10_1016_j_fbio_2025_106404 crossref_primary_10_1016_j_patcog_2024_111171 crossref_primary_10_1016_j_ins_2024_120836 crossref_primary_10_1016_j_patcog_2024_111022 crossref_primary_10_1177_00202940231186674 crossref_primary_10_1007_s11042_024_19642_6 crossref_primary_10_3390_app13031386 crossref_primary_10_3390_horticulturae10070676 crossref_primary_10_1016_j_aei_2025_103255 crossref_primary_10_1016_j_bspc_2024_106413 crossref_primary_10_1016_j_patrec_2024_07_004 crossref_primary_10_1016_j_image_2023_117099 crossref_primary_10_1177_00202940231173752 crossref_primary_10_1016_j_csbj_2024_09_010 crossref_primary_10_1016_j_ins_2024_121252 crossref_primary_10_1016_j_image_2025_117373 crossref_primary_10_1016_j_ins_2025_121896 crossref_primary_10_1016_j_ins_2024_120447 crossref_primary_10_1016_j_vehcom_2024_100768 crossref_primary_10_1007_s11227_023_05717_y crossref_primary_10_1016_j_patcog_2024_110982 crossref_primary_10_1016_j_bspc_2023_105433 crossref_primary_10_1016_j_patcog_2024_110506 crossref_primary_10_1016_j_patcog_2024_110748 crossref_primary_10_1371_journal_pone_0308788 crossref_primary_10_1016_j_ecoinf_2024_102501 crossref_primary_10_1016_j_bspc_2023_104984 crossref_primary_10_3390_rs15174273 crossref_primary_10_1016_j_sigpro_2023_109120 crossref_primary_10_1016_j_image_2023_117024 crossref_primary_10_1016_j_eja_2024_127384 crossref_primary_10_1016_j_neucom_2025_129426 crossref_primary_10_3390_s23052612 crossref_primary_10_1016_j_image_2023_117020 crossref_primary_10_1016_j_heliyon_2024_e28062 crossref_primary_10_1016_j_patrec_2025_04_036 crossref_primary_10_1049_ell2_13248 crossref_primary_10_1016_j_patcog_2024_110580 crossref_primary_10_1016_j_patrec_2023_12_019 crossref_primary_10_3390_app14156710 crossref_primary_10_1016_j_image_2025_117380 crossref_primary_10_59324_ejeba_2025_2_4__05 crossref_primary_10_1016_j_imavis_2023_104793 crossref_primary_10_1049_ell2_13001 crossref_primary_10_3390_drones7100620 crossref_primary_10_7717_peerj_cs_2393 crossref_primary_10_1016_j_patcog_2024_110399 crossref_primary_10_1016_j_patcog_2024_111004 crossref_primary_10_1016_j_bspc_2023_105263 crossref_primary_10_1016_j_chaos_2023_113314 crossref_primary_10_1016_j_compbiomed_2024_108089 crossref_primary_10_1016_j_patcog_2024_110550 crossref_primary_10_1016_j_jnca_2024_104089 crossref_primary_10_1088_1361_6501_ad7488 crossref_primary_10_1371_journal_pone_0281294 crossref_primary_10_1016_j_knosys_2025_113868 crossref_primary_10_1016_j_compbiomed_2025_109899 crossref_primary_10_3390_horticulturae11070783 crossref_primary_10_1016_j_image_2025_117305 crossref_primary_10_3390_ani13111824 crossref_primary_10_3390_math13050840 crossref_primary_10_1016_j_patrec_2024_02_012 crossref_primary_10_1049_ell2_70093 crossref_primary_10_1007_s11571_024_10102_3 crossref_primary_10_7717_peerj_cs_2545 crossref_primary_10_7717_peerj_cs_1611 crossref_primary_10_1016_j_image_2024_117154 crossref_primary_10_1016_j_image_2025_117273 crossref_primary_10_1007_s40974_024_00320_0 crossref_primary_10_1016_j_imavis_2023_104887 crossref_primary_10_7717_peerj_cs_2266 crossref_primary_10_1016_j_patcog_2025_111682 crossref_primary_10_1177_00202940231215378 crossref_primary_10_1371_journal_pone_0315395 crossref_primary_10_1002_rob_22391 crossref_primary_10_1371_journal_pone_0282812 crossref_primary_10_31893_multirev_2025364 crossref_primary_10_1016_j_patcog_2024_111136 crossref_primary_10_1049_ell2_13271 crossref_primary_10_1016_j_imj_2024_100095 crossref_primary_10_21015_vtse_v12i2_1869 crossref_primary_10_1016_j_compbiomed_2024_109104 crossref_primary_10_1016_j_patcog_2023_110025 crossref_primary_10_1016_j_chaos_2023_113442 crossref_primary_10_1371_journal_pone_0282250 crossref_primary_10_1016_j_patcog_2024_110327 crossref_primary_10_1016_j_patcog_2024_110328 crossref_primary_10_1016_j_ins_2024_121480 crossref_primary_10_29407_intensif_v9i1_23834 crossref_primary_10_1016_j_image_2025_117321 crossref_primary_10_3390_biology14010035 crossref_primary_10_1007_s11571_024_10133_w crossref_primary_10_1016_j_image_2024_117140 crossref_primary_10_3390_s23104770 crossref_primary_10_1049_ell2_70363 crossref_primary_10_1007_s10115_025_02458_7 crossref_primary_10_1016_j_ins_2024_120435 crossref_primary_10_1016_j_patcog_2024_111092 crossref_primary_10_1016_j_imavis_2024_105243 |
| Cites_doi | 10.1016/j.sigpro.2019.07.024 10.1049/pe:20000210 10.1007/s10462-018-9624-4 10.1109/34.192463 10.1007/978-3-642-32894-7_27 10.1016/B978-0-323-85193-0.00012-7 10.1007/s10658-019-01775-2 10.1016/j.compag.2018.08.013 10.1002/cpa.3160410705 10.1006/acha.1999.0266 10.1016/j.compag.2020.105803 10.1016/j.compag.2019.104948 10.1137/0515056 10.3390/agriengineering3030035 10.3390/rs12193188 10.1006/jath.2000.3514 10.1006/acha.1994.1002 10.1007/s00500-017-2744-y 10.1016/j.biosystemseng.2016.03.012 10.1137/0524078 10.1016/j.compag.2018.03.032 10.1016/B978-012466606-1/50008-8 10.1007/s42161-022-01178-z 10.1007/s41348-020-00403-0 10.1109/TSP.2010.2053028 10.1016/j.cogsys.2022.05.001 10.1016/j.swevo.2019.100616 10.1137/1.9781611970104 10.1007/s12571-012-0200-5 10.1016/j.ecoinf.2020.101182 10.1016/j.patcog.2017.10.013 10.1016/j.tplants.2014.08.004 10.1016/j.compag.2017.04.008 10.3390/s21113830 10.1016/j.asoc.2021.107164 10.1109/18.57199 10.3390/microorganisms8121930 10.3389/fpls.2016.01419 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 7QP 7TK 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM DOA |
| DOI | 10.3390/biology11121732 |
| DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2079-7737 |
| ExternalDocumentID | oai_doaj_org_article_84bacb234b6b4b4cad007768cd266867 PMC9775035 36552243 10_3390_biology11121732 |
| Genre | Journal Article |
| GroupedDBID | 2XV 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EBD GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM ISR NPM 7QP 7TK 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 PUEGO 5PM |
| ID | FETCH-LOGICAL-c520t-11b26f963aafa4a9d9f64ba02c129266ef42c64d80108c880da2ee97563f94633 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 218 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900490800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-7737 |
| IngestDate | Fri Oct 03 12:52:25 EDT 2025 Tue Nov 04 02:06:55 EST 2025 Fri Sep 05 12:13:39 EDT 2025 Sun Nov 09 11:34:27 EST 2025 Fri Jul 25 12:04:52 EDT 2025 Thu Jan 02 22:54:47 EST 2025 Sat Nov 29 07:13:52 EST 2025 Tue Nov 18 21:59:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | plant leaf disease classification 2D discrete wavelet transform 2D signal processing real-time detection flower pollination optimization agricultural plant artificial intelligence |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c520t-11b26f963aafa4a9d9f64ba02c129266ef42c64d80108c880da2ee97563f94633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7923-4528 |
| OpenAccessLink | https://doaj.org/article/84bacb234b6b4b4cad007768cd266867 |
| PMID | 36552243 |
| PQID | 2756664570 |
| PQPubID | 2032427 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_84bacb234b6b4b4cad007768cd266867 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9775035 proquest_miscellaneous_2887617290 proquest_miscellaneous_2758109323 proquest_journals_2756664570 pubmed_primary_36552243 crossref_citationtrail_10_3390_biology11121732 crossref_primary_10_3390_biology11121732 |
| PublicationCentury | 2000 |
| PublicationDate | 20221129 |
| PublicationDateYYYYMMDD | 2022-11-29 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221129 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biology (Basel, Switzerland) |
| PublicationTitleAlternate | Biology (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Tan (ref_15) 2021; 3 Zhong (ref_22) 2010; 58 Ma (ref_40) 2014; 19 Ali (ref_10) 2017; 138 ref_36 ref_35 ref_34 Ozguven (ref_14) 2022; 104 Grossmann (ref_25) 1984; 15 Wen (ref_11) 2019; 155 Beylkin (ref_28) 1999; 7 Barbedo (ref_7) 2016; 147 Daubechies (ref_32) 1990; 36 Li (ref_18) 2020; 178 Nielsen (ref_33) 2001; 108 Barbedo (ref_8) 2018; 153 Kamal (ref_16) 2019; 165 Too (ref_20) 2019; 161 Keinert (ref_27) 1994; 1 Darwish (ref_21) 2020; 52 Mohanty (ref_5) 2016; 7 Li (ref_23) 2020; 166 Atila (ref_17) 2021; 61 Cohen (ref_30) 1993; 24 Sangaiah (ref_37) 2018; 22 Daubechies (ref_31) 1988; 41 Gu (ref_39) 2018; 77 Saeed (ref_13) 2021; 103 Kim (ref_24) 2000; 14 Karasu (ref_41) 2022; 75 Savary (ref_1) 2012; 4 Singh (ref_12) 2017; 4 ref_2 Shawky (ref_38) 2019; 52 ref_29 Tewari (ref_3) 2020; 4 Mallat (ref_26) 1989; 11 ref_9 ref_4 ref_6 Thangaraj (ref_19) 2021; 128 |
| References_xml | – volume: 166 start-page: 107231 year: 2020 ident: ref_23 article-title: Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.07.024 – volume: 14 start-page: 81 year: 2000 ident: ref_24 article-title: Wavelet transforms in power systems. Part 1: General introduction to the wavelet transforms publication-title: Power Eng. J. doi: 10.1049/pe:20000210 – volume: 52 start-page: 2533 year: 2019 ident: ref_38 article-title: Flower pollination algorithm: A comprehensive review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-9624-4 – volume: 11 start-page: 674 year: 1989 ident: ref_26 article-title: A theory for multiresolution signal decomposition: The wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.192463 – ident: ref_36 doi: 10.1007/978-3-642-32894-7_27 – ident: ref_4 doi: 10.1016/B978-0-323-85193-0.00012-7 – volume: 4 start-page: 41 year: 2017 ident: ref_12 article-title: Detection of plant leaf diseases using image segmentation and soft computing techniques publication-title: Inf. Process. Agric. – volume: 155 start-page: 405 year: 2019 ident: ref_11 article-title: Use of thermal imaging and Fourier transform infrared spectroscopy for the pre-symptomatic detection of cucumber downy mildew publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-019-01775-2 – volume: 153 start-page: 46 year: 2018 ident: ref_8 article-title: Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.08.013 – volume: 41 start-page: 909 year: 1988 ident: ref_31 article-title: Orthonormal bases of compactly supported wavelets publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160410705 – volume: 7 start-page: 184 year: 1999 ident: ref_28 article-title: Compactly supported wavelets based on almost interpolating and nearly linear phase filters (coiflets) publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.1999.0266 – volume: 178 start-page: 105803 year: 2020 ident: ref_18 article-title: Do we really need deep CNN for plant diseases identification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105803 – ident: ref_35 – volume: 165 start-page: 104948 year: 2019 ident: ref_16 article-title: Depthwise separable convolution architectures for plant disease classification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104948 – volume: 15 start-page: 723 year: 1984 ident: ref_25 article-title: Decomposition of Hardy functions into square integrable wavelets of constant shape publication-title: SIAM J. Math. Anal. doi: 10.1137/0515056 – volume: 3 start-page: 542 year: 2021 ident: ref_15 article-title: Tomato leaf diseases classification based on leaf images: A comparison between classical machine learning and deep learning methods publication-title: AgriEngineering doi: 10.3390/agriengineering3030035 – ident: ref_6 doi: 10.3390/rs12193188 – volume: 108 start-page: 36 year: 2001 ident: ref_33 article-title: On the construction and frequency localization of finite orthogonal quadrature filters publication-title: J. Approx. Theory doi: 10.1006/jath.2000.3514 – volume: 1 start-page: 147 year: 1994 ident: ref_27 article-title: Biorthogonal wavelets for fast matrix computations publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.1994.1002 – volume: 22 start-page: 4221 year: 2018 ident: ref_37 article-title: A modified flower pollination algorithm for the multidimensional knapsack problem: Human-centric decision making publication-title: Soft Comput. doi: 10.1007/s00500-017-2744-y – volume: 147 start-page: 104 year: 2016 ident: ref_7 article-title: Identifying multiple plant diseases using digital image processing publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.03.012 – volume: 24 start-page: 1355 year: 1993 ident: ref_30 article-title: An arithmetic characterization of the conjugate quadrature filters associated to orthonormal wavelet bases publication-title: SIAM J. Math. Anal. doi: 10.1137/0524078 – volume: 161 start-page: 272 year: 2019 ident: ref_20 article-title: A comparative study of fine-tuning deep learning models for plant disease identification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.032 – ident: ref_34 doi: 10.1016/B978-012466606-1/50008-8 – volume: 104 start-page: 1 year: 2022 ident: ref_14 article-title: A new approach to detect mildew disease on cucumber (Pseudoperonospora cubensis) leaves with image processing publication-title: J. Plant Pathol. doi: 10.1007/s42161-022-01178-z – volume: 128 start-page: 73 year: 2021 ident: ref_19 article-title: Automated tomato leaf disease classification using transfer learning-based deep convolution neural network publication-title: J. Plant Dis. Prot. doi: 10.1007/s41348-020-00403-0 – volume: 58 start-page: 5118 year: 2010 ident: ref_22 article-title: Time-frequency representation based on an adaptive short-time Fourier transform publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2053028 – volume: 75 start-page: 1 year: 2022 ident: ref_41 article-title: The effects on classifier performance of 2D discrete wavelet transform analysis and whale optimization algorithm for recognition of power quality disturbances publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2022.05.001 – volume: 52 start-page: 100616 year: 2020 ident: ref_21 article-title: An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.100616 – ident: ref_29 doi: 10.1137/1.9781611970104 – volume: 4 start-page: 519 year: 2012 ident: ref_1 article-title: Crop losses due to diseases and their implications for global food production losses and food security publication-title: Food Secur. doi: 10.1007/s12571-012-0200-5 – volume: 61 start-page: 101182 year: 2021 ident: ref_17 article-title: Plant leaf disease classification using EfficientNet deep learning model publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101182 – volume: 77 start-page: 354 year: 2018 ident: ref_39 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.013 – volume: 19 start-page: 798 year: 2014 ident: ref_40 article-title: Machine learning for big data analytics in plants publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.08.004 – volume: 4 start-page: 21 year: 2020 ident: ref_3 article-title: Image processing based real-time variable-rate chemical spraying system for disease control in paddy crop publication-title: Artif. Intell. Agric. – volume: 138 start-page: 92 year: 2017 ident: ref_10 article-title: Symptom based automated detection of citrus diseases using color histogram and textural descriptors publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.04.008 – ident: ref_9 doi: 10.3390/s21113830 – volume: 103 start-page: 107164 year: 2021 ident: ref_13 article-title: Deep neural network features fusion and selection based on PLS regression with an application for crops diseases classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107164 – volume: 36 start-page: 961 year: 1990 ident: ref_32 article-title: The wavelet transform, time-frequency localization and signal analysis publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.57199 – ident: ref_2 doi: 10.3390/microorganisms8121930 – volume: 7 start-page: 1419 year: 2016 ident: ref_5 article-title: Using deep learning for image-based plant disease detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01419 |
| SSID | ssj0000702636 |
| Score | 2.642294 |
| Snippet | The early detection and prevention of plant diseases that are an important cause of famine and food insecurity worldwide are very important for increasing... Simple SummaryPlant disease, defined as an abnormal condition that disrupts the normal growth of the plant, is one of the main causes of economic losses in the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1732 |
| SubjectTerms | 2D discrete wavelet transform 2D signal processing agricultural plant apples Artificial intelligence Classification Computer applications data collection Deep learning famine flower pollination optimization Flowers & plants foliar diseases Food security grapes Learning algorithms Leaves Neural networks Plant diseases plant leaf disease classification Pollination support vector machines tomatoes unmanned aerial vehicles wavelet |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFd2GhICNx4GKa2I6TnNCWtiqXqqpA6i3yI9mu1Dplk0XqH-H3MuN4w24FvXBdT7J2PGN_Y898Q8iHRstUJ04zp1LHZKMzZpxQLAXLU5lLpCtcKDaRHx8XZ2flSTxw62JY5WpNDAu1ay2eke8iTblSMsuTz1c_GFaNwtvVWELjLrmHLAk8hO6djGcsoM5c4e0kMvoI8O53I7MRGDhAccE3NqPA2f83oHkzXnJtAzp8_L9df0IeRehJp4OuPCV3av-MPBiKUV4_J7-wYeCToF_XiDrZHmx0jp62Ztn19OgaU7zo9GIG_9CfX9L9EAJCtXc0MA1fxmQmTwEO01PAoQzTTECuD1FfnrYNxVJJPd0fLoc6Ovd0OluMLCD0YC377gX5fnjw7csRi1UbmM140rM0NVw1YNdagyLo0pWNkkYn3AK0ADhQN5JbBToAnmBhYflwmtd1Cd9INKVUQmyTLd_6-hWh4Atm2nINmAfe1FijyoybHCBM6QrV6An5tJq-ykZKc6yscVGBa4PzXd2Y7wn5OD5wNbB5_Ft0D_VhFEMa7vBDu5hV0aqrAgZmDRfSKCONtNoFeqTCOhhoofIJ2VlpRBXXhq76ow4T8n5sBqvGqxrt63YZZAok-uLiFhnYHxB_lvCel4OCjr0VKgNgLeHpfEN1N4az2eLn54FdHByCLBHZ69u7_oY85JgIkqaMlztkq18s67fkvv3Zz7vFu2CGvwGHqkFP priority: 102 providerName: ProQuest |
| Title | Artificial Intelligence-Based Robust Hybrid Algorithm Design and Implementation for Real-Time Detection of Plant Diseases in Agricultural Environments |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36552243 https://www.proquest.com/docview/2756664570 https://www.proquest.com/docview/2758109323 https://www.proquest.com/docview/2887617290 https://pubmed.ncbi.nlm.nih.gov/PMC9775035 https://doaj.org/article/84bacb234b6b4b4cad007768cd266867 |
| Volume | 11 |
| WOSCitedRecordID | wos000900490800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2079-7737 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000702636 issn: 2079-7737 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-7737 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000702636 issn: 2079-7737 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2079-7737 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000702636 issn: 2079-7737 databaseCode: M7P dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-7737 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000702636 issn: 2079-7737 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-7737 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000702636 issn: 2079-7737 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaggMQF8SwLZWUkDlxME78SH3fpVu2BVbQCaTlFfiTtSm2CdrNIvfRn9PcydtIoW_G4cMkhnkSxZyb-Rp75BqEPpeaxjpwmTsaO8FILYhyTJAbPk8JF3KUuNJtI5vN0uVTZoNWXzwlr6YHbhTtMudHWUMaNNNxwq11goEmtg60llaGOPErUIJgK_-AEYgt_Lum5fBjE9YcdpxG4NoBwRne2ocDW_zuIeTdTcrD1HD9FTzrMiCfttz5D94rqOXrUdpG8eoFu_EBLBIFPBwybZAo7lMOL2mw3DT658rVZeHJxVq9XzfklPgq5G1hXDgeK4MuuCqnCgGPxAgAk8fUhINeEdK0K1yX2PY4afNSe6mzwqsKTs3VP34Fng7K5l-jb8ezr5xPStVsgVtCoIXFsqCzBIbUGDWrlVClh8SNqARPAYhclp1aC8iCESy34vdO0KFQiJCsVl4y9QntVXRWvEYYgTmhLNYAVeFNpjVSCmgSwh3KpLPUIfbpd_dx2XOS-JcZFDjGJV1d-R10j9LF_4EdLw_Fn0alXZy_m-bPDDbCqvLOq_F9WNUIHt8aQd069yT1TvpRcJNEIve-HwR39GYuuinobZFLP0EXZX2Tgx-6Bo4L37Lf21X8tkwIQMYenkx3L25nO7ki1Og-04IDkRcTEm_8x_7foMfV1HnFMqDpAe816W7xDD-3PZrVZj9H9ZJmO0YPpbJ4txsHzxj5pNvPX6xmMZKdfsu-_AMISOZk |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoILb-hCASOBxMU0cRwnPiC0ZVvtqmVVVUXqLfUj2a7UJu0mC9o_ws_gNzJ2HuxW0FsPXONJYifztGe-QehdJpkvPSOJ4b4hLJMhUSbgxAfJ46HxmImNazYRjcfx8bE4WEO_2loYm1bZ6kSnqE2h7R75loUp55yFkff54pLYrlH2dLVtoVGzxV66-AEhW_lpNID_-57S3Z2jL0PSdBUgOqReRXxfUZ4B30kJE5XCiIwzJT2qwfSBuUozRjWHOUKkEmtgbyNpmgp4fZAJxu0GKKj8W-BG-LFLFTzo9nRAfCi3p6EWQSgIhLfVICmBQgHXP6Arxs_1CPibY3s1P3PJ4O0--N8-1UN0v3Gtcb-WhUdoLc0fozt1s83FE_TTDtR4GXi0BERKtsGQG3xYqHlZ4eHClrDh_tkEVlSdnuOBS3HBMjfYISmfN8VaOQZ3Hx-Cn01sGQ3QVS6rLcdFhm0rqAoP6sOvEk9z3J_MOpQTvLNUXfgUfbuRj_IMredFnm4gDLFuKDWV4NPBkzKtuAipisBFEybmmeyhjy27JLqBbLedQ84SCN0sfyVX-KuHPnQ3XNRoJf8m3bb815FZmHF3oZhNkkZrJTEsTCsaMMUVU0xL4-CfYm1goTGPemiz5cCk0X1l8of9euhtNwxayx5FyTwt5o4mtkBmNLiGBuyf9a8FPOd5LRDdbAMeQuDA4O5oRVRWlrM6kk9PHXo6BDyhF4Qvrp_6G3R3ePR1P9kfjfdeonvUFr34PqFiE61Xs3n6Ct3W36tpOXvtVABGJzctSL8BKric0g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKSAuvB-BAosEEpdt7PV6bR8QSkiiRkVRFIHUm1nv2mmk1i6xA8of4cfw65jxi6SC3nrgmh1bs848d2e-IeRNooStLKOYkbZhIlEui4wjmQ2aJ11jCeObctiEN536JyfBbI_8anphsKyysYmloTaZxjPyHsKUSylcz-oldVnEbDj-cPGN4QQpvGltxmlUInIcb35A-pa_nwzhv37L-Xj0-eMRqycMMO1yq2C2HXGZgAwqBUyrwASJFJGyuAY3CK4rTgTXEviFrMXXIOpG8TgOgBUnCYTEw1Aw__seoqx3yP5gNJ3N2xMeUCYu8W4U8YQcJ7B6Na4SmBdIBBy-4wrLiQF_C3MvV2tuub_x3f_5w90jd-qgm_YrLblP9uL0AblZjeHcPCQ_caFC0qCTLYhSNgAXb-g8i9Z5QY822NxG-2cL2FFxek6HZfELVamhJcbyed3GlVJIBOgcInCGDTZAV5T1binNEopDogo6rK7FcrpMaX-xavFP6Gir7_AR-XItH-Ux6aRZGj8lFLJgV2muINqDNyU6koHLIw-Ct8D4MlFdctiITqhrMHecKXIWQlKHshZekrUuedc-cFHhmPybdICy2JIhAHn5Q7ZahLU9C33YmI64IyIZiUhoZUpgKF8b2KgvvS45aKQxrK1iHv4RxS553S6DPcNLKpXG2bqk8RHijDtX0IBnxMg7gPc8qZSj5daRLqQUAp72dtRmZzu7K-nytMRVh1TItRz32dWsvyK3QH_CT5Pp8XNym2M3jG0zHhyQTrFaxy_IDf29WOarl7U9oOTrdWvSb0V8puE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Based+Robust+Hybrid+Algorithm+Design+and+Implementation+for+Real-Time+Detection+of+Plant+Diseases+in+Agricultural+Environments&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=%C4%B0layda+Ya%C4%9F&rft.au=Ayta%C3%A7+Altan&rft.date=2022-11-29&rft.pub=MDPI+AG&rft.eissn=2079-7737&rft.volume=11&rft.issue=12&rft.spage=1732&rft_id=info:doi/10.3390%2Fbiology11121732&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_84bacb234b6b4b4cad007768cd266867 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon |