Unsupervised Learning Reveals Geography of Global Ocean Dynamical Regions
Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K‐means, objectively clusters the sta...
Saved in:
| Published in: | Earth and space science (Hoboken, N.J.) Vol. 6; no. 5; pp. 784 - 794 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
John Wiley & Sons, Inc
01.05.2019
John Wiley and Sons Inc American Geophysical Union (AGU) |
| Subjects: | |
| ISSN: | 2333-5084, 2333-5084 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K‐means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a “Quasi‐Sverdrupian” regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual “dominantly nonlinear” regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries.
Plain Language Summary
A geography of the global ocean is presented of dynamical regions found using unsupervised machine learning techniques. A bottom‐up approach is used to identify emergent patterns in the modern global ocean. Their existence demonstrates commonalities that lead to methods for understanding the global circulation. Five areas vary from a depth coherent flow, quasi‐Sverdrupian, interior, interior with a strong vertical component, and an interior flow specific to the Southern Ocean. In some regions nonlinear terms are important, which will be the subject of future work at higher resolution.
Key Points
Machine learning is applied to create a geography of global dynamical regions, emergent dynamics are discussed
A barotropic vorticity framework is sufficient for 93% of the ocean, with nonlinear terms have a small extent but could impact circulation
Robust and novel application of machine learning techniques are demonstrated to offer insight into large-scale ocean physical regimes |
|---|---|
| AbstractList | Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm,
K
‐means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a “Quasi‐Sverdrupian” regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual “dominantly nonlinear” regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries.
A geography of the global ocean is presented of dynamical regions found using unsupervised machine learning techniques. A bottom‐up approach is used to identify emergent patterns in the modern global ocean. Their existence demonstrates commonalities that lead to methods for understanding the global circulation. Five areas vary from a depth coherent flow, quasi‐Sverdrupian, interior, interior with a strong vertical component, and an interior flow specific to the Southern Ocean. In some regions nonlinear terms are important, which will be the subject of future work at higher resolution.
Machine learning is applied to create a geography of global dynamical regions, emergent dynamics are discussed
A barotropic vorticity framework is sufficient for 93% of the ocean, with nonlinear terms have a small extent but could impact circulation
Robust and novel application of machine learning techniques are demonstrated to offer insight into large-scale ocean physical regimes Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K‐means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a “Quasi‐Sverdrupian” regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual “dominantly nonlinear” regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries. Plain Language Summary A geography of the global ocean is presented of dynamical regions found using unsupervised machine learning techniques. A bottom‐up approach is used to identify emergent patterns in the modern global ocean. Their existence demonstrates commonalities that lead to methods for understanding the global circulation. Five areas vary from a depth coherent flow, quasi‐Sverdrupian, interior, interior with a strong vertical component, and an interior flow specific to the Southern Ocean. In some regions nonlinear terms are important, which will be the subject of future work at higher resolution. Key Points Machine learning is applied to create a geography of global dynamical regions, emergent dynamics are discussed A barotropic vorticity framework is sufficient for 93% of the ocean, with nonlinear terms have a small extent but could impact circulation Robust and novel application of machine learning techniques are demonstrated to offer insight into large-scale ocean physical regimes Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20-year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K-means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a "Quasi-Sverdrupian" regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual "dominantly nonlinear" regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries. Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20-year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K-means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a "Quasi-Sverdrupian" regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual "dominantly nonlinear" regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries.Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20-year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K-means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a "Quasi-Sverdrupian" regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual "dominantly nonlinear" regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries. Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K‐means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a “Quasi‐Sverdrupian” regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual “dominantly nonlinear” regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries. Machine learning is applied to create a geography of global dynamical regions, emergent dynamics are discussedA barotropic vorticity framework is sufficient for 93% of the ocean, with nonlinear terms have a small extent but could impact circulationRobust and novel application of machine learning techniques are demonstrated to offer insight into large-scale ocean physical regimes Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K‐means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a “Quasi‐Sverdrupian” regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual “dominantly nonlinear” regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries. |
| Author | Wunsch, Carl Heimbach, Patrick Sonnewald, Maike |
| AuthorAffiliation | 1 Department of Earth, Atmospheric and Planetary Scences Massachusetts Institute of Technology Cambridge MA USA 2 Department of Earth and Planetary Sciences Harvard University Cambridge MA USA 3 Oden Institute for Computational Engineering and Sciences University of Texas at Austin Austin TX USA |
| AuthorAffiliation_xml | – name: 2 Department of Earth and Planetary Sciences Harvard University Cambridge MA USA – name: 3 Oden Institute for Computational Engineering and Sciences University of Texas at Austin Austin TX USA – name: 1 Department of Earth, Atmospheric and Planetary Scences Massachusetts Institute of Technology Cambridge MA USA |
| Author_xml | – sequence: 1 givenname: Maike orcidid: 0000-0002-5136-9604 surname: Sonnewald fullname: Sonnewald, Maike email: maike_s@mit.edu organization: Harvard University – sequence: 2 givenname: Carl surname: Wunsch fullname: Wunsch, Carl organization: Harvard University – sequence: 3 givenname: Patrick surname: Heimbach fullname: Heimbach, Patrick organization: University of Texas at Austin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31423460$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1PGzEQhi1EVSjlxrlaqRcOpPXXru1LJUTTNFIkJChny-udXRxt7NTeTZV_j9tQFJDg5K_nfWfGMx_QoQ8eEDoj-AvBVH2lmMjpJca4JOoAHVPG2KTEkh_u7Y_QaUrLzBBaVpjy9-iIEU4Zr_Axmt_5NK4hblyCpliAid75rriBDZg-FTMIXTTr-20R2mLWh9r0xbUF44vvW29WzubzDXQu-PQRvWuzBE4f1xN092P66-rnZHE9m19dLia2pFhOlIJWghDQMF4yyStGa2opcEYFlw0Y4LZsCTRc4KYx0vKaSzAtrWuljGjYCZrvfJtglnod3crErQ7G6X8XIXbaxMHZHjRhUHKCobUgOJZStrZWFSiihDRljbPXt53XeqxX0FjwQzT9M9PnL97d6y5sdFXJqlIkG5w_GsTwe4Q06JVLFvreeAhj0pSKUnFVSZrRzy_QZRijz1-VKS6UwEqKTH3az-gplf8dy8DFDrAxpBShfUII1n9nQu_PRMbpC9y6wQy5Ybke178mIjvRH9fD9s0Aenp7m4uU7AGnIcWv |
| CitedBy_id | crossref_primary_10_1038_s43247_024_01257_2 crossref_primary_10_1080_16000870_2020_1824485 crossref_primary_10_5194_os_19_17_2023 crossref_primary_10_1016_j_engappai_2022_105496 crossref_primary_10_1146_annurev_conmatphys_043024_114758 crossref_primary_10_1038_s42256_021_00374_3 crossref_primary_10_3389_fmars_2021_772139 crossref_primary_10_3389_fmars_2023_1177615 crossref_primary_10_1029_2021MS002496 crossref_primary_10_1088_1748_9326_ac0eb0 crossref_primary_10_1016_j_oceaneng_2021_109205 crossref_primary_10_1017_eds_2023_40 crossref_primary_10_1038_s41467_021_21331_z crossref_primary_10_2514_1_J061907 crossref_primary_10_1016_j_ecoinf_2025_103390 crossref_primary_10_1175_JCLI_D_20_0058_1 crossref_primary_10_1029_2023MS003915 crossref_primary_10_5194_os_17_1545_2021 crossref_primary_10_1029_2023MS003813 crossref_primary_10_1109_TGRS_2024_3509616 crossref_primary_10_5194_acp_23_3609_2023 crossref_primary_10_5194_os_16_451_2020 crossref_primary_10_5194_os_17_1177_2021 crossref_primary_10_1038_s43247_023_00793_7 crossref_primary_10_1029_2024JC021997 crossref_primary_10_5194_os_19_857_2023 crossref_primary_10_1016_j_chaos_2024_115963 crossref_primary_10_1175_JPO_D_19_0111_1 crossref_primary_10_1038_s43588_022_00355_5 crossref_primary_10_1029_2022MS003276 |
| Cites_doi | 10.1007/978-3-319-20010-1 10.3402/tellusa.v3i1.8609 10.1175/1520-0485(1996)026<0671:JBPTAG>2.0.CO;2 10.1029/2010JC006102 10.1093/biomet/92.4.937 10.1175/BAMS-D-17-0213.1 10.1016/S0376-8716(97)00130-0 10.1175/JPO-D-14-0100.1 10.5194/gmd-8-3071-2015 10.1175/JTECH-D-11-00058.1 10.1016/j.physd.2006.09.040 10.1175/JPO3130.1 10.1002/2017GL076101 10.1016/B978-0-12-391851-2.00021-0 10.1155/2013/485913 10.5194/gmd-9-1937-2016 10.1175/JCLI-D-12-00787.1 10.1029/TR029i002p00202 10.1146/annurev-marine-122414-034113 10.1029/2007GL031583 10.1046/j.1526-4610.1999.3903181.x 10.1175/BAMS-D-15-00013.1 10.1007/978-0-387-45528-0 10.1175/JPO-D-12-0106.1 10.1002/2016GL072428 10.1175/JPO-D-15-0133.1 10.1175/JCLI-D-17-0142.1 |
| ContentType | Journal Article |
| Copyright | 2019. The Authors. Copyright John Wiley & Sons, Inc. May 2019 |
| Copyright_xml | – notice: 2019. The Authors. – notice: Copyright John Wiley & Sons, Inc. May 2019 |
| DBID | 24P AAYXX CITATION NPM ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1029/2018EA000519 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection (Proquest) Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database (Proquest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Geography Physics |
| DocumentTitleAlternate | SONNEWALD et al |
| EISSN | 2333-5084 |
| EndPage | 794 |
| ExternalDocumentID | oai_doaj_org_article_13e5410efce740888fcb96e91978a5b0 PMC6686691 31423460 10_1029_2018EA000519 ESS2278 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: NASA funderid: NNX14AJ51G; ECCO Consortium – fundername: NASA grantid: NNX14AJ51G; ECCO Consortium |
| GroupedDBID | 0R~ 1OC 24P 5VS AAFWJ AAHHS AAZKR ABDBF ACCFJ ACCMX ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BHPHI BKSAR CCPQU EBS EJD GODZA GROUPED_DOAJ HCIFZ IAO IGS ITC KQ8 M~E O9- OK1 PCBAR PIMPY WIN AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IEP PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO 7X8 5PM |
| ID | FETCH-LOGICAL-c5208-99ef8e77ed345384632b2c2e432748deae4c5f1ed470dda8c4b48eaf2bb99a7d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472560700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2333-5084 |
| IngestDate | Tue Oct 14 18:51:54 EDT 2025 Tue Nov 04 02:00:19 EST 2025 Sun Nov 09 04:49:14 EST 2025 Sun Sep 07 03:31:35 EDT 2025 Wed Feb 19 02:33:46 EST 2025 Tue Nov 18 22:20:11 EST 2025 Sat Nov 29 02:25:21 EST 2025 Wed Jan 22 16:41:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | ocean dynamics ocean modeling physical oceanography big data machine learning global patterns |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5208-99ef8e77ed345384632b2c2e432748deae4c5f1ed470dda8c4b48eaf2bb99a7d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5136-9604 |
| OpenAccessLink | https://doaj.org/article/13e5410efce740888fcb96e91978a5b0 |
| PMID | 31423460 |
| PQID | 2247970987 |
| PQPubID | 4368366 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_13e5410efce740888fcb96e91978a5b0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6686691 proquest_miscellaneous_2275949682 proquest_journals_2247970987 pubmed_primary_31423460 crossref_primary_10_1029_2018EA000519 crossref_citationtrail_10_1029_2018EA000519 wiley_primary_10_1029_2018EA000519_ESS2278 |
| PublicationCentury | 2000 |
| PublicationDate | May 2019 2019-05-00 2019-May 20190501 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Earth and space science (Hoboken, N.J.) |
| PublicationTitleAlternate | Earth Space Sci |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc American Geophysical Union (AGU) |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: American Geophysical Union (AGU) |
| References | 2013; 26 2012 2017; 44 1997; 48 2013; 103 1973 2006 2004 2015; 8 2007; 34 2007; 37 2015; 45 1940; 3 2017b 2013; 2013 2017a 1967; 1 1999; 39 2010; 115 2017; 98 2007; 230 1948; 29 2017 2015 2005; 92 1981 2013 1950; 7 2011; 28 2018; 99 1996; 26 2018; 31 2016; 8 2016; 9 2016; 46 2012; 42 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 Church J. A. (e_1_2_7_7_1) 2013 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 Munk W. (e_1_2_7_20_1) 1950; 7 e_1_2_7_29_1 Munk W. H. (e_1_2_7_21_1) 1940; 3 Akaike H. (e_1_2_7_3_1) 1973 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_36_1 e_1_2_7_37_1 Priestley M. B. (e_1_2_7_24_1) 1981 |
| References_xml | – volume: 1 start-page: 281 year: 1967 end-page: 297 – year: 1981 – volume: 45 start-page: 1258 year: 2015 end-page: 1284 article-title: Topographic coupling of the Atlantic overturning and gyre circulations publication-title: Journal of Physical Oceanography – volume: 42 start-page: 2229 year: 2012 end-page: 2233 article-title: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height publication-title: Journal of Physical Oceanography – volume: 44 start-page: 5016 year: 2017 end-page: 5024 article-title: Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean publication-title: Geophysical Research Letters – start-page: 1 year: 2012 end-page: 14 – volume: 7 start-page: 80 year: 1950 end-page: 93 article-title: On the wind‐driven ocean circulation publication-title: Journal of Atmospheric Sciences – year: 2017b – volume: 31 start-page: 2599 year: 2018 end-page: 2611 article-title: Linear predictability: A sea surface height case study publication-title: Journal of Climate – volume: 8 start-page: 491 year: 2016 end-page: 518 article-title: Ocean data assimilation in support of climate applications: Status and perspectives publication-title: Annual Review of Marine Science – volume: 46 start-page: 289 issue: 1 year: 2016 end-page: 303 article-title: North Atlantic barotropic vorticity balances in numerical models publication-title: Journal of Physical Oceanography – volume: 34 year: 2007 article-title: Atlantic meridional overturning circulation and the Southern Hemisphere supergyre publication-title: Geophysical Research Letters – volume: 26 start-page: 671 year: 1996 end-page: 683 article-title: JEBAR, bottom pressure torque, and gulf stream separation publication-title: Journal of Physical Oceanography – start-page: 139 year: 2004 end-page: 150 – volume: 29 start-page: 202 issue: 2 year: 1948 end-page: 206 article-title: The westward intensification of wind‐driven ocean currents publication-title: Eos, Transactions American Geophysical Union – volume: 3 start-page: 53 year: 1940 end-page: 55 article-title: Note on the dynamics of the Antarctic Circumpolar Current publication-title: Tellus – volume: 8 start-page: 3071 year: 2015 end-page: 3104 article-title: ECCO version 4: An integrated framework for non‐linear inverse modeling and global ocean state estimation publication-title: Geoscientific Model Development – start-page: 1137 year: 2013 end-page: 1216 – volume: 48 start-page: 243 issue: 3 year: 1997 end-page: 250 article-title: Three clusters of male alcoholics publication-title: Drug Alcohol Depend – volume: 37 start-page: 2550 year: 2007 end-page: 256 article-title: Global ocean meridional overturning publication-title: Journal of Physical Oceanography – volume: 26 start-page: 2514 year: 2013 end-page: 2533 article-title: Objective determination of feature resolution in two sea surface temperature analyses publication-title: Journal of Climate – volume: 39 start-page: 181 issue: 3 year: 1999 end-page: 9 article-title: Use of clusters analysis to validate IHS diagnostic criteria for migraine and tension‐type headache publication-title: Headache – year: 2006 – volume: 230 start-page: 197 year: 2007 end-page: 208 article-title: Practical global oceanic state estimation publication-title: Physica D – volume: 99 start-page: 2107 year: 2018 end-page: 2128 article-title: A dynamically‐consistent ocean climatology publication-title: Bulletin of the American Meteorological Society – year: 2017a – volume: 103 start-page: 553 year: 2013 end-page: 579 – start-page: 267 year: 1973 end-page: 281 – volume: 28 start-page: 1504 year: 2011 end-page: 1521 article-title: Geostrophic velocity measurement techniques for the meridional overturning circulation and meridional heat transport in the South Atlantic publication-title: Journal of Atmospheric and Oceanic Technology – volume: 98 start-page: 95 year: 2017 end-page: 105 article-title: CMIP5 scientific gaps and recommendations for CMIP6 publication-title: Bulletin of the American Meteorological Society – volume: 92 start-page: 937 year: 2005 end-page: 950 article-title: “Can the strengths of AIC and BIC be shared?” publication-title: Biometrika – volume: 115 year: 2010 article-title: The color of sea level: Importance of spatial variations in spectral shape for assessing the significance of trends publication-title: Journal of Geophysical Research – year: 2017 – volume: 2013 start-page: 13 year: 2013 article-title: “Using ensemble of neural networks to learn stochastic convection parameterizations for climate and numerical weather prediction models from data simulated by a cloud resolving model” publication-title: Advances in Artificial Neural Systems – volume: 9 start-page: 1937 year: 2016 end-page: 1958 article-title: Overview of the coupled model intercomparison project Phase 6 (CMIP6) experimental design and organization publication-title: Geoscientific Model Development – year: 2015 – start-page: 267 volume-title: Second International Symposium on Information Theory year: 1973 ident: e_1_2_7_3_1 – ident: e_1_2_7_16_1 doi: 10.1007/978-3-319-20010-1 – volume: 3 start-page: 53 year: 1940 ident: e_1_2_7_21_1 article-title: Note on the dynamics of the Antarctic Circumpolar Current publication-title: Tellus doi: 10.3402/tellusa.v3i1.8609 – ident: e_1_2_7_22_1 doi: 10.1175/1520-0485(1996)026<0671:JBPTAG>2.0.CO;2 – ident: e_1_2_7_14_1 doi: 10.1029/2010JC006102 – ident: e_1_2_7_36_1 doi: 10.1093/biomet/92.4.937 – ident: e_1_2_7_12_1 doi: 10.1175/BAMS-D-17-0213.1 – ident: e_1_2_7_13_1 doi: 10.1016/S0376-8716(97)00130-0 – ident: e_1_2_7_37_1 doi: 10.1175/JPO-D-14-0100.1 – ident: e_1_2_7_11_1 doi: 10.5194/gmd-8-3071-2015 – ident: e_1_2_7_23_1 doi: 10.1175/JTECH-D-11-00058.1 – ident: e_1_2_7_17_1 – ident: e_1_2_7_33_1 doi: 10.1016/j.physd.2006.09.040 – ident: e_1_2_7_18_1 doi: 10.1175/JPO3130.1 – volume-title: Spectral analysis and time series year: 1981 ident: e_1_2_7_24_1 – ident: e_1_2_7_26_1 doi: 10.1002/2017GL076101 – ident: e_1_2_7_34_1 doi: 10.1016/B978-0-12-391851-2.00021-0 – ident: e_1_2_7_15_1 doi: 10.1155/2013/485913 – ident: e_1_2_7_10_1 doi: 10.5194/gmd-9-1937-2016 – ident: e_1_2_7_8_1 – ident: e_1_2_7_2_1 – ident: e_1_2_7_25_1 doi: 10.1175/JCLI-D-12-00787.1 – volume: 7 start-page: 80 year: 1950 ident: e_1_2_7_20_1 article-title: On the wind‐driven ocean circulation publication-title: Journal of Atmospheric Sciences – ident: e_1_2_7_31_1 doi: 10.1029/TR029i002p00202 – start-page: 1137 volume-title: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_7_7_1 – ident: e_1_2_7_30_1 doi: 10.1146/annurev-marine-122414-034113 – ident: e_1_2_7_19_1 – ident: e_1_2_7_29_1 doi: 10.1029/2007GL031583 – ident: e_1_2_7_6_1 doi: 10.1046/j.1526-4610.1999.3903181.x – ident: e_1_2_7_32_1 doi: 10.1175/BAMS-D-15-00013.1 – ident: e_1_2_7_5_1 doi: 10.1007/978-0-387-45528-0 – ident: e_1_2_7_35_1 doi: 10.1175/JPO-D-12-0106.1 – ident: e_1_2_7_4_1 doi: 10.1002/2016GL072428 – ident: e_1_2_7_9_1 – ident: e_1_2_7_27_1 doi: 10.1175/JPO-D-15-0133.1 – ident: e_1_2_7_28_1 doi: 10.1175/JCLI-D-17-0142.1 |
| SSID | ssj0001256024 |
| Score | 2.349539 |
| Snippet | Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the... Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20-year mean of the Estimating the... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 784 |
| SubjectTerms | Algorithms Artificial intelligence big data Budgets Computational Geophysics Consortia Data Analysis: Algorithms and Implementation General Circulation General circulation models Geodesy and Gravity Geography global patterns Informatics Machine Learning Mass Balance Natural Hazards Neural Networks, Fuzzy Logic, Machine Learning ocean dynamics ocean modeling Ocean Monitoring with Geodetic Techniques Oceanography: Physical physical oceanography Physics Statistical Analysis Statistical methods: Descriptive Topography |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBZULj_IKFBQkuIAi4sTx44Ra2AKXpVpRqbfIscdtJZRsN91K_HvGjjfsCuiFS5TETmRn3vZkPkJe26rJqRUsQ1Pb4EFDJktrMpBofK2iwAwLYBNiOpUnJ-ooLrj1Ma1ypRODorad8Wvk79HUCCVyDJE_zC8yjxrld1cjhMZNsu0rlSGfbx9MpkeztVUWtOgFixnveaEw2Kdysj-4Lhu2KJTs_5uf-We65LobG-zQ4b3_ncF9cjd6oOn-wDIPyA1od8lOBEM_-7lLbn8OaL_-LOSHmv4h-Xrc9su51ys92DQWZT1NZ3CFjmafjk-nnUsHGIH0mwHdpp8GxHu8noFPfe4fkePDyfePX7KIwpCZqshRGypwEoQAWzLUjoyXRVOYAliJAa20oJGclaNgmcit1dKwhknQrmgapbSw5WOy1XYtPCUpOqNa51XlgAvGqdXGqdyaBpizZcNcQt6t6FGbWKLcI2X8qMNWeaHqdeol5M3Yez6U5vhHvwNP2rGPL6gdbnSL0zrKZ01LqBjNwRkQDDWvdKZRHBTFKFsjPydkb0XUOkp5X_-maEJejc0on37TRbfQLX0fUSmmuCwS8mTgo3EkJUVnlnF8udjgsI2hbra052ehBjjnknNFE_I28OK1H6BGUfZ_PD-7fg7PyR18Sg3ZnHtk63KxhBfklrm6PO8XL6Nk_QJ-eSq7 priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ba9UwGA86FfbiXddtSgV9UYpNk-byOOemvswxHOyt5PJlG0jPON0Z7L_3S5qVc9AJ4kuhzUdIk-_yy-33EfLWt7amXvIKQ63Fh4FKMe8qUBh8vabAHU_JJuTBgTo50Yd5wS3ehRn5IaYFt2gZyV9HAzd2yGQDkSMTI5fa2xkxyF1yj1Imo1Y3_HBpjQXjecpr2zDGKsQiPJ99xyo-LlewEpUSef-fEOfvByeXAW2KSPuP_vdfHpOHGYuWO6PyPCF3oH9KHnxJuX6vn5Fvx_2wuIi-ZABfZiLW0_IIrhBcDmVOn352Xc5COaYOKL87MH35ecxyj-9HEI87D8_J8f7ej92vVc68ULm2qdEDaggKpATPOHpELlhjG9cAZziJVR4MDmEbKHgua--NctxyBSY01mptpGcvyFo_62GDlAhAjanbNoCQXFBvXNC1dxZ48MzyUJAPNz3fuUxLHrNj_OzS9niju-XOKci7SfpipOO4Re5THMRJJpJopw-z-WmXbbKjDFpOawgOJEdvq4KzWoCmOLM2qMMF2b5RgS5b9tAh5JFa1lrJgryZitEm40aL6WG2iDKy1VwL1RTk5agxU0sYRQDLBVYuV3RppamrJf35WeL9FkIJoWlB3idd-msHdGi-8Zbz5r8Ib5F1_KzH85zbZO1yvoBX5L67ujwf5q-Tbf0CevQhiw priority: 102 providerName: Wiley-Blackwell |
| Title | Unsupervised Learning Reveals Geography of Global Ocean Dynamical Regions |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018EA000519 https://www.ncbi.nlm.nih.gov/pubmed/31423460 https://www.proquest.com/docview/2247970987 https://www.proquest.com/docview/2275949682 https://pubmed.ncbi.nlm.nih.gov/PMC6686691 https://doaj.org/article/13e5410efce740888fcb96e91978a5b0 |
| Volume | 6 |
| WOSCitedRecordID | wos000472560700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: PCBAR dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (Proquest) customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Free Archive customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2333-5084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001256024 issn: 2333-5084 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAakXxJuUsgoSXEARseP4cWxhC3tgWa2oWE6RY49pJZStmm6l_nvGSbraFa8LF0uOR441nvF8E09mAF76ss6ZVyIjU1tTYzHThXcZajK-3jAUTnTFJtR0qhcLM9so9RVjwvr0wD3j3rICS8FyDA6VIJXQwdVGomHk_lh6UTx9c2U2nKn-6wpZci6GSPecG3LymR4f9JBlywZ1qfp_hy9_DZPchK-d_Tm6B3cH4Jge9Au-DzeweQB3PnSFea8ewuS4aVdnUfFb9OmQNfV7OsdLQoJtOtQ6P7lKlyHt8_ynnx3aJn3fl6Sn_hxjbHL7CI6Pxl_efcyGMgmZK3lOx5XBoFEp9IWg40vIgtfccRQFeZzaoyV-l4GhFyr33monaqHRBl7Xxljli8ew0ywbfAopoUVr87IMKJWQzFsXTO5djSL4ohYhgTfXjKvckEM8lrL4UXV32dxUm2xO4NWa-qzPnfEHusO4B2uamPG6e0ByUA1yUP1LDhLYv97BalDDtiJ8oozKjVYJvFgPkwLFWxHb4HIVaVRphJGaJ_Ck3_D1SgpGaFNImlxticLWUrdHmtOTLkm3lFpKwxJ43QnNXxlQka7FX5L3_gcjnsEuzW36oMx92Lk4X-FzuO0uL07b8xHc5GJGrVroEdw6HE9n81GnOtSbTT7NvlHv62T6E18bGmg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLahceJRXoECQ6IUqauI4sX1AqNCWrtouK9RK5RQce9JWQtll0y3aP8VvZJxkl10BvfXAJYqSieXY3zzsTOYDeG2TPIys4AG52pwOGgMZWxOgJOdrVYTc8JpsQvR68uRE9Zfg5_RfGJdWObWJtaG2A-P2yDfJ1QglQloivxt-DxxrlPu6OqXQaGCxj5MftGSr3na3aX7XGdvdOfqwF7SsAoFJWEjarbCQKATamJO28zRmOTMMeUwLNGlRU_eSIkLLRWitlobnXKIuWJ4rpYWNqd0bsMwd2Duw3O8e9r_M7epQBMF4m2EfMrVJDlbubDWh0oLvqykC_hbX_pmeOR82135v9-7_NmL34E4bYftbjUrchyUsV2GlJXs_m6zCrY81m7E7q_NfTfUAusdlNR46u1mh9duis6f-Z7ykQLryZ0_7g8JvaBL8TwZ16W9PSl1XXCBZl9pdPYTja3m7R9ApByU-AZ-Cba3DJCkwFTyNrDaFCq3JkRc2znnhwcZ0_jPTlmB3TCDfsjoVgKlsHi0erM-kh03pkX_IvXdQmsm4guH1hcHoNGvtTxbFmPAoxMKg4ORZZGFylaKKlJCa9NWDtSmIstaKVdlvBHnwanab7I_7qKRLHIydjEgUV6lkHjxucDvrSRxRsM5TalwsIHqhq4t3yvOzusZ5mso0VZEHb2rsXzkAGZkq90f306vf4SWs7B0dHmQH3d7-M7hNLagmc3UNOhejMT6Hm-by4rwavWi12oev160WvwBiYYlP |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHbcXLuMWGBAk9gKKmjhObD8gNOgG1aBUaJPGU3Dsk20SSkuzDvWv8es4TtLSCtjbHniJovjEcpJz-ewcnw_guU3yMLKCBxRqczpoDGRsTYCSgq9VEXLDa7IJMRjIw0M1XIOf870wLq1y7hNrR21Hxq2RdynUCCVCmiJ3izYtYtjbfT3-HjgGKfendU6n0ajIHs5-0PStetXv0bfeYmx3Z__t-6BlGAhMwkKydIWFRCHQxpwsn6cxy5lhyGOarEmLmoaaFBFaLkJrtTQ85xJ1wfJcKS1sTP1egnWC5Jx1YH3Y_zj8srTCQ2iC8TbbPmSqS8FW7mw3sGklDtZ0AX_DuH-mai5D6DoG7t78n9_eLbjRIm9_uzGV27CG5QZca0ngj2cbcOVdzXLszuq8WFPdgf5BWU3Hzp9WaP22GO2R_xnPCGBX_uJuf1T4DX2C_8mgLv3erNR1JQaSdSnf1V04uJCnuwedclTiA_AJhGsdJkmBqeBpZLUpVGhNjrywcc4LD17OdSEzbWl2xxDyLatTBJjKljXHg62F9LgpSfIPuTdOrRYyrpB4fWE0Ocpav5RFMSY8CrEwKDhFHFmYXKWoIiWkJjv2YHOuUFnr3arstzZ58GzRTH7J_WzSJY6mTkYkiqtUMg_uNzq8GEkcEYjnKXUuVrR7ZairLeXJcV37PE1lmqrIgxe1HZz7AjJyYW6n98Pzn-EpXCVbyD70B3uP4Dp1oJqE1k3onE6m-Bgum7PTk2rypDVwH75etFX8Ahdpkg8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Learning+Reveals+Geography+of+Global+Ocean+Dynamical+Regions&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=Maike+Sonnewald&rft.au=Carl+Wunsch&rft.au=Patrick+Heimbach&rft.date=2019-05-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.eissn=2333-5084&rft.volume=6&rft.issue=5&rft.spage=784&rft.epage=794&rft_id=info:doi/10.1029%2F2018EA000519&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_13e5410efce740888fcb96e91978a5b0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon |