Unsupervised Learning Reveals Geography of Global Ocean Dynamical Regions

Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K‐means, objectively clusters the sta...

Full description

Saved in:
Bibliographic Details
Published in:Earth and space science (Hoboken, N.J.) Vol. 6; no. 5; pp. 784 - 794
Main Authors: Sonnewald, Maike, Wunsch, Carl, Heimbach, Patrick
Format: Journal Article
Language:English
Published: United States John Wiley & Sons, Inc 01.05.2019
John Wiley and Sons Inc
American Geophysical Union (AGU)
Subjects:
ISSN:2333-5084, 2333-5084
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K‐means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a “Quasi‐Sverdrupian” regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual “dominantly nonlinear” regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries. Plain Language Summary A geography of the global ocean is presented of dynamical regions found using unsupervised machine learning techniques. A bottom‐up approach is used to identify emergent patterns in the modern global ocean. Their existence demonstrates commonalities that lead to methods for understanding the global circulation. Five areas vary from a depth coherent flow, quasi‐Sverdrupian, interior, interior with a strong vertical component, and an interior flow specific to the Southern Ocean. In some regions nonlinear terms are important, which will be the subject of future work at higher resolution. Key Points Machine learning is applied to create a geography of global dynamical regions, emergent dynamics are discussed A barotropic vorticity framework is sufficient for 93% of the ocean, with nonlinear terms have a small extent but could impact circulation Robust and novel application of machine learning techniques are demonstrated to offer insight into large-scale ocean physical regimes
AbstractList Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K ‐means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a “Quasi‐Sverdrupian” regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual “dominantly nonlinear” regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries. A geography of the global ocean is presented of dynamical regions found using unsupervised machine learning techniques. A bottom‐up approach is used to identify emergent patterns in the modern global ocean. Their existence demonstrates commonalities that lead to methods for understanding the global circulation. Five areas vary from a depth coherent flow, quasi‐Sverdrupian, interior, interior with a strong vertical component, and an interior flow specific to the Southern Ocean. In some regions nonlinear terms are important, which will be the subject of future work at higher resolution. Machine learning is applied to create a geography of global dynamical regions, emergent dynamics are discussed A barotropic vorticity framework is sufficient for 93% of the ocean, with nonlinear terms have a small extent but could impact circulation Robust and novel application of machine learning techniques are demonstrated to offer insight into large-scale ocean physical regimes
Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K‐means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a “Quasi‐Sverdrupian” regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual “dominantly nonlinear” regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries. Plain Language Summary A geography of the global ocean is presented of dynamical regions found using unsupervised machine learning techniques. A bottom‐up approach is used to identify emergent patterns in the modern global ocean. Their existence demonstrates commonalities that lead to methods for understanding the global circulation. Five areas vary from a depth coherent flow, quasi‐Sverdrupian, interior, interior with a strong vertical component, and an interior flow specific to the Southern Ocean. In some regions nonlinear terms are important, which will be the subject of future work at higher resolution. Key Points Machine learning is applied to create a geography of global dynamical regions, emergent dynamics are discussed A barotropic vorticity framework is sufficient for 93% of the ocean, with nonlinear terms have a small extent but could impact circulation Robust and novel application of machine learning techniques are demonstrated to offer insight into large-scale ocean physical regimes
Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20-year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K-means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a "Quasi-Sverdrupian" regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual "dominantly nonlinear" regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries.
Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20-year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K-means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a "Quasi-Sverdrupian" regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual "dominantly nonlinear" regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries.Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20-year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K-means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a "Quasi-Sverdrupian" regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual "dominantly nonlinear" regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries.
Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K‐means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a “Quasi‐Sverdrupian” regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual “dominantly nonlinear” regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries. Machine learning is applied to create a geography of global dynamical regions, emergent dynamics are discussedA barotropic vorticity framework is sufficient for 93% of the ocean, with nonlinear terms have a small extent but could impact circulationRobust and novel application of machine learning techniques are demonstrated to offer insight into large-scale ocean physical regimes
Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the Circulation and Climate of the Ocean state estimate at 1° resolution. An unsupervised machine learning algorithm, K‐means, objectively clusters the standardized BV equation, identifying five unambiguous regimes. Cluster 1 covers 43 ± 3.3% of the ocean area. Surface and bottom stress torque are balanced by the bottom pressure torque and the nonlinear torque. Cluster 2 covers 24.8 ± 1.2%, where the beta effect balances the bottom pressure torque. Cluster 3 covers 14.6 ± 1.0%, characterized by a “Quasi‐Sverdrupian” regime where the beta effect is balanced by the wind and bottom stress term. The small region of Cluster 4 has baroclinic dynamics covering 6.9 ± 2.9% of the ocean. Cluster 5 occurs primarily in the Southern Ocean. Residual “dominantly nonlinear” regions highlight where the BV approach is inadequate, found in areas of rough topography in the Southern Ocean and along western boundaries.
Author Wunsch, Carl
Heimbach, Patrick
Sonnewald, Maike
AuthorAffiliation 1 Department of Earth, Atmospheric and Planetary Scences Massachusetts Institute of Technology Cambridge MA USA
2 Department of Earth and Planetary Sciences Harvard University Cambridge MA USA
3 Oden Institute for Computational Engineering and Sciences University of Texas at Austin Austin TX USA
AuthorAffiliation_xml – name: 2 Department of Earth and Planetary Sciences Harvard University Cambridge MA USA
– name: 3 Oden Institute for Computational Engineering and Sciences University of Texas at Austin Austin TX USA
– name: 1 Department of Earth, Atmospheric and Planetary Scences Massachusetts Institute of Technology Cambridge MA USA
Author_xml – sequence: 1
  givenname: Maike
  orcidid: 0000-0002-5136-9604
  surname: Sonnewald
  fullname: Sonnewald, Maike
  email: maike_s@mit.edu
  organization: Harvard University
– sequence: 2
  givenname: Carl
  surname: Wunsch
  fullname: Wunsch, Carl
  organization: Harvard University
– sequence: 3
  givenname: Patrick
  surname: Heimbach
  fullname: Heimbach, Patrick
  organization: University of Texas at Austin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31423460$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1PGzEQhi1EVSjlxrlaqRcOpPXXru1LJUTTNFIkJChny-udXRxt7NTeTZV_j9tQFJDg5K_nfWfGMx_QoQ8eEDoj-AvBVH2lmMjpJca4JOoAHVPG2KTEkh_u7Y_QaUrLzBBaVpjy9-iIEU4Zr_Axmt_5NK4hblyCpliAid75rriBDZg-FTMIXTTr-20R2mLWh9r0xbUF44vvW29WzubzDXQu-PQRvWuzBE4f1xN092P66-rnZHE9m19dLia2pFhOlIJWghDQMF4yyStGa2opcEYFlw0Y4LZsCTRc4KYx0vKaSzAtrWuljGjYCZrvfJtglnod3crErQ7G6X8XIXbaxMHZHjRhUHKCobUgOJZStrZWFSiihDRljbPXt53XeqxX0FjwQzT9M9PnL97d6y5sdFXJqlIkG5w_GsTwe4Q06JVLFvreeAhj0pSKUnFVSZrRzy_QZRijz1-VKS6UwEqKTH3az-gplf8dy8DFDrAxpBShfUII1n9nQu_PRMbpC9y6wQy5Ybke178mIjvRH9fD9s0Aenp7m4uU7AGnIcWv
CitedBy_id crossref_primary_10_1038_s43247_024_01257_2
crossref_primary_10_1080_16000870_2020_1824485
crossref_primary_10_5194_os_19_17_2023
crossref_primary_10_1016_j_engappai_2022_105496
crossref_primary_10_1146_annurev_conmatphys_043024_114758
crossref_primary_10_1038_s42256_021_00374_3
crossref_primary_10_3389_fmars_2021_772139
crossref_primary_10_3389_fmars_2023_1177615
crossref_primary_10_1029_2021MS002496
crossref_primary_10_1088_1748_9326_ac0eb0
crossref_primary_10_1016_j_oceaneng_2021_109205
crossref_primary_10_1017_eds_2023_40
crossref_primary_10_1038_s41467_021_21331_z
crossref_primary_10_2514_1_J061907
crossref_primary_10_1016_j_ecoinf_2025_103390
crossref_primary_10_1175_JCLI_D_20_0058_1
crossref_primary_10_1029_2023MS003915
crossref_primary_10_5194_os_17_1545_2021
crossref_primary_10_1029_2023MS003813
crossref_primary_10_1109_TGRS_2024_3509616
crossref_primary_10_5194_acp_23_3609_2023
crossref_primary_10_5194_os_16_451_2020
crossref_primary_10_5194_os_17_1177_2021
crossref_primary_10_1038_s43247_023_00793_7
crossref_primary_10_1029_2024JC021997
crossref_primary_10_5194_os_19_857_2023
crossref_primary_10_1016_j_chaos_2024_115963
crossref_primary_10_1175_JPO_D_19_0111_1
crossref_primary_10_1038_s43588_022_00355_5
crossref_primary_10_1029_2022MS003276
Cites_doi 10.1007/978-3-319-20010-1
10.3402/tellusa.v3i1.8609
10.1175/1520-0485(1996)026<0671:JBPTAG>2.0.CO;2
10.1029/2010JC006102
10.1093/biomet/92.4.937
10.1175/BAMS-D-17-0213.1
10.1016/S0376-8716(97)00130-0
10.1175/JPO-D-14-0100.1
10.5194/gmd-8-3071-2015
10.1175/JTECH-D-11-00058.1
10.1016/j.physd.2006.09.040
10.1175/JPO3130.1
10.1002/2017GL076101
10.1016/B978-0-12-391851-2.00021-0
10.1155/2013/485913
10.5194/gmd-9-1937-2016
10.1175/JCLI-D-12-00787.1
10.1029/TR029i002p00202
10.1146/annurev-marine-122414-034113
10.1029/2007GL031583
10.1046/j.1526-4610.1999.3903181.x
10.1175/BAMS-D-15-00013.1
10.1007/978-0-387-45528-0
10.1175/JPO-D-12-0106.1
10.1002/2016GL072428
10.1175/JPO-D-15-0133.1
10.1175/JCLI-D-17-0142.1
ContentType Journal Article
Copyright 2019. The Authors.
Copyright John Wiley & Sons, Inc. May 2019
Copyright_xml – notice: 2019. The Authors.
– notice: Copyright John Wiley & Sons, Inc. May 2019
DBID 24P
AAYXX
CITATION
NPM
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1029/2018EA000519
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection (Proquest)
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database (Proquest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Geography
Physics
DocumentTitleAlternate SONNEWALD et al
EISSN 2333-5084
EndPage 794
ExternalDocumentID oai_doaj_org_article_13e5410efce740888fcb96e91978a5b0
PMC6686691
31423460
10_1029_2018EA000519
ESS2278
Genre article
Journal Article
GrantInformation_xml – fundername: NASA
  funderid: NNX14AJ51G; ECCO Consortium
– fundername: NASA
  grantid: NNX14AJ51G; ECCO Consortium
GroupedDBID 0R~
1OC
24P
5VS
AAFWJ
AAHHS
AAZKR
ABDBF
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KQ8
M~E
O9-
OK1
PCBAR
PIMPY
WIN
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IEP
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c5208-99ef8e77ed345384632b2c2e432748deae4c5f1ed470dda8c4b48eaf2bb99a7d3
IEDL.DBID DOA
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472560700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2333-5084
IngestDate Tue Oct 14 18:51:54 EDT 2025
Tue Nov 04 02:00:19 EST 2025
Sun Nov 09 04:49:14 EST 2025
Sun Sep 07 03:31:35 EDT 2025
Wed Feb 19 02:33:46 EST 2025
Tue Nov 18 22:20:11 EST 2025
Sat Nov 29 02:25:21 EST 2025
Wed Jan 22 16:41:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ocean dynamics
ocean modeling
physical oceanography
big data
machine learning
global patterns
Language English
License Attribution-NonCommercial-NoDerivs
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5208-99ef8e77ed345384632b2c2e432748deae4c5f1ed470dda8c4b48eaf2bb99a7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5136-9604
OpenAccessLink https://doaj.org/article/13e5410efce740888fcb96e91978a5b0
PMID 31423460
PQID 2247970987
PQPubID 4368366
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_13e5410efce740888fcb96e91978a5b0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6686691
proquest_miscellaneous_2275949682
proquest_journals_2247970987
pubmed_primary_31423460
crossref_primary_10_1029_2018EA000519
crossref_citationtrail_10_1029_2018EA000519
wiley_primary_10_1029_2018EA000519_ESS2278
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
2019-May
20190501
2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Earth and space science (Hoboken, N.J.)
PublicationTitleAlternate Earth Space Sci
PublicationYear 2019
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: American Geophysical Union (AGU)
References 2013; 26
2012
2017; 44
1997; 48
2013; 103
1973
2006
2004
2015; 8
2007; 34
2007; 37
2015; 45
1940; 3
2017b
2013; 2013
2017a
1967; 1
1999; 39
2010; 115
2017; 98
2007; 230
1948; 29
2017
2015
2005; 92
1981
2013
1950; 7
2011; 28
2018; 99
1996; 26
2018; 31
2016; 8
2016; 9
2016; 46
2012; 42
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Church J. A. (e_1_2_7_7_1) 2013
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Munk W. (e_1_2_7_20_1) 1950; 7
e_1_2_7_29_1
Munk W. H. (e_1_2_7_21_1) 1940; 3
Akaike H. (e_1_2_7_3_1) 1973
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
Priestley M. B. (e_1_2_7_24_1) 1981
References_xml – volume: 1
  start-page: 281
  year: 1967
  end-page: 297
– year: 1981
– volume: 45
  start-page: 1258
  year: 2015
  end-page: 1284
  article-title: Topographic coupling of the Atlantic overturning and gyre circulations
  publication-title: Journal of Physical Oceanography
– volume: 42
  start-page: 2229
  year: 2012
  end-page: 2233
  article-title: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height
  publication-title: Journal of Physical Oceanography
– volume: 44
  start-page: 5016
  year: 2017
  end-page: 5024
  article-title: Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean
  publication-title: Geophysical Research Letters
– start-page: 1
  year: 2012
  end-page: 14
– volume: 7
  start-page: 80
  year: 1950
  end-page: 93
  article-title: On the wind‐driven ocean circulation
  publication-title: Journal of Atmospheric Sciences
– year: 2017b
– volume: 31
  start-page: 2599
  year: 2018
  end-page: 2611
  article-title: Linear predictability: A sea surface height case study
  publication-title: Journal of Climate
– volume: 8
  start-page: 491
  year: 2016
  end-page: 518
  article-title: Ocean data assimilation in support of climate applications: Status and perspectives
  publication-title: Annual Review of Marine Science
– volume: 46
  start-page: 289
  issue: 1
  year: 2016
  end-page: 303
  article-title: North Atlantic barotropic vorticity balances in numerical models
  publication-title: Journal of Physical Oceanography
– volume: 34
  year: 2007
  article-title: Atlantic meridional overturning circulation and the Southern Hemisphere supergyre
  publication-title: Geophysical Research Letters
– volume: 26
  start-page: 671
  year: 1996
  end-page: 683
  article-title: JEBAR, bottom pressure torque, and gulf stream separation
  publication-title: Journal of Physical Oceanography
– start-page: 139
  year: 2004
  end-page: 150
– volume: 29
  start-page: 202
  issue: 2
  year: 1948
  end-page: 206
  article-title: The westward intensification of wind‐driven ocean currents
  publication-title: Eos, Transactions American Geophysical Union
– volume: 3
  start-page: 53
  year: 1940
  end-page: 55
  article-title: Note on the dynamics of the Antarctic Circumpolar Current
  publication-title: Tellus
– volume: 8
  start-page: 3071
  year: 2015
  end-page: 3104
  article-title: ECCO version 4: An integrated framework for non‐linear inverse modeling and global ocean state estimation
  publication-title: Geoscientific Model Development
– start-page: 1137
  year: 2013
  end-page: 1216
– volume: 48
  start-page: 243
  issue: 3
  year: 1997
  end-page: 250
  article-title: Three clusters of male alcoholics
  publication-title: Drug Alcohol Depend
– volume: 37
  start-page: 2550
  year: 2007
  end-page: 256
  article-title: Global ocean meridional overturning
  publication-title: Journal of Physical Oceanography
– volume: 26
  start-page: 2514
  year: 2013
  end-page: 2533
  article-title: Objective determination of feature resolution in two sea surface temperature analyses
  publication-title: Journal of Climate
– volume: 39
  start-page: 181
  issue: 3
  year: 1999
  end-page: 9
  article-title: Use of clusters analysis to validate IHS diagnostic criteria for migraine and tension‐type headache
  publication-title: Headache
– year: 2006
– volume: 230
  start-page: 197
  year: 2007
  end-page: 208
  article-title: Practical global oceanic state estimation
  publication-title: Physica D
– volume: 99
  start-page: 2107
  year: 2018
  end-page: 2128
  article-title: A dynamically‐consistent ocean climatology
  publication-title: Bulletin of the American Meteorological Society
– year: 2017a
– volume: 103
  start-page: 553
  year: 2013
  end-page: 579
– start-page: 267
  year: 1973
  end-page: 281
– volume: 28
  start-page: 1504
  year: 2011
  end-page: 1521
  article-title: Geostrophic velocity measurement techniques for the meridional overturning circulation and meridional heat transport in the South Atlantic
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 98
  start-page: 95
  year: 2017
  end-page: 105
  article-title: CMIP5 scientific gaps and recommendations for CMIP6
  publication-title: Bulletin of the American Meteorological Society
– volume: 92
  start-page: 937
  year: 2005
  end-page: 950
  article-title: “Can the strengths of AIC and BIC be shared?”
  publication-title: Biometrika
– volume: 115
  year: 2010
  article-title: The color of sea level: Importance of spatial variations in spectral shape for assessing the significance of trends
  publication-title: Journal of Geophysical Research
– year: 2017
– volume: 2013
  start-page: 13
  year: 2013
  article-title: “Using ensemble of neural networks to learn stochastic convection parameterizations for climate and numerical weather prediction models from data simulated by a cloud resolving model”
  publication-title: Advances in Artificial Neural Systems
– volume: 9
  start-page: 1937
  year: 2016
  end-page: 1958
  article-title: Overview of the coupled model intercomparison project Phase 6 (CMIP6) experimental design and organization
  publication-title: Geoscientific Model Development
– year: 2015
– start-page: 267
  volume-title: Second International Symposium on Information Theory
  year: 1973
  ident: e_1_2_7_3_1
– ident: e_1_2_7_16_1
  doi: 10.1007/978-3-319-20010-1
– volume: 3
  start-page: 53
  year: 1940
  ident: e_1_2_7_21_1
  article-title: Note on the dynamics of the Antarctic Circumpolar Current
  publication-title: Tellus
  doi: 10.3402/tellusa.v3i1.8609
– ident: e_1_2_7_22_1
  doi: 10.1175/1520-0485(1996)026<0671:JBPTAG>2.0.CO;2
– ident: e_1_2_7_14_1
  doi: 10.1029/2010JC006102
– ident: e_1_2_7_36_1
  doi: 10.1093/biomet/92.4.937
– ident: e_1_2_7_12_1
  doi: 10.1175/BAMS-D-17-0213.1
– ident: e_1_2_7_13_1
  doi: 10.1016/S0376-8716(97)00130-0
– ident: e_1_2_7_37_1
  doi: 10.1175/JPO-D-14-0100.1
– ident: e_1_2_7_11_1
  doi: 10.5194/gmd-8-3071-2015
– ident: e_1_2_7_23_1
  doi: 10.1175/JTECH-D-11-00058.1
– ident: e_1_2_7_17_1
– ident: e_1_2_7_33_1
  doi: 10.1016/j.physd.2006.09.040
– ident: e_1_2_7_18_1
  doi: 10.1175/JPO3130.1
– volume-title: Spectral analysis and time series
  year: 1981
  ident: e_1_2_7_24_1
– ident: e_1_2_7_26_1
  doi: 10.1002/2017GL076101
– ident: e_1_2_7_34_1
  doi: 10.1016/B978-0-12-391851-2.00021-0
– ident: e_1_2_7_15_1
  doi: 10.1155/2013/485913
– ident: e_1_2_7_10_1
  doi: 10.5194/gmd-9-1937-2016
– ident: e_1_2_7_8_1
– ident: e_1_2_7_2_1
– ident: e_1_2_7_25_1
  doi: 10.1175/JCLI-D-12-00787.1
– volume: 7
  start-page: 80
  year: 1950
  ident: e_1_2_7_20_1
  article-title: On the wind‐driven ocean circulation
  publication-title: Journal of Atmospheric Sciences
– ident: e_1_2_7_31_1
  doi: 10.1029/TR029i002p00202
– start-page: 1137
  volume-title: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_7_7_1
– ident: e_1_2_7_30_1
  doi: 10.1146/annurev-marine-122414-034113
– ident: e_1_2_7_19_1
– ident: e_1_2_7_29_1
  doi: 10.1029/2007GL031583
– ident: e_1_2_7_6_1
  doi: 10.1046/j.1526-4610.1999.3903181.x
– ident: e_1_2_7_32_1
  doi: 10.1175/BAMS-D-15-00013.1
– ident: e_1_2_7_5_1
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_7_35_1
  doi: 10.1175/JPO-D-12-0106.1
– ident: e_1_2_7_4_1
  doi: 10.1002/2016GL072428
– ident: e_1_2_7_9_1
– ident: e_1_2_7_27_1
  doi: 10.1175/JPO-D-15-0133.1
– ident: e_1_2_7_28_1
  doi: 10.1175/JCLI-D-17-0142.1
SSID ssj0001256024
Score 2.349539
Snippet Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20‐year mean of the Estimating the...
Dynamically similar regions of the global ocean are identified using a barotropic vorticity (BV) framework from a 20-year mean of the Estimating the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 784
SubjectTerms Algorithms
Artificial intelligence
big data
Budgets
Computational Geophysics
Consortia
Data Analysis: Algorithms and Implementation
General Circulation
General circulation models
Geodesy and Gravity
Geography
global patterns
Informatics
Machine Learning
Mass Balance
Natural Hazards
Neural Networks, Fuzzy Logic, Machine Learning
ocean dynamics
ocean modeling
Ocean Monitoring with Geodetic Techniques
Oceanography: Physical
physical oceanography
Physics
Statistical Analysis
Statistical methods: Descriptive
Topography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBZULj_IKFBQkuIAi4sTx44Ra2AKXpVpRqbfIscdtJZRsN91K_HvGjjfsCuiFS5TETmRn3vZkPkJe26rJqRUsQ1Pb4EFDJktrMpBofK2iwAwLYBNiOpUnJ-ooLrj1Ma1ypRODorad8Wvk79HUCCVyDJE_zC8yjxrld1cjhMZNsu0rlSGfbx9MpkeztVUWtOgFixnveaEw2Kdysj-4Lhu2KJTs_5uf-We65LobG-zQ4b3_ncF9cjd6oOn-wDIPyA1od8lOBEM_-7lLbn8OaL_-LOSHmv4h-Xrc9su51ys92DQWZT1NZ3CFjmafjk-nnUsHGIH0mwHdpp8GxHu8noFPfe4fkePDyfePX7KIwpCZqshRGypwEoQAWzLUjoyXRVOYAliJAa20oJGclaNgmcit1dKwhknQrmgapbSw5WOy1XYtPCUpOqNa51XlgAvGqdXGqdyaBpizZcNcQt6t6FGbWKLcI2X8qMNWeaHqdeol5M3Yez6U5vhHvwNP2rGPL6gdbnSL0zrKZ01LqBjNwRkQDDWvdKZRHBTFKFsjPydkb0XUOkp5X_-maEJejc0on37TRbfQLX0fUSmmuCwS8mTgo3EkJUVnlnF8udjgsI2hbra052ehBjjnknNFE_I28OK1H6BGUfZ_PD-7fg7PyR18Sg3ZnHtk63KxhBfklrm6PO8XL6Nk_QJ-eSq7
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ba9UwGA86FfbiXddtSgV9UYpNk-byOOemvswxHOyt5PJlG0jPON0Z7L_3S5qVc9AJ4kuhzUdIk-_yy-33EfLWt7amXvIKQ63Fh4FKMe8qUBh8vabAHU_JJuTBgTo50Yd5wS3ehRn5IaYFt2gZyV9HAzd2yGQDkSMTI5fa2xkxyF1yj1Imo1Y3_HBpjQXjecpr2zDGKsQiPJ99xyo-LlewEpUSef-fEOfvByeXAW2KSPuP_vdfHpOHGYuWO6PyPCF3oH9KHnxJuX6vn5Fvx_2wuIi-ZABfZiLW0_IIrhBcDmVOn352Xc5COaYOKL87MH35ecxyj-9HEI87D8_J8f7ej92vVc68ULm2qdEDaggKpATPOHpELlhjG9cAZziJVR4MDmEbKHgua--NctxyBSY01mptpGcvyFo_62GDlAhAjanbNoCQXFBvXNC1dxZ48MzyUJAPNz3fuUxLHrNj_OzS9niju-XOKci7SfpipOO4Re5THMRJJpJopw-z-WmXbbKjDFpOawgOJEdvq4KzWoCmOLM2qMMF2b5RgS5b9tAh5JFa1lrJgryZitEm40aL6WG2iDKy1VwL1RTk5agxU0sYRQDLBVYuV3RppamrJf35WeL9FkIJoWlB3idd-msHdGi-8Zbz5r8Ib5F1_KzH85zbZO1yvoBX5L67ujwf5q-Tbf0CevQhiw
  priority: 102
  providerName: Wiley-Blackwell
Title Unsupervised Learning Reveals Geography of Global Ocean Dynamical Regions
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018EA000519
https://www.ncbi.nlm.nih.gov/pubmed/31423460
https://www.proquest.com/docview/2247970987
https://www.proquest.com/docview/2275949682
https://pubmed.ncbi.nlm.nih.gov/PMC6686691
https://doaj.org/article/13e5410efce740888fcb96e91978a5b0
Volume 6
WOSCitedRecordID wos000472560700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: PCBAR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (Proquest)
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Free Archive
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2333-5084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001256024
  issn: 2333-5084
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAakXxJuUsgoSXEARseP4cWxhC3tgWa2oWE6RY49pJZStmm6l_nvGSbraFa8LF0uOR441nvF8E09mAF76ss6ZVyIjU1tTYzHThXcZajK-3jAUTnTFJtR0qhcLM9so9RVjwvr0wD3j3rICS8FyDA6VIJXQwdVGomHk_lh6UTx9c2U2nKn-6wpZci6GSPecG3LymR4f9JBlywZ1qfp_hy9_DZPchK-d_Tm6B3cH4Jge9Au-DzeweQB3PnSFea8ewuS4aVdnUfFb9OmQNfV7OsdLQoJtOtQ6P7lKlyHt8_ynnx3aJn3fl6Sn_hxjbHL7CI6Pxl_efcyGMgmZK3lOx5XBoFEp9IWg40vIgtfccRQFeZzaoyV-l4GhFyr33monaqHRBl7Xxljli8ew0ywbfAopoUVr87IMKJWQzFsXTO5djSL4ohYhgTfXjKvckEM8lrL4UXV32dxUm2xO4NWa-qzPnfEHusO4B2uamPG6e0ByUA1yUP1LDhLYv97BalDDtiJ8oozKjVYJvFgPkwLFWxHb4HIVaVRphJGaJ_Ck3_D1SgpGaFNImlxticLWUrdHmtOTLkm3lFpKwxJ43QnNXxlQka7FX5L3_gcjnsEuzW36oMx92Lk4X-FzuO0uL07b8xHc5GJGrVroEdw6HE9n81GnOtSbTT7NvlHv62T6E18bGmg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLahceJRXoECQ6IUqauI4sX1AqNCWrtouK9RK5RQce9JWQtll0y3aP8VvZJxkl10BvfXAJYqSieXY3zzsTOYDeG2TPIys4AG52pwOGgMZWxOgJOdrVYTc8JpsQvR68uRE9Zfg5_RfGJdWObWJtaG2A-P2yDfJ1QglQloivxt-DxxrlPu6OqXQaGCxj5MftGSr3na3aX7XGdvdOfqwF7SsAoFJWEjarbCQKATamJO28zRmOTMMeUwLNGlRU_eSIkLLRWitlobnXKIuWJ4rpYWNqd0bsMwd2Duw3O8e9r_M7epQBMF4m2EfMrVJDlbubDWh0oLvqykC_hbX_pmeOR82135v9-7_NmL34E4bYftbjUrchyUsV2GlJXs_m6zCrY81m7E7q_NfTfUAusdlNR46u1mh9duis6f-Z7ykQLryZ0_7g8JvaBL8TwZ16W9PSl1XXCBZl9pdPYTja3m7R9ApByU-AZ-Cba3DJCkwFTyNrDaFCq3JkRc2znnhwcZ0_jPTlmB3TCDfsjoVgKlsHi0erM-kh03pkX_IvXdQmsm4guH1hcHoNGvtTxbFmPAoxMKg4ORZZGFylaKKlJCa9NWDtSmIstaKVdlvBHnwanab7I_7qKRLHIydjEgUV6lkHjxucDvrSRxRsM5TalwsIHqhq4t3yvOzusZ5mso0VZEHb2rsXzkAGZkq90f306vf4SWs7B0dHmQH3d7-M7hNLagmc3UNOhejMT6Hm-by4rwavWi12oev160WvwBiYYlP
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHbcXLuMWGBAk9gKKmjhObD8gNOgG1aBUaJPGU3Dsk20SSkuzDvWv8es4TtLSCtjbHniJovjEcpJz-ewcnw_guU3yMLKCBxRqczpoDGRsTYCSgq9VEXLDa7IJMRjIw0M1XIOf870wLq1y7hNrR21Hxq2RdynUCCVCmiJ3izYtYtjbfT3-HjgGKfendU6n0ajIHs5-0PStetXv0bfeYmx3Z__t-6BlGAhMwkKydIWFRCHQxpwsn6cxy5lhyGOarEmLmoaaFBFaLkJrtTQ85xJ1wfJcKS1sTP1egnWC5Jx1YH3Y_zj8srTCQ2iC8TbbPmSqS8FW7mw3sGklDtZ0AX_DuH-mai5D6DoG7t78n9_eLbjRIm9_uzGV27CG5QZca0ngj2cbcOVdzXLszuq8WFPdgf5BWU3Hzp9WaP22GO2R_xnPCGBX_uJuf1T4DX2C_8mgLv3erNR1JQaSdSnf1V04uJCnuwedclTiA_AJhGsdJkmBqeBpZLUpVGhNjrywcc4LD17OdSEzbWl2xxDyLatTBJjKljXHg62F9LgpSfIPuTdOrRYyrpB4fWE0Ocpav5RFMSY8CrEwKDhFHFmYXKWoIiWkJjv2YHOuUFnr3arstzZ58GzRTH7J_WzSJY6mTkYkiqtUMg_uNzq8GEkcEYjnKXUuVrR7ZairLeXJcV37PE1lmqrIgxe1HZz7AjJyYW6n98Pzn-EpXCVbyD70B3uP4Dp1oJqE1k3onE6m-Bgum7PTk2rypDVwH75etFX8Ahdpkg8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Learning+Reveals+Geography+of+Global+Ocean+Dynamical+Regions&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=Maike+Sonnewald&rft.au=Carl+Wunsch&rft.au=Patrick+Heimbach&rft.date=2019-05-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.eissn=2333-5084&rft.volume=6&rft.issue=5&rft.spage=784&rft.epage=794&rft_id=info:doi/10.1029%2F2018EA000519&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_13e5410efce740888fcb96e91978a5b0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon