Biomimetic assembly to superplastic metal–organic framework aerogels for hydrogen evolution from seawater electrolysis

Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a signi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Exploration (Beijing, China) Ročník 1; číslo 2; s. 20210021 - n/a
Hlavní autoři: Sun, Yuntong, Xu, Shuaishuai, Ortíz‐Ledón, César A, Zhu, Junwu, Chen, Sheng, Duan, Jingjing
Médium: Journal Article
Jazyk:angličtina
Vydáno: China John Wiley & Sons, Inc 01.10.2021
John Wiley and Sons Inc
Wiley
Témata:
ISSN:2766-8509, 2766-2098, 2766-2098
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one‐dimensional (1D) to two‐dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co‐, NiMn‐, NiCo‐, NiCoMn‐) and organic ligands (2‐thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn‐MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm−2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm−2 increases slightly to 270, 264, and 258 mV after one‐, two‐, and threefold, respectively. In great contrast, traditional MOF powder‐electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form. Superplastic metal–organic framework (MOF) assembled macroscopic architecture is reported for the first time, which can fully and rapidly recover to its initial states after 50% strain compression and unloading for 2000 cycles. The facile synthetic strategy has been extendable to many other single‐, binary‐, and ternary‐metal MOF assemblies. The NiMn‐MOF aerogel could serve as a novel class of flexible electrode for efficient hydrogen evolution reaction (HER) from natural seawater.
AbstractList Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one‐dimensional (1D) to two‐dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co‐, NiMn‐, NiCo‐, NiCoMn‐) and organic ligands (2‐thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn‐MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm−2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm−2 increases slightly to 270, 264, and 258 mV after one‐, two‐, and threefold, respectively. In great contrast, traditional MOF powder‐electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form. Superplastic metal–organic framework (MOF) assembled macroscopic architecture is reported for the first time, which can fully and rapidly recover to its initial states after 50% strain compression and unloading for 2000 cycles. The facile synthetic strategy has been extendable to many other single‐, binary‐, and ternary‐metal MOF assemblies. The NiMn‐MOF aerogel could serve as a novel class of flexible electrode for efficient hydrogen evolution reaction (HER) from natural seawater.
Abstract Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one‐dimensional (1D) to two‐dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co‐, NiMn‐, NiCo‐, NiCoMn‐) and organic ligands (2‐thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn‐MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm−2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm−2 increases slightly to 270, 264, and 258 mV after one‐, two‐, and threefold, respectively. In great contrast, traditional MOF powder‐electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form.
Applications for metal-organic frameworks (MOFs) demand their assembly into three-dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one-dimensional (1D) to two-dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co-, NiMn-, NiCo-, NiCoMn-) and organic ligands (2-thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn-MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm . Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm increases slightly to 270, 264, and 258 mV after one-, two-, and threefold, respectively. In great contrast, traditional MOF powder-electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form.
Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one‐dimensional (1D) to two‐dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co‐, NiMn‐, NiCo‐, NiCoMn‐) and organic ligands (2‐thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn‐MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm −2 . Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm −2 increases slightly to 270, 264, and 258 mV after one‐, two‐, and threefold, respectively. In great contrast, traditional MOF powder‐electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form.
Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one‐dimensional (1D) to two‐dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co‐, NiMn‐, NiCo‐, NiCoMn‐) and organic ligands (2‐thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn‐MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm−2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm−2 increases slightly to 270, 264, and 258 mV after one‐, two‐, and threefold, respectively. In great contrast, traditional MOF powder‐electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form.
Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one‐dimensional (1D) to two‐dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co‐, NiMn‐, NiCo‐, NiCoMn‐) and organic ligands (2‐thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn‐MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm−2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm−2 increases slightly to 270, 264, and 258 mV after one‐, two‐, and threefold, respectively. In great contrast, traditional MOF powder‐electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form. Superplastic metal–organic framework (MOF) assembled macroscopic architecture is reported for the first time, which can fully and rapidly recover to its initial states after 50% strain compression and unloading for 2000 cycles. The facile synthetic strategy has been extendable to many other single‐, binary‐, and ternary‐metal MOF assemblies. The NiMn‐MOF aerogel could serve as a novel class of flexible electrode for efficient hydrogen evolution reaction (HER) from natural seawater.
Applications for metal-organic frameworks (MOFs) demand their assembly into three-dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one-dimensional (1D) to two-dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co-, NiMn-, NiCo-, NiCoMn-) and organic ligands (2-thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn-MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm-2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm-2 increases slightly to 270, 264, and 258 mV after one-, two-, and threefold, respectively. In great contrast, traditional MOF powder-electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form.Applications for metal-organic frameworks (MOFs) demand their assembly into three-dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one-dimensional (1D) to two-dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co-, NiMn-, NiCo-, NiCoMn-) and organic ligands (2-thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn-MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm-2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm-2 increases slightly to 270, 264, and 258 mV after one-, two-, and threefold, respectively. In great contrast, traditional MOF powder-electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form.
Author Zhu, Junwu
Xu, Shuaishuai
Sun, Yuntong
Chen, Sheng
Duan, Jingjing
Ortíz‐Ledón, César A
AuthorAffiliation 1 Key Laboratory for Soft Chemistry and Functional Materials School of Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing Jiangsu China
2 Department of Chemistry University of Wisconsin–Madison Madison Wisconsin USA
AuthorAffiliation_xml – name: 1 Key Laboratory for Soft Chemistry and Functional Materials School of Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing Jiangsu China
– name: 2 Department of Chemistry University of Wisconsin–Madison Madison Wisconsin USA
Author_xml – sequence: 1
  givenname: Yuntong
  surname: Sun
  fullname: Sun, Yuntong
  organization: Nanjing University of Science and Technology
– sequence: 2
  givenname: Shuaishuai
  surname: Xu
  fullname: Xu, Shuaishuai
  organization: Nanjing University of Science and Technology
– sequence: 3
  givenname: César A
  surname: Ortíz‐Ledón
  fullname: Ortíz‐Ledón, César A
  organization: University of Wisconsin–Madison
– sequence: 4
  givenname: Junwu
  surname: Zhu
  fullname: Zhu, Junwu
  email: zhujw@njust.edu.cn
  organization: Nanjing University of Science and Technology
– sequence: 5
  givenname: Sheng
  surname: Chen
  fullname: Chen, Sheng
  email: sheng.chen@njust.edu.cn
  organization: Nanjing University of Science and Technology
– sequence: 6
  givenname: Jingjing
  orcidid: 0000-0002-4008-2536
  surname: Duan
  fullname: Duan, Jingjing
  email: jingjing.duan@njust.edu.cn
  organization: Nanjing University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37323211$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAQxyNUREvpjTOKxIUDW-yxEycnVKoClSrBASRu1iSebL048WInLXvjHXhDngSH3Va0Epw8Hz__PeOZx9ne4AfKsqecHXPG4NXZl4_HwGC2-YPsAFRZLoDV1d7OrgpW72dHMa5YQioFVVk9yvaFEiCA84Ps-xvre9vTaNscY6S-cZt89Hmc1hTWDuOcSGl0v3789GGJQ_K7gD1d-_A1Rwp-SS7mnQ_55cbM3pDTlXfTaP2QSN_nkfAaRwo5OWrH4N0m2vgke9ihi3S0Ow-zz2_PPp2-X1x8eHd-enKxaAtgakGARkGJUkrihqcYNFCTqEVZdExRKQmlKmXXKiNMbQCMwYK3HTKJUIE4zM63usbjSq-D7TFstEer_wRSSxpDatKRVpWoCtNAJZtSQmlqIbFpW9nUZcWM5Enr9VZrPTU9mZaGMaC7I3o3M9hLvfRXmjNep6nMCi92CsF_myiOurexJedwID9FnSpWUIg0woQ-v4eu_BSG9FdasBoqpkQxt_fs75Jua7mZcAJeboE2-BgDdbcIZ3reG512SN_sUMLhHt7aEedZpoas-9cltr10bR1t_vvA7ABX4jf3Z9o3
CitedBy_id crossref_primary_10_1002_agt2_413
crossref_primary_10_1002_EXP_20220005
crossref_primary_10_1002_asia_202401522
crossref_primary_10_1002_pssa_202100888
crossref_primary_10_1039_D4QM00565A
crossref_primary_10_1016_j_checat_2023_100643
crossref_primary_10_1016_j_cis_2022_102668
crossref_primary_10_1002_smll_202106358
crossref_primary_10_1002_advs_202409290
crossref_primary_10_1016_j_jssc_2022_123052
crossref_primary_10_1111_jace_20538
crossref_primary_10_1016_j_nanoen_2024_109689
crossref_primary_10_1038_s41467_024_49168_2
crossref_primary_10_1088_1361_6463_ac708a
crossref_primary_10_1007_s12274_022_4391_6
crossref_primary_10_1002_EXP_20230043
crossref_primary_10_1002_smll_202307537
crossref_primary_10_1002_aenm_202301224
crossref_primary_10_1002_cctc_202300635
crossref_primary_10_1039_D3EE04513G
crossref_primary_10_1002_admi_202300486
crossref_primary_10_1038_s41598_023_48355_3
crossref_primary_10_1016_j_ccr_2024_215935
crossref_primary_10_1039_D4EE01693A
crossref_primary_10_1002_smll_202502708
crossref_primary_10_1002_EXP_20220174
crossref_primary_10_1039_D5QM00113G
crossref_primary_10_1016_j_jcis_2022_07_102
crossref_primary_10_1002_sus2_75
crossref_primary_10_3390_ijms26178475
crossref_primary_10_1002_adfm_202314820
crossref_primary_10_1002_EXP_20210182
crossref_primary_10_1016_j_apsusc_2022_153626
crossref_primary_10_1039_D3QI00766A
crossref_primary_10_1002_EXP_20220144
crossref_primary_10_1016_j_ijhydene_2022_03_046
crossref_primary_10_1016_j_jcis_2023_03_099
crossref_primary_10_1186_s12951_021_01217_4
crossref_primary_10_1016_j_jcis_2023_12_015
crossref_primary_10_1002_EXP_20220061
crossref_primary_10_1002_adsu_202400689
crossref_primary_10_1016_j_jssc_2021_122864
crossref_primary_10_1016_j_apcatb_2022_121353
crossref_primary_10_1002_ejic_202500201
crossref_primary_10_1039_D3QM00614J
crossref_primary_10_1016_j_ijhydene_2022_01_161
crossref_primary_10_1002_chem_202202000
crossref_primary_10_1039_D3NH00159H
crossref_primary_10_1016_j_jpowsour_2021_230873
crossref_primary_10_1016_j_cej_2023_143182
crossref_primary_10_3390_catal14010081
crossref_primary_10_1007_s12598_024_02696_8
crossref_primary_10_1016_j_ijhydene_2022_02_190
crossref_primary_10_1002_cnma_202400504
crossref_primary_10_1002_smll_202401546
crossref_primary_10_1039_D2CC03120E
crossref_primary_10_1002_cey2_263
crossref_primary_10_1007_s10853_022_07107_w
crossref_primary_10_1016_j_seppur_2024_129928
crossref_primary_10_1016_j_solener_2022_09_016
Cites_doi 10.1016/j.enchem.2019.100025
10.1126/science.aau2027
10.1103/PhysRevLett.77.3865
10.1021/acsenergylett.8b01540
10.1021/acsnano.8b00566
10.1021/acsmaterialslett.0c00148
10.1021/la970776m
10.1038/s41467-018-06431-7
10.1038/ncomms15341
10.1038/ncomms7512
10.1557/JMR.2000.0285
10.1021/acsenergylett.9b01134
10.1038/s41467-018-07678-w
10.1038/s41467-019-12857-4
10.1016/j.molstruc.2016.11.029
10.1016/j.enchem.2020.100027
10.1126/science.1211649
10.1002/ange.201901409
10.1002/anie.201306166
10.1179/1743280411Y.0000000011
10.1002/jcc.21759
10.1016/j.pmatsci.2007.05.002
10.1039/C5CE01886B
10.1039/b910175f
10.1103/PhysRevB.54.11169
10.1038/s41563-020-0764-y
10.1126/science.aaz4304
10.1016/S0022-3093(05)80427-2
10.1016/j.ccr.2019.213016
10.1002/anie.201000048
10.1039/D0TA03749D
10.1126/science.aad4998
10.1038/ncomms9304
10.1038/ncomms2757
10.1002/adem.200700270
10.1002/anie.201914967
10.1002/adma.201201978
10.1021/acsnano.8b07841
10.1039/C9SC04961D
ContentType Journal Article
Copyright 2021 The Authors. published by Henan University and John Wiley & Sons Australia, Ltd.
2021 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Henan University and John Wiley & Sons Australia, Ltd.
– notice: 2021 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
DOA
DOI 10.1002/EXP.20210021
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Environmental Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

PubMed
CrossRef
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2766-2098
EndPage n/a
ExternalDocumentID oai_doaj_org_article_78385db284b6426d934abcc4b9680d41
PMC10190981
37323211
10_1002_EXP_20210021
EXP217
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation
  funderid: NSFC 51888103; 52006105
– fundername: Jiangsu Innovative/Entrepreneurial Talent Program
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 30921013103; 30920041113
– fundername: Jiangsu Natural Science Foundation
  funderid: BK20190460
– fundername: ;
  grantid: BK20190460
– fundername: Natural Science Foundation
  grantid: NSFC 51888103; 52006105
– fundername: ;
  grantid: 30921013103; 30920041113
GroupedDBID 0R~
1OC
24P
AAHHS
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
ATCPS
BENPR
BHPHI
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
M~E
OK1
PATMY
PIMPY
PYCSY
RPM
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
WIN
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c5207-e2ad726a444e1d15202b29e39365f07e64ea4764fc7d3d9d22dda51cfa04a2823
IEDL.DBID 24P
ISICitedReferencesCount 99
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001274774400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2766-8509
2766-2098
IngestDate Mon Nov 10 04:34:41 EST 2025
Tue Nov 04 02:06:51 EST 2025
Sun Nov 09 11:20:58 EST 2025
Sat Jul 26 02:36:15 EDT 2025
Wed Feb 19 02:02:37 EST 2025
Tue Nov 18 21:37:46 EST 2025
Sat Nov 29 03:08:12 EST 2025
Wed Jan 22 16:28:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords aerogels
metal–organic frameworks
superplasticity
electrocatalysis
hydrogen evolution reaction
Language English
License Attribution
2021 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5207-e2ad726a444e1d15202b29e39365f07e64ea4764fc7d3d9d22dda51cfa04a2823
Notes Yuntong Sun and Shuaishuai Xu contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4008-2536
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2FEXP.20210021
PMID 37323211
PQID 3092807352
PQPubID 6853494
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_78385db284b6426d934abcc4b9680d41
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10190981
proquest_miscellaneous_2827253209
proquest_journals_3092807352
pubmed_primary_37323211
crossref_primary_10_1002_EXP_20210021
crossref_citationtrail_10_1002_EXP_20210021
wiley_primary_10_1002_EXP_20210021_EXP217
PublicationCentury 2000
PublicationDate October 2021
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
– name: Beijing
– name: Hoboken
PublicationTitle Exploration (Beijing, China)
PublicationTitleAlternate Exploration (Beijing)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2011; 334
2017; 8
2019; 4
2015; 6
2013; 4
2009; 40
2019; 10
1992; 145
2020; 369
2019; 366
2020; 59
2011; 32
2008; 10
2020; 11
2008; 53
2016; 18
2017; 355
1996; 54
2020; 19
1996; 77
2020; 8
2018; 9
2017; 1131
2010; 49
2018; 3
2020; 2
2000; 15
2013; 57
1997; 13
2013; 52
2018; 12
2012; 24
2019; 398
2019; 131
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 1131
  start-page: 171
  year: 2017
  publication-title: J. Mol. Struct.
– volume: 24
  start-page: 4569
  year: 2012
  publication-title: Adv. Mater.
– volume: 52
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 310
  year: 2020
  publication-title: Chem. Sci.
– volume: 6
  start-page: 8304
  year: 2015
  publication-title: Nat. Commun.
– volume: 13
  start-page: 6267
  year: 1997
  publication-title: Langmuir
– volume: 49
  start-page: 6260
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 334
  start-page: 962
  year: 2011
  publication-title: Science
– volume: 369
  start-page: 674
  year: 2020
  publication-title: Science
– volume: 131
  start-page: 4727
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  year: 2020
  publication-title: EnergyChem
– volume: 3
  start-page: 2520
  year: 2018
  publication-title: ACS Energy Lett
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett
– volume: 12
  start-page: 4462
  year: 2018
  publication-title: ACS Nano
– volume: 9
  start-page: 5236
  year: 2018
  publication-title: Nat. Commun.
– volume: 40
  start-page: 6056
  year: 2009
  publication-title: Chem. Commun.
– volume: 9
  start-page: 3984
  year: 2018
  publication-title: Nat. Commun.
– volume: 10
  start-page: 4948
  year: 2019
  publication-title: Nat. Commun.
– volume: 18
  start-page: 536
  year: 2016
  publication-title: CrystEngComm
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 145
  start-page: 44
  year: 1992
  publication-title: J. Non‐Cryst. Solids
– volume: 366
  year: 2019
  publication-title: Science
– volume: 15
  start-page: 1985
  year: 2000
  publication-title: J. Mater. Res.
– volume: 2
  start-page: 779
  year: 2020
  publication-title: ACS Mater. Lett.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 57
  start-page: 37
  year: 2013
  publication-title: Int. Mater. Rev.
– volume: 4
  start-page: 1774
  year: 2013
  publication-title: Nat. Commun.
– volume: 53
  start-page: 1
  year: 2008
  publication-title: Prog. Mater. Sci.
– volume: 398
  year: 2019
  publication-title: Coordin. Chem. Rev.
– volume: 6
  start-page: 6512
  year: 2015
  publication-title: Nat. Commun.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 10
  start-page: 155
  year: 2008
  publication-title: Adv. Eng. Mater.
– volume: 19
  start-page: 1346
  year: 2020
  publication-title: Nat. Mater.
– volume: 59
  start-page: 8181
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 1443
  year: 2019
  publication-title: ACS Energy Lett
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 32
  start-page: 1456
  year: 2011
  publication-title: J. Comput. Chem.
– ident: e_1_2_6_8_1
  doi: 10.1016/j.enchem.2019.100025
– ident: e_1_2_6_26_1
  doi: 10.1126/science.aau2027
– ident: e_1_2_6_37_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_6_38_1
  doi: 10.1021/acsenergylett.8b01540
– ident: e_1_2_6_7_1
  doi: 10.1021/acsnano.8b00566
– ident: e_1_2_6_5_1
  doi: 10.1021/acsmaterialslett.0c00148
– ident: e_1_2_6_39_1
  doi: 10.1021/la970776m
– ident: e_1_2_6_12_1
  doi: 10.1038/s41467-018-06431-7
– ident: e_1_2_6_28_1
  doi: 10.1038/ncomms15341
– ident: e_1_2_6_29_1
  doi: 10.1038/ncomms7512
– ident: e_1_2_6_16_1
  doi: 10.1557/JMR.2000.0285
– ident: e_1_2_6_22_1
  doi: 10.1021/acsenergylett.9b01134
– ident: e_1_2_6_24_1
  doi: 10.1038/s41467-018-07678-w
– ident: e_1_2_6_13_1
  doi: 10.1038/s41467-019-12857-4
– ident: e_1_2_6_18_1
  doi: 10.1016/j.molstruc.2016.11.029
– ident: e_1_2_6_3_1
  doi: 10.1016/j.enchem.2020.100027
– ident: e_1_2_6_17_1
  doi: 10.1126/science.1211649
– ident: e_1_2_6_25_1
  doi: 10.1002/ange.201901409
– ident: e_1_2_6_33_1
  doi: 10.1002/anie.201306166
– ident: e_1_2_6_20_1
  doi: 10.1179/1743280411Y.0000000011
– ident: e_1_2_6_35_1
  doi: 10.1002/jcc.21759
– ident: e_1_2_6_15_1
  doi: 10.1016/j.pmatsci.2007.05.002
– ident: e_1_2_6_19_1
  doi: 10.1039/C5CE01886B
– ident: e_1_2_6_10_1
  doi: 10.1039/b910175f
– ident: e_1_2_6_36_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_6_23_1
  doi: 10.1038/s41563-020-0764-y
– ident: e_1_2_6_2_1
  doi: 10.1126/science.aaz4304
– ident: e_1_2_6_40_1
  doi: 10.1016/S0022-3093(05)80427-2
– ident: e_1_2_6_11_1
  doi: 10.1016/j.ccr.2019.213016
– ident: e_1_2_6_14_1
  doi: 10.1002/anie.201000048
– ident: e_1_2_6_4_1
  doi: 10.1039/D0TA03749D
– ident: e_1_2_6_34_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_6_30_1
  doi: 10.1038/ncomms9304
– ident: e_1_2_6_9_1
  doi: 10.1038/ncomms2757
– ident: e_1_2_6_21_1
  doi: 10.1002/adem.200700270
– ident: e_1_2_6_27_1
  doi: 10.1002/anie.201914967
– ident: e_1_2_6_32_1
  doi: 10.1002/adma.201201978
– ident: e_1_2_6_31_1
  doi: 10.1021/acsnano.8b07841
– ident: e_1_2_6_6_1
  doi: 10.1039/C9SC04961D
SSID ssj0002872868
Score 2.4899218
Snippet Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining...
Applications for metal-organic frameworks (MOFs) demand their assembly into three-dimensional (3D) macroscopic architectures. The capability of sustaining...
Abstract Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20210021
SubjectTerms Acids
Aerogels
Aqueous solutions
Assembling
Assembly
Biomimetic materials
Biomimetics
Current density
Deformation
electrocatalysis
Electrocatalysts
Electrolysis
Fourier transforms
hydrogen evolution reaction
Hydrogen evolution reactions
Ligands
Metal-organic frameworks
Monolithic materials
Morphology
Nanoparticles
Seawater
Short Communication
Spectrum analysis
Structural integrity
Superplasticity
Transition metals
Unloading
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQCiQuiDdhF2QkOCAUrWM7fhwB7YoDWu0BUG-WYztsUZtWabvQ2_4H_iG_hLGdVq14XbjFGceyZsaZb5J5IPRcec11w1zJJSfgoDhb6mBJqVWrOG-Vr1OA7Kf38uxMjUb6fKfVV4wJy-WBM-OOpWKq9g28RRuAysJrxm3jHG-0UMSnlHUKqGfHmfqSPhlJqlIeHJVClArM4hD1DrTjk9E5eIY0Xld79iiV7f8d1vw1ZHIXyiZbdHob3RpAJH6dN38HXQvdXXQjt5Vc30Pf4Go6nsb0RAzYOEybyRovZ3ixmod-DnA5EoBsJz-uvue2Tg63mygtbEM_-wwmEwOexRdrH0cdDpeDkuKYkYLhhHwFmNrjoY9OqmxyH308Pfnw9l05dFgoXU2JLAO1XlJhOeeh8mDKCW2oDkwzUbdEBsGD5VLw1knPvPaUem_ryrWWcAvOGnuADrpZFx4hzHQMWfHCShd4DUJiLSxDWiGIbHVNCvRqw2fjhvLjsQvGxOTCydSAVMxGKgV6sZ09z2U3_jDvTRTZdk4slp1uAPPMoELmXypUoKONwM1wgheGER0LBQE-LdCzLRnOXvyhYrswWy0McEDS2FlDF-hh1o_tTphkAFYrWFztac7eVvcp3fgi1feuYn6_VvDoy6Rkf-VAHIBb-fh_MOIQ3YzL5ljFI3Sw7FfhCbruLpfjRf80nbCfhE8oaQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagCxIX3o_CgowEB4SidWzHjxNiUVccUFUhQL1Fju3sVmqTkrQLvfEf-If8EsaJW6iAvXBLMo7leMb2N874G4SeKae5LphNuOQEHBRrEu0NSbQqFeelclkXIPvpnRyP1XSqJ3HDrY1hlds5sZuoXW3DHvkRIzoQtwBeeLX8nISsUeHvakyhcRkdBKYyPkAHx6Px5P1ulwX8Aaq683BUCgEmoVWMfgfZ0Wg6AQ-Rhut0b13q6Pv_hjn_DJ38HdJ2a9LJjf_9mpvoekSj-HVvPrfQJV_dRlf7_JSbO-grXC1mi3DOEQPI9otivsGrGrfrpW-WgLuDAMRm_uPb9z4_lMXlNtwLG9_Up7D2YgDG-Gzjwl2F_Xm0dhyOtmAYal8A7zY4JuTpKFLuoo8now9v3iYxVUNiM0pk4qlxkgrDOfepA0xAaEG1Z5qJrCTSC-4Nl4KXVjrmtKPUOZOltjSEG_D62D00qOrKP0CY6RD74oSR1vOMccNKqIaUQhBZ6owM0cutonIbecxDOo153jMw0xzUmm_VOkTPd6WXPX_HP8odB53vygTW7e4BdF4eB3EuFVOZK2BFL8BtE05D6wpreaGFIo5DJYdbbedxKmjzX6oeoqc7MQzi8GfGVL5etzn0gKQhRYceovu9ge1awiQD1JtC5WrP9Paaui-pZmcdUXgaiAK0gldfdFZ6YQ-EG_BPH178DY_QtfBCH854iAarZu0foyv2fDVrmydx-P0EB284XQ
  priority: 102
  providerName: ProQuest
Title Biomimetic assembly to superplastic metal–organic framework aerogels for hydrogen evolution from seawater electrolysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2FEXP.20210021
https://www.ncbi.nlm.nih.gov/pubmed/37323211
https://www.proquest.com/docview/3092807352
https://www.proquest.com/docview/2827253209
https://pubmed.ncbi.nlm.nih.gov/PMC10190981
https://doaj.org/article/78385db284b6426d934abcc4b9680d41
Volume 1
WOSCitedRecordID wos001274774400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2766-2098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002872868
  issn: 2766-8509
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2766-2098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002872868
  issn: 2766-8509
  databaseCode: PATMY
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2766-2098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002872868
  issn: 2766-8509
  databaseCode: BENPR
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2766-2098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002872868
  issn: 2766-8509
  databaseCode: PIMPY
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2766-2098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002872868
  issn: 2766-8509
  databaseCode: WIN
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2766-2098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002872868
  issn: 2766-8509
  databaseCode: 24P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELbQLki8cB-FpTISPCAUrWM7Ph5Z1BUrQRUhjvIUObazW6lNqx4LfeM_8A_5JYydNGzFISFeqk7GtdzJTGbGGX-D0BPlNNclswmXnECCYk2ivSGJVpXivFIuiwWyH17L4VCNRjpvN9zCWZgGH6LbcAuWEZ_XwcBNuTz8CRo6GOWQ3tFAQfazn6ZMhdYNlOfdHgtkA1TF03BUCpEocI5t7TvwDi9OsOOVInj_7yLOXwsnLwa00SMdX__f_3IDXWtjUfyiUZ6b6JKvb6ErTXfKzW30Bb5Nx9NwyhFDiO2n5WSDVzO8XM_9Yg5Rd2AA20y-f_3WdIeyuNoWe2HjF7NT8LwYwmJ8tnGBqrE_b3Udh4MtGAztM0S7C9y244kAKXfQ--PBu5evkrZRQ2IzSmTiqXGSCsM596mDiIDQkmrPNBNZRaQX3BsuBa-sdMxpR6lzJkttZQg3kPOxu2ivntX-PsJMh8oXJ4y0nmeMG1bBNKQSgshKZ6SHnm9vVGFbFPPQTGNSNPjLtABZFltZ9tDTbvS8Qe_4w7ijcM-7MQFzO14A4RWtCRdSMZW5Evx5CUmbcBpWV1rLSy0UcRwmOdhqTNE-CJYFIzrgDUGY20OPOzaYcHgvY2o_Wy8LkICkoUGH7qF7jYJ1K2GSQcybwuRqR_V2lrrLqcdnESY8DTABWsFPn0Xd-6sEAgHZ6YN_GPsQXQ1XmsrGA7S3Wqz9I3TZnq_Gy0U_WiJ8ypHqo_2jwTB_248bHkDlJ2_yT0B9PBn-ADQ-Or0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKCoIL70eggJHoAaFVHdvrxwEhHq0aNY1yKCicFq_tpZGSTcijJTf-A_-DH8UvYbyPQAT01gO33YzXsp1vxvPtjmcQeqqc5jplNuKSEyAo1kTaGxJplSnOM-XiIkD2fUd2u6rf170N9L0-CxPCKmubWBhqN7bhHfkOIzokbgF_4eXkcxSqRoWvq3UJjRIWB355CpRt9qL9Fv7fbUr3do_e7EdVVYHIxpTIyFPjJBWGc-5bDrYvQlOqPdNMxBmRXnBvuBQ8s9Ixpx2lzpm4ZTNDuAGCwqDfC2iTA9hVA2322oe9D6u3OsA_qCrO31EpBEBQqyraHmQ7u_0eMFIarltr-2BRLuBvPu6foZq_u9DFHrh37X9bvevoauVt41eletxAGz6_iS6V9TeXt9AXuBoNRuEcJwYS4UfpcInnYzxbTPx0ArwiCEBshj--fivrX1mc1eFs2Pjp-BP4Fhgcf3y8dOEux_6k0mYcju5gmPUp-PNTXBUcKlLA3EbvzmXad1AjH-f-HsJMh9geJ4y0nseMG5ZBNyQTgshMx6SJntfASGyVpz2UCxkmZYZpmgCMkhpGTbS9aj0p85P8o93rgLFVm5BVvPgBFi-pjFQiFVOxS8FjSYGWCqdhdKm1PNVCEcehk60aXUll6mbJL2g10ZOVGIxU-PJkcj9ezBJYAUlDCRLdRHdLQK9GwiQDr74Fnas1qK8NdV2SD46LROitkAhBK3j0WaEVZ65AuAH-ff_sOTxGl_ePDjtJp909eICuhIfL0M0t1JhPF_4humhP5oPZ9FGl-hh9PG99-Qkm_JQ2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELbQcoiX5WYLCxgJHhCK1rEdH48cW4FYVX0A1LfI8cFWatOqx0Lf-A_8Q34JYycNW3FIiLe641ruZCbzTTL-BqEnymmuK2YzLjmBBMWaTHtDMq2C4jwoV6QC2Y8ncjBQo5Eetn1O41mYhh-ie-AWPSPdr6OD-7kLRz9ZQ49HQ8jvaBxB-nORFzKPZk35sHvIAukAVek4HJVCZAqiY1v8DrKj8wvshKXE3v87yPlr5eR5RJtCUv_af_-Z62i_RaP4RWM-N9AFX99El5v-lJtb6At8mo6n8ZwjBpDtp9Vkg1czvFzP_WIOuDsKQGwm379-a_pDWRy25V7Y-MXsE8ReDMAYn25cHNXYn7XWjuPRFgyu9hnw7gK3DXkSRcpt9KF__P7Vm6xt1ZDZghKZeWqcpMJwzn3uABMQWlHtmWaiCER6wb3hUvBgpWNOO0qdM0VugyHcQNbH7qC9elb7A4SZjrUvThhpPS8YNyzAMiQIQWTQBemh59srVdqWxzy205iUDQMzLUGX5VaXPfS0mz1v-Dv-MO9lvOjdnMi6nb4A5ZWtE5dSMVW4CiJ6BWmbcBp2V1nLKy0UcRwWOdyaTNneCpYlIzoyDgHQ7aHHnRicOL6ZMbWfrZclaEDS2KJD99DdxsK6nTDJAPXmsLjasb2dre5K6vFpIgrPI1GAVvDTZ8n4_qqBOID89N4_zH2Ergxf98uTt4N399HVKGzKHA_R3mqx9g_QJXu2Gi8XD5NX_gCIsjf0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomimetic+assembly+to+superplastic+metal%E2%80%93organic+framework+aerogels+for+hydrogen+evolution+from+seawater+electrolysis&rft.jtitle=Exploration+%28Beijing%2C+China%29&rft.au=Sun%2C+Yuntong&rft.au=Xu%2C+Shuaishuai&rft.au=Ort%C3%ADz%E2%80%90Led%C3%B3n%2C+C%C3%A9sar+A&rft.au=Zhu%2C+Junwu&rft.date=2021-10-01&rft.issn=2766-8509&rft.eissn=2766-2098&rft.volume=1&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2FEXP.20210021&rft.externalDBID=10.1002%252FEXP.20210021&rft.externalDocID=EXP217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2766-8509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2766-8509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2766-8509&client=summon