Biomimetic assembly to superplastic metal–organic framework aerogels for hydrogen evolution from seawater electrolysis
Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a signi...
Uložené v:
| Vydané v: | Exploration (Beijing, China) Ročník 1; číslo 2; s. 20210021 - n/a |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
China
John Wiley & Sons, Inc
01.10.2021
John Wiley and Sons Inc Wiley |
| Predmet: | |
| ISSN: | 2766-8509, 2766-2098, 2766-2098 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one‐dimensional (1D) to two‐dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co‐, NiMn‐, NiCo‐, NiCoMn‐) and organic ligands (2‐thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn‐MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm−2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm−2 increases slightly to 270, 264, and 258 mV after one‐, two‐, and threefold, respectively. In great contrast, traditional MOF powder‐electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form.
Superplastic metal–organic framework (MOF) assembled macroscopic architecture is reported for the first time, which can fully and rapidly recover to its initial states after 50% strain compression and unloading for 2000 cycles. The facile synthetic strategy has been extendable to many other single‐, binary‐, and ternary‐metal MOF assemblies. The NiMn‐MOF aerogel could serve as a novel class of flexible electrode for efficient hydrogen evolution reaction (HER) from natural seawater. |
|---|---|
| AbstractList | Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one‐dimensional (1D) to two‐dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co‐, NiMn‐, NiCo‐, NiCoMn‐) and organic ligands (2‐thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn‐MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm−2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm−2 increases slightly to 270, 264, and 258 mV after one‐, two‐, and threefold, respectively. In great contrast, traditional MOF powder‐electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form. Superplastic metal–organic framework (MOF) assembled macroscopic architecture is reported for the first time, which can fully and rapidly recover to its initial states after 50% strain compression and unloading for 2000 cycles. The facile synthetic strategy has been extendable to many other single‐, binary‐, and ternary‐metal MOF assemblies. The NiMn‐MOF aerogel could serve as a novel class of flexible electrode for efficient hydrogen evolution reaction (HER) from natural seawater. Abstract Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one‐dimensional (1D) to two‐dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co‐, NiMn‐, NiCo‐, NiCoMn‐) and organic ligands (2‐thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn‐MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm−2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm−2 increases slightly to 270, 264, and 258 mV after one‐, two‐, and threefold, respectively. In great contrast, traditional MOF powder‐electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form. Applications for metal-organic frameworks (MOFs) demand their assembly into three-dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one-dimensional (1D) to two-dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co-, NiMn-, NiCo-, NiCoMn-) and organic ligands (2-thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn-MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm . Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm increases slightly to 270, 264, and 258 mV after one-, two-, and threefold, respectively. In great contrast, traditional MOF powder-electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form. Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one‐dimensional (1D) to two‐dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co‐, NiMn‐, NiCo‐, NiCoMn‐) and organic ligands (2‐thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn‐MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm −2 . Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm −2 increases slightly to 270, 264, and 258 mV after one‐, two‐, and threefold, respectively. In great contrast, traditional MOF powder‐electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form. Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one‐dimensional (1D) to two‐dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co‐, NiMn‐, NiCo‐, NiCoMn‐) and organic ligands (2‐thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn‐MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm−2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm−2 increases slightly to 270, 264, and 258 mV after one‐, two‐, and threefold, respectively. In great contrast, traditional MOF powder‐electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form. Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one‐dimensional (1D) to two‐dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co‐, NiMn‐, NiCo‐, NiCoMn‐) and organic ligands (2‐thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn‐MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm−2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm−2 increases slightly to 270, 264, and 258 mV after one‐, two‐, and threefold, respectively. In great contrast, traditional MOF powder‐electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form. Superplastic metal–organic framework (MOF) assembled macroscopic architecture is reported for the first time, which can fully and rapidly recover to its initial states after 50% strain compression and unloading for 2000 cycles. The facile synthetic strategy has been extendable to many other single‐, binary‐, and ternary‐metal MOF assemblies. The NiMn‐MOF aerogel could serve as a novel class of flexible electrode for efficient hydrogen evolution reaction (HER) from natural seawater. Applications for metal-organic frameworks (MOFs) demand their assembly into three-dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one-dimensional (1D) to two-dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co-, NiMn-, NiCo-, NiCoMn-) and organic ligands (2-thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn-MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm-2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm-2 increases slightly to 270, 264, and 258 mV after one-, two-, and threefold, respectively. In great contrast, traditional MOF powder-electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form.Applications for metal-organic frameworks (MOFs) demand their assembly into three-dimensional (3D) macroscopic architectures. The capability of sustaining structural integrity with considerable deformation is important to allow a monolithic material to work reliably. Nevertheless, it remains a significant challenge to introduce superplasticity in 3D MOF networks. Here, we report a general procedure for synthesizing 3D superplastic MOF aerogels inspired by the hierarchical architecture of natural corks. The resultant MOFs exhibited excellent superplasticity that can recover fully and rapidly to its original dimension after 50% strain compression and unloading for >2000 cycles. The 3D superplastic architecture is achieved by successively assembling one-dimensional (1D) to two-dimensional (2D) and then 3D, in a variety of MOFs with different transition metal active sites (Co-, NiMn-, NiCo-, NiCoMn-) and organic ligands (2-thiophenecarboxylic acid and glutaric acid). Latent applications have been demonstrated for NiMn-MOF aerogels to serve as a new generation of flexible electrocatalysts for hydrogen evolution reaction (HER) from seawater splitting, which requires a low overpotential of 243 mV to achieve a current density of 10 mA·cm-2. Notably, the electrocatalyst remains stable even being deformed, as the overpotential to achieve a current density of 10 mA·cm-2 increases slightly to 270, 264, and 258 mV after one-, two-, and threefold, respectively. In great contrast, traditional MOF powder-electrodes demonstrate significant activity decay under similar conditions. This work opens up enormous opportunities for exploring new applications of MOFs in a freestanding, structurally adaptive, and macroscopic form. |
| Author | Zhu, Junwu Xu, Shuaishuai Sun, Yuntong Chen, Sheng Duan, Jingjing Ortíz‐Ledón, César A |
| AuthorAffiliation | 1 Key Laboratory for Soft Chemistry and Functional Materials School of Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing Jiangsu China 2 Department of Chemistry University of Wisconsin–Madison Madison Wisconsin USA |
| AuthorAffiliation_xml | – name: 1 Key Laboratory for Soft Chemistry and Functional Materials School of Chemical Engineering School of Energy and Power Engineering Nanjing University of Science and Technology Nanjing Jiangsu China – name: 2 Department of Chemistry University of Wisconsin–Madison Madison Wisconsin USA |
| Author_xml | – sequence: 1 givenname: Yuntong surname: Sun fullname: Sun, Yuntong organization: Nanjing University of Science and Technology – sequence: 2 givenname: Shuaishuai surname: Xu fullname: Xu, Shuaishuai organization: Nanjing University of Science and Technology – sequence: 3 givenname: César A surname: Ortíz‐Ledón fullname: Ortíz‐Ledón, César A organization: University of Wisconsin–Madison – sequence: 4 givenname: Junwu surname: Zhu fullname: Zhu, Junwu email: zhujw@njust.edu.cn organization: Nanjing University of Science and Technology – sequence: 5 givenname: Sheng surname: Chen fullname: Chen, Sheng email: sheng.chen@njust.edu.cn organization: Nanjing University of Science and Technology – sequence: 6 givenname: Jingjing orcidid: 0000-0002-4008-2536 surname: Duan fullname: Duan, Jingjing email: jingjing.duan@njust.edu.cn organization: Nanjing University of Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37323211$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAQxyNUREvpjTOKxIUDW-yxEycnVKoClSrBASRu1iSebL048WInLXvjHXhDngSH3Va0Epw8Hz__PeOZx9ne4AfKsqecHXPG4NXZl4_HwGC2-YPsAFRZLoDV1d7OrgpW72dHMa5YQioFVVk9yvaFEiCA84Ps-xvre9vTaNscY6S-cZt89Hmc1hTWDuOcSGl0v3789GGJQ_K7gD1d-_A1Rwp-SS7mnQ_55cbM3pDTlXfTaP2QSN_nkfAaRwo5OWrH4N0m2vgke9ihi3S0Ow-zz2_PPp2-X1x8eHd-enKxaAtgakGARkGJUkrihqcYNFCTqEVZdExRKQmlKmXXKiNMbQCMwYK3HTKJUIE4zM63usbjSq-D7TFstEer_wRSSxpDatKRVpWoCtNAJZtSQmlqIbFpW9nUZcWM5Enr9VZrPTU9mZaGMaC7I3o3M9hLvfRXmjNep6nMCi92CsF_myiOurexJedwID9FnSpWUIg0woQ-v4eu_BSG9FdasBoqpkQxt_fs75Jua7mZcAJeboE2-BgDdbcIZ3reG512SN_sUMLhHt7aEedZpoas-9cltr10bR1t_vvA7ABX4jf3Z9o3 |
| CitedBy_id | crossref_primary_10_1002_agt2_413 crossref_primary_10_1002_EXP_20220005 crossref_primary_10_1002_asia_202401522 crossref_primary_10_1002_pssa_202100888 crossref_primary_10_1039_D4QM00565A crossref_primary_10_1016_j_checat_2023_100643 crossref_primary_10_1016_j_cis_2022_102668 crossref_primary_10_1002_smll_202106358 crossref_primary_10_1002_advs_202409290 crossref_primary_10_1016_j_jssc_2022_123052 crossref_primary_10_1111_jace_20538 crossref_primary_10_1016_j_nanoen_2024_109689 crossref_primary_10_1038_s41467_024_49168_2 crossref_primary_10_1088_1361_6463_ac708a crossref_primary_10_1007_s12274_022_4391_6 crossref_primary_10_1002_EXP_20230043 crossref_primary_10_1002_smll_202307537 crossref_primary_10_1002_aenm_202301224 crossref_primary_10_1002_cctc_202300635 crossref_primary_10_1039_D3EE04513G crossref_primary_10_1002_admi_202300486 crossref_primary_10_1038_s41598_023_48355_3 crossref_primary_10_1016_j_ccr_2024_215935 crossref_primary_10_1039_D4EE01693A crossref_primary_10_1002_smll_202502708 crossref_primary_10_1002_EXP_20220174 crossref_primary_10_1039_D5QM00113G crossref_primary_10_1016_j_jcis_2022_07_102 crossref_primary_10_1002_sus2_75 crossref_primary_10_3390_ijms26178475 crossref_primary_10_1002_adfm_202314820 crossref_primary_10_1002_EXP_20210182 crossref_primary_10_1016_j_apsusc_2022_153626 crossref_primary_10_1039_D3QI00766A crossref_primary_10_1002_EXP_20220144 crossref_primary_10_1016_j_ijhydene_2022_03_046 crossref_primary_10_1016_j_jcis_2023_03_099 crossref_primary_10_1186_s12951_021_01217_4 crossref_primary_10_1016_j_jcis_2023_12_015 crossref_primary_10_1002_EXP_20220061 crossref_primary_10_1002_adsu_202400689 crossref_primary_10_1016_j_jssc_2021_122864 crossref_primary_10_1016_j_apcatb_2022_121353 crossref_primary_10_1002_ejic_202500201 crossref_primary_10_1039_D3QM00614J crossref_primary_10_1016_j_ijhydene_2022_01_161 crossref_primary_10_1002_chem_202202000 crossref_primary_10_1039_D3NH00159H crossref_primary_10_1016_j_jpowsour_2021_230873 crossref_primary_10_1016_j_cej_2023_143182 crossref_primary_10_3390_catal14010081 crossref_primary_10_1007_s12598_024_02696_8 crossref_primary_10_1016_j_ijhydene_2022_02_190 crossref_primary_10_1002_cnma_202400504 crossref_primary_10_1002_smll_202401546 crossref_primary_10_1039_D2CC03120E crossref_primary_10_1002_cey2_263 crossref_primary_10_1007_s10853_022_07107_w crossref_primary_10_1016_j_seppur_2024_129928 crossref_primary_10_1016_j_solener_2022_09_016 |
| Cites_doi | 10.1016/j.enchem.2019.100025 10.1126/science.aau2027 10.1103/PhysRevLett.77.3865 10.1021/acsenergylett.8b01540 10.1021/acsnano.8b00566 10.1021/acsmaterialslett.0c00148 10.1021/la970776m 10.1038/s41467-018-06431-7 10.1038/ncomms15341 10.1038/ncomms7512 10.1557/JMR.2000.0285 10.1021/acsenergylett.9b01134 10.1038/s41467-018-07678-w 10.1038/s41467-019-12857-4 10.1016/j.molstruc.2016.11.029 10.1016/j.enchem.2020.100027 10.1126/science.1211649 10.1002/ange.201901409 10.1002/anie.201306166 10.1179/1743280411Y.0000000011 10.1002/jcc.21759 10.1016/j.pmatsci.2007.05.002 10.1039/C5CE01886B 10.1039/b910175f 10.1103/PhysRevB.54.11169 10.1038/s41563-020-0764-y 10.1126/science.aaz4304 10.1016/S0022-3093(05)80427-2 10.1016/j.ccr.2019.213016 10.1002/anie.201000048 10.1039/D0TA03749D 10.1126/science.aad4998 10.1038/ncomms9304 10.1038/ncomms2757 10.1002/adem.200700270 10.1002/anie.201914967 10.1002/adma.201201978 10.1021/acsnano.8b07841 10.1039/C9SC04961D |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by Henan University and John Wiley & Sons Australia, Ltd. 2021 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by Henan University and John Wiley & Sons Australia, Ltd. – notice: 2021 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY 7X8 5PM DOA |
| DOI | 10.1002/EXP.20210021 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (via ProQuest) Environmental Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2766-2098 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_78385db284b6426d934abcc4b9680d41 PMC10190981 37323211 10_1002_EXP_20210021 EXP217 |
| Genre | shortCommunication Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation funderid: NSFC 51888103; 52006105 – fundername: Jiangsu Innovative/Entrepreneurial Talent Program – fundername: Fundamental Research Funds for the Central Universities funderid: 30921013103; 30920041113 – fundername: Jiangsu Natural Science Foundation funderid: BK20190460 – fundername: ; grantid: BK20190460 – fundername: Natural Science Foundation grantid: NSFC 51888103; 52006105 – fundername: ; grantid: 30921013103; 30920041113 |
| GroupedDBID | 0R~ 1OC 24P AAHHS ACCFJ ACCMX ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARCSS ATCPS BENPR BHPHI CCPQU EBS GROUPED_DOAJ HCIFZ M~E OK1 PATMY PIMPY PYCSY RPM AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION PHGZM PHGZT WIN NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c5207-e2ad726a444e1d15202b29e39365f07e64ea4764fc7d3d9d22dda51cfa04a2823 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001274774400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2766-8509 2766-2098 |
| IngestDate | Mon Nov 10 04:34:41 EST 2025 Tue Nov 04 02:06:51 EST 2025 Sun Nov 09 11:20:58 EST 2025 Sat Jul 26 02:36:15 EDT 2025 Wed Feb 19 02:02:37 EST 2025 Tue Nov 18 21:37:46 EST 2025 Sat Nov 29 03:08:12 EST 2025 Wed Jan 22 16:28:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | aerogels metal–organic frameworks superplasticity electrocatalysis hydrogen evolution reaction |
| Language | English |
| License | Attribution 2021 The Authors. Exploration published by Henan University and John Wiley & Sons Australia, Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5207-e2ad726a444e1d15202b29e39365f07e64ea4764fc7d3d9d22dda51cfa04a2823 |
| Notes | Yuntong Sun and Shuaishuai Xu contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4008-2536 |
| OpenAccessLink | https://doaj.org/article/78385db284b6426d934abcc4b9680d41 |
| PMID | 37323211 |
| PQID | 3092807352 |
| PQPubID | 6853494 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_78385db284b6426d934abcc4b9680d41 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10190981 proquest_miscellaneous_2827253209 proquest_journals_3092807352 pubmed_primary_37323211 crossref_primary_10_1002_EXP_20210021 crossref_citationtrail_10_1002_EXP_20210021 wiley_primary_10_1002_EXP_20210021_EXP217 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | China |
| PublicationPlace_xml | – name: China – name: Beijing – name: Hoboken |
| PublicationTitle | Exploration (Beijing, China) |
| PublicationTitleAlternate | Exploration (Beijing) |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2011; 334 2017; 8 2019; 4 2015; 6 2013; 4 2009; 40 2019; 10 1992; 145 2020; 369 2019; 366 2020; 59 2011; 32 2008; 10 2020; 11 2008; 53 2016; 18 2017; 355 1996; 54 2020; 19 1996; 77 2020; 8 2018; 9 2017; 1131 2010; 49 2018; 3 2020; 2 2000; 15 2013; 57 1997; 13 2013; 52 2018; 12 2012; 24 2019; 398 2019; 131 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – volume: 1131 start-page: 171 year: 2017 publication-title: J. Mol. Struct. – volume: 24 start-page: 4569 year: 2012 publication-title: Adv. Mater. – volume: 52 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 310 year: 2020 publication-title: Chem. Sci. – volume: 6 start-page: 8304 year: 2015 publication-title: Nat. Commun. – volume: 13 start-page: 6267 year: 1997 publication-title: Langmuir – volume: 49 start-page: 6260 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 334 start-page: 962 year: 2011 publication-title: Science – volume: 369 start-page: 674 year: 2020 publication-title: Science – volume: 131 start-page: 4727 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 2 year: 2020 publication-title: EnergyChem – volume: 3 start-page: 2520 year: 2018 publication-title: ACS Energy Lett – volume: 12 year: 2018 publication-title: ACS Nano – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett – volume: 12 start-page: 4462 year: 2018 publication-title: ACS Nano – volume: 9 start-page: 5236 year: 2018 publication-title: Nat. Commun. – volume: 40 start-page: 6056 year: 2009 publication-title: Chem. Commun. – volume: 9 start-page: 3984 year: 2018 publication-title: Nat. Commun. – volume: 10 start-page: 4948 year: 2019 publication-title: Nat. Commun. – volume: 18 start-page: 536 year: 2016 publication-title: CrystEngComm – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 145 start-page: 44 year: 1992 publication-title: J. Non‐Cryst. Solids – volume: 366 year: 2019 publication-title: Science – volume: 15 start-page: 1985 year: 2000 publication-title: J. Mater. Res. – volume: 2 start-page: 779 year: 2020 publication-title: ACS Mater. Lett. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 57 start-page: 37 year: 2013 publication-title: Int. Mater. Rev. – volume: 4 start-page: 1774 year: 2013 publication-title: Nat. Commun. – volume: 53 start-page: 1 year: 2008 publication-title: Prog. Mater. Sci. – volume: 398 year: 2019 publication-title: Coordin. Chem. Rev. – volume: 6 start-page: 6512 year: 2015 publication-title: Nat. Commun. – volume: 355 year: 2017 publication-title: Science – volume: 10 start-page: 155 year: 2008 publication-title: Adv. Eng. Mater. – volume: 19 start-page: 1346 year: 2020 publication-title: Nat. Mater. – volume: 59 start-page: 8181 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 1443 year: 2019 publication-title: ACS Energy Lett – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 32 start-page: 1456 year: 2011 publication-title: J. Comput. Chem. – ident: e_1_2_6_8_1 doi: 10.1016/j.enchem.2019.100025 – ident: e_1_2_6_26_1 doi: 10.1126/science.aau2027 – ident: e_1_2_6_37_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_6_38_1 doi: 10.1021/acsenergylett.8b01540 – ident: e_1_2_6_7_1 doi: 10.1021/acsnano.8b00566 – ident: e_1_2_6_5_1 doi: 10.1021/acsmaterialslett.0c00148 – ident: e_1_2_6_39_1 doi: 10.1021/la970776m – ident: e_1_2_6_12_1 doi: 10.1038/s41467-018-06431-7 – ident: e_1_2_6_28_1 doi: 10.1038/ncomms15341 – ident: e_1_2_6_29_1 doi: 10.1038/ncomms7512 – ident: e_1_2_6_16_1 doi: 10.1557/JMR.2000.0285 – ident: e_1_2_6_22_1 doi: 10.1021/acsenergylett.9b01134 – ident: e_1_2_6_24_1 doi: 10.1038/s41467-018-07678-w – ident: e_1_2_6_13_1 doi: 10.1038/s41467-019-12857-4 – ident: e_1_2_6_18_1 doi: 10.1016/j.molstruc.2016.11.029 – ident: e_1_2_6_3_1 doi: 10.1016/j.enchem.2020.100027 – ident: e_1_2_6_17_1 doi: 10.1126/science.1211649 – ident: e_1_2_6_25_1 doi: 10.1002/ange.201901409 – ident: e_1_2_6_33_1 doi: 10.1002/anie.201306166 – ident: e_1_2_6_20_1 doi: 10.1179/1743280411Y.0000000011 – ident: e_1_2_6_35_1 doi: 10.1002/jcc.21759 – ident: e_1_2_6_15_1 doi: 10.1016/j.pmatsci.2007.05.002 – ident: e_1_2_6_19_1 doi: 10.1039/C5CE01886B – ident: e_1_2_6_10_1 doi: 10.1039/b910175f – ident: e_1_2_6_36_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_6_23_1 doi: 10.1038/s41563-020-0764-y – ident: e_1_2_6_2_1 doi: 10.1126/science.aaz4304 – ident: e_1_2_6_40_1 doi: 10.1016/S0022-3093(05)80427-2 – ident: e_1_2_6_11_1 doi: 10.1016/j.ccr.2019.213016 – ident: e_1_2_6_14_1 doi: 10.1002/anie.201000048 – ident: e_1_2_6_4_1 doi: 10.1039/D0TA03749D – ident: e_1_2_6_34_1 doi: 10.1126/science.aad4998 – ident: e_1_2_6_30_1 doi: 10.1038/ncomms9304 – ident: e_1_2_6_9_1 doi: 10.1038/ncomms2757 – ident: e_1_2_6_21_1 doi: 10.1002/adem.200700270 – ident: e_1_2_6_27_1 doi: 10.1002/anie.201914967 – ident: e_1_2_6_32_1 doi: 10.1002/adma.201201978 – ident: e_1_2_6_31_1 doi: 10.1021/acsnano.8b07841 – ident: e_1_2_6_6_1 doi: 10.1039/C9SC04961D |
| SSID | ssj0002872868 |
| Score | 2.4899218 |
| Snippet | Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of sustaining... Applications for metal-organic frameworks (MOFs) demand their assembly into three-dimensional (3D) macroscopic architectures. The capability of sustaining... Abstract Applications for metal–organic frameworks (MOFs) demand their assembly into three‐dimensional (3D) macroscopic architectures. The capability of... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 20210021 |
| SubjectTerms | Acids Aerogels Aqueous solutions Assembling Assembly Biomimetic materials Biomimetics Current density Deformation electrocatalysis Electrocatalysts Electrolysis Fourier transforms hydrogen evolution reaction Hydrogen evolution reactions Ligands Metal-organic frameworks Monolithic materials Morphology Nanoparticles Seawater Short Communication Spectrum analysis Structural integrity Superplasticity Transition metals Unloading |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagCxIX3o_CgowEB4SiTRzHjxNiUVccUFUhQL1FfmW3UpuUpF3ojf_AP-SXME6cQAXshVuSsSPHM7a_ccbfIPQs1tSagoooZlpFVHESKSp1JAoSG1oI7dp0b5_e8elUzOdyFjbcmhBW2c-J7URtK-P3yI_SWHriFsALr9afI581yv9dDSk0LqMDz1RGR-jgeDKdvR92WcAfIKI9D0c4Y2ASUoTod5AdTeYz8BCJv0721qWWvv9vmPPP0MnfIW27Jp3c-N-vuYmuBzSKX3fmcwtdcuVtdLXLT7m7g77C1Wqx8uccMYBst9LLHd5UuNmuXb0G3O0FIFbLH9--d_mhDC76cC-sXF2dwtqLARjjs531dyV258HasT_agmGofQG8W-OQkKelSLmLPp5MPrx5G4VUDZHJSMwjR5TlhClKqUssYIKYaCJdKlOWFTF3jDpFOaOF4Ta10hJircoSU6iYKvD60ntoVFale4CwspI77XnrjKGMGcGho2SRUahsKHFj9LJXVG4Cj7lPp7HMOwZmkoNa816tY_R8KL3u-Dv-Ue7Y63wo41m32wfQeXkYxDkXqcishhVdg9vGrEyp0tAoLZmILYWXHPbazsNU0OS_VD1GTwcxDGL_Z0aVrto2OfQAJz5Fhxyj-52BDS1JeQqoN4GXiz3T22vqvqRcnLVE4YknCpACqr5orfTCHvA34J8-vPgbHqFrvkIXzniIRpt66x6jK-Z8s2jqJ2H4_QSx3zm8 priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbQLkhcWN4UFmQkOCAUrWM7fhwB7YoDWvUAqLfIr7CV2rRK2oXe-A_8w_0lO3bSsBUPCXGrM47lTmYy3zj2Nwi9IJZ7V3GVEWFNxo2kmeHaZqqixPFK2ZDKvX3-IE9P1WSix_2CWzwL0_FDDAtu0TPS-zo6uLHt0U_S0OPJGNI7GluQ_eznOVOxdAPl42GNBbIBqtJpOCqFyBQEx37vO8iOrg6wE5USef_vEOevGyevAtoUkU4O_ve_3Ea3eiyK33TGcwddC_VddKOrTrm5h77Br_l0Hk85YoDYYW5nG7xa4Ha9DM0SUHcUgNjMLr7_6KpDOVxtN3thE5rFF4i8GGAxPtv42KpxOO9tHceDLRgc7Sug3Qb35XgSQcp99Onk-OO791lfqCFzBSUyC9R4SYXhnIfcAyIg1FIdmGaiqIgMggfDpeCVk5557Sn13hS5qwzhBnI-9gDt1Ys6PELYeC2Djax1znEhnJKKSF0VHG52nIYRer19UKXrWcxjMY1Z2fEv0xJ0WW51OUIvh97Ljr3jD_3exmc-9Imc2-kCKK_sXbiUiqnCW4jnFpI24TXjxsKkrBaKeA6DHG4tpuxfBG3JiI58QwBzR-j5IAYXjt9lTB0W67YEDUgaC3ToEXrYGdgwEyYZYN4cBlc7prcz1V1JPT1LNOF5pAnQCm59lWzvrxqIDchOH_9D3yfoZrzS7Ww8RHurZh2eouvufDVtm2fJEy8Bjz815A priority: 102 providerName: Wiley-Blackwell |
| Title | Biomimetic assembly to superplastic metal–organic framework aerogels for hydrogen evolution from seawater electrolysis |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FEXP.20210021 https://www.ncbi.nlm.nih.gov/pubmed/37323211 https://www.proquest.com/docview/3092807352 https://www.proquest.com/docview/2827253209 https://pubmed.ncbi.nlm.nih.gov/PMC10190981 https://doaj.org/article/78385db284b6426d934abcc4b9680d41 |
| Volume | 1 |
| WOSCitedRecordID | wos001274774400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2766-2098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002872868 issn: 2766-8509 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2766-2098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002872868 issn: 2766-8509 databaseCode: PATMY dateStart: 20210801 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2766-2098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002872868 issn: 2766-8509 databaseCode: BENPR dateStart: 20210801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2766-2098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002872868 issn: 2766-8509 databaseCode: PIMPY dateStart: 20210801 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2766-2098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002872868 issn: 2766-8509 databaseCode: WIN dateStart: 20210101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2766-2098 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002872868 issn: 2766-8509 databaseCode: 24P dateStart: 20210101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgAYkL4k1hqYwEB4SidRzHjyOLumIlqCLEo5wiv8IWtWmVtgu98R_4h_wSxk5ateJ14VLFHSeyZsadz-nMNwg9JoY5WzGZEG50wrSgiWbKJLKixLJKGh_bvb1_JYZDORqpYqfVV8gJa-mBW8UdCZnJ3Bn4FTUAlblTGdPGWmYUl8TFknUKqGfnMPU5vjISVMY6OCo4TySExS7rHWRHg1EBJ0MartO9eBRp-3-HNX9NmdyFsjEWnVxH1zoQiZ-3i7-BLvj6JrrStpVc30Jf4Wo6nobyRAzY2E_NZI2XM7xYzX0zB7gcBCDWkx_fvrdtnSyuNllaWPtm9glCJgY8i8_WLoxq7M87J8WhIgXDDvkCMLXBXR-dyGxyG707Gbx98TLpOiwkNqdEJJ5qJyjXjDGfOgjlhBqqfKYynldEeM68ZoKzygqXOeUodU7nqa00YRoOa9kddFDPan8PYe2U8CbQzYFxOLdSSCJUlTO42TLqe-jZRs-l7ejHQxeMSdkSJ9MSrFJurNJDT7az5y3txh_mHQeTbecEsuz4BSiv7Fyo_JcL9dDhxuBlt4MXZUZUIAoCfNpDj7Zi2HvhDxVd-9lqUYIGBA2dNVQP3W39Y7uSTGQAVlN4uNzznL2l7kvq8Vnk905Dfb-ScOvT6GR_1UAYwLHy_v9QxAN0NTy2zVU8RAfLZuUfosv2fDleNH10kbICPsVI9tGl48GweNOPuw5Gxenr4iOMPpwOfwIgpC_i |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLgguvB-FBYzEHhCKNnUcPw4I8djVVtutelhQOQW_wlZqk9K0u_TGf-B_8KP4JYzzKFTA3vbALcnYlu18Y88k4_kQehpqak1KRRAyrQKqOAkUlToQKQkNTYV2Jd3b-x7v98VwKAcb6HtzFsaHVTZrYrlQ29z4b-Q7USh94hawF15OPweeNcr_XW0oNCpYHLjlKbhsxYvuW3i_24Ts7R692Q9qVoHAxCTkgSPKcsIUpdR1LGxfIdFEukhGLE5D7hh1inJGU8NtZKUlxFoVd0yqQqrAQYmg3QtokwLYRQttDrqHgw-rrzrgfxBRnr8jnDGAoBR1tD3IdnaHA_BIib_urO2DJV3A32zcP0M1fzehyz1w79r_NnvX0dXa2savKvW4gTZcdhNdqvg3l7fQF7iajCb-HCcGJ8JN9HiJ5zkuFlM3m4Jf4QUgVuMfX79V_FcGp004G1Zuln8C2wKD4Y-Pl9bfZdid1NqM_dEdDKM-BXt-hmvCoTIFzG307lyGfQe1sjxz9xBWVnKnfV4-YyhjRnB4MTKNKVQ2lLg2et4AIzF1nnZPFzJOqgzTJAEYJQ2M2mh7VXpa5Sf5R7nXHmOrMj6rePkAJi-pF6mEi0jEVoPFosEtZVZGVGnolJZMhJZCI1sNupJ6qSuSX9BqoycrMSxS_s-Tyly-KBKYAU48BYlso7sVoFc9iXgEVn0HGhdrUF_r6rokGx2XidA7PhGCFFD1WakVZ86AvwH_-_7ZY3iMLu8fHfaSXrd_8ABd8ZWr0M0t1JrPFu4humhO5qNi9qhWfYw-nre-_ATurJWV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELbQcoiX5WYLCxgJHhCK1nEcH48cW4FYVX0A1DfLV9hKbVr1WOgb_4F_yC9h7KRhKw4J8RZnHMuZzGS-SexvEHpCLPOuYjIj3JqMGUEzw5TNZEWJY5W0IZV7-3giBgM5GqlhW-c07oVp-CG6D27RM9L7Ojp4mPvq6Cdr6PFoCPkdjS1Ify6yUuTRrCkbdh9ZIB2gMm2Ho4LzTEJ0bBe_g-zo_AA7YSmx9_8Ocv66cvI8ok0hqX_tv2_mOtpv0Sh-0ZjPDXQh1DfR5aY-5eYW-gJH0_E07nPEALLD1E42eDXDy_U8LOaAu6MAxGby_eu3pj6Uw9V2uRc2YTH7BLEXAzDGpxsfWzUOZ62147i1BYOrfQa8u8BtQZ5EkXIbfegfv3_1JmtLNWSupERkgRovKDeMsZB7wASEWqpCoQpeVkQEzoJhgrPKCV945Sn13pS5qwxhBrK-4g7aq2d1OEDYeCWCjbx1zjHOnRSSCFWVDC52jIYeer59Utq1POaxnMZENwzMVIMu9VaXPfS06z1v-Dv-0O9lfOhdn8i6nU6A8nTrxFrIQpbeQkS3kLZxrwpmLEzKKi6JZzDI4dZkdPsqWOqCqMg4BEC3hx53YnDi-GfG1GG2XmrQgKCxRIfqobuNhXUzKUQBqDeHweWO7e1MdVdSj08TUXgeiQKUhEufJeP7qwZiA_LTe__Q9xG6Mnzd1ydvB-_uo6tR2CxzPER7q8U6PECX3NlqvFw8TF75A1FbOVM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomimetic+assembly+to+superplastic+metal-organic+framework+aerogels+for+hydrogen+evolution+from+seawater+electrolysis&rft.jtitle=Exploration+%28Beijing%2C+China%29&rft.au=Sun%2C+Yuntong&rft.au=Xu%2C+Shuaishuai&rft.au=Ort%C3%ADz-Led%C3%B3n%2C+C%C3%A9sar+A&rft.au=Zhu%2C+Junwu&rft.date=2021-10-01&rft.issn=2766-2098&rft.eissn=2766-2098&rft.volume=1&rft.issue=2&rft.spage=20210021&rft_id=info:doi/10.1002%2FEXP.20210021&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2766-8509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2766-8509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2766-8509&client=summon |