Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data

High‐latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology Jg. 20; H. 2; S. 641 - 652
Hauptverfasser: Schädel, Christina, Schuur, Edward A. G., Bracho, Rosvel, Elberling, Bo, Knoblauch, Christian, Lee, Hanna, Luo, Yiqi, Shaver, Gaius R., Turetsky, Merritt R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.02.2014
Wiley-Blackwell
Schlagworte:
ISSN:1354-1013, 1365-2486, 1365-2486
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract High‐latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long‐term (>1 year) aerobic soil incubations from 121 individual samples from 23 high‐latitude ecosystems located across the northern circumpolar permafrost zone. Using a three‐pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes.
AbstractList High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1 year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpolar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes.
High‐latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long‐term (>1 year) aerobic soil incubations from 121 individual samples from 23 high‐latitude ecosystems located across the northern circumpolar permafrost zone. Using a three‐pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO 2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes.
High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1 year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpolar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes.High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1 year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpolar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes.
High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1 year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpolar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes. [PUBLICATION ABSTRACT]
High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1 year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpolar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 degree C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 degree C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO sub(2) within 50 incubation years at a constant temperature of 5 degree C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes.
Author Bracho, Rosvel
Knoblauch, Christian
Schädel, Christina
Luo, Yiqi
Shaver, Gaius R.
Turetsky, Merritt R.
Schuur, Edward A. G.
Elberling, Bo
Lee, Hanna
Author_xml – sequence: 1
  givenname: Christina
  surname: Schädel
  fullname: Schädel, Christina
  email: chschaedel@gmail.com
  organization: Department of Biology, University of Florida, FL, Gainesville, USA
– sequence: 2
  givenname: Edward A. G.
  surname: Schuur
  fullname: Schuur, Edward A. G.
  organization: Department of Biology, University of Florida, FL, Gainesville, USA
– sequence: 3
  givenname: Rosvel
  surname: Bracho
  fullname: Bracho, Rosvel
  organization: Department of Biology, University of Florida, FL, Gainesville, USA
– sequence: 4
  givenname: Bo
  surname: Elberling
  fullname: Elberling, Bo
  organization: Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
– sequence: 5
  givenname: Christian
  surname: Knoblauch
  fullname: Knoblauch, Christian
  organization: Institute of Soil Science, Klima Campus, University of Hamburg, Hamburg, Germany
– sequence: 6
  givenname: Hanna
  surname: Lee
  fullname: Lee, Hanna
  organization: Climate and Global Dynamics Division, National Center for Atmospheric Research, CO, Boulder, USA
– sequence: 7
  givenname: Yiqi
  surname: Luo
  fullname: Luo, Yiqi
  organization: Department of Microbiology and Plant Biology, University of Oklahoma, OK, Norman, USA
– sequence: 8
  givenname: Gaius R.
  surname: Shaver
  fullname: Shaver, Gaius R.
  organization: The Ecosystem Center, Marine Biological Laboratory, MA, Woods Hole, USA
– sequence: 9
  givenname: Merritt R.
  surname: Turetsky
  fullname: Turetsky, Merritt R.
  organization: Department of Integrative Biology, University of Guelph, ON, Guelph, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28171710$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24399755$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEUhoNU7Ide-AckIIJeTJtk8jFz2Q7uKhS9cKWXIZPNLKmZZJtkqvvvzX60QkExuUgIz3PIOe8pOPLBGwBeY3SOy7pY6f4cE4rFM3CCa84qQht-tL0zWmGE62NwmtItQqgmiL8Ax4TWbSsYOwG-s1FP4zo4FaFKyaQ0Gp9hGODaxFENMaQMO3g3KWfzBiq_hDYneD85b6Lq7e413JsIsx0NnJL1K-iCX1W5-NB6PfUq2-DhUmX1EjwflEvm1eE8A99nHxfdp-r66_xzd3ldaUaQqHqDxJIKxikjPaeNMGKgrLRKNca9GIhmGA0E05Zw0lMxNLUmg-EN7xWqmajPwPt93XUMd5NJWY42aeOc8iZMSe5MKjhF_4MigVnT4oK-fYLehin60kihRJk5xW1bqDcHaupHs5TraEcVN_Jh6AV4dwBU0soNUXlt0x-uwaLs7c8-7DldQkjRDI8IRnIbvCzBy13whb14wmqbd3PPUVn3L-OndWbz99Jy3l09GNXesCmbX4-Gij8kF7Vg8ubLXM4W3xaz7uZKsvo33f7Lmw
CitedBy_id crossref_primary_10_1016_j_catena_2016_08_035
crossref_primary_10_1038_nclimate3054
crossref_primary_10_1088_2752_664X_ad089d
crossref_primary_10_1080_10643389_2023_2266312
crossref_primary_10_5194_bg_15_6867_2018
crossref_primary_10_3389_fmicb_2020_596589
crossref_primary_10_5194_soil_1_147_2015
crossref_primary_10_1002_2015JG003147
crossref_primary_10_1016_j_ejsobi_2024_103623
crossref_primary_10_1029_2020GB006585
crossref_primary_10_3390_environments12080282
crossref_primary_10_1016_j_geoderma_2021_115302
crossref_primary_10_1016_j_marpolbul_2025_118370
crossref_primary_10_1016_j_geoderma_2019_113975
crossref_primary_10_1016_j_soilbio_2017_03_001
crossref_primary_10_5194_bg_12_2227_2015
crossref_primary_10_1088_1748_9326_9_4_045005
crossref_primary_10_5194_bg_12_3469_2015
crossref_primary_10_1038_s41396_023_01429_6
crossref_primary_10_5194_bg_13_6669_2016
crossref_primary_10_1016_j_catena_2019_02_029
crossref_primary_10_5194_bg_17_361_2020
crossref_primary_10_1016_j_soilbio_2022_108803
crossref_primary_10_5194_bg_14_3051_2017
crossref_primary_10_1029_2018JG004619
crossref_primary_10_1016_j_agrformet_2023_109793
crossref_primary_10_5194_bg_16_663_2019
crossref_primary_10_1029_2024JD041772
crossref_primary_10_1029_2025JG008847
crossref_primary_10_1007_s13280_020_01392_y
crossref_primary_10_1029_2021JG006396
crossref_primary_10_1007_s10533_017_0373_2
crossref_primary_10_1016_j_orggeochem_2016_10_013
crossref_primary_10_1126_sciadv_adt6231
crossref_primary_10_1126_science_aad4273
crossref_primary_10_5194_soil_10_533_2024
crossref_primary_10_5194_bg_18_4937_2021
crossref_primary_10_1029_2018JG004944
crossref_primary_10_1016_j_jenvman_2025_126576
crossref_primary_10_1016_j_scitotenv_2022_157288
crossref_primary_10_1016_j_soilbio_2023_108991
crossref_primary_10_1038_s41598_019_45200_4
crossref_primary_10_1029_2020GB006688
crossref_primary_10_1029_2019GL084303
crossref_primary_10_1038_s41467_020_16357_8
crossref_primary_10_5194_bg_15_5423_2018
crossref_primary_10_3389_feart_2021_630493
crossref_primary_10_5194_esd_14_609_2023
crossref_primary_10_1002_ldr_3943
crossref_primary_10_1007_s11707_025_1171_0
crossref_primary_10_3390_geosciences7020024
crossref_primary_10_1029_2023JG007936
crossref_primary_10_1002_2017GL073823
crossref_primary_10_1029_2022JG006910
crossref_primary_10_1002_2016EF000362
crossref_primary_10_1029_2018JG004712
crossref_primary_10_1088_1748_9326_ab83af
crossref_primary_10_1038_nature14338
crossref_primary_10_5194_bg_14_145_2017
crossref_primary_10_1029_2018JG004396
crossref_primary_10_1111_gcb_70024
crossref_primary_10_1029_2023JG007590
crossref_primary_10_1111_gcb_16109
crossref_primary_10_1007_s41063_018_0056_9
crossref_primary_10_1002_ppp_2131
crossref_primary_10_3390_nitrogen3030031
crossref_primary_10_1016_j_soilbio_2023_109024
crossref_primary_10_1038_s41467_025_62332_6
crossref_primary_10_1111_gcb_15134
crossref_primary_10_1038_s41467_018_06080_w
crossref_primary_10_1016_j_soilbio_2016_02_008
crossref_primary_10_1038_s41586_019_1541_4
crossref_primary_10_1016_j_soilbio_2015_04_009
crossref_primary_10_1111_gcb_13069
crossref_primary_10_1142_S2010007817500087
crossref_primary_10_3390_jmse10111589
crossref_primary_10_1029_2021JG006750
crossref_primary_10_1016_j_soilbio_2017_10_001
crossref_primary_10_1016_j_catena_2021_106014
crossref_primary_10_1093_femsec_fiaa021
crossref_primary_10_5194_bg_13_2123_2016
crossref_primary_10_1016_j_gca_2019_03_028
crossref_primary_10_1016_j_jhydrol_2023_129808
crossref_primary_10_1111_ejss_12269
crossref_primary_10_1029_2018JG004591
crossref_primary_10_5194_bg_20_2049_2023
crossref_primary_10_5194_cp_14_2011_2018
crossref_primary_10_3103_S106837392005009X
crossref_primary_10_1029_2021GL097347
crossref_primary_10_5194_bg_12_4317_2015
crossref_primary_10_1016_j_earscirev_2020_103365
crossref_primary_10_3390_geosciences10010015
crossref_primary_10_1038_s43247_022_00651_y
crossref_primary_10_1088_1748_9326_aae43b
crossref_primary_10_1088_1748_9326_ac9198
crossref_primary_10_3390_atmos12111425
crossref_primary_10_1111_gcb_14979
crossref_primary_10_1016_j_geoderma_2017_01_028
crossref_primary_10_1002_2014JG002701
crossref_primary_10_1002_2016JG003671
crossref_primary_10_1029_2021JG006726
crossref_primary_10_1371_journal_pone_0232506
crossref_primary_10_5194_bg_15_6033_2018
crossref_primary_10_1088_1748_9326_ac417e
crossref_primary_10_1038_s41558_023_01909_9
crossref_primary_10_1016_j_geoderma_2025_117418
crossref_primary_10_1016_j_soilbio_2015_05_024
crossref_primary_10_1016_j_catena_2021_105983
crossref_primary_10_1016_j_scitotenv_2023_167180
crossref_primary_10_1088_1748_9326_9_11_114013
crossref_primary_10_1002_ecs2_2608
crossref_primary_10_1016_j_soilbio_2016_03_016
crossref_primary_10_1002_ppp_70011
crossref_primary_10_1088_1748_9326_ad50ed
crossref_primary_10_3390_f15030501
crossref_primary_10_5194_esd_12_581_2021
crossref_primary_10_5194_bg_14_4279_2017
crossref_primary_10_1029_2020JG006000
crossref_primary_10_1088_1748_9326_ab6784
crossref_primary_10_1029_2021JG006543
crossref_primary_10_1038_nclimate3328
crossref_primary_10_1029_2022JG007137
crossref_primary_10_1111_gcb_13032
crossref_primary_10_1029_2020JG006008
crossref_primary_10_5194_bg_13_4219_2016
crossref_primary_10_1016_j_apsoil_2024_105530
crossref_primary_10_1002_2014MS000344
crossref_primary_10_1007_s13280_016_0872_8
crossref_primary_10_1111_gcb_15566
crossref_primary_10_1038_nclimate2590
crossref_primary_10_3389_feart_2021_737237
crossref_primary_10_1111_sum_70010
crossref_primary_10_1002_ece3_2982
crossref_primary_10_1139_as_2024_0050
crossref_primary_10_1186_s40645_020_00366_8
crossref_primary_10_5802_crgeos_305
crossref_primary_10_1038_ncomms13046
crossref_primary_10_5194_bg_13_5021_2016
crossref_primary_10_1111_gcb_12762
crossref_primary_10_5194_se_7_153_2016
crossref_primary_10_1007_s10533_017_0354_5
crossref_primary_10_5194_soil_11_371_2025
crossref_primary_10_1016_j_soilbio_2022_108757
crossref_primary_10_1007_s42452_021_04869_x
crossref_primary_10_1016_j_soilbio_2015_08_012
crossref_primary_10_1029_2022MS003008
crossref_primary_10_1093_femsec_fiw117
crossref_primary_10_1007_s42729_022_01063_9
crossref_primary_10_5194_tc_10_179_2016
crossref_primary_10_5194_essd_12_1511_2020
crossref_primary_10_1002_2015JF003781
crossref_primary_10_1111_gcb_12875
crossref_primary_10_1016_j_sedgeo_2015_12_004
crossref_primary_10_1002_2016JG003754
crossref_primary_10_1111_gcb_14017
crossref_primary_10_1088_1748_9326_10_9_094011
crossref_primary_10_1016_j_scitotenv_2022_154350
crossref_primary_10_1029_2024EF004996
crossref_primary_10_1111_gcb_14936
crossref_primary_10_1016_j_geoderma_2015_08_038
crossref_primary_10_1038_s41561_020_00662_4
crossref_primary_10_1016_j_catena_2016_07_048
crossref_primary_10_1016_j_geodrs_2024_e00841
crossref_primary_10_1038_s43017_020_0063_9
crossref_primary_10_1038_s41558_018_0095_z
crossref_primary_10_1126_science_abn7950
crossref_primary_10_1002_2016GB005405
crossref_primary_10_1016_j_geoderma_2019_113942
crossref_primary_10_1073_pnas_1415123112
crossref_primary_10_1515_popore_2017_0007
crossref_primary_10_1002_ldr_3656
crossref_primary_10_1088_1748_9326_aae0ff
crossref_primary_10_1016_j_soilbio_2018_10_009
crossref_primary_10_1016_j_soilbio_2018_10_014
crossref_primary_10_1029_2020JG006044
crossref_primary_10_5194_bg_15_953_2018
crossref_primary_10_1002_2015GB005351
crossref_primary_10_1038_s41598_018_22530_3
crossref_primary_10_1002_2018JG004413
crossref_primary_10_1002_2014JG002880
crossref_primary_10_1088_1748_9326_ab3bbc
crossref_primary_10_1038_s41467_023_37766_5
crossref_primary_10_1007_s11356_020_10151_1
crossref_primary_10_1016_j_geoderma_2021_115455
crossref_primary_10_5194_bg_13_2003_2016
crossref_primary_10_1029_2024JG008631
crossref_primary_10_3389_feart_2020_582103
crossref_primary_10_1016_j_gca_2025_02_010
crossref_primary_10_1016_j_soilbio_2016_04_020
crossref_primary_10_1088_1748_9326_ab10fa
crossref_primary_10_1016_j_earscirev_2020_103433
crossref_primary_10_1038_s41467_023_44433_2
crossref_primary_10_1111_gcb_15438
crossref_primary_10_1016_j_soilbio_2018_08_015
crossref_primary_10_1111_gcb_13257
crossref_primary_10_5194_bg_13_4315_2016
crossref_primary_10_1186_s40168_020_00838_5
crossref_primary_10_1002_2016GL068874
crossref_primary_10_1146_annurev_environ_012220_011847
crossref_primary_10_5194_esd_14_39_2023
crossref_primary_10_1038_s41598_023_36471_z
crossref_primary_10_1111_gcb_14582
crossref_primary_10_1111_gcb_17297
crossref_primary_10_5194_bg_15_1969_2018
crossref_primary_10_1002_2015GB005239
crossref_primary_10_1016_j_earscirev_2017_07_007
crossref_primary_10_1016_j_scitotenv_2019_06_402
crossref_primary_10_1016_j_still_2017_07_003
crossref_primary_10_1111_gcb_14578
crossref_primary_10_5194_bg_12_7129_2015
crossref_primary_10_1002_2017JG004070
crossref_primary_10_1016_j_geoderma_2021_115591
crossref_primary_10_1038_s41396_019_0485_x
crossref_primary_10_1029_2022GB007524
crossref_primary_10_1016_j_soilbio_2015_07_013
crossref_primary_10_1029_2018JG004518
crossref_primary_10_1186_s40665_016_0016_1
crossref_primary_10_1038_nature14653
crossref_primary_10_1002_2017JG004069
crossref_primary_10_1038_s41467_020_18331_w
crossref_primary_10_1111_gcb_16750
crossref_primary_10_1007_s11427_023_2601_1
crossref_primary_10_1038_s41467_024_54990_9
crossref_primary_10_1016_j_scitotenv_2022_157539
crossref_primary_10_1038_s41467_023_37900_3
Cites_doi 10.1126/science.1174760
10.1146/annurev.earth.29.1.535
10.1093/biomet/57.1.97
10.1126/science.1128908
10.1007/s10533-007-9166-3
10.1029/2010jg001629
10.1111/j.1365-2486.2012.02665.x
10.1046/j.1365-2486.2002.00517.x
10.1038/ngeo1009
10.1029/2005gb002468
10.1111/j.1365-2486.2011.02519.x
10.1071/EN10006
10.1073/pnas.1103910108
10.1029/2008gb003327
10.1038/nature08031
10.1029/2000GB001264
10.1038/nature10386
10.5194/bg-9-649-2012
10.2307/2265676
10.1111/j.1365-2745.2006.01139.x
10.1029/2006gl027484
10.1007/s00374-009-0413-8
10.1890/0012-9615(2001)071[0357:ECDECP]2.0.CO;2
10.1029/2004gl020051
10.1029/2006jf000578
10.1029/2011jg001647
10.1641/B580807
10.1063/1.1699114
10.1007/b97397
10.1111/j.1461-0248.2008.01219.x
10.1038/361520a0
10.1111/j.1365-2486.2009.02141.x
10.1097/00010694-197705000-00005
10.2307/3544766
10.1111/j.1365-2486.2006.01259.x
10.1029/2012gl051958
10.2136/sssaj2001.65187x
10.3389/fmicb.2012.00348
10.1007/s10584-013-0730-7
10.1029/2010jg001507
10.1038/ngeo1573
10.1111/gcb.12116
10.5194/essd-5-3-2013
10.2136/sssaj1987.03615995005100050015x
10.1073/pnas.94.16.8284
10.1029/2005jg000087
10.1029/2001jd000848.
10.1007/BF00566960
10.1111/j.1365-2486.2010.02278.x
10.1111/j.1600-0889.2011.00527.x
10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2
10.1038/nclimate1955
10.1007/s00442-012-2577-4
ContentType Journal Article
Copyright 2013 John Wiley & Sons Ltd
2015 INIST-CNRS
2013 John Wiley & Sons Ltd.
Copyright © 2014 John Wiley & Sons Ltd
Copyright_xml – notice: 2013 John Wiley & Sons Ltd
– notice: 2015 INIST-CNRS
– notice: 2013 John Wiley & Sons Ltd.
– notice: Copyright © 2014 John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7TG
7U6
KL.
SOI
DOI 10.1111/gcb.12417
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environment Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Meteorological & Geoastrophysical Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Sustainability Science Abstracts
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Meteorological & Geoastrophysical Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
Forestry
EISSN 1365-2486
EndPage 652
ExternalDocumentID 3174404681
24399755
28171710
10_1111_gcb_12417
GCB12417
ark_67375_WNG_FTSTFCWB_5
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GeographicLocations Russian Federation
United States
Eurasia
America
Siberia
Alaska
North America
GrantInformation_xml – fundername: Danish National Research Foundation
  funderid: CENPERM DNRF100
– fundername: Department of Energy NICCR and TES
– fundername: National Science Foundation Vulnerability of Permafrost Carbon Research Coordination Network
  funderid: 955713
– fundername: NSF CAREER Program
– fundername: European Union FP7‐ENVIRONMENT
  funderid: GA282700
– fundername: NSF Bonanza Creek LTER
– fundername: U.S. National Parks and Inventory Monitoring Program
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
ESX
WRC
WUP
AAYXX
CITATION
O8X
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7ST
7TG
7U6
KL.
SOI
ID FETCH-LOGICAL-c5207-be07d4756452b6487e7f451114c11b7f2c510f2149262b47f83c2fe686ba03573
IEDL.DBID DRFUL
ISICitedReferencesCount 250
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329349700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
1365-2486
IngestDate Tue Oct 07 09:50:05 EDT 2025
Sun Nov 09 12:53:51 EST 2025
Mon Nov 10 02:54:31 EST 2025
Mon Jul 21 06:06:05 EDT 2025
Wed Apr 02 07:24:01 EDT 2025
Tue Nov 18 22:04:15 EST 2025
Sat Nov 29 06:02:20 EST 2025
Wed Jan 22 16:43:40 EST 2025
Tue Nov 11 03:31:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Organic carbon
Boreal forest
Incubation
C decomposition
soil organic carbon
Decomposition
Permafrost
Vulnerability
Long term
Dynamical climatology
Climate change
Soils
Quality
Siberia
Alaska
Polar region
Tundra
tundra
boreal forest
climate change
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2013 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5207-be07d4756452b6487e7f451114c11b7f2c510f2149262b47f83c2fe686ba03573
Notes Department of Energy NICCR and TES
U.S. National Parks and Inventory Monitoring Program
ark:/67375/WNG-FTSTFCWB-5
Figure S1. Observed and modeled respiration rates for five randomly selected soil samples (a-e). The samples are the same as in Table S3. Table S1. Soil sample parameters for each individual soil core. Table S2. Prior parameter range for C pool partitioning coefficients (fi) and decay rates (ki). Table S3. Comparison of data-model fit and C loss for three time frames using a 2-pool and a 3-pool model for five randomly selected soil samples. Table S4. Correlations between model parameters. Table S5. MLE (97.5% CI) for all parameters and potential C loss for 1, 10, and 50 incubations years for all 121 soil samples. Table S6. Multiple regression results for estimated parameters and C loss (MLE, upper and lower limit of 97.5% CI) for 50 incubation years at 5 °C.
NSF CAREER Program
Danish National Research Foundation - No. CENPERM DNRF100
NSF Bonanza Creek LTER
National Science Foundation Vulnerability of Permafrost Carbon Research Coordination Network - No. 955713
istex:3EA6E3F6248D9FA2CE5EEBC18ED0E19E47AF1145
European Union FP7-ENVIRONMENT - No. GA282700
ArticleID:GCB12417
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24399755
PQID 1474864199
PQPubID 30327
PageCount 12
ParticipantIDs proquest_miscellaneous_1492647640
proquest_miscellaneous_1490715891
proquest_journals_1474864199
pubmed_primary_24399755
pascalfrancis_primary_28171710
crossref_primary_10_1111_gcb_12417
crossref_citationtrail_10_1111_gcb_12417
wiley_primary_10_1111_gcb_12417_GCB12417
istex_primary_ark_67375_WNG_FTSTFCWB_5
PublicationCentury 2000
PublicationDate February 2014
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: February 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Zimov SA, Schuur EAG, Chapin FS (2006b) Permafrost and the global carbon budget. Science, 312, 1612-1613.
Schaefer K, Zhang T, Bruhwiler L, Barrett AP (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus Series B-Chemical and Physical Meteorology, 63, 165-180.
Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS III (2006a) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophysical Research Letters, 33, L20502. doi: 10.1029/2006gl027484.
Craine JM, Fierer N, McLauchlan KK (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3, 854-857.
Luo YQ, Wu LH, Andrews JA, White L, Matamala R, Schafer KVR, Schlesinger WH (2001) Elevated CO2 differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data. Ecological Monographs, 71, 357-376.
Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Global Change Biology, 12, 2336-2351.
Callesen I, Raulund-Rasmussen K, Westman CJ, Tau-Strand L (2007) Nitrogen pools and C:N ratios in well-drained Nordic forest soils related to climate and soil texture. Boreal Environment Research, 12, 681-692.
Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science, 326, 716-718.
Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. Proceedings of the National Academy of Sciences of the United States of America, 94, 8284-8291.
Hugelius G, Tarnocai C, Broll G, Canadell JG, Kuhry P, Swanson DK (2013) The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth System Science Data, 5, 1-11.
Schuur EAG, Bockheim J, Canadell JG et al. (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience, 58, 701-714.
von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know? Biology and Fertility of Soils, 46, 1-15.
Xu T, White L, Hui DF, Luo YQ (2006) Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Global Biogeochemical Cycles, 20, doi: 10.1029/2005gb002468.
Hastings WK (1970) Monte-Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18, 1781-1796.
Schimel J, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Frontiers in Microbiology, 3, doi: 10.3389/fmicb.2012.00348.
Lee H, Schuur EAG, Inglett KS, Lavoie M, Chanton JP (2012) The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Change Biology, 18, 515-527.
Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB (2006) Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. Journal of Ecology, 94, 740-753.
Dai XY, Ping CL, Candler R, Haumaier L, Zech W (2001) Characterization of soil organic matter fractions of tundra soils in arctic Alaska by carbon-13 nuclear magnetic resonance spectroscopy. Soil Science Society of America Journal, 65, 87-93.
Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophysical Research Letters, 31, doi: 10.1029/2004gl020051.
MacDougall AH, Avis CA, Weaver AJ (2012) Significant contribution to climate warming from the permafrost carbon feedback. Nature Geoscience, 5, 719-721.
Kleber M (2010) What is recalcitrant soil organic matter? Environmental Chemistry, 7, 320-332.
R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0.
Carrasco JJ, Neff JC, Harden JW (2006) Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil. Journal of Geophysical Research-Biogeosciences, 111, G2. doi: 10.1029/2005jg000087.
Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556-559.
Trumbore SE (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications, 10, 399-411.
Jenkinson DS, Rayner JH (1977) Turnover of soil organic-matter in some of Rothamsted classical experiments. Soil Science, 123, 298-305.
Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic-matter levels in great-plains grasslands. Soil Science Society of America Journal, 51, 1173-1179.
Schmidt MWI, Torn MS, Abiven S et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
Lavoie M, Mack MC, Schuur EAG (2011) Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. Journal of Geophysical Research-Biogeosciences, 116, G03013. doi: 10.1029/2010jg001629.
Holland EA, Neff JC, Townsend AR, McKeown B (2000) Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for models. Global Biogeochemical Cycles, 14, 1137-1151.
Schädel C, Luo Y, Evans DR, Fei S, Schaeffer SM (2013) Separating soil CO2 efflux into C-pool-specific decay rates via inverse analysis of soil incubation data. Oecologia, 171, 721-732.
Knoblauch C, Beer C, Sosnin A, Wagner D, Pfeiffer E-M (2013) Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Global Change Biology, 19, 1160-1172.
Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, Gb2023. doi: 10.1029/2008gb003327.
Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. Journal of Geophysical Research-Earth Surface, 112, F02s02. doi: 10.1029/2006jf000578.
Schneider von Deimling T, Meinshausen M, Levermann A, Huber V, Frieler K, Lawrence DM, Brovkin V (2012) Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences, 9, 649-665.
Neff JC, Hooper DU (2002) Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Global Change Biology, 8, 872-884.
Wickland KP, Neff JC (2008) Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry, 87, 29-47.
Elberling B, Michelsen A, Schädel C et al. (2013) Long-term CO2 production following permafrost thaw. Nature Climate Change, 3, 890-894.
Enríquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia, 94, 457-471.
Koven CD, Ringeval B, Friedlingstein P et al. (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences, 108, 14769-14774.
Waldrop MP, Wickland KP, White R, Berhe AA, Harden JW, Romanovsky VE (2010) Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Global Change Biology, 16, 2543-2554.
Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
Schuur EAG, Abbott BW, Bowden WB et al. (2013) Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119, 359-374.
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092.
Kleber M, Nico PS, Plante AF, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biology, 17, 1097-1107.
Kuhry P, Vitt DH (1996) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology, 77, 271-275.
Malmer N, Holm E (1984) Variation in the C/N-Quotient of peat in relation to decomposition rate and age-determination with PB-210. Oikos, 43, 171-182.
Brown J, Ferrians OJJ, Heginbottom JA, Melnikov ES (1997) Circum-Arctic Map of Permafrost and Gound-Ice Conditions. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO. Circum-Pacific Map Series CP-45, scale 1:10,000,000, 1 sheet.
Schirrmeister L, Grosse G, Wetterich S, Overduin PP, Strauss J, Schuur EAG, Hubberten H-W (2011) Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. Journal of Geophysical Research-Biogeosciences, 116, G00m02. doi: 10.1029/2011jg001647.
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2010) Mixed Effects Models and Extensions in Ecology with R. Springer, New York.
Chapin FSI, Matson PA, Mooney HA (2002) Principles of Terrestrial Ecosystem Ecology. Springer, New York.
Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) Recent change of arctic tundra ecosystems from a net carbon-dioxide sink to a source. Nature, 361, 520-523.
Dioumaeva I, Trumbore S, Schuur EAG, Goulden ML, Litvak M, Hirsch AI (2002) Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon. Journal of Geophysical Research-Atmospheres, 108, D3. doi: 10.1029/2001jd000848.
Amundson R (2001) The carbon budget in soils. Annual Review of Earth and Planetary Sciences, 29, 535-562.
Harden JW, Koven CD, Ping C-L et al. (2012) Field information
2011; 116
2011; 478
2009; 46
2013; 3
2010; 16
1993; 361
2012; 18
2011; 17
1977; 123
2013; 5
1996; 77
2013; 19
2004; 31
1997; 94
2006; 20
2000; 14
2013; 119
2000; 10
2006b; 312
2011; 63
2006; 440
2002; 108
2010; 3
2010; 7
1953; 21
2009; 326
2009; 23
2001; 71
1987; 51
2006; 94
2006; 12
2012
2010
1984; 43
2002; 8
2008; 58
1997
2012; 39
2001; 29
2002
2009; 459
2007; 12
2006a; 33
2006; 111
2001; 65
1970; 57
2007; 112
2011; 108
2012; 3
1993; 94
2008; 87
2012; 5
2013; 171
2012; 9
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
R Development Core Team (e_1_2_6_39_1) 2012
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
Callesen I (e_1_2_6_4_1) 2007; 12
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
Zuur AF (e_1_2_6_59_1) 2010
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
Brown J (e_1_2_6_3_1) 1997
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Harden JW, Koven CD, Ping C-L et al. (2012) Field information links permafrost carbon to physical vulnerabilities of thawing. Geophysical Research Letters, 39, L15704. doi: 10.1029/2012gl051958.
– reference: Waldrop MP, Wickland KP, White R, Berhe AA, Harden JW, Romanovsky VE (2010) Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Global Change Biology, 16, 2543-2554.
– reference: Brown J, Ferrians OJJ, Heginbottom JA, Melnikov ES (1997) Circum-Arctic Map of Permafrost and Gound-Ice Conditions. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO. Circum-Pacific Map Series CP-45, scale 1:10,000,000, 1 sheet.
– reference: Knoblauch C, Beer C, Sosnin A, Wagner D, Pfeiffer E-M (2013) Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Global Change Biology, 19, 1160-1172.
– reference: Dai XY, Ping CL, Candler R, Haumaier L, Zech W (2001) Characterization of soil organic matter fractions of tundra soils in arctic Alaska by carbon-13 nuclear magnetic resonance spectroscopy. Soil Science Society of America Journal, 65, 87-93.
– reference: Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science, 326, 716-718.
– reference: Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) Recent change of arctic tundra ecosystems from a net carbon-dioxide sink to a source. Nature, 361, 520-523.
– reference: Carrasco JJ, Neff JC, Harden JW (2006) Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil. Journal of Geophysical Research-Biogeosciences, 111, G2. doi: 10.1029/2005jg000087.
– reference: Dioumaeva I, Trumbore S, Schuur EAG, Goulden ML, Litvak M, Hirsch AI (2002) Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon. Journal of Geophysical Research-Atmospheres, 108, D3. doi: 10.1029/2001jd000848.
– reference: Koven CD, Ringeval B, Friedlingstein P et al. (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences, 108, 14769-14774.
– reference: Neff JC, Hooper DU (2002) Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Global Change Biology, 8, 872-884.
– reference: Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, Gb2023. doi: 10.1029/2008gb003327.
– reference: Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Global Change Biology, 12, 2336-2351.
– reference: MacDougall AH, Avis CA, Weaver AJ (2012) Significant contribution to climate warming from the permafrost carbon feedback. Nature Geoscience, 5, 719-721.
– reference: Schuur EAG, Bockheim J, Canadell JG et al. (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience, 58, 701-714.
– reference: Schneider von Deimling T, Meinshausen M, Levermann A, Huber V, Frieler K, Lawrence DM, Brovkin V (2012) Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences, 9, 649-665.
– reference: Schimel J, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Frontiers in Microbiology, 3, doi: 10.3389/fmicb.2012.00348.
– reference: Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2010) Mixed Effects Models and Extensions in Ecology with R. Springer, New York.
– reference: Lavoie M, Mack MC, Schuur EAG (2011) Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. Journal of Geophysical Research-Biogeosciences, 116, G03013. doi: 10.1029/2010jg001629.
– reference: Xu T, White L, Hui DF, Luo YQ (2006) Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Global Biogeochemical Cycles, 20, doi: 10.1029/2005gb002468.
– reference: Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic-matter levels in great-plains grasslands. Soil Science Society of America Journal, 51, 1173-1179.
– reference: Grosse G, Harden J, Turetsky M et al. (2011) Vulnerability of high-latitude soil organic carbon in North America to disturbance. Journal of Geophysical Research-Biogeosciences, 116, G00k06. doi: 10.1029/2010jg001507.
– reference: Kleber M (2010) What is recalcitrant soil organic matter? Environmental Chemistry, 7, 320-332.
– reference: Holland EA, Neff JC, Townsend AR, McKeown B (2000) Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for models. Global Biogeochemical Cycles, 14, 1137-1151.
– reference: Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. Proceedings of the National Academy of Sciences of the United States of America, 94, 8284-8291.
– reference: Enríquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia, 94, 457-471.
– reference: Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
– reference: Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092.
– reference: Schaefer K, Zhang T, Bruhwiler L, Barrett AP (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus Series B-Chemical and Physical Meteorology, 63, 165-180.
– reference: Kuhry P, Vitt DH (1996) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology, 77, 271-275.
– reference: Callesen I, Raulund-Rasmussen K, Westman CJ, Tau-Strand L (2007) Nitrogen pools and C:N ratios in well-drained Nordic forest soils related to climate and soil texture. Boreal Environment Research, 12, 681-692.
– reference: Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556-559.
– reference: Zimov SA, Schuur EAG, Chapin FS (2006b) Permafrost and the global carbon budget. Science, 312, 1612-1613.
– reference: Amundson R (2001) The carbon budget in soils. Annual Review of Earth and Planetary Sciences, 29, 535-562.
– reference: Craine JM, Fierer N, McLauchlan KK (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3, 854-857.
– reference: Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. Journal of Geophysical Research-Earth Surface, 112, F02s02. doi: 10.1029/2006jf000578.
– reference: Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18, 1781-1796.
– reference: von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know? Biology and Fertility of Soils, 46, 1-15.
– reference: Luo YQ, Wu LH, Andrews JA, White L, Matamala R, Schafer KVR, Schlesinger WH (2001) Elevated CO2 differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data. Ecological Monographs, 71, 357-376.
– reference: Schuur EAG, Abbott BW, Bowden WB et al. (2013) Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119, 359-374.
– reference: Kleber M, Nico PS, Plante AF, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biology, 17, 1097-1107.
– reference: Wickland KP, Neff JC (2008) Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry, 87, 29-47.
– reference: Elberling B, Michelsen A, Schädel C et al. (2013) Long-term CO2 production following permafrost thaw. Nature Climate Change, 3, 890-894.
– reference: Lee H, Schuur EAG, Inglett KS, Lavoie M, Chanton JP (2012) The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Change Biology, 18, 515-527.
– reference: Schirrmeister L, Grosse G, Wetterich S, Overduin PP, Strauss J, Schuur EAG, Hubberten H-W (2011) Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. Journal of Geophysical Research-Biogeosciences, 116, G00m02. doi: 10.1029/2011jg001647.
– reference: Hastings WK (1970) Monte-Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
– reference: R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0.
– reference: Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophysical Research Letters, 31, doi: 10.1029/2004gl020051.
– reference: Chapin FSI, Matson PA, Mooney HA (2002) Principles of Terrestrial Ecosystem Ecology. Springer, New York.
– reference: Malmer N, Holm E (1984) Variation in the C/N-Quotient of peat in relation to decomposition rate and age-determination with PB-210. Oikos, 43, 171-182.
– reference: Schädel C, Luo Y, Evans DR, Fei S, Schaeffer SM (2013) Separating soil CO2 efflux into C-pool-specific decay rates via inverse analysis of soil incubation data. Oecologia, 171, 721-732.
– reference: Trumbore SE (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications, 10, 399-411.
– reference: Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS III (2006a) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophysical Research Letters, 33, L20502. doi: 10.1029/2006gl027484.
– reference: Hugelius G, Tarnocai C, Broll G, Canadell JG, Kuhry P, Swanson DK (2013) The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth System Science Data, 5, 1-11.
– reference: Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB (2006) Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. Journal of Ecology, 94, 740-753.
– reference: Jenkinson DS, Rayner JH (1977) Turnover of soil organic-matter in some of Rothamsted classical experiments. Soil Science, 123, 298-305.
– reference: Schmidt MWI, Torn MS, Abiven S et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
– volume: 16
  start-page: 2543
  year: 2010
  end-page: 2554
  article-title: Molecular investigations into a globally important carbon pool: permafrost‐protected carbon in Alaskan soils
  publication-title: Global Change Biology
– volume: 19
  start-page: 1160
  year: 2013
  end-page: 1172
  article-title: Predicting long‐term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia
  publication-title: Global Change Biology
– volume: 440
  start-page: 165
  year: 2006
  end-page: 173
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 23
  start-page: Gb2023
  year: 2009
  article-title: Soil organic carbon pools in the northern circumpolar permafrost region
  publication-title: Global Biogeochemical Cycles
– volume: 3
  start-page: 890
  year: 2013
  end-page: 894
  article-title: Long‐term CO production following permafrost thaw
  publication-title: Nature Climate Change
– volume: 111
  year: 2006
  article-title: Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil
  publication-title: Journal of Geophysical Research‐Biogeosciences
– volume: 14
  start-page: 1137
  year: 2000
  end-page: 1151
  article-title: Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for models
  publication-title: Global Biogeochemical Cycles
– volume: 43
  start-page: 171
  year: 1984
  end-page: 182
  article-title: Variation in the C/N‐Quotient of peat in relation to decomposition rate and age‐determination with PB‐210
  publication-title: Oikos
– volume: 18
  start-page: 515
  year: 2012
  end-page: 527
  article-title: The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate
  publication-title: Global Change Biology
– volume: 63
  start-page: 165
  year: 2011
  end-page: 180
  article-title: Amount and timing of permafrost carbon release in response to climate warming
  publication-title: Tellus Series B‐Chemical and Physical Meteorology
– volume: 12
  start-page: 681
  year: 2007
  end-page: 692
  article-title: Nitrogen pools and C:N ratios in well‐drained Nordic forest soils related to climate and soil texture
  publication-title: Boreal Environment Research
– volume: 71
  start-page: 357
  year: 2001
  end-page: 376
  article-title: Elevated CO differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data
  publication-title: Ecological Monographs
– volume: 9
  start-page: 649
  year: 2012
  end-page: 665
  article-title: Estimating the near‐surface permafrost‐carbon feedback on global warming
  publication-title: Biogeosciences
– volume: 46
  start-page: 1
  year: 2009
  end-page: 15
  article-title: Temperature sensitivity of soil organic matter decomposition‐what do we know?
  publication-title: Biology and Fertility of Soils
– volume: 20
  year: 2006
  article-title: Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction
  publication-title: Global Biogeochemical Cycles
– volume: 39
  start-page: L15704
  year: 2012
  article-title: Field information links permafrost carbon to physical vulnerabilities of thawing
  publication-title: Geophysical Research Letters
– volume: 94
  start-page: 740
  year: 2006
  end-page: 753
  article-title: Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer
  publication-title: Journal of Ecology
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  article-title: Equation of state calculations by fast computing machines
  publication-title: Journal of Chemical Physics
– year: 1997
– volume: 17
  start-page: 1097
  year: 2011
  end-page: 1107
  article-title: Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity
  publication-title: Global Change Biology
– volume: 3
  start-page: 854
  year: 2010
  end-page: 857
  article-title: Widespread coupling between the rate and temperature sensitivity of organic matter decay
  publication-title: Nature Geoscience
– volume: 51
  start-page: 1173
  year: 1987
  end-page: 1179
  article-title: Analysis of factors controlling soil organic‐matter levels in great‐plains grasslands
  publication-title: Soil Science Society of America Journal
– volume: 87
  start-page: 29
  year: 2008
  end-page: 47
  article-title: Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls
  publication-title: Biogeochemistry
– volume: 33
  start-page: L20502
  year: 2006a
  article-title: Permafrost carbon: stock and decomposability of a globally significant carbon pool
  publication-title: Geophysical Research Letters
– volume: 108
  year: 2002
  article-title: Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon
  publication-title: Journal of Geophysical Research‐Atmospheres
– volume: 77
  start-page: 271
  year: 1996
  end-page: 275
  article-title: Fossil carbon/nitrogen ratios as a measure of peat decomposition
  publication-title: Ecology
– volume: 112
  start-page: F02s02
  year: 2007
  article-title: Characteristics of the recent warming of permafrost in Alaska
  publication-title: Journal of Geophysical Research‐Earth Surface
– volume: 5
  start-page: 719
  year: 2012
  end-page: 721
  article-title: Significant contribution to climate warming from the permafrost carbon feedback
  publication-title: Nature Geoscience
– volume: 459
  start-page: 556
  year: 2009
  end-page: 559
  article-title: The effect of permafrost thaw on old carbon release and net carbon exchange from tundra
  publication-title: Nature
– volume: 119
  start-page: 359
  year: 2013
  end-page: 374
  article-title: Expert assessment of vulnerability of permafrost carbon to climate change
  publication-title: Climatic Change
– volume: 10
  start-page: 399
  year: 2000
  end-page: 411
  article-title: Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics
  publication-title: Ecological Applications
– volume: 171
  start-page: 721
  year: 2013
  end-page: 732
  article-title: Separating soil CO efflux into C‐pool‐specific decay rates via inverse analysis of soil incubation data
  publication-title: Oecologia
– volume: 29
  start-page: 535
  year: 2001
  end-page: 562
  article-title: The carbon budget in soils
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 31
  year: 2004
  article-title: Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003
  publication-title: Geophysical Research Letters
– volume: 94
  start-page: 457
  year: 1993
  end-page: 471
  article-title: Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content
  publication-title: Oecologia
– volume: 326
  start-page: 716
  year: 2009
  end-page: 718
  article-title: Improved attribution of climate forcing to emissions
  publication-title: Science
– volume: 116
  start-page: G00m02
  year: 2011
  article-title: Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic
  publication-title: Journal of Geophysical Research‐Biogeosciences
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  article-title: Monte‐Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
– volume: 94
  start-page: 8284
  year: 1997
  end-page: 8291
  article-title: Potential responses of soil organic carbon to global environmental change
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 123
  start-page: 298
  year: 1977
  end-page: 305
  article-title: Turnover of soil organic‐matter in some of Rothamsted classical experiments
  publication-title: Soil Science
– volume: 65
  start-page: 87
  year: 2001
  end-page: 93
  article-title: Characterization of soil organic matter fractions of tundra soils in arctic Alaska by carbon‐13 nuclear magnetic resonance spectroscopy
  publication-title: Soil Science Society of America Journal
– volume: 12
  start-page: 2336
  year: 2006
  end-page: 2351
  article-title: Potential carbon release from permafrost soils of Northeastern Siberia
  publication-title: Global Change Biology
– volume: 116
  start-page: G03013
  year: 2011
  article-title: Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils
  publication-title: Journal of Geophysical Research‐Biogeosciences
– volume: 361
  start-page: 520
  year: 1993
  end-page: 523
  article-title: Recent change of arctic tundra ecosystems from a net carbon‐dioxide sink to a source
  publication-title: Nature
– year: 2010
– year: 2012
– volume: 312
  start-page: 1612
  year: 2006b
  end-page: 1613
  article-title: Permafrost and the global carbon budget
  publication-title: Science
– volume: 116
  start-page: G00k06
  year: 2011
  article-title: Vulnerability of high‐latitude soil organic carbon in North America to disturbance
  publication-title: Journal of Geophysical Research‐Biogeosciences
– volume: 7
  start-page: 320
  year: 2010
  end-page: 332
  article-title: What is recalcitrant soil organic matter?
  publication-title: Environmental Chemistry
– year: 2002
– volume: 18
  start-page: 1781
  year: 2012
  end-page: 1796
  article-title: Soil organic matter turnover is governed by accessibility not recalcitrance
  publication-title: Global Change Biology
– volume: 108
  start-page: 14769
  year: 2011
  end-page: 14774
  article-title: Permafrost carbon‐climate feedbacks accelerate global warming
  publication-title: Proceedings of the National Academy of Sciences
– volume: 3
  year: 2012
  article-title: Microbial control over carbon cycling in soil
  publication-title: Frontiers in Microbiology
– volume: 5
  start-page: 1
  year: 2013
  end-page: 11
  article-title: The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions
  publication-title: Earth System Science Data
– volume: 8
  start-page: 872
  year: 2002
  end-page: 884
  article-title: Vegetation and climate controls on potential CO , DOC and DON production in northern latitude soils
  publication-title: Global Change Biology
– volume: 58
  start-page: 701
  year: 2008
  end-page: 714
  article-title: Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle
  publication-title: BioScience
– ident: e_1_2_6_50_1
  doi: 10.1126/science.1174760
– ident: e_1_2_6_2_1
  doi: 10.1146/annurev.earth.29.1.535
– ident: e_1_2_6_18_1
  doi: 10.1093/biomet/57.1.97
– ident: e_1_2_6_58_1
  doi: 10.1126/science.1128908
– ident: e_1_2_6_55_1
  doi: 10.1007/s10533-007-9166-3
– ident: e_1_2_6_27_1
  doi: 10.1029/2010jg001629
– volume-title: Mixed Effects Models and Extensions in Ecology with R
  year: 2010
  ident: e_1_2_6_59_1
– ident: e_1_2_6_11_1
  doi: 10.1111/j.1365-2486.2012.02665.x
– ident: e_1_2_6_34_1
  doi: 10.1046/j.1365-2486.2002.00517.x
– ident: e_1_2_6_7_1
  doi: 10.1038/ngeo1009
– ident: e_1_2_6_56_1
  doi: 10.1029/2005gb002468
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1365-2486.2011.02519.x
– ident: e_1_2_6_22_1
  doi: 10.1071/EN10006
– ident: e_1_2_6_25_1
  doi: 10.1073/pnas.1103910108
– ident: e_1_2_6_51_1
  doi: 10.1029/2008gb003327
– ident: e_1_2_6_47_1
  doi: 10.1038/nature08031
– ident: e_1_2_6_19_1
  doi: 10.1029/2000GB001264
– ident: e_1_2_6_44_1
  doi: 10.1038/nature10386
– ident: e_1_2_6_45_1
  doi: 10.5194/bg-9-649-2012
– ident: e_1_2_6_26_1
  doi: 10.2307/2265676
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1365-2745.2006.01139.x
– ident: e_1_2_6_57_1
  doi: 10.1029/2006gl027484
– ident: e_1_2_6_30_1
  doi: 10.1007/s00374-009-0413-8
– ident: e_1_2_6_29_1
  doi: 10.1890/0012-9615(2001)071[0357:ECDECP]2.0.CO;2
– ident: e_1_2_6_16_1
  doi: 10.1029/2004gl020051
– ident: e_1_2_6_36_1
  doi: 10.1029/2006jf000578
– ident: e_1_2_6_43_1
  doi: 10.1029/2011jg001647
– ident: e_1_2_6_46_1
  doi: 10.1641/B580807
– ident: e_1_2_6_33_1
  doi: 10.1063/1.1699114
– ident: e_1_2_6_6_1
  doi: 10.1007/b97397
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_6_35_1
  doi: 10.1038/361520a0
– ident: e_1_2_6_54_1
  doi: 10.1111/j.1365-2486.2009.02141.x
– volume: 12
  start-page: 681
  year: 2007
  ident: e_1_2_6_4_1
  article-title: Nitrogen pools and C:N ratios in well‐drained Nordic forest soils related to climate and soil texture
  publication-title: Boreal Environment Research
– ident: e_1_2_6_21_1
  doi: 10.1097/00010694-197705000-00005
– ident: e_1_2_6_32_1
  doi: 10.2307/3544766
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1365-2486.2006.01259.x
– ident: e_1_2_6_17_1
  doi: 10.1029/2012gl051958
– ident: e_1_2_6_8_1
  doi: 10.2136/sssaj2001.65187x
– ident: e_1_2_6_42_1
  doi: 10.3389/fmicb.2012.00348
– ident: e_1_2_6_48_1
  doi: 10.1007/s10584-013-0730-7
– ident: e_1_2_6_15_1
  doi: 10.1029/2010jg001507
– ident: e_1_2_6_31_1
  doi: 10.1038/ngeo1573
– ident: e_1_2_6_24_1
  doi: 10.1111/gcb.12116
– ident: e_1_2_6_38_1
– ident: e_1_2_6_20_1
  doi: 10.5194/essd-5-3-2013
– volume-title: Circum‐Arctic Map of Permafrost and Gound‐Ice Conditions
  year: 1997
  ident: e_1_2_6_3_1
– ident: e_1_2_6_37_1
  doi: 10.2136/sssaj1987.03615995005100050015x
– ident: e_1_2_6_52_1
  doi: 10.1073/pnas.94.16.8284
– ident: e_1_2_6_5_1
  doi: 10.1029/2005jg000087
– ident: e_1_2_6_10_1
  doi: 10.1029/2001jd000848.
– ident: e_1_2_6_14_1
  doi: 10.1007/BF00566960
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365-2486.2010.02278.x
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2012
  ident: e_1_2_6_39_1
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1600-0889.2011.00527.x
– ident: e_1_2_6_53_1
  doi: 10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2
– ident: e_1_2_6_13_1
  doi: 10.1038/nclimate1955
– ident: e_1_2_6_40_1
  doi: 10.1007/s00442-012-2577-4
SSID ssj0003206
Score 2.554388
Snippet High‐latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw...
High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw...
High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 641
SubjectTerms Alaska
Animal and plant ecology
Animal, plant and microbial ecology
Arctic Regions
Atmosphere
Biological and medical sciences
boreal forest
C decomposition
Carbon - metabolism
Carbon Cycle
Carbon dioxide
Climate Change
Climatology. Bioclimatology. Climate change
Decomposition
Earth, ocean, space
Ecosystem
Exact sciences and technology
External geophysics
Forestry
Fundamental and applied biological sciences. Psychology
General aspects
General forest ecology
Generalities. Production, biomass. Quality of wood and forest products. General forest ecology
Latitude
Meteorology
Models, Biological
Organic matter
Permafrost
Seasons
Siberia
Soil - chemistry
Soil depth
soil organic carbon
Soil sciences
Synecology
Temperature
Terrestrial ecosystems
tundra
Turnover time
Title Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
URI https://api.istex.fr/ark:/67375/WNG-FTSTFCWB-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12417
https://www.ncbi.nlm.nih.gov/pubmed/24399755
https://www.proquest.com/docview/1474864199
https://www.proquest.com/docview/1490715891
https://www.proquest.com/docview/1492647640
Volume 20
WOSCitedRecordID wos000329349700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB21CUhc-AgUAiVaEKp6MfLHrtcWJ2rqcoAIQarmZu1uvZFFZEdxUpEbP4HfyC9hZ-24RCoIiZsjj-X15s3sG3v2DcArISJFo1w6jCvfobFkjoyodEJNwzwOlfZdbZtN8PE4mk7jT3vwZrsXptGH6F64oWfYeI0OLmT9m5PPlHxtFieP70PfN7ilPei_-5yef-gCceDb1ppewKiJNl7QCgthIU938c5y1MeZ_YblkaI2M6Sb1hY3cc9dKmvXovTefz3FfbjbUlDytsHMA9jLywHcbppSbgZwcHq9982Ytc5fD2D40RDsamnNyBFJ5oVhu_bXQ1gkxVIZZGCiTESn9kkqTRYY-zVuLiEJafZwbogoL0mxqsnVeo6y17ZCd0OwnJRgt3uC5fgzMq_K2c_vP3D1IEWp1tLCiGBV6yM4T08nyXunbebgKOa73JG5yy8pR_EaX4YmTcq5Rm00jyrPk1z7ykQH7XtWwFBSrqNA-ToPo1AKN2A8OIBeWZX5EyDMnHKF0IabKhpqLVmOb7cVU0JT6blDON7-p5lqlc6x4cY822Y8ZtYzO-tDeNmZLhp5j5uMjiwwOgux_Ir1cJxlF-OzLJ18maTJxUnGhjDaQU53gR95Jm3GkR1uoZS1saI2yRenUUi9OB7Ci-608XL8dCPKvFqjTWy4IHaA_KuNYbc8pOY2jxuYXg8A007OzAiPLRr__LDZWXJiD57-u-kzuGN4JG2K2Q-ht1qu8-dwS12tino5gn0-jUatc_4Ci988bw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL0aLQhe-CgMAmMYhKa9BOXDjhOJFxbWDdFVCDptb5HtxVVFlVRpO9E3fgK_kV-Cr5NmVBoIibdWuVEd99zrc53rcwFeCxErGufSZVwFLk0kc2VMpRtpGuVJpHTgadtsgg-H8fl58mkL3q7PwtT6EO2GG3qGjdfo4Lgh_ZuXj5V8Y1Ynn9-ALjUwYh3ovv_cPx20kTgMbG9NP2TUhBs_bJSFsJKnvXljPeri1H7D-kgxN1Ok694W15HPTS5rF6P-vf97jPtwtyGh5F2NmgewlRc9uFW3pVz1YPvw6vSbMWvcf94D58RQ7LKyZmSPpNOJ4bv220OYpZNKGWxgqkxEq_dJSk1mGP01Hi8hKalPca6IKC7IZDEnl8spCl_bGt0VwYJSgv3uCRbkj8m0LMY_v__A9YNMCrWUFkgE61ofwWn_cJQeu007B1exwOOuzD1-QTnK1wQyMolSzjWqo_lU-b7kOlAmPujAtxKGknIdhyrQeRRHUngh4-E2dIqyyJ8AYeaSJ4Q27FTRSGvJctzfVkwJTaXvObC__lMz1WidY8uNabbOecysZ3bWHXjVms5qgY_rjPYsMloLUX3FijjOsrPhUdYffRn107ODjDmwuwGd9oYg9k3ijCPbWWMpa6LF3KRfnMYR9ZPEgZftZePn-PJGFHm5RJvEsEHsAflXG8NveUTNzzyucXo1AEw8OTMj3Ldw_PPDZkfpgf3w9N9NX8Dt49HJIBt8GH58BncMq6R1afsOdBbVMn8ON9XlYjKvdhsf_QXyNj93
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFRAvfBS2FcYwCE17CcqHHScSLyxbBmJUE3Ta3iLbtauKKq36MdE3_gT-Rv4SfE6aUWkgJN4S5azYzt35d875dwCvhUgUTbT0GFehR1PJPJlQ6cWGxjqNlQl944pN8G43ubxMzzbg7eosTMUP0Wy4oWU4f40Grid985uVD5R8Y1engN-CFmVpbM2ydfQ5Pz9tPHEUutqaQcSodTdBVDMLYSZP03htPWrh1H7D_Egxs1NkqtoWN4HPdSzrFqP8wf8N4yHcr0EoeVdpzSPY0GUb7lRlKZdt2Dq-Pv1mxWrzn7Wh88lC7PHUiZF9ko2GFu-6u8cwyYZTZXUDQ2UiGr5PMjZkgt7f4PESkpHqFOeSiLJPhvMZuVqMkPja5eguCSaUEqx3TzAhf0BG43Lw8_sPXD_IsFQL6RSJYF7rEzjPj3vZe68u5-ApFvrck9rnfcqRviaUsQ2UNDfIjhZQFQSSm1BZ_2DCwFEYSspNEqnQ6DiJpfAjxqMt2CzHpd4BwuwjXwhj0amisTGSadzfVkwJQ2Xgd-Bg9VELVXOdY8mNUbGKeeysF27WO_CqEZ1UBB83Ce07zWgkxPQrZsRxVlx0T4q896WXZxeHBevA3prqNA3CJLCBM_Zsd6VLRe0tZjb84jSJaZCmHXjZPLZ2jj9vRKnHC5RJLRrEGpB_lbH4lsfUvma70tPrDmDgyZnt4YFTxz8PtjjJDt3F038XfQF3z47y4vRD9-MzuGdBJa0y23dhcz5d6OdwW13Nh7PpXm2ivwAh5T7y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circumpolar+assessment+of+permafrost+C+quality+and+its+vulnerability+over+time+using+long-term+incubation+data&rft.jtitle=Global+change+biology&rft.au=Sch%C3%A4del%2C+Christina&rft.au=Schuur%2C+Edward+A+G&rft.au=Bracho%2C+Rosvel&rft.au=Elberling%2C+Bo&rft.date=2014-02-01&rft.issn=1365-2486&rft.eissn=1365-2486&rft.volume=20&rft.issue=2&rft.spage=641&rft_id=info:doi/10.1111%2Fgcb.12417&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon