Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
High‐latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the g...
Gespeichert in:
| Veröffentlicht in: | Global change biology Jg. 20; H. 2; S. 641 - 652 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Blackwell Publishing Ltd
01.02.2014
Wiley-Blackwell |
| Schlagworte: | |
| ISSN: | 1354-1013, 1365-2486, 1365-2486 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | High‐latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long‐term (>1 year) aerobic soil incubations from 121 individual samples from 23 high‐latitude ecosystems located across the northern circumpolar permafrost zone. Using a three‐pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes. |
|---|---|
| AbstractList | High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1 year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpolar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes. High‐latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long‐term (>1 year) aerobic soil incubations from 121 individual samples from 23 high‐latitude ecosystems located across the northern circumpolar permafrost zone. Using a three‐pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO 2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes. High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1 year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpolar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes.High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1 year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpolar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes. High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1 year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpolar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 °C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 °C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO2 within 50 incubation years at a constant temperature of 5 °C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes. [PUBLICATION ABSTRACT] High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw and subsequent microbial decomposition of permafrost organic matter could add large amounts of C to the atmosphere, thereby influencing the global C cycle. The rates at which C is being released from the permafrost zone at different soil depths and across different physiographic regions are poorly understood but crucial in understanding future changes in permafrost C storage with climate change. We assessed the inherent decomposability of C from the permafrost zone by assembling a database of long-term (>1 year) aerobic soil incubations from 121 individual samples from 23 high-latitude ecosystems located across the northern circumpolar permafrost zone. Using a three-pool (i.e., fast, slow and passive) decomposition model, we estimated pool sizes for C fractions with different turnover times and their inherent decomposition rates using a reference temperature of 5 degree C. Fast cycling C accounted for less than 5% of all C in both organic and mineral soils whereas the pool size of slow cycling C increased with C : N. Turnover time at 5 degree C of fast cycling C typically was below 1 year, between 5 and 15 years for slow turning over C, and more than 500 years for passive C. We project that between 20 and 90% of the organic C could potentially be mineralized to CO sub(2) within 50 incubation years at a constant temperature of 5 degree C, with vulnerability to loss increasing in soils with higher C : N. These results demonstrate the variation in the vulnerability of C stored in permafrost soils based on inherent differences in organic matter decomposability, and point toward C : N as an index of decomposability that has the potential to be used to scale permafrost C loss across landscapes. |
| Author | Bracho, Rosvel Knoblauch, Christian Schädel, Christina Luo, Yiqi Shaver, Gaius R. Turetsky, Merritt R. Schuur, Edward A. G. Elberling, Bo Lee, Hanna |
| Author_xml | – sequence: 1 givenname: Christina surname: Schädel fullname: Schädel, Christina email: chschaedel@gmail.com organization: Department of Biology, University of Florida, FL, Gainesville, USA – sequence: 2 givenname: Edward A. G. surname: Schuur fullname: Schuur, Edward A. G. organization: Department of Biology, University of Florida, FL, Gainesville, USA – sequence: 3 givenname: Rosvel surname: Bracho fullname: Bracho, Rosvel organization: Department of Biology, University of Florida, FL, Gainesville, USA – sequence: 4 givenname: Bo surname: Elberling fullname: Elberling, Bo organization: Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark – sequence: 5 givenname: Christian surname: Knoblauch fullname: Knoblauch, Christian organization: Institute of Soil Science, Klima Campus, University of Hamburg, Hamburg, Germany – sequence: 6 givenname: Hanna surname: Lee fullname: Lee, Hanna organization: Climate and Global Dynamics Division, National Center for Atmospheric Research, CO, Boulder, USA – sequence: 7 givenname: Yiqi surname: Luo fullname: Luo, Yiqi organization: Department of Microbiology and Plant Biology, University of Oklahoma, OK, Norman, USA – sequence: 8 givenname: Gaius R. surname: Shaver fullname: Shaver, Gaius R. organization: The Ecosystem Center, Marine Biological Laboratory, MA, Woods Hole, USA – sequence: 9 givenname: Merritt R. surname: Turetsky fullname: Turetsky, Merritt R. organization: Department of Integrative Biology, University of Guelph, ON, Guelph, Canada |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28171710$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24399755$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkV1rFDEUhoNU7Ide-AckIIJeTJtk8jFz2Q7uKhS9cKWXIZPNLKmZZJtkqvvvzX60QkExuUgIz3PIOe8pOPLBGwBeY3SOy7pY6f4cE4rFM3CCa84qQht-tL0zWmGE62NwmtItQqgmiL8Ax4TWbSsYOwG-s1FP4zo4FaFKyaQ0Gp9hGODaxFENMaQMO3g3KWfzBiq_hDYneD85b6Lq7e413JsIsx0NnJL1K-iCX1W5-NB6PfUq2-DhUmX1EjwflEvm1eE8A99nHxfdp-r66_xzd3ldaUaQqHqDxJIKxikjPaeNMGKgrLRKNca9GIhmGA0E05Zw0lMxNLUmg-EN7xWqmajPwPt93XUMd5NJWY42aeOc8iZMSe5MKjhF_4MigVnT4oK-fYLehin60kihRJk5xW1bqDcHaupHs5TraEcVN_Jh6AV4dwBU0soNUXlt0x-uwaLs7c8-7DldQkjRDI8IRnIbvCzBy13whb14wmqbd3PPUVn3L-OndWbz99Jy3l09GNXesCmbX4-Gij8kF7Vg8ubLXM4W3xaz7uZKsvo33f7Lmw |
| CitedBy_id | crossref_primary_10_1016_j_catena_2016_08_035 crossref_primary_10_1038_nclimate3054 crossref_primary_10_1088_2752_664X_ad089d crossref_primary_10_1080_10643389_2023_2266312 crossref_primary_10_5194_bg_15_6867_2018 crossref_primary_10_3389_fmicb_2020_596589 crossref_primary_10_5194_soil_1_147_2015 crossref_primary_10_1002_2015JG003147 crossref_primary_10_1016_j_ejsobi_2024_103623 crossref_primary_10_1029_2020GB006585 crossref_primary_10_3390_environments12080282 crossref_primary_10_1016_j_geoderma_2021_115302 crossref_primary_10_1016_j_marpolbul_2025_118370 crossref_primary_10_1016_j_geoderma_2019_113975 crossref_primary_10_1016_j_soilbio_2017_03_001 crossref_primary_10_5194_bg_12_2227_2015 crossref_primary_10_1088_1748_9326_9_4_045005 crossref_primary_10_5194_bg_12_3469_2015 crossref_primary_10_1038_s41396_023_01429_6 crossref_primary_10_5194_bg_13_6669_2016 crossref_primary_10_1016_j_catena_2019_02_029 crossref_primary_10_5194_bg_17_361_2020 crossref_primary_10_1016_j_soilbio_2022_108803 crossref_primary_10_5194_bg_14_3051_2017 crossref_primary_10_1029_2018JG004619 crossref_primary_10_1016_j_agrformet_2023_109793 crossref_primary_10_5194_bg_16_663_2019 crossref_primary_10_1029_2024JD041772 crossref_primary_10_1029_2025JG008847 crossref_primary_10_1007_s13280_020_01392_y crossref_primary_10_1029_2021JG006396 crossref_primary_10_1007_s10533_017_0373_2 crossref_primary_10_1016_j_orggeochem_2016_10_013 crossref_primary_10_1126_sciadv_adt6231 crossref_primary_10_1126_science_aad4273 crossref_primary_10_5194_soil_10_533_2024 crossref_primary_10_5194_bg_18_4937_2021 crossref_primary_10_1029_2018JG004944 crossref_primary_10_1016_j_jenvman_2025_126576 crossref_primary_10_1016_j_scitotenv_2022_157288 crossref_primary_10_1016_j_soilbio_2023_108991 crossref_primary_10_1038_s41598_019_45200_4 crossref_primary_10_1029_2020GB006688 crossref_primary_10_1029_2019GL084303 crossref_primary_10_1038_s41467_020_16357_8 crossref_primary_10_5194_bg_15_5423_2018 crossref_primary_10_3389_feart_2021_630493 crossref_primary_10_5194_esd_14_609_2023 crossref_primary_10_1002_ldr_3943 crossref_primary_10_1007_s11707_025_1171_0 crossref_primary_10_3390_geosciences7020024 crossref_primary_10_1029_2023JG007936 crossref_primary_10_1002_2017GL073823 crossref_primary_10_1029_2022JG006910 crossref_primary_10_1002_2016EF000362 crossref_primary_10_1029_2018JG004712 crossref_primary_10_1088_1748_9326_ab83af crossref_primary_10_1038_nature14338 crossref_primary_10_5194_bg_14_145_2017 crossref_primary_10_1029_2018JG004396 crossref_primary_10_1111_gcb_70024 crossref_primary_10_1029_2023JG007590 crossref_primary_10_1111_gcb_16109 crossref_primary_10_1007_s41063_018_0056_9 crossref_primary_10_1002_ppp_2131 crossref_primary_10_3390_nitrogen3030031 crossref_primary_10_1016_j_soilbio_2023_109024 crossref_primary_10_1038_s41467_025_62332_6 crossref_primary_10_1111_gcb_15134 crossref_primary_10_1038_s41467_018_06080_w crossref_primary_10_1016_j_soilbio_2016_02_008 crossref_primary_10_1038_s41586_019_1541_4 crossref_primary_10_1016_j_soilbio_2015_04_009 crossref_primary_10_1111_gcb_13069 crossref_primary_10_1142_S2010007817500087 crossref_primary_10_3390_jmse10111589 crossref_primary_10_1029_2021JG006750 crossref_primary_10_1016_j_soilbio_2017_10_001 crossref_primary_10_1016_j_catena_2021_106014 crossref_primary_10_1093_femsec_fiaa021 crossref_primary_10_5194_bg_13_2123_2016 crossref_primary_10_1016_j_gca_2019_03_028 crossref_primary_10_1016_j_jhydrol_2023_129808 crossref_primary_10_1111_ejss_12269 crossref_primary_10_1029_2018JG004591 crossref_primary_10_5194_bg_20_2049_2023 crossref_primary_10_5194_cp_14_2011_2018 crossref_primary_10_3103_S106837392005009X crossref_primary_10_1029_2021GL097347 crossref_primary_10_5194_bg_12_4317_2015 crossref_primary_10_1016_j_earscirev_2020_103365 crossref_primary_10_3390_geosciences10010015 crossref_primary_10_1038_s43247_022_00651_y crossref_primary_10_1088_1748_9326_aae43b crossref_primary_10_1088_1748_9326_ac9198 crossref_primary_10_3390_atmos12111425 crossref_primary_10_1111_gcb_14979 crossref_primary_10_1016_j_geoderma_2017_01_028 crossref_primary_10_1002_2014JG002701 crossref_primary_10_1002_2016JG003671 crossref_primary_10_1029_2021JG006726 crossref_primary_10_1371_journal_pone_0232506 crossref_primary_10_5194_bg_15_6033_2018 crossref_primary_10_1088_1748_9326_ac417e crossref_primary_10_1038_s41558_023_01909_9 crossref_primary_10_1016_j_geoderma_2025_117418 crossref_primary_10_1016_j_soilbio_2015_05_024 crossref_primary_10_1016_j_catena_2021_105983 crossref_primary_10_1016_j_scitotenv_2023_167180 crossref_primary_10_1088_1748_9326_9_11_114013 crossref_primary_10_1002_ecs2_2608 crossref_primary_10_1016_j_soilbio_2016_03_016 crossref_primary_10_1002_ppp_70011 crossref_primary_10_1088_1748_9326_ad50ed crossref_primary_10_3390_f15030501 crossref_primary_10_5194_esd_12_581_2021 crossref_primary_10_5194_bg_14_4279_2017 crossref_primary_10_1029_2020JG006000 crossref_primary_10_1088_1748_9326_ab6784 crossref_primary_10_1029_2021JG006543 crossref_primary_10_1038_nclimate3328 crossref_primary_10_1029_2022JG007137 crossref_primary_10_1111_gcb_13032 crossref_primary_10_1029_2020JG006008 crossref_primary_10_5194_bg_13_4219_2016 crossref_primary_10_1016_j_apsoil_2024_105530 crossref_primary_10_1002_2014MS000344 crossref_primary_10_1007_s13280_016_0872_8 crossref_primary_10_1111_gcb_15566 crossref_primary_10_1038_nclimate2590 crossref_primary_10_3389_feart_2021_737237 crossref_primary_10_1111_sum_70010 crossref_primary_10_1002_ece3_2982 crossref_primary_10_1139_as_2024_0050 crossref_primary_10_1186_s40645_020_00366_8 crossref_primary_10_5802_crgeos_305 crossref_primary_10_1038_ncomms13046 crossref_primary_10_5194_bg_13_5021_2016 crossref_primary_10_1111_gcb_12762 crossref_primary_10_5194_se_7_153_2016 crossref_primary_10_1007_s10533_017_0354_5 crossref_primary_10_5194_soil_11_371_2025 crossref_primary_10_1016_j_soilbio_2022_108757 crossref_primary_10_1007_s42452_021_04869_x crossref_primary_10_1016_j_soilbio_2015_08_012 crossref_primary_10_1029_2022MS003008 crossref_primary_10_1093_femsec_fiw117 crossref_primary_10_1007_s42729_022_01063_9 crossref_primary_10_5194_tc_10_179_2016 crossref_primary_10_5194_essd_12_1511_2020 crossref_primary_10_1002_2015JF003781 crossref_primary_10_1111_gcb_12875 crossref_primary_10_1016_j_sedgeo_2015_12_004 crossref_primary_10_1002_2016JG003754 crossref_primary_10_1111_gcb_14017 crossref_primary_10_1088_1748_9326_10_9_094011 crossref_primary_10_1016_j_scitotenv_2022_154350 crossref_primary_10_1029_2024EF004996 crossref_primary_10_1111_gcb_14936 crossref_primary_10_1016_j_geoderma_2015_08_038 crossref_primary_10_1038_s41561_020_00662_4 crossref_primary_10_1016_j_catena_2016_07_048 crossref_primary_10_1016_j_geodrs_2024_e00841 crossref_primary_10_1038_s43017_020_0063_9 crossref_primary_10_1038_s41558_018_0095_z crossref_primary_10_1126_science_abn7950 crossref_primary_10_1002_2016GB005405 crossref_primary_10_1016_j_geoderma_2019_113942 crossref_primary_10_1073_pnas_1415123112 crossref_primary_10_1515_popore_2017_0007 crossref_primary_10_1002_ldr_3656 crossref_primary_10_1088_1748_9326_aae0ff crossref_primary_10_1016_j_soilbio_2018_10_009 crossref_primary_10_1016_j_soilbio_2018_10_014 crossref_primary_10_1029_2020JG006044 crossref_primary_10_5194_bg_15_953_2018 crossref_primary_10_1002_2015GB005351 crossref_primary_10_1038_s41598_018_22530_3 crossref_primary_10_1002_2018JG004413 crossref_primary_10_1002_2014JG002880 crossref_primary_10_1088_1748_9326_ab3bbc crossref_primary_10_1038_s41467_023_37766_5 crossref_primary_10_1007_s11356_020_10151_1 crossref_primary_10_1016_j_geoderma_2021_115455 crossref_primary_10_5194_bg_13_2003_2016 crossref_primary_10_1029_2024JG008631 crossref_primary_10_3389_feart_2020_582103 crossref_primary_10_1016_j_gca_2025_02_010 crossref_primary_10_1016_j_soilbio_2016_04_020 crossref_primary_10_1088_1748_9326_ab10fa crossref_primary_10_1016_j_earscirev_2020_103433 crossref_primary_10_1038_s41467_023_44433_2 crossref_primary_10_1111_gcb_15438 crossref_primary_10_1016_j_soilbio_2018_08_015 crossref_primary_10_1111_gcb_13257 crossref_primary_10_5194_bg_13_4315_2016 crossref_primary_10_1186_s40168_020_00838_5 crossref_primary_10_1002_2016GL068874 crossref_primary_10_1146_annurev_environ_012220_011847 crossref_primary_10_5194_esd_14_39_2023 crossref_primary_10_1038_s41598_023_36471_z crossref_primary_10_1111_gcb_14582 crossref_primary_10_1111_gcb_17297 crossref_primary_10_5194_bg_15_1969_2018 crossref_primary_10_1002_2015GB005239 crossref_primary_10_1016_j_earscirev_2017_07_007 crossref_primary_10_1016_j_scitotenv_2019_06_402 crossref_primary_10_1016_j_still_2017_07_003 crossref_primary_10_1111_gcb_14578 crossref_primary_10_5194_bg_12_7129_2015 crossref_primary_10_1002_2017JG004070 crossref_primary_10_1016_j_geoderma_2021_115591 crossref_primary_10_1038_s41396_019_0485_x crossref_primary_10_1029_2022GB007524 crossref_primary_10_1016_j_soilbio_2015_07_013 crossref_primary_10_1029_2018JG004518 crossref_primary_10_1186_s40665_016_0016_1 crossref_primary_10_1038_nature14653 crossref_primary_10_1002_2017JG004069 crossref_primary_10_1038_s41467_020_18331_w crossref_primary_10_1111_gcb_16750 crossref_primary_10_1007_s11427_023_2601_1 crossref_primary_10_1038_s41467_024_54990_9 crossref_primary_10_1016_j_scitotenv_2022_157539 crossref_primary_10_1038_s41467_023_37900_3 |
| Cites_doi | 10.1126/science.1174760 10.1146/annurev.earth.29.1.535 10.1093/biomet/57.1.97 10.1126/science.1128908 10.1007/s10533-007-9166-3 10.1029/2010jg001629 10.1111/j.1365-2486.2012.02665.x 10.1046/j.1365-2486.2002.00517.x 10.1038/ngeo1009 10.1029/2005gb002468 10.1111/j.1365-2486.2011.02519.x 10.1071/EN10006 10.1073/pnas.1103910108 10.1029/2008gb003327 10.1038/nature08031 10.1029/2000GB001264 10.1038/nature10386 10.5194/bg-9-649-2012 10.2307/2265676 10.1111/j.1365-2745.2006.01139.x 10.1029/2006gl027484 10.1007/s00374-009-0413-8 10.1890/0012-9615(2001)071[0357:ECDECP]2.0.CO;2 10.1029/2004gl020051 10.1029/2006jf000578 10.1029/2011jg001647 10.1641/B580807 10.1063/1.1699114 10.1007/b97397 10.1111/j.1461-0248.2008.01219.x 10.1038/361520a0 10.1111/j.1365-2486.2009.02141.x 10.1097/00010694-197705000-00005 10.2307/3544766 10.1111/j.1365-2486.2006.01259.x 10.1029/2012gl051958 10.2136/sssaj2001.65187x 10.3389/fmicb.2012.00348 10.1007/s10584-013-0730-7 10.1029/2010jg001507 10.1038/ngeo1573 10.1111/gcb.12116 10.5194/essd-5-3-2013 10.2136/sssaj1987.03615995005100050015x 10.1073/pnas.94.16.8284 10.1029/2005jg000087 10.1029/2001jd000848. 10.1007/BF00566960 10.1111/j.1365-2486.2010.02278.x 10.1111/j.1600-0889.2011.00527.x 10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2 10.1038/nclimate1955 10.1007/s00442-012-2577-4 |
| ContentType | Journal Article |
| Copyright | 2013 John Wiley & Sons Ltd 2015 INIST-CNRS 2013 John Wiley & Sons Ltd. Copyright © 2014 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2013 John Wiley & Sons Ltd – notice: 2015 INIST-CNRS – notice: 2013 John Wiley & Sons Ltd. – notice: Copyright © 2014 John Wiley & Sons Ltd |
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7TG 7U6 KL. SOI |
| DOI | 10.1111/gcb.12417 |
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environment Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Meteorological & Geoastrophysical Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Sustainability Science Abstracts |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences Forestry |
| EISSN | 1365-2486 |
| EndPage | 652 |
| ExternalDocumentID | 3174404681 24399755 28171710 10_1111_gcb_12417 GCB12417 ark_67375_WNG_FTSTFCWB_5 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
| GeographicLocations | Russian Federation United States Eurasia America Siberia Alaska North America |
| GrantInformation_xml | – fundername: Danish National Research Foundation funderid: CENPERM DNRF100 – fundername: Department of Energy NICCR and TES – fundername: National Science Foundation Vulnerability of Permafrost Carbon Research Coordination Network funderid: 955713 – fundername: NSF CAREER Program – fundername: European Union FP7‐ENVIRONMENT funderid: GA282700 – fundername: NSF Bonanza Creek LTER – fundername: U.S. National Parks and Inventory Monitoring Program |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN ESX WRC WUP AAYXX CITATION O8X IQODW CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7ST 7TG 7U6 KL. SOI |
| ID | FETCH-LOGICAL-c5207-be07d4756452b6487e7f451114c11b7f2c510f2149262b47f83c2fe686ba03573 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 250 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329349700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 1365-2486 |
| IngestDate | Tue Oct 07 09:50:05 EDT 2025 Sun Nov 09 12:53:51 EST 2025 Mon Nov 10 02:54:31 EST 2025 Mon Jul 21 06:06:05 EDT 2025 Wed Apr 02 07:24:01 EDT 2025 Tue Nov 18 22:04:15 EST 2025 Sat Nov 29 06:02:20 EST 2025 Wed Jan 22 16:43:40 EST 2025 Tue Nov 11 03:31:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Organic carbon Boreal forest Incubation C decomposition soil organic carbon Decomposition Permafrost Vulnerability Long term Dynamical climatology Climate change Soils Quality Siberia Alaska Polar region Tundra tundra boreal forest climate change |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2013 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5207-be07d4756452b6487e7f451114c11b7f2c510f2149262b47f83c2fe686ba03573 |
| Notes | Department of Energy NICCR and TES U.S. National Parks and Inventory Monitoring Program ark:/67375/WNG-FTSTFCWB-5 Figure S1. Observed and modeled respiration rates for five randomly selected soil samples (a-e). The samples are the same as in Table S3. Table S1. Soil sample parameters for each individual soil core. Table S2. Prior parameter range for C pool partitioning coefficients (fi) and decay rates (ki). Table S3. Comparison of data-model fit and C loss for three time frames using a 2-pool and a 3-pool model for five randomly selected soil samples. Table S4. Correlations between model parameters. Table S5. MLE (97.5% CI) for all parameters and potential C loss for 1, 10, and 50 incubations years for all 121 soil samples. Table S6. Multiple regression results for estimated parameters and C loss (MLE, upper and lower limit of 97.5% CI) for 50 incubation years at 5 °C. NSF CAREER Program Danish National Research Foundation - No. CENPERM DNRF100 NSF Bonanza Creek LTER National Science Foundation Vulnerability of Permafrost Carbon Research Coordination Network - No. 955713 istex:3EA6E3F6248D9FA2CE5EEBC18ED0E19E47AF1145 European Union FP7-ENVIRONMENT - No. GA282700 ArticleID:GCB12417 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 24399755 |
| PQID | 1474864199 |
| PQPubID | 30327 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1492647640 proquest_miscellaneous_1490715891 proquest_journals_1474864199 pubmed_primary_24399755 pascalfrancis_primary_28171710 crossref_primary_10_1111_gcb_12417 crossref_citationtrail_10_1111_gcb_12417 wiley_primary_10_1111_gcb_12417_GCB12417 istex_primary_ark_67375_WNG_FTSTFCWB_5 |
| PublicationCentury | 2000 |
| PublicationDate | February 2014 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: February 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: England |
| PublicationTitle | Global change biology |
| PublicationTitleAlternate | Glob Change Biol |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
| References | Zimov SA, Schuur EAG, Chapin FS (2006b) Permafrost and the global carbon budget. Science, 312, 1612-1613. Schaefer K, Zhang T, Bruhwiler L, Barrett AP (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus Series B-Chemical and Physical Meteorology, 63, 165-180. Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS III (2006a) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophysical Research Letters, 33, L20502. doi: 10.1029/2006gl027484. Craine JM, Fierer N, McLauchlan KK (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3, 854-857. Luo YQ, Wu LH, Andrews JA, White L, Matamala R, Schafer KVR, Schlesinger WH (2001) Elevated CO2 differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data. Ecological Monographs, 71, 357-376. Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Global Change Biology, 12, 2336-2351. Callesen I, Raulund-Rasmussen K, Westman CJ, Tau-Strand L (2007) Nitrogen pools and C:N ratios in well-drained Nordic forest soils related to climate and soil texture. Boreal Environment Research, 12, 681-692. Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science, 326, 716-718. Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. Proceedings of the National Academy of Sciences of the United States of America, 94, 8284-8291. Hugelius G, Tarnocai C, Broll G, Canadell JG, Kuhry P, Swanson DK (2013) The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth System Science Data, 5, 1-11. Schuur EAG, Bockheim J, Canadell JG et al. (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience, 58, 701-714. von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know? Biology and Fertility of Soils, 46, 1-15. Xu T, White L, Hui DF, Luo YQ (2006) Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Global Biogeochemical Cycles, 20, doi: 10.1029/2005gb002468. Hastings WK (1970) Monte-Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109. Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18, 1781-1796. Schimel J, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Frontiers in Microbiology, 3, doi: 10.3389/fmicb.2012.00348. Lee H, Schuur EAG, Inglett KS, Lavoie M, Chanton JP (2012) The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Change Biology, 18, 515-527. Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB (2006) Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. Journal of Ecology, 94, 740-753. Dai XY, Ping CL, Candler R, Haumaier L, Zech W (2001) Characterization of soil organic matter fractions of tundra soils in arctic Alaska by carbon-13 nuclear magnetic resonance spectroscopy. Soil Science Society of America Journal, 65, 87-93. Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophysical Research Letters, 31, doi: 10.1029/2004gl020051. MacDougall AH, Avis CA, Weaver AJ (2012) Significant contribution to climate warming from the permafrost carbon feedback. Nature Geoscience, 5, 719-721. Kleber M (2010) What is recalcitrant soil organic matter? Environmental Chemistry, 7, 320-332. R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. Carrasco JJ, Neff JC, Harden JW (2006) Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil. Journal of Geophysical Research-Biogeosciences, 111, G2. doi: 10.1029/2005jg000087. Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556-559. Trumbore SE (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications, 10, 399-411. Jenkinson DS, Rayner JH (1977) Turnover of soil organic-matter in some of Rothamsted classical experiments. Soil Science, 123, 298-305. Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic-matter levels in great-plains grasslands. Soil Science Society of America Journal, 51, 1173-1179. Schmidt MWI, Torn MS, Abiven S et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. Lavoie M, Mack MC, Schuur EAG (2011) Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. Journal of Geophysical Research-Biogeosciences, 116, G03013. doi: 10.1029/2010jg001629. Holland EA, Neff JC, Townsend AR, McKeown B (2000) Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for models. Global Biogeochemical Cycles, 14, 1137-1151. Schädel C, Luo Y, Evans DR, Fei S, Schaeffer SM (2013) Separating soil CO2 efflux into C-pool-specific decay rates via inverse analysis of soil incubation data. Oecologia, 171, 721-732. Knoblauch C, Beer C, Sosnin A, Wagner D, Pfeiffer E-M (2013) Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Global Change Biology, 19, 1160-1172. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, Gb2023. doi: 10.1029/2008gb003327. Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. Journal of Geophysical Research-Earth Surface, 112, F02s02. doi: 10.1029/2006jf000578. Schneider von Deimling T, Meinshausen M, Levermann A, Huber V, Frieler K, Lawrence DM, Brovkin V (2012) Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences, 9, 649-665. Neff JC, Hooper DU (2002) Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Global Change Biology, 8, 872-884. Wickland KP, Neff JC (2008) Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry, 87, 29-47. Elberling B, Michelsen A, Schädel C et al. (2013) Long-term CO2 production following permafrost thaw. Nature Climate Change, 3, 890-894. Enríquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia, 94, 457-471. Koven CD, Ringeval B, Friedlingstein P et al. (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences, 108, 14769-14774. Waldrop MP, Wickland KP, White R, Berhe AA, Harden JW, Romanovsky VE (2010) Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Global Change Biology, 16, 2543-2554. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. Schuur EAG, Abbott BW, Bowden WB et al. (2013) Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119, 359-374. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092. Kleber M, Nico PS, Plante AF, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biology, 17, 1097-1107. Kuhry P, Vitt DH (1996) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology, 77, 271-275. Malmer N, Holm E (1984) Variation in the C/N-Quotient of peat in relation to decomposition rate and age-determination with PB-210. Oikos, 43, 171-182. Brown J, Ferrians OJJ, Heginbottom JA, Melnikov ES (1997) Circum-Arctic Map of Permafrost and Gound-Ice Conditions. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO. Circum-Pacific Map Series CP-45, scale 1:10,000,000, 1 sheet. Schirrmeister L, Grosse G, Wetterich S, Overduin PP, Strauss J, Schuur EAG, Hubberten H-W (2011) Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. Journal of Geophysical Research-Biogeosciences, 116, G00m02. doi: 10.1029/2011jg001647. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2010) Mixed Effects Models and Extensions in Ecology with R. Springer, New York. Chapin FSI, Matson PA, Mooney HA (2002) Principles of Terrestrial Ecosystem Ecology. Springer, New York. Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) Recent change of arctic tundra ecosystems from a net carbon-dioxide sink to a source. Nature, 361, 520-523. Dioumaeva I, Trumbore S, Schuur EAG, Goulden ML, Litvak M, Hirsch AI (2002) Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon. Journal of Geophysical Research-Atmospheres, 108, D3. doi: 10.1029/2001jd000848. Amundson R (2001) The carbon budget in soils. Annual Review of Earth and Planetary Sciences, 29, 535-562. Harden JW, Koven CD, Ping C-L et al. (2012) Field information 2011; 116 2011; 478 2009; 46 2013; 3 2010; 16 1993; 361 2012; 18 2011; 17 1977; 123 2013; 5 1996; 77 2013; 19 2004; 31 1997; 94 2006; 20 2000; 14 2013; 119 2000; 10 2006b; 312 2011; 63 2006; 440 2002; 108 2010; 3 2010; 7 1953; 21 2009; 326 2009; 23 2001; 71 1987; 51 2006; 94 2006; 12 2012 2010 1984; 43 2002; 8 2008; 58 1997 2012; 39 2001; 29 2002 2009; 459 2007; 12 2006a; 33 2006; 111 2001; 65 1970; 57 2007; 112 2011; 108 2012; 3 1993; 94 2008; 87 2012; 5 2013; 171 2012; 9 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 R Development Core Team (e_1_2_6_39_1) 2012 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 Callesen I (e_1_2_6_4_1) 2007; 12 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 Zuur AF (e_1_2_6_59_1) 2010 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 Brown J (e_1_2_6_3_1) 1997 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – reference: Harden JW, Koven CD, Ping C-L et al. (2012) Field information links permafrost carbon to physical vulnerabilities of thawing. Geophysical Research Letters, 39, L15704. doi: 10.1029/2012gl051958. – reference: Waldrop MP, Wickland KP, White R, Berhe AA, Harden JW, Romanovsky VE (2010) Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Global Change Biology, 16, 2543-2554. – reference: Brown J, Ferrians OJJ, Heginbottom JA, Melnikov ES (1997) Circum-Arctic Map of Permafrost and Gound-Ice Conditions. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO. Circum-Pacific Map Series CP-45, scale 1:10,000,000, 1 sheet. – reference: Knoblauch C, Beer C, Sosnin A, Wagner D, Pfeiffer E-M (2013) Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Global Change Biology, 19, 1160-1172. – reference: Dai XY, Ping CL, Candler R, Haumaier L, Zech W (2001) Characterization of soil organic matter fractions of tundra soils in arctic Alaska by carbon-13 nuclear magnetic resonance spectroscopy. Soil Science Society of America Journal, 65, 87-93. – reference: Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science, 326, 716-718. – reference: Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) Recent change of arctic tundra ecosystems from a net carbon-dioxide sink to a source. Nature, 361, 520-523. – reference: Carrasco JJ, Neff JC, Harden JW (2006) Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil. Journal of Geophysical Research-Biogeosciences, 111, G2. doi: 10.1029/2005jg000087. – reference: Dioumaeva I, Trumbore S, Schuur EAG, Goulden ML, Litvak M, Hirsch AI (2002) Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon. Journal of Geophysical Research-Atmospheres, 108, D3. doi: 10.1029/2001jd000848. – reference: Koven CD, Ringeval B, Friedlingstein P et al. (2011) Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences, 108, 14769-14774. – reference: Neff JC, Hooper DU (2002) Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Global Change Biology, 8, 872-884. – reference: Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, Gb2023. doi: 10.1029/2008gb003327. – reference: Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Global Change Biology, 12, 2336-2351. – reference: MacDougall AH, Avis CA, Weaver AJ (2012) Significant contribution to climate warming from the permafrost carbon feedback. Nature Geoscience, 5, 719-721. – reference: Schuur EAG, Bockheim J, Canadell JG et al. (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience, 58, 701-714. – reference: Schneider von Deimling T, Meinshausen M, Levermann A, Huber V, Frieler K, Lawrence DM, Brovkin V (2012) Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences, 9, 649-665. – reference: Schimel J, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Frontiers in Microbiology, 3, doi: 10.3389/fmicb.2012.00348. – reference: Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2010) Mixed Effects Models and Extensions in Ecology with R. Springer, New York. – reference: Lavoie M, Mack MC, Schuur EAG (2011) Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. Journal of Geophysical Research-Biogeosciences, 116, G03013. doi: 10.1029/2010jg001629. – reference: Xu T, White L, Hui DF, Luo YQ (2006) Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Global Biogeochemical Cycles, 20, doi: 10.1029/2005gb002468. – reference: Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic-matter levels in great-plains grasslands. Soil Science Society of America Journal, 51, 1173-1179. – reference: Grosse G, Harden J, Turetsky M et al. (2011) Vulnerability of high-latitude soil organic carbon in North America to disturbance. Journal of Geophysical Research-Biogeosciences, 116, G00k06. doi: 10.1029/2010jg001507. – reference: Kleber M (2010) What is recalcitrant soil organic matter? Environmental Chemistry, 7, 320-332. – reference: Holland EA, Neff JC, Townsend AR, McKeown B (2000) Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for models. Global Biogeochemical Cycles, 14, 1137-1151. – reference: Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. Proceedings of the National Academy of Sciences of the United States of America, 94, 8284-8291. – reference: Enríquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia, 94, 457-471. – reference: Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. – reference: Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092. – reference: Schaefer K, Zhang T, Bruhwiler L, Barrett AP (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus Series B-Chemical and Physical Meteorology, 63, 165-180. – reference: Kuhry P, Vitt DH (1996) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology, 77, 271-275. – reference: Callesen I, Raulund-Rasmussen K, Westman CJ, Tau-Strand L (2007) Nitrogen pools and C:N ratios in well-drained Nordic forest soils related to climate and soil texture. Boreal Environment Research, 12, 681-692. – reference: Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556-559. – reference: Zimov SA, Schuur EAG, Chapin FS (2006b) Permafrost and the global carbon budget. Science, 312, 1612-1613. – reference: Amundson R (2001) The carbon budget in soils. Annual Review of Earth and Planetary Sciences, 29, 535-562. – reference: Craine JM, Fierer N, McLauchlan KK (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3, 854-857. – reference: Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. Journal of Geophysical Research-Earth Surface, 112, F02s02. doi: 10.1029/2006jf000578. – reference: Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18, 1781-1796. – reference: von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know? Biology and Fertility of Soils, 46, 1-15. – reference: Luo YQ, Wu LH, Andrews JA, White L, Matamala R, Schafer KVR, Schlesinger WH (2001) Elevated CO2 differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data. Ecological Monographs, 71, 357-376. – reference: Schuur EAG, Abbott BW, Bowden WB et al. (2013) Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119, 359-374. – reference: Kleber M, Nico PS, Plante AF, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biology, 17, 1097-1107. – reference: Wickland KP, Neff JC (2008) Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry, 87, 29-47. – reference: Elberling B, Michelsen A, Schädel C et al. (2013) Long-term CO2 production following permafrost thaw. Nature Climate Change, 3, 890-894. – reference: Lee H, Schuur EAG, Inglett KS, Lavoie M, Chanton JP (2012) The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Change Biology, 18, 515-527. – reference: Schirrmeister L, Grosse G, Wetterich S, Overduin PP, Strauss J, Schuur EAG, Hubberten H-W (2011) Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. Journal of Geophysical Research-Biogeosciences, 116, G00m02. doi: 10.1029/2011jg001647. – reference: Hastings WK (1970) Monte-Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109. – reference: R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. – reference: Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophysical Research Letters, 31, doi: 10.1029/2004gl020051. – reference: Chapin FSI, Matson PA, Mooney HA (2002) Principles of Terrestrial Ecosystem Ecology. Springer, New York. – reference: Malmer N, Holm E (1984) Variation in the C/N-Quotient of peat in relation to decomposition rate and age-determination with PB-210. Oikos, 43, 171-182. – reference: Schädel C, Luo Y, Evans DR, Fei S, Schaeffer SM (2013) Separating soil CO2 efflux into C-pool-specific decay rates via inverse analysis of soil incubation data. Oecologia, 171, 721-732. – reference: Trumbore SE (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications, 10, 399-411. – reference: Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS III (2006a) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophysical Research Letters, 33, L20502. doi: 10.1029/2006gl027484. – reference: Hugelius G, Tarnocai C, Broll G, Canadell JG, Kuhry P, Swanson DK (2013) The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth System Science Data, 5, 1-11. – reference: Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB (2006) Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. Journal of Ecology, 94, 740-753. – reference: Jenkinson DS, Rayner JH (1977) Turnover of soil organic-matter in some of Rothamsted classical experiments. Soil Science, 123, 298-305. – reference: Schmidt MWI, Torn MS, Abiven S et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. – volume: 16 start-page: 2543 year: 2010 end-page: 2554 article-title: Molecular investigations into a globally important carbon pool: permafrost‐protected carbon in Alaskan soils publication-title: Global Change Biology – volume: 19 start-page: 1160 year: 2013 end-page: 1172 article-title: Predicting long‐term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia publication-title: Global Change Biology – volume: 440 start-page: 165 year: 2006 end-page: 173 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 478 start-page: 49 year: 2011 end-page: 56 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 23 start-page: Gb2023 year: 2009 article-title: Soil organic carbon pools in the northern circumpolar permafrost region publication-title: Global Biogeochemical Cycles – volume: 3 start-page: 890 year: 2013 end-page: 894 article-title: Long‐term CO production following permafrost thaw publication-title: Nature Climate Change – volume: 111 year: 2006 article-title: Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil publication-title: Journal of Geophysical Research‐Biogeosciences – volume: 14 start-page: 1137 year: 2000 end-page: 1151 article-title: Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for models publication-title: Global Biogeochemical Cycles – volume: 43 start-page: 171 year: 1984 end-page: 182 article-title: Variation in the C/N‐Quotient of peat in relation to decomposition rate and age‐determination with PB‐210 publication-title: Oikos – volume: 18 start-page: 515 year: 2012 end-page: 527 article-title: The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate publication-title: Global Change Biology – volume: 63 start-page: 165 year: 2011 end-page: 180 article-title: Amount and timing of permafrost carbon release in response to climate warming publication-title: Tellus Series B‐Chemical and Physical Meteorology – volume: 12 start-page: 681 year: 2007 end-page: 692 article-title: Nitrogen pools and C:N ratios in well‐drained Nordic forest soils related to climate and soil texture publication-title: Boreal Environment Research – volume: 71 start-page: 357 year: 2001 end-page: 376 article-title: Elevated CO differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data publication-title: Ecological Monographs – volume: 9 start-page: 649 year: 2012 end-page: 665 article-title: Estimating the near‐surface permafrost‐carbon feedback on global warming publication-title: Biogeosciences – volume: 46 start-page: 1 year: 2009 end-page: 15 article-title: Temperature sensitivity of soil organic matter decomposition‐what do we know? publication-title: Biology and Fertility of Soils – volume: 20 year: 2006 article-title: Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction publication-title: Global Biogeochemical Cycles – volume: 39 start-page: L15704 year: 2012 article-title: Field information links permafrost carbon to physical vulnerabilities of thawing publication-title: Geophysical Research Letters – volume: 94 start-page: 740 year: 2006 end-page: 753 article-title: Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer publication-title: Journal of Ecology – volume: 21 start-page: 1087 year: 1953 end-page: 1092 article-title: Equation of state calculations by fast computing machines publication-title: Journal of Chemical Physics – year: 1997 – volume: 17 start-page: 1097 year: 2011 end-page: 1107 article-title: Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity publication-title: Global Change Biology – volume: 3 start-page: 854 year: 2010 end-page: 857 article-title: Widespread coupling between the rate and temperature sensitivity of organic matter decay publication-title: Nature Geoscience – volume: 51 start-page: 1173 year: 1987 end-page: 1179 article-title: Analysis of factors controlling soil organic‐matter levels in great‐plains grasslands publication-title: Soil Science Society of America Journal – volume: 87 start-page: 29 year: 2008 end-page: 47 article-title: Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls publication-title: Biogeochemistry – volume: 33 start-page: L20502 year: 2006a article-title: Permafrost carbon: stock and decomposability of a globally significant carbon pool publication-title: Geophysical Research Letters – volume: 108 year: 2002 article-title: Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon publication-title: Journal of Geophysical Research‐Atmospheres – volume: 77 start-page: 271 year: 1996 end-page: 275 article-title: Fossil carbon/nitrogen ratios as a measure of peat decomposition publication-title: Ecology – volume: 112 start-page: F02s02 year: 2007 article-title: Characteristics of the recent warming of permafrost in Alaska publication-title: Journal of Geophysical Research‐Earth Surface – volume: 5 start-page: 719 year: 2012 end-page: 721 article-title: Significant contribution to climate warming from the permafrost carbon feedback publication-title: Nature Geoscience – volume: 459 start-page: 556 year: 2009 end-page: 559 article-title: The effect of permafrost thaw on old carbon release and net carbon exchange from tundra publication-title: Nature – volume: 119 start-page: 359 year: 2013 end-page: 374 article-title: Expert assessment of vulnerability of permafrost carbon to climate change publication-title: Climatic Change – volume: 10 start-page: 399 year: 2000 end-page: 411 article-title: Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics publication-title: Ecological Applications – volume: 171 start-page: 721 year: 2013 end-page: 732 article-title: Separating soil CO efflux into C‐pool‐specific decay rates via inverse analysis of soil incubation data publication-title: Oecologia – volume: 29 start-page: 535 year: 2001 end-page: 562 article-title: The carbon budget in soils publication-title: Annual Review of Earth and Planetary Sciences – volume: 31 year: 2004 article-title: Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003 publication-title: Geophysical Research Letters – volume: 94 start-page: 457 year: 1993 end-page: 471 article-title: Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content publication-title: Oecologia – volume: 326 start-page: 716 year: 2009 end-page: 718 article-title: Improved attribution of climate forcing to emissions publication-title: Science – volume: 116 start-page: G00m02 year: 2011 article-title: Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic publication-title: Journal of Geophysical Research‐Biogeosciences – volume: 57 start-page: 97 year: 1970 end-page: 109 article-title: Monte‐Carlo sampling methods using Markov chains and their applications publication-title: Biometrika – volume: 94 start-page: 8284 year: 1997 end-page: 8291 article-title: Potential responses of soil organic carbon to global environmental change publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 123 start-page: 298 year: 1977 end-page: 305 article-title: Turnover of soil organic‐matter in some of Rothamsted classical experiments publication-title: Soil Science – volume: 65 start-page: 87 year: 2001 end-page: 93 article-title: Characterization of soil organic matter fractions of tundra soils in arctic Alaska by carbon‐13 nuclear magnetic resonance spectroscopy publication-title: Soil Science Society of America Journal – volume: 12 start-page: 2336 year: 2006 end-page: 2351 article-title: Potential carbon release from permafrost soils of Northeastern Siberia publication-title: Global Change Biology – volume: 116 start-page: G03013 year: 2011 article-title: Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils publication-title: Journal of Geophysical Research‐Biogeosciences – volume: 361 start-page: 520 year: 1993 end-page: 523 article-title: Recent change of arctic tundra ecosystems from a net carbon‐dioxide sink to a source publication-title: Nature – year: 2010 – year: 2012 – volume: 312 start-page: 1612 year: 2006b end-page: 1613 article-title: Permafrost and the global carbon budget publication-title: Science – volume: 116 start-page: G00k06 year: 2011 article-title: Vulnerability of high‐latitude soil organic carbon in North America to disturbance publication-title: Journal of Geophysical Research‐Biogeosciences – volume: 7 start-page: 320 year: 2010 end-page: 332 article-title: What is recalcitrant soil organic matter? publication-title: Environmental Chemistry – year: 2002 – volume: 18 start-page: 1781 year: 2012 end-page: 1796 article-title: Soil organic matter turnover is governed by accessibility not recalcitrance publication-title: Global Change Biology – volume: 108 start-page: 14769 year: 2011 end-page: 14774 article-title: Permafrost carbon‐climate feedbacks accelerate global warming publication-title: Proceedings of the National Academy of Sciences – volume: 3 year: 2012 article-title: Microbial control over carbon cycling in soil publication-title: Frontiers in Microbiology – volume: 5 start-page: 1 year: 2013 end-page: 11 article-title: The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions publication-title: Earth System Science Data – volume: 8 start-page: 872 year: 2002 end-page: 884 article-title: Vegetation and climate controls on potential CO , DOC and DON production in northern latitude soils publication-title: Global Change Biology – volume: 58 start-page: 701 year: 2008 end-page: 714 article-title: Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle publication-title: BioScience – ident: e_1_2_6_50_1 doi: 10.1126/science.1174760 – ident: e_1_2_6_2_1 doi: 10.1146/annurev.earth.29.1.535 – ident: e_1_2_6_18_1 doi: 10.1093/biomet/57.1.97 – ident: e_1_2_6_58_1 doi: 10.1126/science.1128908 – ident: e_1_2_6_55_1 doi: 10.1007/s10533-007-9166-3 – ident: e_1_2_6_27_1 doi: 10.1029/2010jg001629 – volume-title: Mixed Effects Models and Extensions in Ecology with R year: 2010 ident: e_1_2_6_59_1 – ident: e_1_2_6_11_1 doi: 10.1111/j.1365-2486.2012.02665.x – ident: e_1_2_6_34_1 doi: 10.1046/j.1365-2486.2002.00517.x – ident: e_1_2_6_7_1 doi: 10.1038/ngeo1009 – ident: e_1_2_6_56_1 doi: 10.1029/2005gb002468 – ident: e_1_2_6_28_1 doi: 10.1111/j.1365-2486.2011.02519.x – ident: e_1_2_6_22_1 doi: 10.1071/EN10006 – ident: e_1_2_6_25_1 doi: 10.1073/pnas.1103910108 – ident: e_1_2_6_51_1 doi: 10.1029/2008gb003327 – ident: e_1_2_6_47_1 doi: 10.1038/nature08031 – ident: e_1_2_6_19_1 doi: 10.1029/2000GB001264 – ident: e_1_2_6_44_1 doi: 10.1038/nature10386 – ident: e_1_2_6_45_1 doi: 10.5194/bg-9-649-2012 – ident: e_1_2_6_26_1 doi: 10.2307/2265676 – ident: e_1_2_6_49_1 doi: 10.1111/j.1365-2745.2006.01139.x – ident: e_1_2_6_57_1 doi: 10.1029/2006gl027484 – ident: e_1_2_6_30_1 doi: 10.1007/s00374-009-0413-8 – ident: e_1_2_6_29_1 doi: 10.1890/0012-9615(2001)071[0357:ECDECP]2.0.CO;2 – ident: e_1_2_6_16_1 doi: 10.1029/2004gl020051 – ident: e_1_2_6_36_1 doi: 10.1029/2006jf000578 – ident: e_1_2_6_43_1 doi: 10.1029/2011jg001647 – ident: e_1_2_6_46_1 doi: 10.1641/B580807 – ident: e_1_2_6_33_1 doi: 10.1063/1.1699114 – ident: e_1_2_6_6_1 doi: 10.1007/b97397 – ident: e_1_2_6_9_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_6_35_1 doi: 10.1038/361520a0 – ident: e_1_2_6_54_1 doi: 10.1111/j.1365-2486.2009.02141.x – volume: 12 start-page: 681 year: 2007 ident: e_1_2_6_4_1 article-title: Nitrogen pools and C:N ratios in well‐drained Nordic forest soils related to climate and soil texture publication-title: Boreal Environment Research – ident: e_1_2_6_21_1 doi: 10.1097/00010694-197705000-00005 – ident: e_1_2_6_32_1 doi: 10.2307/3544766 – ident: e_1_2_6_12_1 doi: 10.1111/j.1365-2486.2006.01259.x – ident: e_1_2_6_17_1 doi: 10.1029/2012gl051958 – ident: e_1_2_6_8_1 doi: 10.2136/sssaj2001.65187x – ident: e_1_2_6_42_1 doi: 10.3389/fmicb.2012.00348 – ident: e_1_2_6_48_1 doi: 10.1007/s10584-013-0730-7 – ident: e_1_2_6_15_1 doi: 10.1029/2010jg001507 – ident: e_1_2_6_31_1 doi: 10.1038/ngeo1573 – ident: e_1_2_6_24_1 doi: 10.1111/gcb.12116 – ident: e_1_2_6_38_1 – ident: e_1_2_6_20_1 doi: 10.5194/essd-5-3-2013 – volume-title: Circum‐Arctic Map of Permafrost and Gound‐Ice Conditions year: 1997 ident: e_1_2_6_3_1 – ident: e_1_2_6_37_1 doi: 10.2136/sssaj1987.03615995005100050015x – ident: e_1_2_6_52_1 doi: 10.1073/pnas.94.16.8284 – ident: e_1_2_6_5_1 doi: 10.1029/2005jg000087 – ident: e_1_2_6_10_1 doi: 10.1029/2001jd000848. – ident: e_1_2_6_14_1 doi: 10.1007/BF00566960 – ident: e_1_2_6_23_1 doi: 10.1111/j.1365-2486.2010.02278.x – volume-title: R: A Language and Environment for Statistical Computing year: 2012 ident: e_1_2_6_39_1 – ident: e_1_2_6_41_1 doi: 10.1111/j.1600-0889.2011.00527.x – ident: e_1_2_6_53_1 doi: 10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2 – ident: e_1_2_6_13_1 doi: 10.1038/nclimate1955 – ident: e_1_2_6_40_1 doi: 10.1007/s00442-012-2577-4 |
| SSID | ssj0003206 |
| Score | 2.554388 |
| Snippet | High‐latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw... High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw... High-latitude ecosystems store approximately 1700 Pg of soil carbon (C), which is twice as much C as is currently contained in the atmosphere. Permafrost thaw... |
| SourceID | proquest pubmed pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 641 |
| SubjectTerms | Alaska Animal and plant ecology Animal, plant and microbial ecology Arctic Regions Atmosphere Biological and medical sciences boreal forest C decomposition Carbon - metabolism Carbon Cycle Carbon dioxide Climate Change Climatology. Bioclimatology. Climate change Decomposition Earth, ocean, space Ecosystem Exact sciences and technology External geophysics Forestry Fundamental and applied biological sciences. Psychology General aspects General forest ecology Generalities. Production, biomass. Quality of wood and forest products. General forest ecology Latitude Meteorology Models, Biological Organic matter Permafrost Seasons Siberia Soil - chemistry Soil depth soil organic carbon Soil sciences Synecology Temperature Terrestrial ecosystems tundra Turnover time |
| Title | Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data |
| URI | https://api.istex.fr/ark:/67375/WNG-FTSTFCWB-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.12417 https://www.ncbi.nlm.nih.gov/pubmed/24399755 https://www.proquest.com/docview/1474864199 https://www.proquest.com/docview/1490715891 https://www.proquest.com/docview/1492647640 |
| Volume | 20 |
| WOSCitedRecordID | wos000329349700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB21CUhc-AgUAiVaEKp6MfLHrtcWJ2rqcoAIQarmZu1uvZFFZEdxUpEbP4HfyC9hZ-24RCoIiZsjj-X15s3sG3v2DcArISJFo1w6jCvfobFkjoyodEJNwzwOlfZdbZtN8PE4mk7jT3vwZrsXptGH6F64oWfYeI0OLmT9m5PPlHxtFieP70PfN7ilPei_-5yef-gCceDb1ppewKiJNl7QCgthIU938c5y1MeZ_YblkaI2M6Sb1hY3cc9dKmvXovTefz3FfbjbUlDytsHMA9jLywHcbppSbgZwcHq9982Ytc5fD2D40RDsamnNyBFJ5oVhu_bXQ1gkxVIZZGCiTESn9kkqTRYY-zVuLiEJafZwbogoL0mxqsnVeo6y17ZCd0OwnJRgt3uC5fgzMq_K2c_vP3D1IEWp1tLCiGBV6yM4T08nyXunbebgKOa73JG5yy8pR_EaX4YmTcq5Rm00jyrPk1z7ykQH7XtWwFBSrqNA-ToPo1AKN2A8OIBeWZX5EyDMnHKF0IabKhpqLVmOb7cVU0JT6blDON7-p5lqlc6x4cY822Y8ZtYzO-tDeNmZLhp5j5uMjiwwOgux_Ir1cJxlF-OzLJ18maTJxUnGhjDaQU53gR95Jm3GkR1uoZS1saI2yRenUUi9OB7Ci-608XL8dCPKvFqjTWy4IHaA_KuNYbc8pOY2jxuYXg8A007OzAiPLRr__LDZWXJiD57-u-kzuGN4JG2K2Q-ht1qu8-dwS12tino5gn0-jUatc_4Ci988bw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL0aLQhe-CgMAmMYhKa9BOXDjhOJFxbWDdFVCDptb5HtxVVFlVRpO9E3fgK_kV-Cr5NmVBoIibdWuVEd99zrc53rcwFeCxErGufSZVwFLk0kc2VMpRtpGuVJpHTgadtsgg-H8fl58mkL3q7PwtT6EO2GG3qGjdfo4Lgh_ZuXj5V8Y1Ynn9-ALjUwYh3ovv_cPx20kTgMbG9NP2TUhBs_bJSFsJKnvXljPeri1H7D-kgxN1Ok694W15HPTS5rF6P-vf97jPtwtyGh5F2NmgewlRc9uFW3pVz1YPvw6vSbMWvcf94D58RQ7LKyZmSPpNOJ4bv220OYpZNKGWxgqkxEq_dJSk1mGP01Hi8hKalPca6IKC7IZDEnl8spCl_bGt0VwYJSgv3uCRbkj8m0LMY_v__A9YNMCrWUFkgE61ofwWn_cJQeu007B1exwOOuzD1-QTnK1wQyMolSzjWqo_lU-b7kOlAmPujAtxKGknIdhyrQeRRHUngh4-E2dIqyyJ8AYeaSJ4Q27FTRSGvJctzfVkwJTaXvObC__lMz1WidY8uNabbOecysZ3bWHXjVms5qgY_rjPYsMloLUX3FijjOsrPhUdYffRn107ODjDmwuwGd9oYg9k3ijCPbWWMpa6LF3KRfnMYR9ZPEgZftZePn-PJGFHm5RJvEsEHsAflXG8NveUTNzzyucXo1AEw8OTMj3Ldw_PPDZkfpgf3w9N9NX8Dt49HJIBt8GH58BncMq6R1afsOdBbVMn8ON9XlYjKvdhsf_QXyNj93 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFRAvfBS2FcYwCE17CcqHHScSLyxbBmJUE3Ta3iLbtauKKq36MdE3_gT-Rv4SfE6aUWkgJN4S5azYzt35d875dwCvhUgUTbT0GFehR1PJPJlQ6cWGxjqNlQl944pN8G43ubxMzzbg7eosTMUP0Wy4oWU4f40Grid985uVD5R8Y1engN-CFmVpbM2ydfQ5Pz9tPHEUutqaQcSodTdBVDMLYSZP03htPWrh1H7D_Egxs1NkqtoWN4HPdSzrFqP8wf8N4yHcr0EoeVdpzSPY0GUb7lRlKZdt2Dq-Pv1mxWrzn7Wh88lC7PHUiZF9ko2GFu-6u8cwyYZTZXUDQ2UiGr5PMjZkgt7f4PESkpHqFOeSiLJPhvMZuVqMkPja5eguCSaUEqx3TzAhf0BG43Lw8_sPXD_IsFQL6RSJYF7rEzjPj3vZe68u5-ApFvrck9rnfcqRviaUsQ2UNDfIjhZQFQSSm1BZ_2DCwFEYSspNEqnQ6DiJpfAjxqMt2CzHpd4BwuwjXwhj0amisTGSadzfVkwJQ2Xgd-Bg9VELVXOdY8mNUbGKeeysF27WO_CqEZ1UBB83Ce07zWgkxPQrZsRxVlx0T4q896WXZxeHBevA3prqNA3CJLCBM_Zsd6VLRe0tZjb84jSJaZCmHXjZPLZ2jj9vRKnHC5RJLRrEGpB_lbH4lsfUvma70tPrDmDgyZnt4YFTxz8PtjjJDt3F038XfQF3z47y4vRD9-MzuGdBJa0y23dhcz5d6OdwW13Nh7PpXm2ivwAh5T7y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circumpolar+assessment+of+permafrost+C+quality+and+its+vulnerability+over+time+using+long-term+incubation+data&rft.jtitle=Global+change+biology&rft.au=Sch%C3%A4del%2C+Christina&rft.au=Schuur%2C+Edward+A+G&rft.au=Bracho%2C+Rosvel&rft.au=Elberling%2C+Bo&rft.date=2014-02-01&rft.issn=1365-2486&rft.eissn=1365-2486&rft.volume=20&rft.issue=2&rft.spage=641&rft_id=info:doi/10.1111%2Fgcb.12417&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |