Distribution‐free prediction bands for non‐parametric regression

We study distribution‐free, non‐parametric prediction bands with a focus on their finite sample behaviour. First we investigate and develop different notions of finite sample coverage guarantees. Then we give a new prediction band by combining the idea of ‘conformal prediction’ with non‐parametric c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society. Series B, Statistical methodology Vol. 76; no. 1; pp. 71 - 96
Main Authors: Lei, Jing, Wasserman, Larry
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishers 2014
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Oxford University Press
Subjects:
ISSN:1369-7412, 1467-9868
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study distribution‐free, non‐parametric prediction bands with a focus on their finite sample behaviour. First we investigate and develop different notions of finite sample coverage guarantees. Then we give a new prediction band by combining the idea of ‘conformal prediction’ with non‐parametric conditional density estimation. The proposed estimator, called COPS (conformal optimized prediction set), always has a finite sample guarantee. Under regularity conditions the estimator converges to an oracle band at a minimax optimal rate. A fast approximation algorithm and a data‐driven method for selecting the bandwidth are developed. The method is illustrated in simulated and real data examples.
AbstractList We study distribution‐free, non‐parametric prediction bands with a focus on their finite sample behaviour. First we investigate and develop different notions of finite sample coverage guarantees. Then we give a new prediction band by combining the idea of ‘conformal prediction’ with non‐parametric conditional density estimation. The proposed estimator, called COPS (conformal optimized prediction set), always has a finite sample guarantee. Under regularity conditions the estimator converges to an oracle band at a minimax optimal rate. A fast approximation algorithm and a data‐driven method for selecting the bandwidth are developed. The method is illustrated in simulated and real data examples.
Summary We study distribution-free, non-parametric prediction bands with a focus on their finite sample behaviour. First we investigate and develop different notions of finite sample coverage guarantees. Then we give a new prediction band by combining the idea of 'conformal prediction' with non-parametric conditional density estimation. The proposed estimator, called COPS (conformal optimized prediction set), always has a finite sample guarantee. Under regularity conditions the estimator converges to an oracle band at a minimax optimal rate. A fast approximation algorithm and a data-driven method for selecting the bandwidth are developed. The method is illustrated in simulated and real data examples. [PUBLICATION ABSTRACT]
We study distribution-free, non-parametric prediction bands with a focus on their finite sample behaviour. First we investigate and develop different notions of finite sample coverage guarantees. Then we give a new prediction band by combining the idea of 'conformal prediction' with non-parametric conditional density estimation. The proposed estimator, called COPS (conformal optimized prediction set), always has a finite sample guarantee. Under regularity conditions the estimator converges to an oracle band at a minimax optimal rate. A fast approximation algorithm and a data-driven method for selecting the bandwidth are developed. The method is illustrated in simulated and real data examples. Reprinted by permission of Blackwell Publishers
Summary We study distribution‐free, non‐parametric prediction bands with a focus on their finite sample behaviour. First we investigate and develop different notions of finite sample coverage guarantees. Then we give a new prediction band by combining the idea of ‘conformal prediction’ with non‐parametric conditional density estimation. The proposed estimator, called COPS (conformal optimized prediction set), always has a finite sample guarantee. Under regularity conditions the estimator converges to an oracle band at a minimax optimal rate. A fast approximation algorithm and a data‐driven method for selecting the bandwidth are developed. The method is illustrated in simulated and real data examples.
Author Lei, Jing
Wasserman, Larry
Author_xml – sequence: 1
  fullname: Lei, Jing
– sequence: 2
  fullname: Wasserman, Larry
BookMark eNqNksFu1DAQhiNUJNrChTsiEhdUKcUeO57kCF3YIlUgsbQcLTuZVF6y8WJnBb31EXhGngSngR4qBMzFluf7f8nzz0G2N_iBsuwxZ8c81YsQoz3mwIDfy_a5VFjUlar20l2oukDJ4UF2EOOapVIo9rPFwsUxOLsbnR9-XH_vAlG-DdS6ZnrJrRnamHc-5MNNf2uC2VBSNHmgy0AxJuphdr8zfaRHv87D7PzN648np8XZ--Xbk5dnRVMC40VpOXJblcgImpYsKuBtZ0GAlQ3VVEFnKqhazqTFEkgpVNgCcRTIoLbiMHs--26D_7KjOOqNiw31vRnI76LmFRO8ZALx36isVV1KFPX_oFJA8p3QZ3fQtd-FIf05USiTHeMTdTRTTfAxBur0NriNCVeaMz3FpKeY9E1MCWZ34MaNZpr9GIzr_yzhs-Sr6-nqL-b6w2r16rfmyaxZx9GHWw1IRECpUr-Y-2kd6Ntt34TPOu0JlvrTu6W-gNPlYnmx0NN8n858Z7w2l8FFfb5KISvGOACkEH4CstXJCw
CitedBy_id crossref_primary_10_1080_10920277_2022_2123364
crossref_primary_10_1080_01621459_2020_1762618
crossref_primary_10_1007_s00603_024_03847_0
crossref_primary_10_1093_jrsssb_qkaf022
crossref_primary_10_1080_01621459_2017_1307116
crossref_primary_10_1007_s10596_024_10317_7
crossref_primary_10_1007_s40304_023_00360_8
crossref_primary_10_1007_s10472_017_9540_3
crossref_primary_10_1016_j_aei_2023_102113
crossref_primary_10_1109_LGRS_2024_3365196
crossref_primary_10_1038_s42256_025_01024_8
crossref_primary_10_1111_rssb_12443
crossref_primary_10_1109_ACCESS_2024_3387858
crossref_primary_10_1214_22_AOS2198
crossref_primary_10_1111_rssb_12445
crossref_primary_10_1111_rssb_12219
crossref_primary_10_1080_01621459_2022_2060112
crossref_primary_10_1016_j_bspc_2024_106743
crossref_primary_10_1073_pnas_2214889120
crossref_primary_10_1111_insr_12412
crossref_primary_10_1002_sta4_604
crossref_primary_10_1111_biom_13077
crossref_primary_10_1007_s00362_016_0796_1
crossref_primary_10_1109_TNSM_2024_3430052
crossref_primary_10_1109_TRO_2023_3271568
crossref_primary_10_1093_jrsssb_qkaf008
crossref_primary_10_1109_TCAD_2024_3438072
crossref_primary_10_1080_00949655_2019_1615063
crossref_primary_10_1002_sta4_633
crossref_primary_10_1111_biom_13612
crossref_primary_10_1007_s00362_024_01631_4
crossref_primary_10_1007_s10462_023_10698_8
crossref_primary_10_1002_cem_3457
crossref_primary_10_1214_23_AOS2276
crossref_primary_10_1002_sam_11710
crossref_primary_10_1093_jssam_smae010
crossref_primary_10_1080_01621459_2017_1395341
crossref_primary_10_1007_s10651_024_00616_8
crossref_primary_10_1080_02331888_2024_2426043
crossref_primary_10_1016_j_energy_2022_123497
crossref_primary_10_1145_3588711
crossref_primary_10_1007_s10994_024_06721_w
crossref_primary_10_1214_13_AOS1175E
crossref_primary_10_1093_jrsssb_qkae103
crossref_primary_10_1016_j_jmva_2023_105226
crossref_primary_10_1007_s11518_023_5560_1
crossref_primary_10_1016_j_compag_2025_110559
crossref_primary_10_1016_j_dsx_2024_103113
crossref_primary_10_1080_01621459_2024_2344700
crossref_primary_10_1038_s41467_024_55331_6
crossref_primary_10_1080_01621459_2025_2506198
crossref_primary_10_1080_01621459_2023_2177165
crossref_primary_10_1214_20_AOAS1424
crossref_primary_10_1080_10920277_2020_1802599
crossref_primary_10_1073_pnas_2107794118
crossref_primary_10_1007_s10462_022_10178_5
crossref_primary_10_1007_s11749_024_00958_2
crossref_primary_10_1093_mnras_stad2080
crossref_primary_10_1093_biomet_asac040
crossref_primary_10_1016_j_csbj_2025_05_003
crossref_primary_10_1109_TSP_2024_3358615
crossref_primary_10_1007_s10994_024_06627_7
crossref_primary_10_1021_acs_jchemed_2c01060
crossref_primary_10_1016_j_asoc_2025_113476
crossref_primary_10_1016_j_patcog_2022_108536
crossref_primary_10_1016_j_ijmst_2023_12_005
crossref_primary_10_1080_09599916_2024_2403998
crossref_primary_10_1016_j_nahs_2025_101606
crossref_primary_10_1093_jrsssb_qkae009
crossref_primary_10_1016_j_mlwa_2025_100733
crossref_primary_10_1021_acs_jcim_5c01037
crossref_primary_10_1214_25_AOS2495
crossref_primary_10_1080_10618600_2025_2520584
crossref_primary_10_1016_j_jmva_2025_105494
crossref_primary_10_1016_j_neucom_2020_07_074
crossref_primary_10_1016_j_jprocont_2023_103036
crossref_primary_10_1093_jrsssb_qkae117
crossref_primary_10_1145_3736575
crossref_primary_10_1093_jrsssb_qkad069
crossref_primary_10_1080_01621459_2022_2102503
crossref_primary_10_1080_01621459_2022_2147531
crossref_primary_10_1109_TPAMI_2023_3327300
crossref_primary_10_1080_01621459_2021_1920957
crossref_primary_10_1093_biomet_asu038
crossref_primary_10_1093_biomet_asz046
crossref_primary_10_3390_jrfm17060248
crossref_primary_10_1214_22_AOS2250
crossref_primary_10_1051_0004_6361_202451756
crossref_primary_10_1371_journal_pcbi_1012135
crossref_primary_10_1145_3635160
crossref_primary_10_1214_21_AOS2156
crossref_primary_10_1007_s41060_025_00862_4
crossref_primary_10_1016_j_eswa_2023_123087
crossref_primary_10_3847_1538_4357_ad6d5a
crossref_primary_10_1093_jrsssb_qkac004
crossref_primary_10_1214_24_STS973
crossref_primary_10_1016_j_ijar_2022_08_001
crossref_primary_10_1007_s10472_013_9366_6
crossref_primary_10_1016_j_ins_2024_121369
crossref_primary_10_1007_s11749_024_00934_w
Cites_doi 10.1007/b98858
10.1214/07-AOS500
10.1257/jep.15.4.143
10.1214/009053606000001217
10.1111/1467-9469.00254
10.1007/b13794
10.1214/aos/1030741084
10.1017/CBO9780511755453
10.1214/aos/1069362732
10.1007/978-1-4612-1880-7_29
10.1080/01621459.1987.10478543
10.1016/S0246-0203(02)01128-7
10.1214/aos/1176324626
10.1214/aoms/1177730343
10.1080/00401706.1991.10484807
10.1214/08-AOS622
10.1111/1467-9868.00308
10.1214/aos/1176351045
ContentType Journal Article
Copyright Copyright © 2014 The Royal Statistical Society and Blackwell Publishing Ltd.
2013 Royal Statistical Society
Copyright © 2014 The Royal Statistical Society and Blackwell Publishing Ltd
Copyright_xml – notice: Copyright © 2014 The Royal Statistical Society and Blackwell Publishing Ltd.
– notice: 2013 Royal Statistical Society
– notice: Copyright © 2014 The Royal Statistical Society and Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
DOI 10.1111/rssb.12021
DatabaseName AGRIS
Istex
CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences (IBSS)
Computer and Information Systems Abstracts


AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9868
EndPage 96
ExternalDocumentID 3174020851
10_1111_rssb_12021
RSSB12021
24772746
ark_67375_WNG_V2HGDGVD_7
US201600122250
Genre article
Feature
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OC
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAPXW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEHJ
ABEML
ABFAN
ABHUG
ABIVO
ABLJU
ABPFR
ABPTD
ABPVW
ABWST
ABYAD
ABYWD
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACTWD
ACUBG
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
AEEZP
AEGXH
AEIMD
AELPN
AEMOZ
AEQDE
AEUPB
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFVGU
AFVYC
AFXHP
AFXKK
AFZJQ
AGJLS
AIHXQ
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ANFBD
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EFSUC
EJD
EMK
F00
F5P
FBQ
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NHB
O66
O9-
OJZSN
OWPYF
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZGI
ZL0
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AANHP
AARHZ
AAUAY
AAWIL
ABAWQ
ABDFA
ABEJV
ABPQH
ABPQP
ABXSQ
ACHJO
ACRPL
ACYXJ
ADNMO
ADZMN
AGLNM
AGQPQ
AHQJS
AIHAF
AJNCP
ALRMG
AMVHM
ATGXG
BCRHZ
BSCLL
H13
IPSME
NU-
OIG
O8X
ALUQN
AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c5201-5b171b8570e2cdeb7621dfb232b4ce9e82fa828d104b752e66767d2e1737029b3
IEDL.DBID DRFUL
ISICitedReferencesCount 182
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329296900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1369-7412
IngestDate Fri Oct 03 00:07:02 EDT 2025
Thu Oct 02 06:03:23 EDT 2025
Wed Oct 01 13:33:32 EDT 2025
Mon Nov 10 02:33:26 EST 2025
Sat Nov 29 05:52:02 EST 2025
Tue Nov 18 22:17:52 EST 2025
Wed Jan 22 16:17:29 EST 2025
Wed Dec 10 14:56:12 EST 2025
Tue Nov 11 03:33:02 EST 2025
Wed Dec 27 19:19:53 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5201-5b171b8570e2cdeb7621dfb232b4ce9e82fa828d104b752e66767d2e1737029b3
Notes http://dx.doi.org/10.1111/rssb.12021
istex:32FA3A9D02847405EC688009BBC472FC3BCCDE23
ark:/67375/WNG-V2HGDGVD-7
ArticleID:RSSB12021
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://academic.oup.com/jrsssb/article-pdf/76/1/71/49514328/jrsssb_76_1_71.pdf
PQID 1474473019
PQPubID 39359
PageCount 26
ParticipantIDs proquest_miscellaneous_1803150377
proquest_miscellaneous_1496954739
proquest_miscellaneous_1494321509
proquest_journals_1474473019
crossref_primary_10_1111_rssb_12021
crossref_citationtrail_10_1111_rssb_12021
wiley_primary_10_1111_rssb_12021_RSSB12021
jstor_primary_24772746
istex_primary_ark_67375_WNG_V2HGDGVD_7
fao_agris_US201600122250
PublicationCentury 2000
PublicationDate 2014
2014-01
20140101
January 2014
2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationTitleAlternate J. R. Stat. Soc. B
PublicationYear 2014
Publisher Blackwell Publishers
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Oxford University Press
Publisher_xml – name: Blackwell Publishers
– name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Oxford University Press
References Tsybakov, A. (1997) On nonparametric estimation of density level sets. Ann. Statist., 25, 948-969.
Tukey, J. (1947) Nonparametric estimation: II, Statistical equivalent blocks and multivariate tolerance regions. Ann. Math. Statist., 18, 529-539.
DeGroot, M. and Schervish, M. (2012) Probability and Statistics, 4th edn. Reading: Addison-Wesley.
Carroll, R. J. and Ruppert, D. (1991) Prediction and tolerance intervals with transformation and/or weighting. Technometrics, 33, 197-210.
Audibert, J. and Tsybakov, A. (2007) Fast learning rate for plug-in classifiers. Ann. Statist., 35, 608-633.
Donoho, D. L. (1988) One-sided inference about functionals of a density. Ann. Statist., 16, 1390-1420.
Rinaldo, A., Singh, A., Nugent, R. and Wasserman, L. (2012) Stability of density-based clustering. J. Mach. Learn. Res., 13, 905-948.
Ruppert, D., Wand, M. and Carroll, R. (2003) Semiparametric Regression. Cambridge: Cambridge University Press.
Scott, C. D. and Nowak, R. D. (2006) Learning minimum volume sets. J. Mach. Learn. Res., 7, 665-704.
Koenker, R. and Hallock, K. (2001) Quantile regression. J. Econ. Perspect., 15, 143-156.
Low, M. (1997) On nonparametric confidence intervals. Ann. Statist., 25, 2547-2554.
Giné, E. and Guillou, A. (2002) Rates of strong uniform consistency for multivariate kernel density estimators. Ann. Inst. H. Poincare B, 38, 907-921.
Lei, J., Robins, J. and Wasserman, L. (2011) Distribution free prediction sets. J. Am. Statist. Ass, to be published.
Akritas, M. G. and Van Keilegom, I. (2001) Non-parametric estimation of the residual distribution. Scand. J. Statist., 28, 549-567.
Loader, C. (1999) Local Regression and Likelihood. New York: Springer.
Vovk, V., Gammerman, A. and Shafer, G. (2005) Algorithmic Learning in a Random World. New York: Springer.
Shafer, G. and Vovk, V. (2008) A tutorial on conformal prediction. J. Mach. Learn. Res., 9, 371-421.
Hall, P. and Rieck, A. (2001) Improving coverage accuracy of nonparametric prediction intervals. J. R. Statist. Soc. B, 63, 717-725.
Tsybakov, A. (2009) Introduction to Nonparametric Estimation. New York: Springer.
Genovese, C. and Wasserman, L. (2008) Adaptive confidence bands. Ann. Statist., 36, 875-905.
Yu, B. (1997) Assouad, Fano, and Le Cam. In Festschrift for Lucien Le Cam (eds D. Pollard, E. Torgersen and G. L. Yang), pp. 423-435. New York: Springer.
Vovk, V., Nouretdinov, I. and Gammerman, A. (2009) On-line predictive linear regression. Ann. Statist., 37, 1566-1590.
Rigollet, P. and Vert, R. (2009) Optimal rates for plug-in estimators of density level sets. Bernoulli, 14, 1154-1178.
Fan, J. and Gijbels, I. (1996) Local Polynomial Modelling and Its Applications. London: Chapman and Hall.
Polonik, W. (1995) Measuring mass concentrations and estimating density contour clusters-an excess mass approach. Ann. Statist., 23, 855-881.
Davidian, M. and Carroll, R. J. (1987) Variance function estimation. J. Am. Statist. Ass., 82, 1079-1091.
2002; 38
2012
2011
1991; 33
1997; 25
1988; 16
2009
2008; 36
2006; 7
2008; 9
1997
1996
2005
2001; 28
2003
2012; 13
2007; 35
2001; 63
1999
2009; 14
1987; 82
1947; 18
1995; 23
2001; 15
2009; 37
Giné (2023031306053047200_) 2002; 38
Davidian (2023031306053047200_) 1987; 82
Vovk (2023031306053047200_) 2005
Low (2023031306053047200_) 1997; 25
Yu (2023031306053047200_) 1997
DeGroot (2023031306053047200_) 2012
Tsybakov (2023031306053047200_) 1997; 25
Tsybakov (2023031306053047200_) 2009
Carroll (2023031306053047200_) 1991; 33
Hall (2023031306053047200_) 2001; 63
Rigollet (2023031306053047200_) 2009; 14
Tukey (2023031306053047200_) 1947; 18
Rinaldo (2023031306053047200_) 2012; 13
Vovk (2023031306053047200_) 2009; 37
Cadre (2023031306053047200_) 2009
Ruppert (2023031306053047200_) 2003
Genovese (2023031306053047200_) 2008; 36
Polonik (2023031306053047200_) 1995; 23
Scott (2023031306053047200_) 2006; 7
Lei (2023031306053047200_) 2011
Donoho (2023031306053047200_) 1988; 16
Shafer (2023031306053047200_) 2008; 9
Akritas (2023031306053047200_) 2001; 28
Fan (2023031306053047200_) 1996
Audibert (2023031306053047200_) 2007; 35
Koenker (2023031306053047200_) 2001; 15
Loader (2023031306053047200_) 1999
References_xml – reference: Shafer, G. and Vovk, V. (2008) A tutorial on conformal prediction. J. Mach. Learn. Res., 9, 371-421.
– reference: Lei, J., Robins, J. and Wasserman, L. (2011) Distribution free prediction sets. J. Am. Statist. Ass, to be published.
– reference: Rigollet, P. and Vert, R. (2009) Optimal rates for plug-in estimators of density level sets. Bernoulli, 14, 1154-1178.
– reference: Ruppert, D., Wand, M. and Carroll, R. (2003) Semiparametric Regression. Cambridge: Cambridge University Press.
– reference: Tukey, J. (1947) Nonparametric estimation: II, Statistical equivalent blocks and multivariate tolerance regions. Ann. Math. Statist., 18, 529-539.
– reference: Rinaldo, A., Singh, A., Nugent, R. and Wasserman, L. (2012) Stability of density-based clustering. J. Mach. Learn. Res., 13, 905-948.
– reference: Davidian, M. and Carroll, R. J. (1987) Variance function estimation. J. Am. Statist. Ass., 82, 1079-1091.
– reference: Vovk, V., Nouretdinov, I. and Gammerman, A. (2009) On-line predictive linear regression. Ann. Statist., 37, 1566-1590.
– reference: Akritas, M. G. and Van Keilegom, I. (2001) Non-parametric estimation of the residual distribution. Scand. J. Statist., 28, 549-567.
– reference: Tsybakov, A. (2009) Introduction to Nonparametric Estimation. New York: Springer.
– reference: Donoho, D. L. (1988) One-sided inference about functionals of a density. Ann. Statist., 16, 1390-1420.
– reference: Genovese, C. and Wasserman, L. (2008) Adaptive confidence bands. Ann. Statist., 36, 875-905.
– reference: Polonik, W. (1995) Measuring mass concentrations and estimating density contour clusters-an excess mass approach. Ann. Statist., 23, 855-881.
– reference: DeGroot, M. and Schervish, M. (2012) Probability and Statistics, 4th edn. Reading: Addison-Wesley.
– reference: Audibert, J. and Tsybakov, A. (2007) Fast learning rate for plug-in classifiers. Ann. Statist., 35, 608-633.
– reference: Low, M. (1997) On nonparametric confidence intervals. Ann. Statist., 25, 2547-2554.
– reference: Hall, P. and Rieck, A. (2001) Improving coverage accuracy of nonparametric prediction intervals. J. R. Statist. Soc. B, 63, 717-725.
– reference: Scott, C. D. and Nowak, R. D. (2006) Learning minimum volume sets. J. Mach. Learn. Res., 7, 665-704.
– reference: Fan, J. and Gijbels, I. (1996) Local Polynomial Modelling and Its Applications. London: Chapman and Hall.
– reference: Carroll, R. J. and Ruppert, D. (1991) Prediction and tolerance intervals with transformation and/or weighting. Technometrics, 33, 197-210.
– reference: Tsybakov, A. (1997) On nonparametric estimation of density level sets. Ann. Statist., 25, 948-969.
– reference: Vovk, V., Gammerman, A. and Shafer, G. (2005) Algorithmic Learning in a Random World. New York: Springer.
– reference: Loader, C. (1999) Local Regression and Likelihood. New York: Springer.
– reference: Giné, E. and Guillou, A. (2002) Rates of strong uniform consistency for multivariate kernel density estimators. Ann. Inst. H. Poincare B, 38, 907-921.
– reference: Koenker, R. and Hallock, K. (2001) Quantile regression. J. Econ. Perspect., 15, 143-156.
– reference: Yu, B. (1997) Assouad, Fano, and Le Cam. In Festschrift for Lucien Le Cam (eds D. Pollard, E. Torgersen and G. L. Yang), pp. 423-435. New York: Springer.
– year: 2009
– volume: 36
  start-page: 875
  year: 2008
  end-page: 905
  article-title: Adaptive confidence bands
  publication-title: Ann. Statist.
– volume: 14
  start-page: 1154
  year: 2009
  end-page: 1178
  article-title: Optimal rates for plug‐in estimators of density level sets
  publication-title: Bernoulli
– year: 2005
– volume: 37
  start-page: 1566
  year: 2009
  end-page: 1590
  article-title: On‐line predictive linear regression
  publication-title: Ann. Statist.
– volume: 9
  start-page: 371
  year: 2008
  end-page: 421
  article-title: A tutorial on conformal prediction
  publication-title: J. Mach. Learn. Res.
– year: 2003
– volume: 16
  start-page: 1390
  year: 1988
  end-page: 1420
  article-title: One‐sided inference about functionals of a density
  publication-title: Ann. Statist.
– year: 1996
– volume: 25
  start-page: 948
  year: 1997
  end-page: 969
  article-title: On nonparametric estimation of density level sets
  publication-title: Ann. Statist.
– volume: 33
  start-page: 197
  year: 1991
  end-page: 210
  article-title: Prediction and tolerance intervals with transformation and/or weighting
  publication-title: Technometrics
– volume: 63
  start-page: 717
  year: 2001
  end-page: 725
  article-title: Improving coverage accuracy of nonparametric prediction intervals
  publication-title: J. R. Statist. Soc. B
– volume: 82
  start-page: 1079
  year: 1987
  end-page: 1091
  article-title: Variance function estimation
  publication-title: J. Am. Statist. Ass.
– year: 2012
– volume: 15
  start-page: 143
  year: 2001
  end-page: 156
  article-title: Quantile regression
  publication-title: J. Econ. Perspect.
– volume: 18
  start-page: 529
  year: 1947
  end-page: 539
  article-title: Nonparametric estimation: II, Statistical equivalent blocks and multivariate tolerance regions
  publication-title: Ann. Math. Statist.
– volume: 35
  start-page: 608
  year: 2007
  end-page: 633
  article-title: Fast learning rate for plug‐in classifiers
  publication-title: Ann. Statist.
– year: 2011
  article-title: Distribution free prediction sets
  publication-title: J. Am. Statist. Ass
– volume: 13
  start-page: 905
  year: 2012
  end-page: 948
  article-title: Stability of density‐based clustering
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 665
  year: 2006
  end-page: 704
  article-title: Learning minimum volume sets
  publication-title: J. Mach. Learn. Res.
– start-page: 423
  year: 1997
  end-page: 435
  article-title: Assouad, Fano, and Le Cam
  publication-title: Festschrift for Lucien Le Cam
– volume: 25
  start-page: 2547
  year: 1997
  end-page: 2554
  article-title: On nonparametric confidence intervals
  publication-title: Ann. Statist.
– volume: 23
  start-page: 855
  year: 1995
  end-page: 881
  article-title: Measuring mass concentrations and estimating density contour clusters—an excess mass approach
  publication-title: Ann. Statist.
– volume: 28
  start-page: 549
  year: 2001
  end-page: 567
  article-title: Non‐parametric estimation of the residual distribution
  publication-title: Scand. J. Statist.
– volume: 38
  start-page: 907
  year: 2002
  end-page: 921
  article-title: Rates of strong uniform consistency for multivariate kernel density estimators
  publication-title: Ann. Inst. H. Poincare B
– year: 1999
– volume-title: Local Regression and Likelihood
  year: 1999
  ident: 2023031306053047200_
  doi: 10.1007/b98858
– volume: 36
  start-page: 875
  year: 2008
  ident: 2023031306053047200_
  article-title: Adaptive confidence bands
  publication-title: Ann. Statist.
  doi: 10.1214/07-AOS500
– volume: 15
  start-page: 143
  year: 2001
  ident: 2023031306053047200_
  article-title: Quantile regression
  publication-title: J. Econ. Perspect.
  doi: 10.1257/jep.15.4.143
– volume: 35
  start-page: 608
  year: 2007
  ident: 2023031306053047200_
  article-title: Fast learning rate for plug-in classifiers
  publication-title: Ann. Statist.
  doi: 10.1214/009053606000001217
– volume: 28
  start-page: 549
  year: 2001
  ident: 2023031306053047200_
  article-title: Non-parametric estimation of the residual distribution
  publication-title: Scand. J. Statist.
  doi: 10.1111/1467-9469.00254
– volume-title: Local Polynomial Modelling and Its Applications
  year: 1996
  ident: 2023031306053047200_
– volume-title: Introduction to Nonparametric Estimation
  year: 2009
  ident: 2023031306053047200_
  doi: 10.1007/b13794
– volume-title: Algorithmic Learning in a Random World
  year: 2005
  ident: 2023031306053047200_
– volume: 25
  start-page: 2547
  year: 1997
  ident: 2023031306053047200_
  article-title: On nonparametric confidence intervals
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1030741084
– volume: 7
  start-page: 665
  year: 2006
  ident: 2023031306053047200_
  article-title: Learning minimum volume sets
  publication-title: J. Mach. Learn. Res.
– volume-title: Semiparametric Regression
  year: 2003
  ident: 2023031306053047200_
  doi: 10.1017/CBO9780511755453
– volume: 13
  start-page: 905
  year: 2012
  ident: 2023031306053047200_
  article-title: Stability of density-based clustering
  publication-title: J. Mach. Learn. Res.
– volume: 25
  start-page: 948
  year: 1997
  ident: 2023031306053047200_
  article-title: On nonparametric estimation of density level sets
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1069362732
– start-page: 423
  year: 1997
  ident: 2023031306053047200_
  article-title: Assouad, Fano, and Le Cam
  publication-title: Festschrift for Lucien Le Cam
  doi: 10.1007/978-1-4612-1880-7_29
– volume: 82
  start-page: 1079
  year: 1987
  ident: 2023031306053047200_
  article-title: Variance function estimation
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1987.10478543
– volume: 38
  start-page: 907
  year: 2002
  ident: 2023031306053047200_
  article-title: Rates of strong uniform consistency for multivariate kernel density estimators
  publication-title: Ann. Inst. H. Poincare B
  doi: 10.1016/S0246-0203(02)01128-7
– volume: 23
  start-page: 855
  year: 1995
  ident: 2023031306053047200_
  article-title: Measuring mass concentrations and estimating density contour clusters—an excess mass approach
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176324626
– year: 2011
  ident: 2023031306053047200_
  article-title: Distribution free prediction sets
  publication-title: J. Am. Statist. Ass
– volume: 9
  start-page: 371
  year: 2008
  ident: 2023031306053047200_
  article-title: A tutorial on conformal prediction
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 529
  year: 1947
  ident: 2023031306053047200_
  article-title: Nonparametric estimation: II, Statistical equivalent blocks and multivariate tolerance regions
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177730343
– volume: 33
  start-page: 197
  year: 1991
  ident: 2023031306053047200_
  article-title: Prediction and tolerance intervals with transformation and/or weighting
  publication-title: Technometrics
  doi: 10.1080/00401706.1991.10484807
– volume-title: Clustering by estimation of density level sets at a fixed probability
  year: 2009
  ident: 2023031306053047200_
– volume-title: Probability and Statistics
  year: 2012
  ident: 2023031306053047200_
– volume: 37
  start-page: 1566
  year: 2009
  ident: 2023031306053047200_
  article-title: On-line predictive linear regression
  publication-title: Ann. Statist.
  doi: 10.1214/08-AOS622
– volume: 63
  start-page: 717
  year: 2001
  ident: 2023031306053047200_
  article-title: Improving coverage accuracy of nonparametric prediction intervals
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/1467-9868.00308
– volume: 16
  start-page: 1390
  year: 1988
  ident: 2023031306053047200_
  article-title: One-sided inference about functionals of a density
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176351045
– volume: 14
  start-page: 1154
  year: 2009
  ident: 2023031306053047200_
  article-title: Optimal rates for plug-in estimators of density level sets
  publication-title: Bernoulli
SSID ssj0000673
Score 2.5887625
Snippet We study distribution‐free, non‐parametric prediction bands with a focus on their finite sample behaviour. First we investigate and develop different notions...
We study distribution-free, non-parametric prediction bands with a focus on their finite sample behaviour. First we investigate and develop different notions...
Summary We study distribution‐free, non‐parametric prediction bands with a focus on their finite sample behaviour. First we investigate and develop different...
Summary We study distribution-free, non-parametric prediction bands with a focus on their finite sample behaviour. First we investigate and develop different...
SourceID proquest
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Algorithms
Approximation
Conformal prediction
Data analysis
Distribution
Estimation
Finite sample property
Forecasts
Kernel density
Oracles
prediction
Prediction bands
Predictions
probability distribution
Samples
Statistical analysis
Statistics
Studies
Title Distribution‐free prediction bands for non‐parametric regression
URI https://api.istex.fr/ark:/67375/WNG-V2HGDGVD-7/fulltext.pdf
https://www.jstor.org/stable/24772746
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12021
https://www.proquest.com/docview/1474473019
https://www.proquest.com/docview/1494321509
https://www.proquest.com/docview/1496954739
https://www.proquest.com/docview/1803150377
Volume 76
WOSCitedRecordID wos000329296900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9868
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000673
  issn: 1369-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VlkMvlL-qaQsKokICKWiTOOuNxAVId3uoVlWXXXqzPLbTA7Ctsm3VI4_AM_IkzDg_bKVqJcQtSiZKNPaMv7FnvgE4iLV1WupeZPomjYTFfpQLFJFN0WLsMrS-tmp2LMfjwdlZfrIGH9pamJofottwY8vw_poNXONiycirxQLfxxS7U-yzwVVVFHptFKfD6fGyJ07ruqs8opUzaehJOZPn79t3FqQHpb4gmMoavm0zFO9gz2UE65eg4db__fxjeNRAz_BjPVeewJqbP4VNRps1WfMzKAqm0W06YP3--ausnAsvKz7L4Tshcl1wSDA3nPvnzBv-g1tymbBy53VG7fw5TIeHXz4fRU2bhchktPxHGcYyRia6d4mxDsk9xrZEgloojMvdICk1xWWWAjeUWeI4K1baxMUyJa3nmG7DOn3V7UAo0p41mc2sKa0oCXwiExgKhyXBFC3iAN62ulam4SDnVhjfVRuLsGKUV0wArzvZy5p5416pHRoypc_JJarpJGHCPD4tJGQXwBs_jt3buvrGaWwyU1_HIzVLjkbFaFYoGcC2H-hOMBEUc0jRD2C_HXnVmPaCYiUpBPvFPIBX3WMySj5p0XN3cc0yuUgJTPVWy_Rz7vy8SmbATTh6qaR_fOfn0wpVqNPJ5JO_2v0X4T3YJK2JeltpH9avqmv3Ah6aG5p81cvGpP4AIz0jtw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9Bh8Re-D8tMCAIhARSUGI7cfM4CG0RpULrWvZmxX-yB6CbUoZ43EfYZ-ST7M5JQyehSoi3KD4r0dl3_p19_h3Ai6S0rpRlHJnM8EhYnUW50CKyXFuduFRbf7dqPpaTSf_oKP_c5ubQXZiGH6LbcCPL8P6aDJw2pNesvF4u9ZsEg3cMfrZExmW_B1vFwWA2XnfFvLl4lUe4dLKWn5RSef70vrIiXa_KE8SppOJfqxTFK-BzHcL6NWhw-z___g7casFnuN_MlrtwzS3uwTbhzYau-T4UBRHptjWwfp9fVLVz4WlNpzn0JtR0MzhEoBsufDsxh3-nolwmrN1xk1O7eACzwfvDd6OoLbQQmRQBQJTqRCaaqO4dM9ZpdJCJrTSCLS2My12fVSVGZhZDNy1T5igvVlrmEsllzHLNd6CHX3W7EAoeW5Pa1JrKigrhpyYKQ-F0hUClFEkAr1bKVqZlIadiGN_UKhohxSivmACed7KnDffGX6V2ccxUeYxOUc2mjCjz6LwQsV0AL_1Adr3L-islsslUfZkM1ZyNhsVwXigZwI4f6U6QCYw6pMgC2FsNvWqNe4nRkhSCPGMewLOuGc2SzlrKhTs5I5lccIRT8WaZLKfaz5tk-lSGI-YS__G1n1AbVKEOptO3_unhvwg_hZujw09jNf4w-fgItlGDotlk2oPej_rMPYYb5idOxPpJa1-Xji8npw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9Bh9Be-D8tMCAIhARSpsSx6_oRCO0QVTWttOzNiv9kD0BXpQzxyEfgM_JJuHPS0EmoEuItis9KdPadf2effwfwLCudL2WZJrZv84Q7008UNzxxuXEm88K4cLdqPpaTyeD0VB23uTl0F6bhh-g23Mgygr8mA_dLV21Yeb1amcMMg3cMfna4UIL3YKc4Gc7Gm644by5eqQSXTtbyk1Iqz5_el1akq1V5jjiVVPx9naJ4CXxuQtiwBg1v_uff34IbLfiMXzWz5TZc8Ys7sEt4s6FrvgtFQUS6bQ2sXz9-VrX38bKm0xx6Exu6GRwj0I0XoZ2Yw79QUS4b1_6syald3IPZ8O2HN0dJW2ghsQIBQCJMJjNDVPeeWecNOsjMVQbBluHWKz9gVYmRmcPQzUjBPOXFSsd8JnOZMmXyPejhV_0-xDxPnRVOOFs5XiH8NERhyL2pEKiUPIvgxVrZ2rYs5FQM47NeRyOkGB0UE8HTTnbZcG_8VWofx0yXZ-gU9WzKiDKPzgsR20XwPAxk17usP1EimxT642Sk5-xoVIzmhZYR7IWR7gQZx6hD8n4EB-uh161xrzBakpyTZ1QRPOma0SzprKVc-PMLklE8RziVbpfpK6r9vE1mQGU40lziP74ME2qLKvTJdPo6PN3_F-HHcP24GOrxu8n7B7CLCuTNHtMB9L7WF_4hXLPfcB7Wj1rz-g3fpici
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distribution%E2%80%90free+prediction+bands+for+non%E2%80%90parametric+regression&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Lei%2C+Jing&rft.au=Wasserman%2C+Larry&rft.date=2014&rft.pub=Blackwell+Publishers&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=76&rft.issue=1&rft.spage=71&rft.epage=96&rft_id=info:doi/10.1111%2Frssb.12021&rft.externalDocID=US201600122250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon