Microstructure Estimation by Combining Deep Learning and Phase Transformation Model

In material design, the establishment of process–structure–property relationship is crucial for analyzing and controlling material microstructures. For the establishment of process–structure–property relationship, a central problem is the analysis, characterization, and control of microstructures, s...

Full description

Saved in:
Bibliographic Details
Published in:ISIJ International Vol. 64; no. 1; pp. 142 - 153
Main Authors: Aihara, Syuji, Inoue, Junya, Noguchi, Satoshi
Format: Journal Article
Language:English
Published: The Iron and Steel Institute of Japan 15.01.2024
Subjects:
ISSN:0915-1559, 1347-5460
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In material design, the establishment of process–structure–property relationship is crucial for analyzing and controlling material microstructures. For the establishment of process–structure–property relationship, a central problem is the analysis, characterization, and control of microstructures, since microstructures are highly sensitive to material processing and critically affect material’s properties. Therefore, accurately estimating the morphology of material microstructures plays a significant role in understanding the process–structure–property relationship. In this paper, we propose a deep-learning framework for estimating material microstructures under specific process conditions. The framework utilizes two deep learning networks: vector quantized variational autoencoder (VQVAE) and pixel convolutional neural network (PixelCNN). The framework can predict material microstructures from the transformation behavior given by some physical models. In this sense, the framework is consistent with the physical knowledge accumulated in the field of material science. Importantly, our study demonstrates qualitative and quantitative evidence that incorporating physical models enhances the accuracy of microstructure prediction by deep learning models. These results highlight the importance of appropriately integrating field-specific knowledge when applying data-driven frameworks to materials design. Consequently, our results provide a basis for integrating data-driven methods with the accumulated knowledge in the field. This integration holds great potential for advancing material design through deep learning.
AbstractList In material design, the establishment of process–structure–property relationship is crucial for analyzing and controlling material microstructures. For the establishment of process–structure–property relationship, a central problem is the analysis, characterization, and control of microstructures, since microstructures are highly sensitive to material processing and critically affect material’s properties. Therefore, accurately estimating the morphology of material microstructures plays a significant role in understanding the process–structure–property relationship. In this paper, we propose a deep-learning framework for estimating material microstructures under specific process conditions. The framework utilizes two deep learning networks: vector quantized variational autoencoder (VQVAE) and pixel convolutional neural network (PixelCNN). The framework can predict material microstructures from the transformation behavior given by some physical models. In this sense, the framework is consistent with the physical knowledge accumulated in the field of material science. Importantly, our study demonstrates qualitative and quantitative evidence that incorporating physical models enhances the accuracy of microstructure prediction by deep learning models. These results highlight the importance of appropriately integrating field-specific knowledge when applying data-driven frameworks to materials design. Consequently, our results provide a basis for integrating data-driven methods with the accumulated knowledge in the field. This integration holds great potential for advancing material design through deep learning.
ArticleNumber ISIJINT-2023-365
Author Inoue, Junya
Noguchi, Satoshi
Aihara, Syuji
Author_xml – sequence: 1
  fullname: Aihara, Syuji
  organization: The University of Tokyo
– sequence: 1
  orcidid: 0000-0002-3701-3943
  fullname: Inoue, Junya
  organization: Department of Material Engineering, The University of Tokyo
– sequence: 1
  orcidid: 0000-0002-5646-3296
  fullname: Noguchi, Satoshi
  organization: Research Institute for Value-Added Information Generation, Japan Agency for Marine-Earth Science and Technology
BookMark eNqVkE1PAjEQhhuDiYj8hz2bLLbbdpc9KqKsATUBE29NvxZKli5py4F_7y4QDujFy0wmmXky73MLOra2GoB7BAcJpvTBeLM2NmhneTC15dWgmBdvxfsiTmCCY5zSK9BFmGQxJSnsgC7MEY0RpfkN6HtvBIQJGRKMcBfMZ0a62ge3k2HndDT2wWwO2Ejso1G9EcYau4yetd5GU83dYeJWRZ8r7nW0cNz6snanm1mtdHUHrkteed0_9R74ehkvRpN4-vFajB6nsaQoD7HMSEppWkIyVChXKimHQihFZK6bmByWQmOSJKhEGSScZCnOiMhVxjFSuRQQ98DTkdsm8E6XbOua592eIchaU-yXKXYyxVpTrDHVQCYXEGnCYTs4bqr_ob6PqLUPfKnP33AXjKz0H4iUMNSWS9T5RK64Y9riH2uloYU
CitedBy_id crossref_primary_10_1063_5_0260424
Cites_doi 10.1103/PhysRevE.104.025302
10.1016/S1359-6462(02)00557-2
10.1016/j.actamat.2006.02.008
10.1115/1.4041371
10.1016/j.actamat.2018.12.045
10.1063/1.1750380
10.1016/j.cossms.2010.10.001
10.1016/j.actamat.2017.05.014
10.1016/j.scriptamat.2004.01.025
10.1111/jmi.12441
10.1016/j.pmatsci.2018.01.005
10.1201/9781315096674
10.1145/3422622
10.1115/1.4036649
10.1016/j.actamat.2017.11.053
10.1016/j.actamat.2015.09.044
10.1016/j.commatsci.2018.05.014
10.1016/0167-2789(95)00298-7
10.1038/s41598-022-17614-0
10.1007/978-1-4757-1904-8_1
10.1016/j.actamat.2009.08.013
10.1016/j.actamat.2004.05.033
10.1016/j.commatsci.2018.03.074
10.1109/CVPR.2009.5206848
10.1016/S1359-6454(01)00295-6
10.1016/j.msea.2018.12.049
10.1016/0167-2789(93)90120-P
10.1016/j.jcrysgro.2005.02.005
10.1016/S0167-2789(97)00226-1
ContentType Journal Article
Copyright 2024 The Iron and Steel Institute of Japan.
Copyright_xml – notice: 2024 The Iron and Steel Institute of Japan.
DBID AAYXX
CITATION
DOI 10.2355/isijinternational.ISIJINT-2023-365
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5460
EndPage 153
ExternalDocumentID 10_2355_isijinternational_ISIJINT_2023_365
article_isijinternational_64_1_64_ISIJINT_2023_365_article_char_en
GroupedDBID 5GY
AAFWJ
ABEFU
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HH5
JSF
JSH
KQ8
OK1
RJT
RZJ
SJN
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c519t-c746556f048d19dd2f8bbdd4c9e235a0fbe34221f1704a476374b9d7a31d9cb03
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001168201400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0915-1559
IngestDate Sat Nov 29 03:24:48 EST 2025
Tue Nov 18 20:53:17 EST 2025
Wed Sep 03 06:30:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c519t-c746556f048d19dd2f8bbdd4c9e235a0fbe34221f1704a476374b9d7a31d9cb03
ORCID 0000-0002-3701-3943
0000-0002-5646-3296
OpenAccessLink http://dx.doi.org/10.2355/isijinternational.ISIJINT-2023-365
PageCount 12
ParticipantIDs crossref_primary_10_2355_isijinternational_ISIJINT_2023_365
crossref_citationtrail_10_2355_isijinternational_ISIJINT_2023_365
jstage_primary_article_isijinternational_64_1_64_ISIJINT_2023_365_article_char_en
PublicationCentury 2000
PublicationDate 2024/01/15
PublicationDateYYYYMMDD 2024-01-15
PublicationDate_xml – month: 01
  year: 2024
  text: 2024/01/15
  day: 15
PublicationDecade 2020
PublicationTitle ISIJ International
PublicationTitleAlternate ISIJ Int.
PublicationYear 2024
Publisher The Iron and Steel Institute of Japan
Publisher_xml – name: The Iron and Steel Institute of Japan
References 15) A. N. Kolmogorov: Izv. Akad. Nauk. USSR Ser. Mat., 1 (1937), 355 (in Russian).
36) A. Oord, N. Kalchbrenner and K. Kavukcuoglu: Proc. 33rd Int. Conf. on Machine Learning, PMLR 2016, San Diego, CA, (2016), 1747. https://proceedings.mlr.press/v48/oord16.html, (accessed 2023-08-28).
37) A. Oord, N. Kalchbrenner, L. Espeholt, K. Kavukcuoglu, O. Vinyals and A. Graves: Proc. 29th Neural Inf. Process. Syst., NeurIPS 2016, San Diego, CA, (2016), 4790. https://proceedings.neurips.cc/paper_files/paper/2016, (accessed 2023-08-28).
28) X. Ding, Y. Wang, Z. Xu, W. J. Welch and Z. Wang: Proc. 9th Int. Conf. on Learning Representations, ICLR 2021, Appleton, WI, (2021). https://openreview.net/forum?id=PrzjugOsDeE, (accessed 2023-08-28).
11) M. Militzer: Curr. Opin. Solid State Mater. Sci., 15 (2011), 106. https://doi.org/10.1016/j.cossms.2010.10.001
18) Z. Yang, Y. Yabansu, D. Jha, W.-k. Liao, A. N. Choudhary, S. R. Kalidindi and A. Agrawal: Acta Mater., 166 (2019), 335. https://doi.org/10.1016/j.actamat.2018.12.045
35) A. Oord, O. Vinyals and K. Kavukcuoglu: Proc. 30th Neural Inf. Process. Syst., NeurIPS 2017, San Diego, CA, (2017), 6306. https://papers.nips.cc/paper_files/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html, (accessed 2023-08-28).
13) W. A. Johonson and R. F. Mehl: Trans. Metall. Soc. AIME, 135 (1939), 416.
2) I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G. J. Schmitz and J. L. L. Rezende: Phys. D, 94 (1996), 135. https://doi.org/10.1016/0167-2789(95)00298-7
6) K. Wu, Y. A. Chang and Y. Wang: Scr. Mater., 50 (2004), 1145. https://doi.org/10.1016/j.scriptamat.2004.01.025
32) J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei: Proc. 2009 IEEE Conf. on Computer Vision and Pattern Recognition, IEEE, Piscataway, NJ, (2009), 248. https://doi.org/10.1109/CVPR.2009.5206848
5) H. Kobayashi, M. Ode, S. G. Kim, W. T. Kim and T. Suzuki: Scr. Mater., 48 (2003), 689. https://doi.org/10.1016/S1359-6462(02)00557-2
1) R. Kobayashi: Phys. D, 63 (1993), 410. https://doi.org/10.1016/0167-2789(93)90120-P
16) M. Dao, N. Chollacoop, K. J. Van Vliet, T. A. Venkatesh and S. Suresh: Acta Mater., 49 (2001), 3899. https://doi.org/10.1016/S1359-6454(01)00295-6
39) I. T. Jolliffe: Principal Component Analysis, Springer, New York, NY, (1986), 1.
21) R. Bostanabad, A. T. Bui, W. Xie, D. W. Apley and W. Chen: Acta Materialia, 103 (2016), 89. https://doi.org/10.1016/j.actamat.2015.09.044
34) S. Noguchi, H. Wang and J. Inoue: Sci. Rep., 12 (2022), 14238. https://doi.org/10.1038/s41598-022-17614-0
10) I. Loginova, J. Ågren and G. Amberg: Acta Mater., 52 (2004), 4055. https://doi.org/10.1016/j.actamat.2004.05.033
29) A. Iyer, B. Dey, A. Dasgupta, W. Chen and A. Chakraborty: 2nd Workshop on Machine Learning and the Physical Sciences, NeurIPS 2019, San Diego, CA, (2019). https://ml4physicalsciences.github.io/2019/, (accessed 2023-08-28).
17) A. Cecen, H. Dai, Y. C. Yabansu, S. R. Kalidindi and L. Song: Acta Mater., 146 (2018), 76. https://doi.org/10.1016/j.actamat.2017.11.053
33) S. Noguchi and J. Inoue: Phys. Rev. E, 104 (2021), 025302. https://doi.org/10.1103/PhysRevE.104.025302
12) H. K. D. H. Bhadeshia: Bainite in Steels: Theory and Practice, CRC Press, Boca Raton, FL, (2019), 589.
19) Z.-L. Wang and Y. Adachi: Mater. Sci. Eng. A, 744 (2019), 661. https://doi.org/10.1016/j.msea.2018.12.049
26) Z. Yang, X. Li, L. C.Brinson, A. N. Choudhary, W. Chen and A. N. Agrawal: J. Mech. Des., 140 (2018), 111416. https://doi.org/10.1115/1.4041371
23) B. L. De Cost, T. Francis and E. A. Holm: Acta Mater, 133 (2017), 30. https://doi.org/10.1016/j.actamat.2017.05.014
27) I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio: Commun. ACM, 63 (2020), 139. https://doi.org/10.1145/3422622
30) D. Kingma and M. Welling: Proc. 2nd Int. Conf. on Learning Representations, ICLR 2014, Appelton, WI, (2014). https://iclr.cc/archive/2014/conference-proceedings/, (accessed 2023-08-28).
3) J. Tiaden, B. Nestler, H. J. Diepers and I. Steinbach: Phys. D, 115 (1998), 73. https://doi.org/10.1016/S0167-2789(97)00226-1
31) R. Cang, H. Li, H. Yao, Y. Jiao and Y. Ren: Comput. Mater. Sci, 150 (2018), 212. https://doi.org/10.1016/j.commatsci.2018.03.074
24) R. Cang, Y. Xu, S. Chen, Y. Liu, Y. Jiao and M. Y. Ren: J. Mech. Des., 139 (2017), 071404. https://doi.org/10.1115/1.4036649
8) N. Warnken, D. Ma, A. Drevermann, R. C. Reed, S. G. Fries and I. Steinbach: Acta Mater., 57 (2009), 5862. https://doi.org/10.1016/j.actamat.2009.08.013
25) Z. Yang, Y. C. Yabansu, R. Al-Bahrani, W.-k. Liao, A. N. Choudhary, S. R. Kalidindi and A. Agrawal: Comput. Mater. Sci., 151 (2018), 278. https://doi.org/10.1016/j.commatsci.2018.05.014
14) M. Avrami: J. Chem. Phys., 7 (1939), 1103. https://doi.org/10.1063/1.1750380
38) X. Chen, N. Mishra, M. Rohaninejad and P. Abbeel: Proc. 35th Int. Conf. on Machine Learning, PMLR 2018, San Diego, CA, (2018), 864. https://proceedings.mlr.press/v80/chen18h.html, (accessed 2023-08-28).
7) R. S. Qin, E. R. Wallach and R. C. Thomson: J. Cryst. Growth, 279 (2005), 163. https://doi.org/10.1016/j.jcrysgro.2005.02.005
4) N. Saunders and A. P. Miodownik: CALPHAD (Calculation of Phase Diagrams), Elsiver, Amsterdam, (1998), 478.
9) B. Böttger, J. Eiken and I. Steinbach: Acta Mater., 54 (2006), 2697. https://doi.org/10.1016/j.actamat.2006.02.008
22) R. Bostanabad, W. Chen and D. W. Apley: J. Microsc., 264 (2016), 282. https://doi.org/10.1111/jmi.12441
20) R. Bostanabad, Y. Zhang, X. Li, T. Kearney, L. C. Brinson, D. W. Apley, W. K. Liu and W. Chen: Prog. Mater. Sci., 95 (2018), 1. https://doi.org/10.1016/j.pmatsci.2018.01.005
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 3) J. Tiaden, B. Nestler, H. J. Diepers and I. Steinbach: Phys. D, 115 (1998), 73. https://doi.org/10.1016/S0167-2789(97)00226-1
– reference: 22) R. Bostanabad, W. Chen and D. W. Apley: J. Microsc., 264 (2016), 282. https://doi.org/10.1111/jmi.12441
– reference: 14) M. Avrami: J. Chem. Phys., 7 (1939), 1103. https://doi.org/10.1063/1.1750380
– reference: 18) Z. Yang, Y. Yabansu, D. Jha, W.-k. Liao, A. N. Choudhary, S. R. Kalidindi and A. Agrawal: Acta Mater., 166 (2019), 335. https://doi.org/10.1016/j.actamat.2018.12.045
– reference: 27) I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio: Commun. ACM, 63 (2020), 139. https://doi.org/10.1145/3422622
– reference: 31) R. Cang, H. Li, H. Yao, Y. Jiao and Y. Ren: Comput. Mater. Sci, 150 (2018), 212. https://doi.org/10.1016/j.commatsci.2018.03.074
– reference: 19) Z.-L. Wang and Y. Adachi: Mater. Sci. Eng. A, 744 (2019), 661. https://doi.org/10.1016/j.msea.2018.12.049
– reference: 38) X. Chen, N. Mishra, M. Rohaninejad and P. Abbeel: Proc. 35th Int. Conf. on Machine Learning, PMLR 2018, San Diego, CA, (2018), 864. https://proceedings.mlr.press/v80/chen18h.html, (accessed 2023-08-28).
– reference: 5) H. Kobayashi, M. Ode, S. G. Kim, W. T. Kim and T. Suzuki: Scr. Mater., 48 (2003), 689. https://doi.org/10.1016/S1359-6462(02)00557-2
– reference: 16) M. Dao, N. Chollacoop, K. J. Van Vliet, T. A. Venkatesh and S. Suresh: Acta Mater., 49 (2001), 3899. https://doi.org/10.1016/S1359-6454(01)00295-6
– reference: 20) R. Bostanabad, Y. Zhang, X. Li, T. Kearney, L. C. Brinson, D. W. Apley, W. K. Liu and W. Chen: Prog. Mater. Sci., 95 (2018), 1. https://doi.org/10.1016/j.pmatsci.2018.01.005
– reference: 39) I. T. Jolliffe: Principal Component Analysis, Springer, New York, NY, (1986), 1.
– reference: 34) S. Noguchi, H. Wang and J. Inoue: Sci. Rep., 12 (2022), 14238. https://doi.org/10.1038/s41598-022-17614-0
– reference: 23) B. L. De Cost, T. Francis and E. A. Holm: Acta Mater, 133 (2017), 30. https://doi.org/10.1016/j.actamat.2017.05.014
– reference: 24) R. Cang, Y. Xu, S. Chen, Y. Liu, Y. Jiao and M. Y. Ren: J. Mech. Des., 139 (2017), 071404. https://doi.org/10.1115/1.4036649
– reference: 17) A. Cecen, H. Dai, Y. C. Yabansu, S. R. Kalidindi and L. Song: Acta Mater., 146 (2018), 76. https://doi.org/10.1016/j.actamat.2017.11.053
– reference: 28) X. Ding, Y. Wang, Z. Xu, W. J. Welch and Z. Wang: Proc. 9th Int. Conf. on Learning Representations, ICLR 2021, Appleton, WI, (2021). https://openreview.net/forum?id=PrzjugOsDeE, (accessed 2023-08-28).
– reference: 33) S. Noguchi and J. Inoue: Phys. Rev. E, 104 (2021), 025302. https://doi.org/10.1103/PhysRevE.104.025302
– reference: 12) H. K. D. H. Bhadeshia: Bainite in Steels: Theory and Practice, CRC Press, Boca Raton, FL, (2019), 589.
– reference: 4) N. Saunders and A. P. Miodownik: CALPHAD (Calculation of Phase Diagrams), Elsiver, Amsterdam, (1998), 478.
– reference: 30) D. Kingma and M. Welling: Proc. 2nd Int. Conf. on Learning Representations, ICLR 2014, Appelton, WI, (2014). https://iclr.cc/archive/2014/conference-proceedings/, (accessed 2023-08-28).
– reference: 7) R. S. Qin, E. R. Wallach and R. C. Thomson: J. Cryst. Growth, 279 (2005), 163. https://doi.org/10.1016/j.jcrysgro.2005.02.005
– reference: 13) W. A. Johonson and R. F. Mehl: Trans. Metall. Soc. AIME, 135 (1939), 416.
– reference: 1) R. Kobayashi: Phys. D, 63 (1993), 410. https://doi.org/10.1016/0167-2789(93)90120-P
– reference: 25) Z. Yang, Y. C. Yabansu, R. Al-Bahrani, W.-k. Liao, A. N. Choudhary, S. R. Kalidindi and A. Agrawal: Comput. Mater. Sci., 151 (2018), 278. https://doi.org/10.1016/j.commatsci.2018.05.014
– reference: 8) N. Warnken, D. Ma, A. Drevermann, R. C. Reed, S. G. Fries and I. Steinbach: Acta Mater., 57 (2009), 5862. https://doi.org/10.1016/j.actamat.2009.08.013
– reference: 9) B. Böttger, J. Eiken and I. Steinbach: Acta Mater., 54 (2006), 2697. https://doi.org/10.1016/j.actamat.2006.02.008
– reference: 26) Z. Yang, X. Li, L. C.Brinson, A. N. Choudhary, W. Chen and A. N. Agrawal: J. Mech. Des., 140 (2018), 111416. https://doi.org/10.1115/1.4041371
– reference: 21) R. Bostanabad, A. T. Bui, W. Xie, D. W. Apley and W. Chen: Acta Materialia, 103 (2016), 89. https://doi.org/10.1016/j.actamat.2015.09.044
– reference: 11) M. Militzer: Curr. Opin. Solid State Mater. Sci., 15 (2011), 106. https://doi.org/10.1016/j.cossms.2010.10.001
– reference: 36) A. Oord, N. Kalchbrenner and K. Kavukcuoglu: Proc. 33rd Int. Conf. on Machine Learning, PMLR 2016, San Diego, CA, (2016), 1747. https://proceedings.mlr.press/v48/oord16.html, (accessed 2023-08-28).
– reference: 10) I. Loginova, J. Ågren and G. Amberg: Acta Mater., 52 (2004), 4055. https://doi.org/10.1016/j.actamat.2004.05.033
– reference: 15) A. N. Kolmogorov: Izv. Akad. Nauk. USSR Ser. Mat., 1 (1937), 355 (in Russian).
– reference: 6) K. Wu, Y. A. Chang and Y. Wang: Scr. Mater., 50 (2004), 1145. https://doi.org/10.1016/j.scriptamat.2004.01.025
– reference: 37) A. Oord, N. Kalchbrenner, L. Espeholt, K. Kavukcuoglu, O. Vinyals and A. Graves: Proc. 29th Neural Inf. Process. Syst., NeurIPS 2016, San Diego, CA, (2016), 4790. https://proceedings.neurips.cc/paper_files/paper/2016, (accessed 2023-08-28).
– reference: 29) A. Iyer, B. Dey, A. Dasgupta, W. Chen and A. Chakraborty: 2nd Workshop on Machine Learning and the Physical Sciences, NeurIPS 2019, San Diego, CA, (2019). https://ml4physicalsciences.github.io/2019/, (accessed 2023-08-28).
– reference: 32) J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei: Proc. 2009 IEEE Conf. on Computer Vision and Pattern Recognition, IEEE, Piscataway, NJ, (2009), 248. https://doi.org/10.1109/CVPR.2009.5206848
– reference: 35) A. Oord, O. Vinyals and K. Kavukcuoglu: Proc. 30th Neural Inf. Process. Syst., NeurIPS 2017, San Diego, CA, (2017), 6306. https://papers.nips.cc/paper_files/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html, (accessed 2023-08-28).
– reference: 2) I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G. J. Schmitz and J. L. L. Rezende: Phys. D, 94 (1996), 135. https://doi.org/10.1016/0167-2789(95)00298-7
– ident: 33
  doi: 10.1103/PhysRevE.104.025302
– ident: 4
– ident: 5
  doi: 10.1016/S1359-6462(02)00557-2
– ident: 9
  doi: 10.1016/j.actamat.2006.02.008
– ident: 35
– ident: 37
– ident: 26
  doi: 10.1115/1.4041371
– ident: 18
  doi: 10.1016/j.actamat.2018.12.045
– ident: 14
  doi: 10.1063/1.1750380
– ident: 28
– ident: 11
  doi: 10.1016/j.cossms.2010.10.001
– ident: 23
  doi: 10.1016/j.actamat.2017.05.014
– ident: 6
  doi: 10.1016/j.scriptamat.2004.01.025
– ident: 22
  doi: 10.1111/jmi.12441
– ident: 20
  doi: 10.1016/j.pmatsci.2018.01.005
– ident: 12
  doi: 10.1201/9781315096674
– ident: 27
  doi: 10.1145/3422622
– ident: 24
  doi: 10.1115/1.4036649
– ident: 17
  doi: 10.1016/j.actamat.2017.11.053
– ident: 21
  doi: 10.1016/j.actamat.2015.09.044
– ident: 25
  doi: 10.1016/j.commatsci.2018.05.014
– ident: 2
  doi: 10.1016/0167-2789(95)00298-7
– ident: 34
  doi: 10.1038/s41598-022-17614-0
– ident: 39
  doi: 10.1007/978-1-4757-1904-8_1
– ident: 8
  doi: 10.1016/j.actamat.2009.08.013
– ident: 36
– ident: 38
– ident: 10
  doi: 10.1016/j.actamat.2004.05.033
– ident: 31
  doi: 10.1016/j.commatsci.2018.03.074
– ident: 13
– ident: 15
– ident: 32
  doi: 10.1109/CVPR.2009.5206848
– ident: 29
– ident: 30
– ident: 16
  doi: 10.1016/S1359-6454(01)00295-6
– ident: 19
  doi: 10.1016/j.msea.2018.12.049
– ident: 1
  doi: 10.1016/0167-2789(93)90120-P
– ident: 7
  doi: 10.1016/j.jcrysgro.2005.02.005
– ident: 3
  doi: 10.1016/S0167-2789(97)00226-1
SSID ssib002484313
ssj0027274
Score 2.4124687
Snippet In material design, the establishment of process–structure–property relationship is crucial for analyzing and controlling material microstructures. For the...
SourceID crossref
jstage
SourceType Enrichment Source
Index Database
Publisher
StartPage 142
SubjectTerms deep learning
microstructure prediction
Pixel convolutional neural network
vector quantized variational autoencoder
Title Microstructure Estimation by Combining Deep Learning and Phase Transformation Model
URI https://www.jstage.jst.go.jp/article/isijinternational/64/1/64_ISIJINT-2023-365/_article/-char/en
Volume 64
WOSCitedRecordID wos001168201400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ISIJ International, 2024/01/15, Vol.64(1), pp.142-153
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1347-5460
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027274
  issn: 0915-1559
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKmBA8ID7F-JIfeEIy1ImbxOJpQkMUQTW0gvYWxbGzparSirbT-s_wt3KXS9ymILEJ8WJFjnyycz-fz47vd4y9sjJ3SrmByDJVCKUTi09OZCZUOutLZ-u_598_x6NRcnqqj3u9n20szMU0rqrk8lLP_6uqoQ6UjaGz11C3FwoV8AxKhxLUDuWVFP8Fr9gRLSz-HDiCOUzhiehpwvQ3dUoIMDRu3rKrUpji8TmsaMR27kMa61xp020Pdngy_FSTTPhzRH-ePDvDzCp0zrycLc5Lj6YSaaHrF-vVxFcPq9mKjvBX1TrbPn8I8M6KoAjM9iBRDgT-3KQVhcxoqGIxUJQpoLWzxFbewRMZTUn8Ws36K4k8eNe0B-AYwacvF-WkM8Y3OOzhaCwwD7wIKfFEl1d7Z73ztxBh_4NS099kpo3MFGWmIPMGuxnEAy23tuzk3iTgf4WbDX5ArN_tF7nFXjc9f_v3fncco_0J7A3ae4W1qzO-x-42exR-SNi6z3quesDubDFXPmQnXZTxDcq4WXOPMo4o4y3KOKCM1yjjXZTxGmWP2LcPR-P3H0WTn0Pk4PcvRR4j-V5UwCJgpbY2KBJjrFW5djDmrF8YF6ogkIWM-ypTsJLFymgbZ6G0Ojf98DHbq2aVe8J46KI8C6zGQDFlwUzIyOSq76LIQJU0B-yw_Thp3pDXYw6VaXp1JR6wd17GnKhcrtX6K-nEt21m-B_aRiqVWOzK8E0wohJs1dN_6tEzdnszH5-zPVC5e8H284tlufjxskbqL-lxx0k
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+Estimation+by+Combining+Deep+Learning+and+Phase+Transformation+Model&rft.jtitle=ISIJ+international&rft.au=Noguchi%2C+Satoshi&rft.au=Aihara%2C+Syuji&rft.au=Inoue%2C+Junya&rft.date=2024-01-15&rft.issn=0915-1559&rft.eissn=1347-5460&rft.volume=64&rft.issue=1&rft.spage=142&rft.epage=153&rft_id=info:doi/10.2355%2Fisijinternational.ISIJINT-2023-365&rft.externalDBID=n%2Fa&rft.externalDocID=10_2355_isijinternational_ISIJINT_2023_365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-1559&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-1559&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-1559&client=summon