Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and trends relevant to vegetation

This Tropospheric Ozone Assessment Report (TOAR) on the current state of knowledge of ozone metrics of relevance to vegetation (TOAR-Vegetation) reports on present-day global distribution of ozone at over 3300 vegetated sites and the long-term trends at nearly 1200 sites. TOAR-Vegetation focusses on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Elementa (Washington, D.C.) Ročník 6; číslo 1
Hlavní autoři: Mills, Gina, Pleijel, Håkan, Malley, Christopher S., Sinha, Baerbel, Cooper, Owen R., Schultz, Martin G., Neufeld, Howard S., Simpson, David, Sharps, Katrina, Feng, Zhaozhong, Gerosa, Giacomo, Harmens, Harry, Kobayashi, Kazuhiko, Saxena, Pallavi, Paoletti, Elena, Sinha, Vinayak, Xu, Xiaobin
Médium: Journal Article
Jazyk:angličtina
Vydáno: BioOne 2018
Témata:
ISSN:2325-1026, 2325-1026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This Tropospheric Ozone Assessment Report (TOAR) on the current state of knowledge of ozone metrics of relevance to vegetation (TOAR-Vegetation) reports on present-day global distribution of ozone at over 3300 vegetated sites and the long-term trends at nearly 1200 sites. TOAR-Vegetation focusses on three metrics over vegetation-relevant time-periods across major world climatic zones: M12, the mean ozone during 08:00–19:59; AOT40, the accumulation of hourly mean ozone values over 40 ppb during daylight hours, and W126 with stronger weighting to higher hourly mean values, accumulated during 08:00–19:59. Although the density of measurement stations is highly variable across regions, in general, the highest ozone values (mean, 2010–14) are in mid-latitudes of the northern hemisphere, including southern USA, the Mediterranean basin, northern India, north, north-west and east China, the Republic of Korea and Japan. The lowest metric values reported are in Australia, New Zealand, southern parts of South America and some northern parts of Europe, Canada and the USA. Regional-scale assessments showed, for example, significantly higher AOT40 and W126 values in East Asia (EAS) than Europe (EUR) in wheat growing areas (p < 0.05), but not in rice growing areas. In NAM, the dominant trend during 1995–2014 was a significant decrease in ozone, whilst in EUR it was no change and in EAS it was a significant increase. TOAR-Vegetation provides recommendations to facilitate a more complete global assessment of ozone impacts on vegetation in the future, including: an increase in monitoring of ozone and collation of field evidence of the damaging effects on vegetation; an investigation of the effects on peri-urban agriculture and in mountain/upland areas; inclusion of additional pollutant, meteorological and inlet height data in the TOAR dataset; where not already in existence, establishing new region-specific thresholds for vegetation damage and an innovative integration of observations and modelling including stomatal uptake of the pollutant.
AbstractList This Tropospheric Ozone Assessment Report (TOAR) on the current state of knowledge of ozone metrics of relevance to vegetation ('TOAR-Vegetation') reports on present-day global distribution of ozone at over 3300 vegetated sites and the long-term trends at nearly 1200 sites. 'TOAR-Vegetation' focusses on three metrics over vegetation-relevant time-periods across major world climatic zones: M12, the mean ozone during 08:00–19:59; AOT40, the accumulation of hourly mean ozone values over 40 ppb during daylight hours, and W126 with stronger weighting to higher hourly mean values, accumulated during 08:00–19:59. Although the density of measurement stations is highly variable across regions, in general, the highest ozone values (mean, 2010–14) are in mid-latitudes of the northern hemisphere, including southern USA, the Mediterranean basin, northern India, north, north-west and east China, the Republic of Korea and Japan. The lowest metric values reported are in Australia, New Zealand, southern parts of South America and some northern parts of Europe, Canada and the USA. Regional-scale assessments showed, for example, significantly higher AOT40 and W126 values in East Asia (EAS) than Europe (EUR) in wheat growing areas ('p' < 0.05), but not in rice growing areas. In NAM, the dominant trend during 1995–2014 was a significant decrease in ozone, whilst in EUR it was no change and in EAS it was a significant increase. TOAR-Vegetation provides recommendations to facilitate a more complete global assessment of ozone impacts on vegetation in the future, including: an increase in monitoring of ozone and collation of field evidence of the damaging effects on vegetation; an investigation of the effects on peri-urban agriculture and in mountain/upland areas; inclusion of additional pollutant, meteorological and inlet height data in the TOAR dataset; where not already in existence, establishing new region-specific thresholds for vegetation damage and an innovative integration of observations and modelling including stomatal uptake of the pollutant.
This Tropospheric Ozone Assessment Report (TOAR) on the current state of knowledge of ozone metrics of relevance to vegetation (TOAR-Vegetation) reports on present-day global distribution of ozone at over 3300 vegetated sites and the long-term trends at nearly 1200 sites. TOAR-Vegetation focusses on three metrics over vegetation-relevant time-periods across major world climatic zones: M12, the mean ozone during 08:00–19:59; AOT40, the accumulation of hourly mean ozone values over 40 ppb during daylight hours, and W126 with stronger weighting to higher hourly mean values, accumulated during 08:00–19:59. Although the density of measurement stations is highly variable across regions, in general, the highest ozone values (mean, 2010–14) are in mid-latitudes of the northern hemisphere, including southern USA, the Mediterranean basin, northern India, north, north-west and east China, the Republic of Korea and Japan. The lowest metric values reported are in Australia, New Zealand, southern parts of South America and some northern parts of Europe, Canada and the USA. Regional-scale assessments showed, for example, significantly higher AOT40 and W126 values in East Asia (EAS) than Europe (EUR) in wheat growing areas (p < 0.05), but not in rice growing areas. In NAM, the dominant trend during 1995–2014 was a significant decrease in ozone, whilst in EUR it was no change and in EAS it was a significant increase. TOAR-Vegetation provides recommendations to facilitate a more complete global assessment of ozone impacts on vegetation in the future, including: an increase in monitoring of ozone and collation of field evidence of the damaging effects on vegetation; an investigation of the effects on peri-urban agriculture and in mountain/upland areas; inclusion of additional pollutant, meteorological and inlet height data in the TOAR dataset; where not already in existence, establishing new region-specific thresholds for vegetation damage and an innovative integration of observations and modelling including stomatal uptake of the pollutant.
This Tropospheric Ozone Assessment Report (TOAR) on the current state of knowledge of ozone metrics of relevance to vegetation (TOAR-Vegetation) reports on present-day global distribution of ozone at over 3300 vegetated sites and the long-term trends at nearly 1200 sites. TOAR-Vegetation focusses on three metrics over vegetation-relevant time-periods across major world climatic zones: M12, the mean ozone during 08:00-19:59; AOT40, the accumulation of hourly mean ozone values over 40 ppb during daylight hours, and W126 with stronger weighting to higher hourly mean values, accumulated during 08:00-19:59. Although the density of measurement stations is highly variable across regions, in general, the highest ozone values (mean, 2010-14) are in mid-latitudes of the northern hemisphere, including southern USA, the Mediterranean basin, northern India, north, north-west and east China, the Republic of Korea and Japan. The lowest metric values reported are in Australia, New Zealand, southern parts of South America and some northern parts of Europe, Canada and the USA. Regional-scale assessments showed, for example, significantly higher AOT40 and W126 values in East Asia (EAS) than Europe (EUR) in wheat growing areas (p &lt; 0.05), but not in rice growing areas. In NAM, the dominant trend during 1995-2014 was a significant decrease in ozone, whilst in EUR it was no change and in EAS it was a significant increase. TOAR-Vegetation provides recommendations to facilitate a more complete global assessment of ozone impacts on vegetation in the future, including: an increase in monitoring of ozone and collation of field evidence of the damaging effects on vegetation; an investigation of the effects on peri-urban agriculture and in mountain/upland areas; inclusion of additional pollutant, meteorological and inlet height data in the TOAR dataset; where not already in existence, establishing new region-specific thresholds for vegetation damage and an innovative integration of observations and modelling including stomatal uptake of the pollutant.
Author Xu, Xiaobin
Cooper, Owen R.
Feng, Zhaozhong
Harmens, Harry
Paoletti, Elena
Mills, Gina
Saxena, Pallavi
Kobayashi, Kazuhiko
Sharps, Katrina
Gerosa, Giacomo
Malley, Christopher S.
Schultz, Martin G.
Neufeld, Howard S.
Pleijel, Håkan
Sinha, Vinayak
Simpson, David
Sinha, Baerbel
Author_xml – sequence: 1
  givenname: Gina
  orcidid: 0000-0001-9870-2868
  surname: Mills
  fullname: Mills, Gina
  organization: NERC Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, UK, Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE
– sequence: 2
  givenname: Håkan
  surname: Pleijel
  fullname: Pleijel, Håkan
  organization: Biological and Environmental Sciences, University of Gothenburg, Gothenburg, SE
– sequence: 3
  givenname: Christopher S.
  surname: Malley
  fullname: Malley, Christopher S.
  organization: Stockholm Environment Institute, Environment Department, University of York, York, UK, NERC Centre for Ecology and Hydrology, Penicuik, UK, School of Chemistry, University of Edinburgh, Edinburgh, UK
– sequence: 4
  givenname: Baerbel
  surname: Sinha
  fullname: Sinha, Baerbel
  organization: Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S Nagar, Manauli PO, Punjab, 140306, IN
– sequence: 5
  givenname: Owen R.
  surname: Cooper
  fullname: Cooper, Owen R.
  organization: Cooperative Institute for Research in Environmental Sciences, University of Colorado/NOAA Earth System Research Laboratory, Boulder, US
– sequence: 6
  givenname: Martin G.
  surname: Schultz
  fullname: Schultz, Martin G.
  organization: Forschungszentrum Jülich GmbH, Jülich, DE
– sequence: 7
  givenname: Howard S.
  surname: Neufeld
  fullname: Neufeld, Howard S.
  organization: Department of Biology, Appalachian State University, Boone, NC, US
– sequence: 8
  givenname: David
  surname: Simpson
  fullname: Simpson, David
  organization: EMEP MSC-W, Norwegian Meteorological Institute, Oslo, NO, Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, SE
– sequence: 9
  givenname: Katrina
  surname: Sharps
  fullname: Sharps, Katrina
  organization: NERC Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, UK
– sequence: 10
  givenname: Zhaozhong
  surname: Feng
  fullname: Feng, Zhaozhong
  organization: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, CN
– sequence: 11
  givenname: Giacomo
  surname: Gerosa
  fullname: Gerosa, Giacomo
  organization: Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Brescia, IT
– sequence: 12
  givenname: Harry
  surname: Harmens
  fullname: Harmens, Harry
  organization: NERC Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, UK
– sequence: 13
  givenname: Kazuhiko
  surname: Kobayashi
  fullname: Kobayashi, Kazuhiko
  organization: Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, JP
– sequence: 14
  givenname: Pallavi
  surname: Saxena
  fullname: Saxena, Pallavi
  organization: School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, IN
– sequence: 15
  givenname: Elena
  surname: Paoletti
  fullname: Paoletti, Elena
  organization: Institute for Sustainable Plant Protection, National Research Council, Florence, IT
– sequence: 16
  givenname: Vinayak
  surname: Sinha
  fullname: Sinha, Vinayak
  organization: Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S Nagar, Manauli PO, Punjab, 140306, IN
– sequence: 17
  givenname: Xiaobin
  surname: Xu
  fullname: Xu, Xiaobin
  organization: Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, CN
BackLink https://gup.ub.gu.se/publication/269046$$DView record from Swedish Publication Index (Göteborgs universitet)
https://research.chalmers.se/publication/505902$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp1kt1u1DAQhSNUJErpHQ-QByBl7NhJzF1V8VOpUhGUa2tsj3dTZePI9ha1T4_TpVJBcOXx6Jxv7NF5XR3NYaaqesvgjEku39NEO5oznrXAX1THvOWyYcC7o2f1q-o0pVsAYNBzwflxlW5iWEJathRHW18_FGZ9nhKltMLqb7SEmD_UXyOlcm8c3tf5uSM8OtyYchzNPo9hrnF2RUOzS3Usj7rDwsmhvqMNZVwVb6qXHqdEp7_Pk-rHp483F1-aq-vPlxfnV42VTOWGeVJqACFRORyGFpzyBnpm1NB2BK0x1IPkokfriQN5CYY7ZTzrPeCg2pPq8sB1AW_1EscdxnsdcNSPjRA3GmMe7US6Z5aMY2hBeiFaNwxK9dZ4I8mhYFhY3w-s9JOWvfmDtu4Go91qu8VpRzHpRJpEh45brgeSoAV0UCrBtTSm5eVbOGBfqM1_qZv9oktrs19pvFMguqLnB72NIaVIXtvxsNMccZw0A71mQT9lQZcsFNO7v0xPY_4p_wV1Mr7F
CitedBy_id crossref_primary_10_1016_j_rse_2021_112775
crossref_primary_10_1029_2024JD042063
crossref_primary_10_1002_ep_14089
crossref_primary_10_1016_j_envpol_2020_115538
crossref_primary_10_1016_j_scitotenv_2022_153573
crossref_primary_10_5194_acp_20_9737_2020
crossref_primary_10_1016_j_isprsjprs_2021_03_018
crossref_primary_10_17221_57_2024_JFS
crossref_primary_10_1007_s11869_020_00822_w
crossref_primary_10_1007_s10646_019_02088_0
crossref_primary_10_1016_j_jhazmat_2024_137016
crossref_primary_10_5194_acp_24_3541_2024
crossref_primary_10_1007_s11676_022_01537_7
crossref_primary_10_5194_acp_25_2243_2025
crossref_primary_10_1111_gcb_15049
crossref_primary_10_1007_s10265_018_1071_4
crossref_primary_10_1029_2024GL109520
crossref_primary_10_21273_JASHS04808_19
crossref_primary_10_1007_s00376_023_3156_9
crossref_primary_10_1016_j_envint_2022_107710
crossref_primary_10_5194_acp_22_14751_2022
crossref_primary_10_1016_j_atmosenv_2018_11_028
crossref_primary_10_1029_2019RG000670
crossref_primary_10_5194_acp_25_2725_2025
crossref_primary_10_1016_j_atmosenv_2021_118869
crossref_primary_10_1111_gcb_70003
crossref_primary_10_1111_1365_2435_13422
crossref_primary_10_5194_bg_22_1035_2025
crossref_primary_10_1007_s12145_021_00631_4
crossref_primary_10_1016_j_jes_2025_02_019
crossref_primary_10_1016_j_earscirev_2024_104789
crossref_primary_10_1016_j_envpol_2020_113939
crossref_primary_10_1016_j_envpol_2020_114909
crossref_primary_10_1111_rec_13622
crossref_primary_10_1139_er_2024_0038
crossref_primary_10_5194_acp_25_7111_2025
crossref_primary_10_5194_bg_22_4823_2025
crossref_primary_10_1029_2020JD033955
crossref_primary_10_5194_amt_17_73_2024
crossref_primary_10_5194_acp_24_5221_2024
crossref_primary_10_3390_f11010046
crossref_primary_10_1016_j_envres_2024_119974
crossref_primary_10_1007_s44274_025_00226_6
crossref_primary_10_3389_fenve_2025_1601213
crossref_primary_10_1016_j_scitotenv_2019_06_048
crossref_primary_10_3390_environments11100227
crossref_primary_10_1016_j_apcatb_2019_118498
crossref_primary_10_5194_acp_24_12225_2024
crossref_primary_10_1007_s41810_025_00310_7
crossref_primary_10_1016_j_envpol_2024_125379
crossref_primary_10_1128_aem_00180_23
crossref_primary_10_1016_j_scitotenv_2024_169909
crossref_primary_10_5194_acp_24_13889_2024
crossref_primary_10_3390_f10050396
crossref_primary_10_1111_plb_12973
crossref_primary_10_1111_gcb_16278
crossref_primary_10_3390_atmos15050519
crossref_primary_10_3390_su14169815
crossref_primary_10_5194_acp_25_8355_2025
crossref_primary_10_1016_j_oneear_2023_07_004
crossref_primary_10_1038_s41598_020_80516_6
crossref_primary_10_1525_elementa_398
crossref_primary_10_1525_elementa_399
crossref_primary_10_1016_j_scitotenv_2019_135935
crossref_primary_10_1016_j_atmosenv_2022_119126
crossref_primary_10_5194_acp_23_13613_2023
crossref_primary_10_1111_pce_14630
crossref_primary_10_1111_tpj_70091
crossref_primary_10_1002_jsfa_14271
crossref_primary_10_1016_j_envpol_2021_118690
crossref_primary_10_1016_j_atmosenv_2023_119760
crossref_primary_10_5194_amt_18_371_2025
crossref_primary_10_1016_j_ufug_2022_127735
crossref_primary_10_3389_fpls_2022_983576
crossref_primary_10_1016_j_envsoft_2025_106466
crossref_primary_10_1016_j_scitotenv_2020_142875
crossref_primary_10_1016_j_envpol_2024_123769
crossref_primary_10_1016_j_envres_2021_111773
crossref_primary_10_5194_acp_25_8507_2025
crossref_primary_10_1088_1748_9326_ac0b6a
crossref_primary_10_1111_ppl_13121
crossref_primary_10_3389_ffgc_2020_00045
crossref_primary_10_5194_acp_21_15647_2021
crossref_primary_10_5194_acp_22_6151_2022
crossref_primary_10_1525_elementa_376
crossref_primary_10_1016_j_envpol_2023_123143
crossref_primary_10_5194_acp_19_7335_2019
crossref_primary_10_1029_2021AV000542
crossref_primary_10_1111_pce_13876
crossref_primary_10_1016_j_atmosenv_2021_118654
crossref_primary_10_1007_s11356_020_09320_z
crossref_primary_10_1016_j_scitotenv_2024_175817
crossref_primary_10_1016_j_atmosenv_2020_117801
crossref_primary_10_1029_2023MS004192
crossref_primary_10_1080_20964129_2022_2090448
crossref_primary_10_5194_acp_24_6197_2024
crossref_primary_10_1016_j_envpol_2024_124524
crossref_primary_10_5194_amt_11_6137_2018
crossref_primary_10_1007_s11676_020_01191_x
crossref_primary_10_3103_S1068373922050090
crossref_primary_10_3390_su142113760
crossref_primary_10_5194_acp_25_7087_2025
crossref_primary_10_3390_atmos13040542
crossref_primary_10_5194_acp_23_13015_2023
crossref_primary_10_1016_j_scitotenv_2019_07_288
crossref_primary_10_1016_j_scitotenv_2020_139368
crossref_primary_10_1007_s11356_023_30178_4
crossref_primary_10_5194_acp_24_12079_2024
crossref_primary_10_1029_2019GL084459
crossref_primary_10_1016_j_ecoenv_2022_113274
crossref_primary_10_1007_s10584_019_02451_4
crossref_primary_10_5194_acp_24_9975_2024
crossref_primary_10_5194_amt_11_6735_2018
crossref_primary_10_1007_s40572_025_00487_6
crossref_primary_10_1016_j_envint_2023_107961
crossref_primary_10_1073_pnas_2109628118
crossref_primary_10_5194_acp_19_14477_2019
crossref_primary_10_1016_j_scitotenv_2020_144588
crossref_primary_10_3389_ffgc_2020_604466
crossref_primary_10_5194_amt_16_3085_2023
crossref_primary_10_1016_j_scitotenv_2022_157785
crossref_primary_10_1007_s11676_022_01556_4
crossref_primary_10_1016_j_scitotenv_2020_139559
crossref_primary_10_1016_j_envexpbot_2024_106018
crossref_primary_10_1016_j_apgeochem_2022_105400
crossref_primary_10_1029_2021GL097090
crossref_primary_10_3390_atmos15070852
crossref_primary_10_3390_atmos10040167
crossref_primary_10_1038_s43016_021_00422_6
crossref_primary_10_5572_ajae_2021_098
crossref_primary_10_3390_atmos16080991
crossref_primary_10_5194_acp_21_2601_2021
crossref_primary_10_1007_s10661_024_12426_3
crossref_primary_10_5194_amt_18_3247_2025
crossref_primary_10_1016_j_scitotenv_2019_01_092
crossref_primary_10_5194_acp_21_11053_2021
crossref_primary_10_1007_s11869_023_01468_0
crossref_primary_10_1111_jac_12376
crossref_primary_10_5194_bg_22_4203_2025
crossref_primary_10_1016_j_scitotenv_2020_144332
crossref_primary_10_3390_atmos14081303
crossref_primary_10_5194_acp_22_7461_2022
crossref_primary_10_5194_acp_24_12323_2024
crossref_primary_10_3390_atmos16050505
crossref_primary_10_5194_acp_23_12651_2023
crossref_primary_10_1007_s11270_019_4339_y
crossref_primary_10_1007_s10661_022_10526_6
crossref_primary_10_5194_acp_25_2061_2025
crossref_primary_10_5194_acp_19_14535_2019
crossref_primary_10_1007_s11356_021_13295_w
crossref_primary_10_3390_atmos15121504
crossref_primary_10_1016_j_envpol_2020_116137
crossref_primary_10_1656_045_028_s1104
crossref_primary_10_18261_issn_1504_3118_2021_05_10
crossref_primary_10_1016_j_envpol_2020_114076
crossref_primary_10_1111_gcb_14381
crossref_primary_10_5194_acp_22_4075_2022
crossref_primary_10_5194_acp_23_15693_2023
crossref_primary_10_1016_j_coesh_2020_100225
crossref_primary_10_1016_j_envres_2024_119215
crossref_primary_10_5194_bg_21_4809_2024
crossref_primary_10_5194_acp_22_8935_2022
crossref_primary_10_1039_c8pp90064g
crossref_primary_10_5194_acp_25_8229_2025
crossref_primary_10_1088_1748_9326_abecbb
crossref_primary_10_1525_elementa_2022_00019
crossref_primary_10_1016_j_scitotenv_2020_137141
crossref_primary_10_1016_j_scitotenv_2020_144358
crossref_primary_10_3390_rs17050779
crossref_primary_10_1088_1748_9326_ade0da
crossref_primary_10_1007_s11356_021_15032_9
crossref_primary_10_1016_j_scitotenv_2021_148064
crossref_primary_10_1007_s11869_022_01208_w
crossref_primary_10_1016_j_jes_2025_02_034
crossref_primary_10_1088_1748_9326_acaee0
crossref_primary_10_1111_gcb_16507
crossref_primary_10_3390_f14050901
crossref_primary_10_3390_antiox10050636
crossref_primary_10_3390_atmos14121711
crossref_primary_10_1111_ppl_13639
crossref_primary_10_1007_s00376_020_0054_2
crossref_primary_10_1007_s11356_022_24327_4
crossref_primary_10_1016_j_gfs_2020_100488
crossref_primary_10_5194_acp_25_9905_2025
crossref_primary_10_3390_atmos11070686
crossref_primary_10_3390_atmos10120774
crossref_primary_10_3390_atmos15070775
crossref_primary_10_1016_j_chemosphere_2020_126972
crossref_primary_10_1016_j_scitotenv_2021_146335
crossref_primary_10_1016_j_uclim_2024_101983
crossref_primary_10_1029_2022JD038090
crossref_primary_10_5194_acp_25_7187_2025
crossref_primary_10_1016_j_jes_2022_09_032
crossref_primary_10_5194_acp_24_3613_2024
crossref_primary_10_5194_essd_13_3013_2021
crossref_primary_10_1007_s00425_021_03580_w
crossref_primary_10_1525_elementa_420
crossref_primary_10_1111_pce_13700
crossref_primary_10_1016_j_agrformet_2025_110695
crossref_primary_10_5194_acp_24_5953_2024
crossref_primary_10_5194_acp_18_17061_2018
crossref_primary_10_5194_acp_20_10707_2020
crossref_primary_10_1007_s11356_021_14967_3
crossref_primary_10_1016_j_atmosenv_2022_119538
crossref_primary_10_5194_acp_23_1131_2023
crossref_primary_10_5572_KOSAE_2020_36_4_419
crossref_primary_10_1080_03650340_2022_2099542
crossref_primary_10_1088_1748_9326_abc3f1
crossref_primary_10_1088_1748_9326_ac54cd
crossref_primary_10_1016_j_scitotenv_2020_141728
crossref_primary_10_5194_acp_20_4399_2020
crossref_primary_10_1029_2020GL089184
crossref_primary_10_5194_acp_20_15937_2020
crossref_primary_10_1111_pce_15304
crossref_primary_10_1525_elementa_409
crossref_primary_10_5572_KOSAE_2024_40_4_477
crossref_primary_10_5194_acp_20_1757_2020
crossref_primary_10_5194_acp_25_5287_2025
crossref_primary_10_5194_amt_17_6459_2024
crossref_primary_10_1007_s11356_023_28016_8
crossref_primary_10_3390_atmos12111388
crossref_primary_10_3390_recycling10030094
crossref_primary_10_5194_acp_24_13151_2024
crossref_primary_10_5194_amt_14_5771_2021
crossref_primary_10_1007_s11104_025_07309_6
crossref_primary_10_1016_j_scitotenv_2019_06_525
crossref_primary_10_1016_j_atmosenv_2025_121242
crossref_primary_10_1016_j_scitotenv_2024_177975
crossref_primary_10_5194_acp_25_5101_2025
crossref_primary_10_1007_s10646_021_02436_z
crossref_primary_10_1007_s10265_018_1072_3
crossref_primary_10_3390_f11010082
crossref_primary_10_1038_s41467_023_39794_7
crossref_primary_10_5194_acp_22_7273_2022
crossref_primary_10_3390_atmos15101208
crossref_primary_10_1109_TVT_2020_2986219
crossref_primary_10_1111_1462_2920_16332
crossref_primary_10_1016_j_scitotenv_2022_154705
crossref_primary_10_1016_j_atmosenv_2020_117538
crossref_primary_10_3390_ijms22126304
Cites_doi 10.1016/j.envpol.2012.02.026
10.1016/j.atmosenv.2010.07.037
10.1016/j.envpol.2006.06.010
10.1111/tpj.13298
10.1016/S1352-2310(01)00086-3
10.1111/j.1365-3040.2005.01341.x
10.1002/bimj.200810425
10.1111/gcb.13318
10.1007/s11356-017-9729-3
10.5194/acp-15-8889-2015
10.1016/j.atmosenv.2006.12.002
10.1038/srep09871
10.1016/j.envpol.2015.08.034
10.1016/j.atmosenv.2017.10.059
10.1016/j.envsci.2010.02.001
10.1016/j.atmosenv.2005.10.064
10.1146/annurev-arplant-042110-103829
10.1016/j.scitotenv.2017.09.058
10.1111/gcb.13823
10.1016/j.atmosenv.2010.11.045
10.1525/elementa.279
10.1016/S0269-7491(00)00055-5
10.5194/acp-12-2037-2012
10.1016/j.atmosenv.2015.01.062
10.1038/ngeo2827
10.5194/acp-15-4025-2015
10.1016/j.envpol.2015.06.033
10.1093/treephys/15.3.159
10.5194/acp-13-2063-2013
10.1525/elementa.243
10.1111/j.1466-8238.2010.00551.x
10.1021/es504514z
10.1016/j.scitotenv.2016.10.061
10.1525/elementa.291
10.1002/2014GL060930
10.1007/978-4-431-56438-6
10.1016/j.envpol.2006.06.011
10.5194/acp-15-9555-2015
10.1038/nature06059
10.1016/j.atmosenv.2006.11.016
10.1002/ece3.2568
10.1016/0004-6981(88)90353-8
10.1016/j.envpol.2014.04.040
10.1007/BF01186133
10.1016/j.envpol.2006.04.013
10.1016/j.atmosenv.2010.01.015
10.1007/s11270-013-1797-5
10.1016/j.envpol.2009.08.006
10.1007/s10584-011-0154-1
10.1111/gcb.14157
10.1073/pnas.1317275111
10.1016/S1352-2310(00)00468-4
10.1016/j.envpol.2014.06.004
10.1007/s00442-016-3628-z
10.18637/jss.v067.i01
10.1525/elementa.244
10.1007/s10661-011-2243-z
10.5194/acp-14-9137-2014
10.1016/j.atmosenv.2016.12.025
10.1016/j.envpol.2007.06.016
10.1111/j.1365-2486.2008.01774.x
10.1016/j.envpol.2012.01.014
10.1525/elementa.273
10.1111/j.1469-8137.2007.02018.x
10.1016/S0269-7491(00)00043-9
10.1016/j.envpol.2006.04.005
10.1111/j.1365-2486.2010.02217.x
10.1016/j.envpol.2010.12.020
10.5194/bg-9-271-2012
10.1016/j.envpol.2006.06.012
10.1111/j.1365-2486.2012.02787.x
10.1016/j.envpol.2014.05.016
10.1111/gcb.12252
10.1029/2012JD018261
10.1146/annurev.py.27.090189.002145
10.5194/acp-12-7825-2012
10.1016/j.atmosenv.2008.10.033
10.1016/j.scitotenv.2017.09.111
10.12952/journal.elementa.000029
10.1016/j.atmosenv.2009.01.005
10.3390/f8090337
10.1016/j.atmosenv.2011.06.009
ContentType Journal Article
DBID AAYXX
CITATION
ADTPV
AOWAS
F1U
ABBSD
D8T
F1S
ZZAVC
DOA
DOI 10.1525/elementa.302
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
SWEPUB Chalmers tekniska högskola full text
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Sciences (General)
EISSN 2325-1026
ExternalDocumentID oai_doaj_org_article_71cebd1ac05f443d88997cbfb5eda41a
oai_research_chalmers_se_e46ad2c2_8e50_4060_8e42_5bb32980a8a7
oai_gup_ub_gu_se_269046
10_1525_elementa_302
GroupedDBID 0R~
2XV
5VS
AAFWJ
AAPRH
AAYXX
ACCQO
ADBBV
AFPKN
AHJUD
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CITATION
DOUXS
EBS
FRP
GROUPED_DOAJ
GX1
H13
IAO
KQ8
M~E
OK1
ULGLC
ABJCF
ADTPV
AEUYN
AFFHD
AFKRA
AOWAS
ATCPS
BGLVJ
BHPHI
BKSAR
CCPQU
EDH
F1U
HCIFZ
IEP
IGS
IPNFZ
ITC
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PYCSY
RIG
ABBSD
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c519t-1fe998045a9da8830d9fb071b9836e03bbe705247acfe20ef50b2d9bf17f0a893
IEDL.DBID DOA
ISICitedReferencesCount 326
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436610100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2325-1026
IngestDate Fri Oct 03 12:44:28 EDT 2025
Wed Nov 05 04:20:50 EST 2025
Tue Nov 04 16:50:02 EST 2025
Sat Nov 29 04:33:20 EST 2025
Tue Nov 18 22:08:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-1fe998045a9da8830d9fb071b9836e03bbe705247acfe20ef50b2d9bf17f0a893
ORCID 0000-0001-9870-2868
OpenAccessLink https://doaj.org/article/71cebd1ac05f443d88997cbfb5eda41a
ParticipantIDs doaj_primary_oai_doaj_org_article_71cebd1ac05f443d88997cbfb5eda41a
swepub_primary_oai_research_chalmers_se_e46ad2c2_8e50_4060_8e42_5bb32980a8a7
swepub_primary_oai_gup_ub_gu_se_269046
crossref_citationtrail_10_1525_elementa_302
crossref_primary_10_1525_elementa_302
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle Elementa (Washington, D.C.)
PublicationYear 2018
Publisher BioOne
Publisher_xml – name: BioOne
References (2021072819352604600_B3) 2014; 225
(2021072819352604600_B17) 2012; 117
(2021072819352604600_B36) 2017
(2021072819352604600_B84) 2015; 49
(2021072819352604600_B57) 2017; 152
(2021072819352604600_B78) 2007; 4
(2021072819352604600_B106) 2013; 13
(2021072819352604600_B49) 2008; 50
2021072819352604600_B81
(2021072819352604600_B102) 2012; 12
2021072819352604600_B80
(2021072819352604600_B12) 2016; 181
(2021072819352604600_B41) 2018; 173
(2021072819352604600_B89) 2012; 184
(2021072819352604600_B6) 2011; 45
(2021072819352604600_B103) 2009; 15
(2021072819352604600_B30) 2010; 44
(2021072819352604600_B5) 2005; 28
(2021072819352604600_B33) 2001; 35
(2021072819352604600_B65) 2007; 146
(2021072819352604600_B96) 2017
(2021072819352604600_B13) 2017
(2021072819352604600_B40) 2012; 165
(2021072819352604600_B72) 2006; 40
(2021072819352604600_B76) 2011; 159
(2021072819352604600_B29) 2012; 164
(2021072819352604600_B18) 2014; 2
(2021072819352604600_B108) 2016; 9
(2021072819352604600_B37) 2017; 8
(2021072819352604600_B61) 1995; 15
2021072819352604600_B98
(2021072819352604600_B107) 2014; 14
2021072819352604600_B59
(2021072819352604600_B105) 2016
(2021072819352604600_B92) 2012; 18
(2021072819352604600_B86) 2007; 146
(2021072819352604600_B31) 2017
2021072819352604600_B64
(2021072819352604600_B94) 2017
(2021072819352604600_B56) 1988; 22
2021072819352604600_B68
(2021072819352604600_B67) 2011; 45
2021072819352604600_B69
(2021072819352604600_B4) 2017
(2021072819352604600_B7) 2007; 146
(2021072819352604600_B83) 2017
(2021072819352604600_B100) 2009; 43
(2021072819352604600_B9) 2014; 192
(2021072819352604600_B71) 2015; 15
(2021072819352604600_B21) 2010; 13
(2021072819352604600_B48) 2015; 5
2021072819352604600_B70
(2021072819352604600_B95) 2017
(2021072819352604600_B85) 2012; 12
(2021072819352604600_B45) 2010; 44
(2021072819352604600_B66) 2011; 17
2021072819352604600_B73
(2021072819352604600_B87) 2015; 15
(2021072819352604600_B62) 2007; 174
US Federal Register (2021072819352604600_B99) 2015
(2021072819352604600_B19) 2010; 158
(2021072819352604600_B25) 2000; 109
(2021072819352604600_B82) 2010; 19
(2021072819352604600_B44) 2007; 146
(2021072819352604600_B74) 2016; 22
(2021072819352604600_B88) 2007; 448
(2021072819352604600_B79) 1995; 85
(2021072819352604600_B91) 2000; 109
(2021072819352604600_B54) 2007; 150
2021072819352604600_B42
(2021072819352604600_B93) 2013; 19
(2021072819352604600_B38) 2014; 41
2021072819352604600_B43
(2021072819352604600_B1) 2016; 90
(2021072819352604600_B104) 2017
(2021072819352604600_B77) 2018; 613–614
EC (2021072819352604600_B22) 2008
(2021072819352604600_B2) 2012; 63
(2021072819352604600_B10) 2015; 206
(2021072819352604600_B14) 2015; 106
(2021072819352604600_B53) 2017; 576
(2021072819352604600_B28) 2014; 193
(2021072819352604600_B11) 2014; 111
(2021072819352604600_B26) 2009; 43
(2021072819352604600_B39) 2011; 109
(2021072819352604600_B90) 2001; 35
2021072819352604600_B51
(2021072819352604600_B55) 2017; 24
(2021072819352604600_B50) 2015; 207
2021072819352604600_B16
(2021072819352604600_B47) 2012; 9
(2021072819352604600_B97) 2017
(2021072819352604600_B63) 2007; 41
(2021072819352604600_B32) 2016; 6
(2021072819352604600_B101) 2016
2021072819352604600_B20
(2021072819352604600_B60) 2015; 15
(2021072819352604600_B75) 2014; 192
2021072819352604600_B24
2021072819352604600_B23
(2021072819352604600_B52) 2007; 146
2021072819352604600_B27
(2021072819352604600_B46) 1989; 27
(2021072819352604600_B8) 2015; 67
(2021072819352604600_B58) 2018
CLRTAP (2021072819352604600_B15) 2016
(2021072819352604600_B35) 2013
2021072819352604600_B34
References_xml – volume: 165
  start-page: 147
  year: 2012
  ident: 2021072819352604600_B40
  article-title: Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2012.02.026
– volume: 44
  start-page: 4155
  year: 2010
  ident: 2021072819352604600_B45
  article-title: Does a simulated upland grassland community respond to increasing background, peak or accumulated exposure of ozone?
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2010.07.037
– volume: 146
  start-page: 678
  year: 2007
  ident: 2021072819352604600_B7
  article-title: Factors affecting the ozone sensitivity of temperate European grasslands: An overview
  publication-title: Environ Poll
  doi: 10.1016/j.envpol.2006.06.010
– year: 2015
  ident: 2021072819352604600_B99
  article-title: National Ambient Air Quality Standards for Ozone, 40 CFR Part 50, 51, 52, 53, and 58, 65292–65468
– volume: 90
  start-page: 886
  year: 2016
  ident: 2021072819352604600_B1
  article-title: Understanding and improving global crop response to ozone pollution
  publication-title: The Plant Journal
  doi: 10.1111/tpj.13298
– volume: 35
  start-page: 3521
  year: 2001
  ident: 2021072819352604600_B90
  article-title: Factors determining the robustness of AOT40 and other ozone exposure indices
  publication-title: Atmos Environ
  doi: 10.1016/S1352-2310(01)00086-3
– ident: 2021072819352604600_B34
– volume: 28
  start-page: 949
  year: 2005
  ident: 2021072819352604600_B5
  article-title: Assessing the future global impacts of ozone on vegetation
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2005.01341.x
– volume: 50
  start-page: 346
  issue: 3
  year: 2008
  ident: 2021072819352604600_B49
  article-title: Simultaneous inference in general parametric models
  publication-title: Biometrical Journal
  doi: 10.1002/bimj.200810425
– volume: 22
  start-page: 3097
  year: 2016
  ident: 2021072819352604600_B74
  article-title: Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose–response data
  publication-title: Global Change Biol
  doi: 10.1111/gcb.13318
– volume: 24
  start-page: 20972
  year: 2017
  ident: 2021072819352604600_B55
  article-title: Loss of crop yields in India due to surface ozone: an estimation based on a network of observations
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-017-9729-3
– volume: 15
  start-page: 8889
  issue: 15
  year: 2015
  ident: 2021072819352604600_B71
  article-title: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-15-8889-2015
– ident: 2021072819352604600_B51
– volume: 4
  start-page: 3022
  year: 2007
  ident: 2021072819352604600_B78
  article-title: Ozone risk assessment for agricultural crops in Europe: Further development of stomatal flux and flux–response relationships for European wheat and potato
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2006.12.002
– year: 2017
  ident: 2021072819352604600_B96
  publication-title: TOAR-Metrics
– volume: 5
  year: 2015
  ident: 2021072819352604600_B48
  article-title: Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests
  publication-title: Scientific Reports
  doi: 10.1038/srep09871
– ident: 2021072819352604600_B80
– ident: 2021072819352604600_B20
– volume: 207
  start-page: 21
  year: 2015
  ident: 2021072819352604600_B50
  article-title: Concentration- and flux-based ozone dose-response relationships for five poplar clones grown in North China
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2015.08.034
– volume: 173
  start-page: 1
  year: 2018
  ident: 2021072819352604600_B41
  article-title: Wheat yield responses to stomatal uptake of ozone: Peak vs rising background ozone conditions
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2017.10.059
– volume: 13
  start-page: 195
  year: 2010
  ident: 2021072819352604600_B21
  article-title: Ozone in Central England: the impact of 20 years of precursor emission controls in Europe
  publication-title: Environ Sci Policy
  doi: 10.1016/j.envsci.2010.02.001
– volume: 40
  start-page: 1869
  year: 2006
  ident: 2021072819352604600_B72
  article-title: A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2005.10.064
– volume: 63
  start-page: 637
  year: 2012
  ident: 2021072819352604600_B2
  article-title: The effects of tropospheric ozone on net primary productivity and implications for climate change
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-042110-103829
– start-page: 613
  year: 2017
  ident: 2021072819352604600_B104
  article-title: Relationships of CO2 assimilation rates with exposure- and flux-based O3 metrics in three urban tree species
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.09.058
– ident: 2021072819352604600_B98
– ident: 2021072819352604600_B27
– year: 2017
  ident: 2021072819352604600_B4
  article-title: The role of plant phenology in stomatal ozone flux modelling
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.13823
– ident: 2021072819352604600_B42
– volume: 45
  start-page: 2284
  year: 2011
  ident: 2021072819352604600_B6
  article-title: Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2010.11.045
– year: 2018
  ident: 2021072819352604600_B58
  article-title: Tropospheric Ozone Assessment Report: Global ozone metrics for climate change, human health, and crop/ecosystem research
  publication-title: Elem Sci Anth
  doi: 10.1525/elementa.279
– volume: 109
  start-page: 517
  year: 2000
  ident: 2021072819352604600_B91
  article-title: Phenological weighting of ozone exposures in the calculation of critical levels for wheat, bean and plantain
  publication-title: Environ Pollut
  doi: 10.1016/S0269-7491(00)00055-5
– volume: 12
  start-page: 2037
  year: 2012
  ident: 2021072819352604600_B102
  article-title: Modelling future changes in surface ozone: a parameterized approach
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-12-2037-2012
– volume: 106
  start-page: 11
  year: 2015
  ident: 2021072819352604600_B14
  article-title: Global impacts of surface ozone changes on crop yields and land use
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2015.01.062
– volume: 9
  start-page: 875
  year: 2016
  ident: 2021072819352604600_B108
  article-title: Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions
  publication-title: Nature Geoscience
  doi: 10.1038/ngeo2827
– ident: 2021072819352604600_B70
– volume: 15
  start-page: 4025
  year: 2015
  ident: 2021072819352604600_B60
  article-title: Trends and drivers of ozone human health and vegetation impact metrics from UK EMEP supersite measurements (1990–2013)
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-15-4025-2015
– volume: 206
  start-page: 163
  year: 2015
  ident: 2021072819352604600_B10
  article-title: New flux based dose-response relationships for ozone for European forest tree species
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2015.06.033
– volume: 15
  start-page: 159
  year: 1995
  ident: 2021072819352604600_B61
  article-title: Nighttime exposure to ozone reduces whole-plant production in Betula pendula
  publication-title: Tree Physiol
  doi: 10.1093/treephys/15.3.159
– volume: 13
  start-page: 2063
  year: 2013
  ident: 2021072819352604600_B106
  article-title: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-13-2063-2013
– year: 2017
  ident: 2021072819352604600_B97
  publication-title: TOAR-Surface Ozone Database
– year: 2017
  ident: 2021072819352604600_B13
  article-title: Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia
  publication-title: Elem Sci Anth
  doi: 10.1525/elementa.243
– volume: 19
  start-page: 607
  year: 2010
  ident: 2021072819352604600_B82
  article-title: Crop planting dates: an analysis of global patterns
  publication-title: Global Ecol Biogeogr
  doi: 10.1111/j.1466-8238.2010.00551.x
– ident: 2021072819352604600_B64
– volume: 49
  start-page: 186
  year: 2015
  ident: 2021072819352604600_B84
  article-title: Ozone trends across the United States over a period of decreasing NOx and VOC emissions
  publication-title: Environ. Sci. Technol
  doi: 10.1021/es504514z
– volume: 576
  start-page: 22
  year: 2017
  ident: 2021072819352604600_B53
  article-title: Past, present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.10.061
– ident: 2021072819352604600_B81
– year: 2017
  ident: 2021072819352604600_B36
  article-title: Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation
  publication-title: Elem Sci Anth
  doi: 10.1525/elementa.291
– ident: 2021072819352604600_B16
– volume: 41
  start-page: 5685
  year: 2014
  ident: 2021072819352604600_B38
  article-title: Reductions in India’s crop yield due to ozone
  publication-title: Geophys Res Let
  doi: 10.1002/2014GL060930
– start-page: 57
  volume-title: “Air Pollution Impacts on Plants in East Asia”
  year: 2016
  ident: 2021072819352604600_B101
  doi: 10.1007/978-4-431-56438-6
– volume: 146
  start-page: 754
  year: 2007
  ident: 2021072819352604600_B44
  article-title: Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2006.06.011
– volume: 15
  start-page: 9555
  year: 2015
  ident: 2021072819352604600_B87
  article-title: Assessment of crop yield losses in Punjab and Haryana using two years of continuous in-situ ozone measurements
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-15-9555-2015
– volume: 448
  start-page: 791
  year: 2007
  ident: 2021072819352604600_B88
  article-title: Indirect radiative forcing of climate change through ozone effects on the land-carbon sink
  publication-title: Nature
  doi: 10.1038/nature06059
– ident: 2021072819352604600_B73
– volume: 41
  start-page: 2630
  year: 2007
  ident: 2021072819352604600_B63
  article-title: A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2006.11.016
– volume: 6
  start-page: 8785
  issue: 24
  year: 2016
  ident: 2021072819352604600_B32
  article-title: Current and future ozone risks to global terrestrial biodiversity and ecosystem processes
  publication-title: Ecol Evol
  doi: 10.1002/ece3.2568
– volume: 22
  start-page: 1229
  year: 1988
  ident: 2021072819352604600_B56
  article-title: A comparison of indices that describe the relationship between exposure to ozone and reduction in the yield of agricultural crops
  publication-title: Atmos Environ
  doi: 10.1016/0004-6981(88)90353-8
– volume: 192
  start-page: 295
  year: 2014
  ident: 2021072819352604600_B75
  article-title: Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2014.04.040
– volume: 85
  start-page: 2033
  year: 1995
  ident: 2021072819352604600_B79
  article-title: Gradients of ozone at a forest site and over a field crop – consequences for the AOT40 concept of critical level
  publication-title: Water Air Soil Poll
  doi: 10.1007/BF01186133
– volume: 146
  start-page: 715
  year: 2007
  ident: 2021072819352604600_B86
  article-title: A comparison of two different approaches for mapping potential ozone damage to vegetation: A model study
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2006.04.013
– volume: 44
  start-page: 2248
  year: 2010
  ident: 2021072819352604600_B30
  article-title: An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2010.01.015
– volume: 225
  start-page: 1797
  year: 2014
  ident: 2021072819352604600_B3
  article-title: Effect of ozone on the relative yield of rice crop in Japan evaluated based on monitored concentrations
  publication-title: Water Air Soil Poll
  doi: 10.1007/s11270-013-1797-5
– volume: 158
  start-page: 536
  year: 2010
  ident: 2021072819352604600_B19
  article-title: Geostatistics as a validation tool for setting ozone standards for durum wheat
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2009.08.006
– volume: 109
  start-page: 163
  year: 2011
  ident: 2021072819352604600_B39
  article-title: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period
  publication-title: Climatic Change
  doi: 10.1007/s10584-011-0154-1
– ident: 2021072819352604600_B68
  doi: 10.1111/gcb.14157
– volume: 111
  start-page: 16319
  year: 2014
  ident: 2021072819352604600_B11
  article-title: Recent climate and air pollution impacts on Indian agriculture
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1317275111
– volume: 35
  start-page: 2583
  year: 2001
  ident: 2021072819352604600_B33
  article-title: Evidence of ozone-induced adverse effects on crops in the Mediterranean region
  publication-title: Atmos Environ
  doi: 10.1016/S1352-2310(00)00468-4
– volume: 193
  start-page: 296
  year: 2014
  ident: 2021072819352604600_B28
  article-title: Evidence of widespread ozone-induced visible injury on plants in Beijing, China
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2014.06.004
– volume: 181
  start-page: 1055
  year: 2016
  ident: 2021072819352604600_B12
  article-title: Heterogeneous responses to ozone and nitrogen alter the species composition of Mediterranean annual pastures
  publication-title: Oecologia
  doi: 10.1007/s00442-016-3628-z
– ident: 2021072819352604600_B24
– volume: 67
  start-page: 1
  issue: 1
  year: 2015
  ident: 2021072819352604600_B8
  article-title: Fitting Linear Mixed-Effects Models Using lme4
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v067.i01
– year: 2017
  ident: 2021072819352604600_B83
  article-title: Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations
  publication-title: Elem Sci Anth
  doi: 10.1525/elementa.244
– volume: 184
  start-page: 4049
  year: 2012
  ident: 2021072819352604600_B89
  article-title: Ambient ozone injury to forest plants in Northeast and North Central USA: 16 years of biomonitoring
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-011-2243-z
– volume: 14
  start-page: 9137
  year: 2014
  ident: 2021072819352604600_B107
  article-title: Ozone vegetation damage effects on gross primary productivity in the United States
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-14-9137-2014
– volume: 152
  start-page: 123
  year: 2017
  ident: 2021072819352604600_B57
  article-title: Responses of human health and vegetation exposure metrics to changes in ozone concentration distributions in the European Union, United States, and China
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2016.12.025
– volume: 150
  start-page: 96
  year: 2007
  ident: 2021072819352604600_B54
  article-title: Increasing risk for negative ozone impacts on vegetation in northern Sweden
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2007.06.016
– ident: 2021072819352604600_B69
  article-title: Closing the global ozone yield gap: Quantification and co-benefits for multi-stress tolerance
  publication-title: Submitted to Global Change Biology
– volume: 15
  start-page: 396
  year: 2009
  ident: 2021072819352604600_B103
  article-title: Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis
  publication-title: Global Change Biol
  doi: 10.1111/j.1365-2486.2008.01774.x
– volume: 164
  start-page: 16
  year: 2012
  ident: 2021072819352604600_B29
  article-title: A stomatal ozone flux–response relationship to assess ozone-induced yield loss of winter wheat in subtropical China
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2012.01.014
– year: 2017
  ident: 2021072819352604600_B31
  article-title: Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health
  publication-title: Elem Sci Anth
  doi: 10.1525/elementa.273
– start-page: 57
  volume-title: “Air Pollution Impacts on Plants in East Asia”
  year: 2016
  ident: 2021072819352604600_B105
  doi: 10.1007/978-4-431-56438-6
– year: 2008
  ident: 2021072819352604600_B22
  article-title: European Council Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe
  publication-title: Official Journal of the European Union
– volume: 174
  start-page: 109
  year: 2007
  ident: 2021072819352604600_B62
  article-title: Interactive effects of ozone and climate on tree growth and water use in a southern Appalachian forest in the USA
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.02018.x
– volume: 109
  start-page: 403
  year: 2000
  ident: 2021072819352604600_B25
  article-title: Modelling stomatal ozone flux across Europe
  publication-title: Environ Pollut
  doi: 10.1016/S0269-7491(00)00043-9
– ident: 2021072819352604600_B23
– volume: 146
  start-page: 736
  year: 2007
  ident: 2021072819352604600_B65
  article-title: Identifying ozone-sensitive communities of (semi-) natural vegetation suitable for mapping exceedance of critical levels
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2006.04.005
– volume: 17
  start-page: 592
  year: 2011
  ident: 2021072819352604600_B66
  article-title: Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990–2006) in relation to AOT40-and flux-based risk maps
  publication-title: Global Change Biol
  doi: 10.1111/j.1365-2486.2010.02217.x
– volume: 159
  start-page: 897
  year: 2011
  ident: 2021072819352604600_B76
  article-title: Reduced ozone by air filtration consistently improved grain yield in wheat
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2010.12.020
– year: 2013
  ident: 2021072819352604600_B35
– volume: 9
  start-page: 271
  year: 2012
  ident: 2021072819352604600_B47
  article-title: Intercontinental trans-boundary contributions to ozone-induced crop yield losses in the Northern Hemisphere
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-271-2012
– volume: 146
  start-page: 608
  year: 2007
  ident: 2021072819352604600_B52
  article-title: Risk assessments for forest trees – the performance of the ozone flux versus the AOT concepts
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2006.06.012
– volume: 18
  start-page: 3395
  year: 2012
  ident: 2021072819352604600_B92
  article-title: Interactive influences of ozone and climate on streamflow of forested watersheds
  publication-title: Global Change Biol
  doi: 10.1111/j.1365-2486.2012.02787.x
– year: 2017
  ident: 2021072819352604600_B94
  publication-title: TOAR-Climate
– ident: 2021072819352604600_B59
– volume: 192
  start-page: 129
  year: 2014
  ident: 2021072819352604600_B9
  article-title: Growth losses in Swiss forests caused by ozone: Epidemiological data analysis of stem increment of Fagus sylvatica L. and Picea abies Karst
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2014.05.016
– volume: 19
  start-page: 2739
  year: 2013
  ident: 2021072819352604600_B93
  article-title: A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches
  publication-title: Global Change Biol
  doi: 10.1111/gcb.12252
– volume: 117
  issue: D22
  year: 2012
  ident: 2021072819352604600_B17
  article-title: Long-term ozone trends at rural ozone monitoring sites across the United States, 1990–2010
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2012JD018261
– volume: 27
  start-page: 397
  year: 1989
  ident: 2021072819352604600_B46
  article-title: Ozone and crop yield
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev.py.27.090189.002145
– start-page: 50
  volume-title: EMEP Steering Body and Working Group on Effects of the Convention on Long-Range Transboundary Air Pollution
  year: 2016
  ident: 2021072819352604600_B15
– volume: 12
  start-page: 7825
  year: 2012
  ident: 2021072819352604600_B85
  article-title: The EMEP MSC-W chemical transport model – technical description
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-12-7825-2012
– ident: 2021072819352604600_B43
– volume: 43
  start-page: 604
  year: 2009
  ident: 2021072819352604600_B100
  article-title: The global impact of ozone on agricultural crop yields under current and future air quality legislation
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2008.10.033
– volume: 613–614
  start-page: 687
  year: 2018
  ident: 2021072819352604600_B77
  article-title: Current surface ozone concentrations significantly decrease wheat growth, yield and quality
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.09.111
– volume: 2
  year: 2014
  ident: 2021072819352604600_B18
  article-title: Global distribution and trends of tropospheric ozone: An observation-based review
  publication-title: Elem Sci Anth
  doi: 10.12952/journal.elementa.000029
– volume: 43
  start-page: 1945
  year: 2009
  ident: 2021072819352604600_B26
  article-title: A comparison of North American and Asian exposure-response data for ozone effects on yield
  publication-title: Environ Pollut
  doi: 10.1016/j.atmosenv.2009.01.005
– year: 2017
  ident: 2021072819352604600_B95
  publication-title: TOAR-Health
– volume: 8
  start-page: 337
  year: 2017
  ident: 2021072819352604600_B37
  article-title: Vertical ozone gradients above forests. Comparison of different calculation options with direct ozone measurements above a mature forest and consequences for ozone risk assessment
  publication-title: Forests
  doi: 10.3390/f8090337
– volume: 45
  start-page: 5064
  year: 2011
  ident: 2021072819352604600_B67
  article-title: New stomatal flux-based critical levels for ozone effects on vegetation
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2011.06.009
SSID ssj0001072422
Score 2.540783
Snippet This Tropospheric Ozone Assessment Report (TOAR) on the current state of knowledge of ozone metrics of relevance to vegetation (TOAR-Vegetation) reports on...
This Tropospheric Ozone Assessment Report (TOAR) on the current state of knowledge of ozone metrics of relevance to vegetation ('TOAR-Vegetation') reports on...
SourceID doaj
swepub
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms (semi-)natural vegetation
agricultural crops
crop yield losses
Crops
dose-response relationships
Earth and Related Environmental Sciences
Environmental Sciences & Ecology
Geovetenskap och relaterad miljövetenskap
Global
global impacts
human health
Meteorology & Atmospheric Sciences
Metrics
Ozone
Perennials
primary productivity
stomatal flux
surface ozone
united-states
Vegetation
Title Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and trends relevant to vegetation
URI https://gup.ub.gu.se/publication/269046
https://research.chalmers.se/publication/505902
https://doaj.org/article/71cebd1ac05f443d88997cbfb5eda41a
Volume 6
WOSCitedRecordID wos000436610100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2325-1026
  dateEnd: 20201231
  omitProxy: false
  ssIdentifier: ssj0001072422
  issn: 2325-1026
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2325-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001072422
  issn: 2325-1026
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA5SFLyIrYrrL3KoosjYTCYzSbzV0upBaw8Vegt5-bEtlN3SmS3Ug3-7L5nssorFSy_DEF5CkveGfC-8-T5CtpUWHoBD5XjgiVQbKiUaqIKXwoqWRct8FpuQh4fq5EQfrUl9pZqwkR543LgdWbsAvraOtVGIxitMEKSDCG3wVtQZGiHqWUum8u0Kk3j28FLp3vJ2J5Rq7A9NuUFZnkGZqv8votB8uBw8JA8KKqS742w2yZ0w2yL3PmfV3estslm-wJ6-LTTR7x6R_jgJHPSJFuDM0e8_57NAd1c8m3RE1h_p0fh_UeXtNR3We8xzD5-Ic4vmFbUzjzapSJYmLRUE2QMd5vQqTEtR4mPy42D_eO9LVSQUKofQbKjqGDCfQthmtbdKNczrCIgqQKumC6wBCJK1XEjrYuAsxJYB9xpiLSOziGWekI0ZzuYpoU5GsEpqL6MVXkoQHdMOuMVRu-i7CXm_3FTjCr94krk4NynPQBeYpQsMumBCXq-sL0ZejRvsPiX_rGwSG3ZuwBgxJUbM_2JkQt6M3v1jmOniwmDTdGH6YHinmcA1fP2HYaFdOjXuNGva9KlDEJ313HGjQssMwiKGb4KbFqDhuOVWWfnsNib_nNxHkKbGa58XZGO4XISX5K67Gs76y1c57PH57df-b2E5Eok
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tropospheric+ozone+assessment+report%3A+Present-day+tropospheric+ozone+distribution+and+trends+relevant+to+vegetation&rft.jtitle=Elementa+%28Washington%2C+D.C.%29&rft.au=Mills%2C+Gina&rft.au=Pleijel%2C+H%C3%A5kan&rft.au=Malley%2C+Christopher+S.&rft.au=Sinha%2C+Baerbel&rft.date=2018&rft.issn=2325-1026&rft.eissn=2325-1026&rft.volume=6&rft_id=info:doi/10.1525%2Felementa.302&rft.externalDocID=oai_research_chalmers_se_e46ad2c2_8e50_4060_8e42_5bb32980a8a7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-1026&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-1026&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-1026&client=summon