A neutralizing epitope on the SD1 domain of SARS-CoV-2 spike targeted following infection and vaccination
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination. While extensive research has shown that the receptor binding domain (RBD) and, to a lesser extent, the N-terminal domain (NTD) are the predo...
Saved in:
| Published in: | Cell reports (Cambridge) Vol. 40; no. 8; p. 111276 |
|---|---|
| Main Authors: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
23.08.2022
The Author(s) |
| Subjects: | |
| ISSN: | 2211-1247, 2211-1247 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination. While extensive research has shown that the receptor binding domain (RBD) and, to a lesser extent, the N-terminal domain (NTD) are the predominant targets for neutralizing antibodies, identification of neutralizing epitopes beyond these regions is important for informing vaccine development and understanding antibody-mediated immune escape. Here, we identify a class of broadly neutralizing antibodies that bind an epitope on the spike subdomain 1 (SD1) and that have arisen from infection or vaccination. Using cryo-electron microscopy (cryo-EM) and hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), we show that SD1-specific antibody P008_60 binds an epitope that is not accessible within the canonical prefusion states of the SARS-CoV-2 spike, suggesting a transient conformation of the viral glycoprotein that is vulnerable to neutralization.
[Display omitted]
•A neutralizing epitope on spike subdomain 1 (SD1) is identified•The SD1 epitope is conserved between current SARS-CoV-2 variants and SARS-CoV•SD1 antibodies arise from infection and vaccination•Cryo-EM reveals the SD1 epitope is occluded on many SARS-CoV-2 spike structures
Seow et al. identify a class of broadly neutralizing antibodies that bind a conserved epitope on the spike subdomain 1 (SD1) and that are elicited following infection and vaccination. The SD1 epitope is occluded on spike prefusion structures, suggesting binding to a conformational state of spike. |
|---|---|
| AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination. While extensive research has shown that the receptor binding domain (RBD) and, to a lesser extent, the N-terminal domain (NTD) are the predominant targets for neutralizing antibodies, identification of neutralizing epitopes beyond these regions is important for informing vaccine development and understanding antibody-mediated immune escape. Here, we identify a class of broadly neutralizing antibodies that bind an epitope on the spike subdomain 1 (SD1) and that have arisen from infection or vaccination. Using cryo-electron microscopy (cryo-EM) and hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), we show that SD1-specific antibody P008_60 binds an epitope that is not accessible within the canonical prefusion states of the SARS-CoV-2 spike, suggesting a transient conformation of the viral glycoprotein that is vulnerable to neutralization. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination. While extensive research has shown that the receptor binding domain (RBD) and, to a lesser extent, the N-terminal domain (NTD) are the predominant targets for neutralizing antibodies, identification of neutralizing epitopes beyond these regions is important for informing vaccine development and understanding antibody-mediated immune escape. Here, we identify a class of broadly neutralizing antibodies that bind an epitope on the spike subdomain 1 (SD1) and that have arisen from infection or vaccination. Using cryo-electron microscopy (cryo-EM) and hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), we show that SD1-specific antibody P008_60 binds an epitope that is not accessible within the canonical prefusion states of the SARS-CoV-2 spike, suggesting a transient conformation of the viral glycoprotein that is vulnerable to neutralization. Seow et al. identify a class of broadly neutralizing antibodies that bind a conserved epitope on the spike subdomain 1 (SD1) and that are elicited following infection and vaccination. The SD1 epitope is occluded on spike prefusion structures, suggesting binding to a conformational state of spike. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination. While extensive research has shown that the receptor binding domain (RBD) and, to a lesser extent, the N-terminal domain (NTD) are the predominant targets for neutralizing antibodies, identification of neutralizing epitopes beyond these regions is important for informing vaccine development and understanding antibody-mediated immune escape. Here, we identify a class of broadly neutralizing antibodies that bind an epitope on the spike subdomain 1 (SD1) and that have arisen from infection or vaccination. Using cryo-electron microscopy (cryo-EM) and hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), we show that SD1-specific antibody P008_60 binds an epitope that is not accessible within the canonical prefusion states of the SARS-CoV-2 spike, suggesting a transient conformation of the viral glycoprotein that is vulnerable to neutralization. [Display omitted] •A neutralizing epitope on spike subdomain 1 (SD1) is identified•The SD1 epitope is conserved between current SARS-CoV-2 variants and SARS-CoV•SD1 antibodies arise from infection and vaccination•Cryo-EM reveals the SD1 epitope is occluded on many SARS-CoV-2 spike structures Seow et al. identify a class of broadly neutralizing antibodies that bind a conserved epitope on the spike subdomain 1 (SD1) and that are elicited following infection and vaccination. The SD1 epitope is occluded on spike prefusion structures, suggesting binding to a conformational state of spike. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination. While extensive research has shown that the receptor binding domain (RBD) and, to a lesser extent, the N-terminal domain (NTD) are the predominant targets for neutralizing antibodies, identification of neutralizing epitopes beyond these regions is important for informing vaccine development and understanding antibody-mediated immune escape. Here, we identify a class of broadly neutralizing antibodies that bind an epitope on the spike subdomain 1 (SD1) and that have arisen from infection or vaccination. Using cryo-electron microscopy (cryo-EM) and hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), we show that SD1-specific antibody P008_60 binds an epitope that is not accessible within the canonical prefusion states of the SARS-CoV-2 spike, suggesting a transient conformation of the viral glycoprotein that is vulnerable to neutralization.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination. While extensive research has shown that the receptor binding domain (RBD) and, to a lesser extent, the N-terminal domain (NTD) are the predominant targets for neutralizing antibodies, identification of neutralizing epitopes beyond these regions is important for informing vaccine development and understanding antibody-mediated immune escape. Here, we identify a class of broadly neutralizing antibodies that bind an epitope on the spike subdomain 1 (SD1) and that have arisen from infection or vaccination. Using cryo-electron microscopy (cryo-EM) and hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), we show that SD1-specific antibody P008_60 binds an epitope that is not accessible within the canonical prefusion states of the SARS-CoV-2 spike, suggesting a transient conformation of the viral glycoprotein that is vulnerable to neutralization. |
| ArticleNumber | 111276 |
| Author | Cherepanov, Peter Calvaresi, Valeria Graham, Carl Seow, Jeffrey Cronin, Nora B. Rosa, Annachiara Pye, Valerie E. Khan, Hataf Pickering, Suzanne Malim, Michael H. Politis, Argyris Huettner, Isabella Doores, Katie J. |
| Author_xml | – sequence: 1 givenname: Jeffrey surname: Seow fullname: Seow, Jeffrey organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK – sequence: 2 givenname: Hataf surname: Khan fullname: Khan, Hataf organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK – sequence: 3 givenname: Annachiara surname: Rosa fullname: Rosa, Annachiara organization: Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK – sequence: 4 givenname: Valeria surname: Calvaresi fullname: Calvaresi, Valeria organization: Department of Chemistry, King’s College London, London, UK – sequence: 5 givenname: Carl surname: Graham fullname: Graham, Carl organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK – sequence: 6 givenname: Suzanne surname: Pickering fullname: Pickering, Suzanne organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK – sequence: 7 givenname: Valerie E. surname: Pye fullname: Pye, Valerie E. organization: Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK – sequence: 8 givenname: Nora B. surname: Cronin fullname: Cronin, Nora B. organization: LonCEM Facility, The Francis Crick Institute, London, UK – sequence: 9 givenname: Isabella surname: Huettner fullname: Huettner, Isabella organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK – sequence: 10 givenname: Michael H. surname: Malim fullname: Malim, Michael H. organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK – sequence: 11 givenname: Argyris surname: Politis fullname: Politis, Argyris email: argyris.politis@kcl.ac.uk organization: Department of Chemistry, King’s College London, London, UK – sequence: 12 givenname: Peter surname: Cherepanov fullname: Cherepanov, Peter email: peter.cherepanov@crick.ac.uk organization: Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK – sequence: 13 givenname: Katie J. orcidid: 0000-0002-5507-1725 surname: Doores fullname: Doores, Katie J. email: katie.doores@kcl.ac.uk organization: Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35981534$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU2P0zAQtdAidln2HyDkI5cUj-M4CQekqnxKKyFR4Go59qTrktrBTovg1-PQslo4gC9ja957M37vITnzwSMhj4EtgIF8tl0YHCKOC844XwAAr-U9csE5QAFc1Gd37ufkKqUty0cygFY8IOdl1TZQleKCuCX1uJ-iHtwP5zcURzeFEWnwdLpBun4J1Iaddp6Gnq6XH9bFKnwuOE2j-4J00nGDE1rah2EI32YB53s0k8t87S09aGOc1_P7Ebnf6yHh1alekk-vX31cvS2u3795t1peF6aCdirACs2Q2Va3NeY9ezBcClb1tm2qTmLftFLYTlotZFtq6HqoRdlhJ7tOC7DlJXlx1B333Q6tQT__To3R7XT8roJ26s-OdzdqEw6qLWXVSJYFnp4EYvi6xzSpnUvZ7kF7DPukeM1EIxtoqwx9cnfW7ZDf_maAOAJMDClF7G8hwNScpNqqY5JqTlIdk8y053_RjJt-uZg3dsP_yCcDMLt8cBhVMg69QetijkbZ4P4t8BOcHLyN |
| CitedBy_id | crossref_primary_10_3390_ph17030302 crossref_primary_10_1128_jvi_00416_24 crossref_primary_10_3390_v15112279 crossref_primary_10_1073_pnas_2220948120 crossref_primary_10_1038_s41467_024_54458_w crossref_primary_10_1371_journal_ppat_1010882 crossref_primary_10_1016_j_isci_2025_112451 crossref_primary_10_3390_vaccines11091451 crossref_primary_10_1002_rcm_9690 crossref_primary_10_1038_s41467_023_36745_0 crossref_primary_10_3390_vaccines10091477 crossref_primary_10_1038_s41467_024_46982_6 crossref_primary_10_1186_s12951_024_02293_y crossref_primary_10_3390_vaccines12030218 crossref_primary_10_1126_sciimmunol_ade0958 crossref_primary_10_3390_v15020558 crossref_primary_10_1016_j_coviro_2023_101332 crossref_primary_10_1080_14786419_2024_2386121 crossref_primary_10_3390_vaccines12080914 crossref_primary_10_1371_journal_ppat_1012724 crossref_primary_10_4049_jimmunol_2300282 |
| Cites_doi | 10.2807/1560-7917.ES.2020.25.42.2000685 10.1126/science.abb2507 10.1016/j.mex.2015.09.003 10.1016/j.bbapap.2011.12.007 10.1128/JVI.79.3.1635-1644.2005 10.1038/s41592-019-0459-y 10.1038/s42003-021-02399-1 10.1016/j.bbrc.2020.10.012 10.1128/JVI.02422-20 10.1038/s41591-020-1054-6 10.1038/nmeth.4169 10.1107/S2059798318006551 10.1016/j.chom.2021.02.003 10.1073/pnas.2022586118 10.1126/sciadv.abg7607 10.1371/journal.ppat.1008817 10.1038/s41586-020-2798-3 10.1093/bioinformatics/btaa677 10.1126/science.abf2303 10.1016/j.chom.2021.03.005 10.1128/JVI.00552-10 10.1111/joim.13372 10.1016/j.cell.2021.07.027 10.1038/s41577-020-0311-8 10.1107/S205225251801463X 10.1128/mbio.03798-21 10.1038/s41467-020-19231-9 10.1038/s41594-020-0468-7 10.1016/j.jmb.2003.07.013 10.1126/science.abc5902 10.1038/s41467-021-25480-z 10.1126/science.abc7520 10.1016/j.celrep.2022.110757 10.1038/nmeth.2115 10.1002/jcc.20084 10.1038/s41586-020-2852-1 10.1038/s41564-020-00813-8 10.1038/s41592-020-0914-9 10.1038/nmeth.4347 10.1107/S2059798319016577 10.1038/nmeth.4193 10.1038/s41401-020-0485-4 10.1038/s41586-020-2456-9 10.1002/pro.3330 10.3390/v13040628 10.1074/jbc.RA118.004343 10.1107/S2052252519007619 10.1007/s13361-013-0669-y 10.1002/rcm.4814 10.1016/j.immuni.2021.03.023 10.1107/S0907444906029799 10.1016/j.cell.2021.03.028 10.1038/s41586-020-2772-0 10.1016/j.jsb.2015.11.003 10.1038/s41586-020-2180-5 10.1016/j.it.2020.09.004 10.1107/S0907444904019158 10.1016/S1470-2045(21)00213-8 10.1016/j.tibs.2020.05.005 10.1038/nbt0997-871 10.1016/j.cell.2020.09.037 10.1016/j.celrep.2022.110348 10.1038/s41577-021-00542-x 10.1371/journal.pmed.0030237 10.1126/science.abi6226 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. 2022 The Author(s) 2022 |
| Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2022 The Author(s) 2022 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.celrep.2022.111276 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2211-1247 |
| EndPage | 111276 |
| ExternalDocumentID | PMC9365860 35981534 10_1016_j_celrep_2022_111276 S2211124722010968 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: MR/N013700/1 – fundername: Wellcome Trust grantid: 222433/Z/21/Z – fundername: Cancer Research UK – fundername: Wellcome Trust grantid: 208354/Z/17/Z – fundername: Wellcome Trust grantid: 106223/Z/14/Z – fundername: Wellcome Trust grantid: FC001061 – fundername: Wellcome Trust grantid: 206175/Z/17/Z – fundername: Medical Research Council grantid: MR/W005611/1 |
| GroupedDBID | 0R~ 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAMRU AAXUO ABMAC ACGFO ACGFS ADBBV ADEZE ADVLN AENEX AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 O-L O9- OK1 ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c519t-1d4a0e0d9a97e359f1c26405fd985b6ef8964db6da4693a1bf1743beb6bba41d3 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848547900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-1247 |
| IngestDate | Tue Sep 30 16:59:59 EDT 2025 Wed Oct 01 17:22:32 EDT 2025 Mon Jul 21 06:07:54 EDT 2025 Tue Nov 18 21:27:06 EST 2025 Wed Nov 05 20:43:47 EST 2025 Sun Apr 06 06:54:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | hydrogen-deuterium exchange CP: Immunology SARS-CoV-2 spike subdomain 1 antibody omicron CP: Microbiology neutralizing epitope cryogenic electron microscopy |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c519t-1d4a0e0d9a97e359f1c26405fd985b6ef8964db6da4693a1bf1743beb6bba41d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Faculty of Medicine, Wolfson Education Center, Hammersmith Campus, Imperial College London, Du Cane Road, London W12 0NN, UK These authors contributed equally Lead contact |
| ORCID | 0000-0002-5507-1725 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.celrep.2022.111276 |
| PMID | 35981534 |
| PQID | 2704868195 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9365860 proquest_miscellaneous_2704868195 pubmed_primary_35981534 crossref_primary_10_1016_j_celrep_2022_111276 crossref_citationtrail_10_1016_j_celrep_2022_111276 elsevier_sciencedirect_doi_10_1016_j_celrep_2022_111276 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-23 |
| PublicationDateYYYYMMDD | 2022-08-23 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports (Cambridge) |
| PublicationTitleAlternate | Cell Rep |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc The Author(s) |
| Publisher_xml | – name: Elsevier Inc – name: The Author(s) |
| References | Ramaraj, Angel, Dratz, Jesaitis, Mumey (bib39) 2012; 1824 Huo, Mikolajek, Le Bas, Clark, Sharma, Kipar, Dormon, Norman, Weckener, Clare (bib23) 2021; 12 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib35) 2004; 25 Scheres (bib46) 2020; 76 Castro Dopico, Ols, Loré, Karlsson Hedestam (bib8) 2022; 291 Engen, Komives (bib15) 2020; 45 Zhang (bib63) 2016; 193 Rosenthal, Henderson (bib43) 2003; 333 Robbiani, Gaebler, Muecksch, Lorenzi, Wang, Cho, Agudelo, Barnes, Gazumyan, Finkin (bib40) 2020; 584 Tan, Baldwin, Davis, Williamson, Potter, Carragher, Lyumkis (bib49) 2017; 14 Gobeil, Janowska, McDowell, Mansouri, Parks, Stalls, Kopp, Manne, Li, Wiehe (bib17) 2021; 373 Seow, Graham, Hallett, Lechmere, Maguire, Huettner, Cox, Khan, Pickering, Roberts (bib47) 2022; 39 Zhang, Cai, Xiao, Lu, Peng, Sterling, Walsh, Rits-Volloch, Zhu, Woosley (bib62) 2021; 372 Barnes, Jette, Abernathy, Dam, Esswein, Gristick, Malyutin, Sharaf, Huey-Tubman, Lee (bib3) 2020; 588 Hurlburt, Seydoux, Wan, Edara, Stuart, Feng, Suthar, McGuire, Stamatatos, Pancera (bib24) 2020; 11 Huang, Yang, Xu, Xu, Liu (bib22) 2020; 41 van den Brink, Ter Meulen, Cox, Jongeneelen, Thijsse, Throsby, Marissen, Rood, Bakker, Gelderblom (bib56) 2005; 79 Gavor, Choong, Er, Sivaraman, Sivaraman (bib16) 2020; 41 Terwilliger, Ludtke, Read, Adams, Afonine (bib54) 2020; 17 Seow, Graham, Merrick, Acors, Pickering, Steel, Hemmings, O'Byrne, Kouphou, Galao (bib48) 2020; 5 Goswami, Devarakonda, Chalmers, Pascal, Spiegelman, Griffin (bib18) 2013; 24 Punjani, Rubinstein, Fleet, Brubaker (bib38) 2017; 14 Taylor, Adams, Hufford, de la Torre, Winthrop, Gottlieb (bib52) 2021; 21 Graham, Seow, Huettner, Khan, Kouphou, Acors, Winstone, Pickering, Galao, Dupont (bib19) 2021; 54 Cerutti, Guo, Zhou, Gorman, Lee, Rapp, Reddem, Yu, Bahna, Bimela (bib9) 2021; 29 Williams, Headd, Moriarty, Prisant, Videau, Deis, Verma, Keedy, Hintze, Chen (bib57) 2018; 27 Coales, E, Lee, Ma, Morrow, Hamuro (bib10) 2010; 24 Benton, Wrobel, Roustan, Borg, Xu, Martin, Rosenthal, Skehel, Gamblin (bib4) 2021; 118 Piccoli, Park, Tortorici, Czudnochowski, Walls, Beltramello, Silacci-Fregni, Pinto, Rosen, Bowen (bib36) 2020; 183 Afonine, Poon, Read, Sobolev, Terwilliger, Urzhumtsev, Adams (bib1) 2018; 74 Tanaka, Olson, Barnes, Higashide, Gonzalez, Taft, Richardson, Martin-Fernandez, Bogunovic, Gnanapragasam (bib50) 2022; 38 McCallum, Marco, Lempp, Tortorici, Pinto, Walls, Beltramello, Chen, Liu, Zatta (bib32) 2021 Hurt, Wheatley (bib25) 2021; 13 Sanchez-Garcia, Gomez-Blanco, Cuervo, Carazo, Sorzano, Vargas (bib44) 2021; 4 Brouwer, Caniels, van der Straten, Snitselaar, Aldon, Bangaru, Torres, Okba, Claireaux, Kerster (bib6) 2020; 369 Lechmere, Snell, Graham, Seow, Shalim, Charalampous, Alcolea-Medina, Batra, Nebbia, Edgeworth (bib30) 2022; 13 Zufferey, Nagy, Mandel, Naldini, Trono (bib66) 1997; 15 Rogers, Zhao, Huang, Beutler, Burns, He, Limbo, Smith, Song, Woehl (bib41) 2020; 369 Winstone, Lista, Reid, Bouton, Pickering, Galao, Kerridge, Doores, Swanson, Neil (bib58) 2021; 95 ter Meulen, van den Brink, Poon, Marissen, Leung, Cox, Cheung, Bakker, Bogaards, van Deventer (bib53) 2006; 3 Masson, Burke, Ahn, Anand, Borchers, Brier, Bou-Assaf, Engen, Englander, Faber (bib31) 2019; 16 Benton, Wrobel, Xu, Roustan, Martin, Rosenthal, Skehel, Gamblin (bib5) 2020; 588 Corti, Purcell, Snell, Veesler (bib11) 2021; 184 Kidmose, Juhl, Nissen, Boesen, Karlsen, Pedersen (bib26) 2019; 6 Thompson, Grayson, Paton, Bolton, Lourenço, Penman, Lee, Odon, Mongkolsapaya, Chinnakannan (bib55) 2020; 25 Zheng, Palovcak, Armache, Verba, Cheng, Agard (bib64) 2017; 14 Dixon (bib12) 2014 Grehan, Ferrara, Temperton (bib21) 2015; 2 Greaney, Loes, Crawford, Starr, Malone, Chu, Bloom (bib20) 2021; 29 Krammer (bib27) 2020; 586 Monin, Laing, Muñoz-Ruiz, McKenzie, Del Molino Del Barrio, Alaguthurai, Domingo-Vila, Hayday, Graham, Seow (bib34) 2021; 22 Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bib28) 2020; 581 Wrobel, Benton, Xu, Roustan, Martin, Rosenthal, Skehel, Gamblin (bib60) 2020; 27 Tay, Poh, Rénia, MacAry, Ng (bib51) 2020; 20 Yuan, Liu, Wu, Wilson (bib61) 2021; 538 Emsley, Cowtan (bib14) 2004; 60 Min, Weiszmann, Johnstone, Wang, Yu, Romanow, Thibault, Li, Wang (bib33) 2018; 293 Carter, Fish, Jennings, Doores, Wellman, Seow, Acors, Graham, Timms, Kenny (bib7) 2020; 26 Lau, Claesen, Hansen, Politis (bib29) 2021; 37 Rosa, Pye, Graham, Muir, Seow, Ng, Cook, Rees-Spear, Parker, Dos Santos (bib42) 2021; 7 Pickering, Betancor, Galão, Merrick, Signell, Wilson, Kia Ik, Seow, Graham, Acors (bib37) 2020; 16 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib59) 2020; 367 Scheres, Chen (bib45) 2012; 9 Aricescu, Lu, Jones (bib2) 2006; 62 Doores, Burton (bib13) 2010; 84 Zivanov, Nakane, Scheres (bib65) 2019; 6 Robbiani (10.1016/j.celrep.2022.111276_bib40) 2020; 584 Pickering (10.1016/j.celrep.2022.111276_bib37) 2020; 16 Williams (10.1016/j.celrep.2022.111276_bib57) 2018; 27 Min (10.1016/j.celrep.2022.111276_bib33) 2018; 293 Gavor (10.1016/j.celrep.2022.111276_bib16) 2020; 41 Tan (10.1016/j.celrep.2022.111276_bib49) 2017; 14 Tanaka (10.1016/j.celrep.2022.111276_bib50) 2022; 38 Goswami (10.1016/j.celrep.2022.111276_bib18) 2013; 24 Piccoli (10.1016/j.celrep.2022.111276_bib36) 2020; 183 van den Brink (10.1016/j.celrep.2022.111276_bib56) 2005; 79 Zhang (10.1016/j.celrep.2022.111276_bib63) 2016; 193 Coales (10.1016/j.celrep.2022.111276_bib10) 2010; 24 Corti (10.1016/j.celrep.2022.111276_bib11) 2021; 184 Thompson (10.1016/j.celrep.2022.111276_bib55) 2020; 25 Lechmere (10.1016/j.celrep.2022.111276_bib30) 2022; 13 McCallum (10.1016/j.celrep.2022.111276_bib32) 2021 Zivanov (10.1016/j.celrep.2022.111276_bib65) 2019; 6 Yuan (10.1016/j.celrep.2022.111276_bib61) 2021; 538 Ramaraj (10.1016/j.celrep.2022.111276_bib39) 2012; 1824 Pettersen (10.1016/j.celrep.2022.111276_bib35) 2004; 25 Taylor (10.1016/j.celrep.2022.111276_bib52) 2021; 21 Huang (10.1016/j.celrep.2022.111276_bib22) 2020; 41 Gobeil (10.1016/j.celrep.2022.111276_bib17) 2021; 373 Rosa (10.1016/j.celrep.2022.111276_bib42) 2021; 7 Masson (10.1016/j.celrep.2022.111276_bib31) 2019; 16 Scheres (10.1016/j.celrep.2022.111276_bib46) 2020; 76 Carter (10.1016/j.celrep.2022.111276_bib7) 2020; 26 Graham (10.1016/j.celrep.2022.111276_bib19) 2021; 54 Hurt (10.1016/j.celrep.2022.111276_bib25) 2021; 13 Doores (10.1016/j.celrep.2022.111276_bib13) 2010; 84 Wrapp (10.1016/j.celrep.2022.111276_bib59) 2020; 367 Seow (10.1016/j.celrep.2022.111276_bib47) 2022; 39 Barnes (10.1016/j.celrep.2022.111276_bib3) 2020; 588 Winstone (10.1016/j.celrep.2022.111276_bib58) 2021; 95 Engen (10.1016/j.celrep.2022.111276_bib15) 2020; 45 Seow (10.1016/j.celrep.2022.111276_bib48) 2020; 5 ter Meulen (10.1016/j.celrep.2022.111276_bib53) 2006; 3 Lau (10.1016/j.celrep.2022.111276_bib29) 2021; 37 Zufferey (10.1016/j.celrep.2022.111276_bib66) 1997; 15 Punjani (10.1016/j.celrep.2022.111276_bib38) 2017; 14 Scheres (10.1016/j.celrep.2022.111276_bib45) 2012; 9 Aricescu (10.1016/j.celrep.2022.111276_bib2) 2006; 62 Benton (10.1016/j.celrep.2022.111276_bib4) 2021; 118 Castro Dopico (10.1016/j.celrep.2022.111276_bib8) 2022; 291 Kidmose (10.1016/j.celrep.2022.111276_bib26) 2019; 6 Cerutti (10.1016/j.celrep.2022.111276_bib9) 2021; 29 Grehan (10.1016/j.celrep.2022.111276_bib21) 2015; 2 Lan (10.1016/j.celrep.2022.111276_bib28) 2020; 581 Rosenthal (10.1016/j.celrep.2022.111276_bib43) 2003; 333 Greaney (10.1016/j.celrep.2022.111276_bib20) 2021; 29 Sanchez-Garcia (10.1016/j.celrep.2022.111276_bib44) 2021; 4 Zhang (10.1016/j.celrep.2022.111276_bib62) 2021; 372 Monin (10.1016/j.celrep.2022.111276_bib34) 2021; 22 Terwilliger (10.1016/j.celrep.2022.111276_bib54) 2020; 17 Rogers (10.1016/j.celrep.2022.111276_bib41) 2020; 369 Afonine (10.1016/j.celrep.2022.111276_bib1) 2018; 74 Zheng (10.1016/j.celrep.2022.111276_bib64) 2017; 14 Emsley (10.1016/j.celrep.2022.111276_bib14) 2004; 60 Benton (10.1016/j.celrep.2022.111276_bib5) 2020; 588 Krammer (10.1016/j.celrep.2022.111276_bib27) 2020; 586 Wrobel (10.1016/j.celrep.2022.111276_bib60) 2020; 27 Hurlburt (10.1016/j.celrep.2022.111276_bib24) 2020; 11 Brouwer (10.1016/j.celrep.2022.111276_bib6) 2020; 369 Dixon (10.1016/j.celrep.2022.111276_bib12) 2014 Tay (10.1016/j.celrep.2022.111276_bib51) 2020; 20 Huo (10.1016/j.celrep.2022.111276_bib23) 2021; 12 |
| References_xml | – volume: 9 start-page: 853 year: 2012 end-page: 854 ident: bib45 article-title: Prevention of overfitting in cryo-EM structure determination publication-title: Nat. Methods – volume: 24 start-page: 3585 year: 2010 end-page: 3592 ident: bib10 article-title: Expansion of time window for mass spectrometric measurement of amide hydrogen/deuterium exchange reactions publication-title: Rapid Commun. Mass Spectrom. – volume: 6 start-page: 5 year: 2019 end-page: 17 ident: bib65 article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis publication-title: IUCrJ – volume: 118 year: 2021 ident: bib4 article-title: The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2 publication-title: Proc. Natl. Acad. Sci. USA – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bib14 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 20 start-page: 363 year: 2020 end-page: 374 ident: bib51 article-title: The trinity of COVID-19: immunity, inflammation and intervention publication-title: Nat. Rev. Immunol. – year: 2014 ident: bib12 article-title: Mechanisms of immunoglobulin deactivation by Streptococcus pyogenes publication-title: PhD Thesis – volume: 29 start-page: 463 year: 2021 end-page: 476.e6 ident: bib20 article-title: Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies publication-title: Cell Host Microbe – volume: 6 start-page: 526 year: 2019 end-page: 531 ident: bib26 article-title: Namdinator - automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps publication-title: IUCrJ – volume: 16 start-page: 595 year: 2019 end-page: 602 ident: bib31 article-title: Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments publication-title: Nat. Methods – volume: 586 start-page: 516 year: 2020 end-page: 527 ident: bib27 article-title: SARS-CoV-2 vaccines in development publication-title: Nature – volume: 41 start-page: 1006 year: 2020 end-page: 1022 ident: bib16 article-title: Structural basis of SARS-CoV-2 and SARS-CoV antibody interactions publication-title: Trends Immunol. – volume: 3 start-page: e237 year: 2006 ident: bib53 article-title: Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants publication-title: PLoS Med. – volume: 584 start-page: 437 year: 2020 end-page: 442 ident: bib40 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature – volume: 24 start-page: 1584 year: 2013 end-page: 1592 ident: bib18 article-title: Time window expansion for HDX analysis of an intrinsically disordered protein publication-title: J. Am. Soc. Mass Spectrom. – volume: 13 year: 2022 ident: bib30 article-title: Broad neutralization of SARS-CoV-2 variants, including omicron, following breakthrough infection with delta in COVID-19-vaccinated individuals publication-title: mBio – volume: 27 start-page: 293 year: 2018 end-page: 315 ident: bib57 article-title: MolProbity: more and better reference data for improved all-atom structure validation publication-title: Protein Sci. – volume: 293 start-page: 14678 year: 2018 end-page: 14688 ident: bib33 article-title: Agonistic beta-Klotho antibody mimics fibroblast growth factor 21 (FGF21) functions publication-title: J. Biol. Chem. – volume: 21 start-page: 382 year: 2021 end-page: 393 ident: bib52 article-title: Neutralizing monoclonal antibodies for treatment of COVID-19 publication-title: Nat. Rev. Immunol. – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: bib28 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – volume: 17 start-page: 923 year: 2020 end-page: 927 ident: bib54 article-title: Improvement of cryo-EM maps by density modification publication-title: Nat. Methods – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: bib38 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: bib64 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods – volume: 369 start-page: 643 year: 2020 end-page: 650 ident: bib6 article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability publication-title: Science – volume: 15 start-page: 871 year: 1997 end-page: 875 ident: bib66 article-title: Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo publication-title: Nat. Biotechnol. – volume: 38 year: 2022 ident: bib50 article-title: Rapid identification of neutralizing antibodies against SARS-CoV-2 variants by mRNA display publication-title: Cell Rep. – volume: 39 start-page: 110757 year: 2022 ident: bib47 article-title: ChAdOx1 nCoV-19 vaccine elicits monoclonal antibodies with cross-neutralizing activity against SARS-CoV-2 viral variants publication-title: Cell Rep. – volume: 84 start-page: 10510 year: 2010 end-page: 10521 ident: bib13 article-title: Variable loop glycan dependency of the broad and potent HIV-1-neutralizing antibodies PG9 and PG16 publication-title: J. Virol. – volume: 184 start-page: 4593 year: 2021 end-page: 4595 ident: bib11 article-title: Tackling COVID-19 with neutralizing monoclonal antibodies publication-title: Cell – volume: 37 start-page: 270 year: 2021 end-page: 272 ident: bib29 article-title: Deuteros 2.0: peptide-level significance testing of data from hydrogen deuterium exchange mass spectrometry publication-title: Bioinformatics – volume: 79 start-page: 1635 year: 2005 end-page: 1644 ident: bib56 article-title: Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus publication-title: J. Virol. – volume: 291 start-page: 32 year: 2022 end-page: 50 ident: bib8 article-title: Immunity to SARS-CoV-2 induced by infection or vaccination publication-title: J. Intern. Med. – volume: 588 start-page: 682 year: 2020 end-page: 687 ident: bib3 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature – volume: 1824 start-page: 520 year: 2012 end-page: 532 ident: bib39 article-title: Antigen-antibody interface properties: composition, residue interactions, and features of 53 non-redundant structures publication-title: Biochim. Biophys. Acta – volume: 95 year: 2021 ident: bib58 article-title: The polybasic cleavage site in the SARS-CoV-2 spike modulates viral sensitivity to Type I interferon and IFITM2 publication-title: J. Virol. – volume: 29 start-page: 819 year: 2021 end-page: 833.e7 ident: bib9 article-title: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite publication-title: Cell Host Microbe – year: 2021 ident: bib32 article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 publication-title: Cell – volume: 588 start-page: 327 year: 2020 end-page: 330 ident: bib5 article-title: Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion publication-title: Nature – volume: 25 year: 2020 ident: bib55 article-title: Detection of neutralising antibodies to SARS-CoV-2 to determine population exposure in Scottish blood donors between March and May 2020 publication-title: Euro Surveill. – volume: 5 start-page: 1598 year: 2020 end-page: 1607 ident: bib48 article-title: Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans publication-title: Nat. Microbiol. – volume: 538 start-page: 192 year: 2021 end-page: 203 ident: bib61 article-title: Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies publication-title: Biochem. Biophys. Res. Commun. – volume: 14 start-page: 793 year: 2017 end-page: 796 ident: bib49 article-title: Addressing preferred specimen orientation in single-particle cryo-EM through tilting publication-title: Nat. Methods – volume: 369 start-page: 956 year: 2020 end-page: 963 ident: bib41 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science – volume: 333 start-page: 721 year: 2003 end-page: 745 ident: bib43 article-title: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy publication-title: J. Mol. Biol. – volume: 13 start-page: 628 year: 2021 ident: bib25 article-title: Neutralizing antibody therapeutics for COVID-19 publication-title: Viruses – volume: 12 start-page: 5469 year: 2021 ident: bib23 article-title: A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19 publication-title: Nat. Commun. – volume: 27 start-page: 763 year: 2020 end-page: 767 ident: bib60 article-title: SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects publication-title: Nat. Struct. Mol. Biol. – volume: 41 start-page: 1141 year: 2020 end-page: 1149 ident: bib22 article-title: Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19 publication-title: Acta Pharmacol. Sin. – volume: 54 start-page: 1276 year: 2021 end-page: 1289.e6 ident: bib19 article-title: Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant publication-title: Immunity – volume: 2 start-page: 379 year: 2015 end-page: 384 ident: bib21 article-title: An optimised method for the production of MERS-CoV spike expressing viral pseudotypes publication-title: MethodsX – volume: 22 start-page: 765 year: 2021 end-page: 778 ident: bib34 article-title: Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study publication-title: Lancet Oncol. – volume: 183 start-page: 1024 year: 2020 end-page: 1042.e21 ident: bib36 article-title: Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology publication-title: Cell – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib35 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 16 year: 2020 ident: bib37 article-title: Comparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settings publication-title: PLoS Pathog. – volume: 373 start-page: eabi6226 year: 2021 ident: bib17 article-title: Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity publication-title: Science – volume: 74 start-page: 531 year: 2018 end-page: 544 ident: bib1 article-title: Real-space refinement in PHENIX for cryo-EM and crystallography publication-title: Acta Crystallogr. D Struct. Biol. – volume: 11 start-page: 5413 year: 2020 ident: bib24 article-title: Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation publication-title: Nat. Commun. – volume: 76 start-page: 94 year: 2020 end-page: 101 ident: bib46 article-title: Amyloid structure determination in RELION-3.1 publication-title: Acta Crystallogr. D Struct. Biol. – volume: 372 start-page: 525 year: 2021 end-page: 530 ident: bib62 article-title: Structural impact on SARS-CoV-2 spike protein by D614G substitution publication-title: Science – volume: 193 start-page: 1 year: 2016 end-page: 12 ident: bib63 article-title: Gctf: real-time CTF determination and correction publication-title: J. Struct. Biol. – volume: 7 year: 2021 ident: bib42 article-title: SARS-CoV-2 can recruit a haem metabolite to evade antibody immunity publication-title: Sci. Adv. – volume: 26 start-page: 1701 year: 2020 end-page: 1707 ident: bib7 article-title: Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection publication-title: Nat. Med. – volume: 45 start-page: 906 year: 2020 end-page: 918 ident: bib15 article-title: Complementarity of hydrogen/deuterium exchange mass spectrometry and cryo-electron microscopy publication-title: Trends Biochem. Sci. – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib59 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 62 start-page: 1243 year: 2006 end-page: 1250 ident: bib2 article-title: A time- and cost-efficient system for high-level protein production in mammalian cells publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 4 start-page: 874 year: 2021 ident: bib44 article-title: DeepEMhancer: a deep learning solution for cryo-EM volume post-processing publication-title: Commun. Biol. – volume: 25 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib55 article-title: Detection of neutralising antibodies to SARS-CoV-2 to determine population exposure in Scottish blood donors between March and May 2020 publication-title: Euro Surveill. doi: 10.2807/1560-7917.ES.2020.25.42.2000685 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib59 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 2 start-page: 379 year: 2015 ident: 10.1016/j.celrep.2022.111276_bib21 article-title: An optimised method for the production of MERS-CoV spike expressing viral pseudotypes publication-title: MethodsX doi: 10.1016/j.mex.2015.09.003 – volume: 1824 start-page: 520 year: 2012 ident: 10.1016/j.celrep.2022.111276_bib39 article-title: Antigen-antibody interface properties: composition, residue interactions, and features of 53 non-redundant structures publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2011.12.007 – volume: 79 start-page: 1635 year: 2005 ident: 10.1016/j.celrep.2022.111276_bib56 article-title: Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus publication-title: J. Virol. doi: 10.1128/JVI.79.3.1635-1644.2005 – volume: 16 start-page: 595 year: 2019 ident: 10.1016/j.celrep.2022.111276_bib31 article-title: Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments publication-title: Nat. Methods doi: 10.1038/s41592-019-0459-y – volume: 4 start-page: 874 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib44 article-title: DeepEMhancer: a deep learning solution for cryo-EM volume post-processing publication-title: Commun. Biol. doi: 10.1038/s42003-021-02399-1 – volume: 538 start-page: 192 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib61 article-title: Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.10.012 – volume: 95 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib58 article-title: The polybasic cleavage site in the SARS-CoV-2 spike modulates viral sensitivity to Type I interferon and IFITM2 publication-title: J. Virol. doi: 10.1128/JVI.02422-20 – volume: 26 start-page: 1701 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib7 article-title: Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection publication-title: Nat. Med. doi: 10.1038/s41591-020-1054-6 – volume: 14 start-page: 290 year: 2017 ident: 10.1016/j.celrep.2022.111276_bib38 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 74 start-page: 531 year: 2018 ident: 10.1016/j.celrep.2022.111276_bib1 article-title: Real-space refinement in PHENIX for cryo-EM and crystallography publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798318006551 – volume: 29 start-page: 463 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib20 article-title: Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.02.003 – volume: 118 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib4 article-title: The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2022586118 – volume: 7 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib42 article-title: SARS-CoV-2 can recruit a haem metabolite to evade antibody immunity publication-title: Sci. Adv. doi: 10.1126/sciadv.abg7607 – volume: 16 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib37 article-title: Comparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settings publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008817 – volume: 586 start-page: 516 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib27 article-title: SARS-CoV-2 vaccines in development publication-title: Nature doi: 10.1038/s41586-020-2798-3 – volume: 37 start-page: 270 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib29 article-title: Deuteros 2.0: peptide-level significance testing of data from hydrogen deuterium exchange mass spectrometry publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa677 – volume: 372 start-page: 525 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib62 article-title: Structural impact on SARS-CoV-2 spike protein by D614G substitution publication-title: Science doi: 10.1126/science.abf2303 – volume: 29 start-page: 819 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib9 article-title: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.03.005 – volume: 84 start-page: 10510 year: 2010 ident: 10.1016/j.celrep.2022.111276_bib13 article-title: Variable loop glycan dependency of the broad and potent HIV-1-neutralizing antibodies PG9 and PG16 publication-title: J. Virol. doi: 10.1128/JVI.00552-10 – volume: 291 start-page: 32 year: 2022 ident: 10.1016/j.celrep.2022.111276_bib8 article-title: Immunity to SARS-CoV-2 induced by infection or vaccination publication-title: J. Intern. Med. doi: 10.1111/joim.13372 – volume: 184 start-page: 4593 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib11 article-title: Tackling COVID-19 with neutralizing monoclonal antibodies publication-title: Cell doi: 10.1016/j.cell.2021.07.027 – volume: 20 start-page: 363 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib51 article-title: The trinity of COVID-19: immunity, inflammation and intervention publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0311-8 – volume: 6 start-page: 5 year: 2019 ident: 10.1016/j.celrep.2022.111276_bib65 article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis publication-title: IUCrJ doi: 10.1107/S205225251801463X – year: 2014 ident: 10.1016/j.celrep.2022.111276_bib12 article-title: Mechanisms of immunoglobulin deactivation by Streptococcus pyogenes publication-title: PhD Thesis – volume: 13 year: 2022 ident: 10.1016/j.celrep.2022.111276_bib30 article-title: Broad neutralization of SARS-CoV-2 variants, including omicron, following breakthrough infection with delta in COVID-19-vaccinated individuals publication-title: mBio doi: 10.1128/mbio.03798-21 – volume: 11 start-page: 5413 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib24 article-title: Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation publication-title: Nat. Commun. doi: 10.1038/s41467-020-19231-9 – volume: 27 start-page: 763 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib60 article-title: SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0468-7 – volume: 333 start-page: 721 year: 2003 ident: 10.1016/j.celrep.2022.111276_bib43 article-title: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2003.07.013 – volume: 369 start-page: 643 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib6 article-title: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability publication-title: Science doi: 10.1126/science.abc5902 – volume: 12 start-page: 5469 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib23 article-title: A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25480-z – volume: 369 start-page: 956 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib41 article-title: Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science doi: 10.1126/science.abc7520 – volume: 39 start-page: 110757 year: 2022 ident: 10.1016/j.celrep.2022.111276_bib47 article-title: ChAdOx1 nCoV-19 vaccine elicits monoclonal antibodies with cross-neutralizing activity against SARS-CoV-2 viral variants publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110757 – volume: 9 start-page: 853 year: 2012 ident: 10.1016/j.celrep.2022.111276_bib45 article-title: Prevention of overfitting in cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.2115 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.celrep.2022.111276_bib35 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 588 start-page: 682 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib3 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature doi: 10.1038/s41586-020-2852-1 – volume: 5 start-page: 1598 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib48 article-title: Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-00813-8 – volume: 17 start-page: 923 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib54 article-title: Improvement of cryo-EM maps by density modification publication-title: Nat. Methods doi: 10.1038/s41592-020-0914-9 – volume: 14 start-page: 793 year: 2017 ident: 10.1016/j.celrep.2022.111276_bib49 article-title: Addressing preferred specimen orientation in single-particle cryo-EM through tilting publication-title: Nat. Methods doi: 10.1038/nmeth.4347 – volume: 76 start-page: 94 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib46 article-title: Amyloid structure determination in RELION-3.1 publication-title: Acta Crystallogr. D Struct. Biol. doi: 10.1107/S2059798319016577 – volume: 14 start-page: 331 year: 2017 ident: 10.1016/j.celrep.2022.111276_bib64 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 41 start-page: 1141 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib22 article-title: Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19 publication-title: Acta Pharmacol. Sin. doi: 10.1038/s41401-020-0485-4 – volume: 584 start-page: 437 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib40 article-title: Convergent antibody responses to SARS-CoV-2 in convalescent individuals publication-title: Nature doi: 10.1038/s41586-020-2456-9 – volume: 27 start-page: 293 year: 2018 ident: 10.1016/j.celrep.2022.111276_bib57 article-title: MolProbity: more and better reference data for improved all-atom structure validation publication-title: Protein Sci. doi: 10.1002/pro.3330 – volume: 13 start-page: 628 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib25 article-title: Neutralizing antibody therapeutics for COVID-19 publication-title: Viruses doi: 10.3390/v13040628 – volume: 293 start-page: 14678 year: 2018 ident: 10.1016/j.celrep.2022.111276_bib33 article-title: Agonistic beta-Klotho antibody mimics fibroblast growth factor 21 (FGF21) functions publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.004343 – volume: 6 start-page: 526 year: 2019 ident: 10.1016/j.celrep.2022.111276_bib26 article-title: Namdinator - automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps publication-title: IUCrJ doi: 10.1107/S2052252519007619 – volume: 24 start-page: 1584 year: 2013 ident: 10.1016/j.celrep.2022.111276_bib18 article-title: Time window expansion for HDX analysis of an intrinsically disordered protein publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-013-0669-y – volume: 24 start-page: 3585 year: 2010 ident: 10.1016/j.celrep.2022.111276_bib10 article-title: Expansion of time window for mass spectrometric measurement of amide hydrogen/deuterium exchange reactions publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.4814 – volume: 54 start-page: 1276 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib19 article-title: Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant publication-title: Immunity doi: 10.1016/j.immuni.2021.03.023 – volume: 62 start-page: 1243 year: 2006 ident: 10.1016/j.celrep.2022.111276_bib2 article-title: A time- and cost-efficient system for high-level protein production in mammalian cells publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444906029799 – year: 2021 ident: 10.1016/j.celrep.2022.111276_bib32 article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2021.03.028 – volume: 588 start-page: 327 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib5 article-title: Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion publication-title: Nature doi: 10.1038/s41586-020-2772-0 – volume: 193 start-page: 1 year: 2016 ident: 10.1016/j.celrep.2022.111276_bib63 article-title: Gctf: real-time CTF determination and correction publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.11.003 – volume: 581 start-page: 215 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib28 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 41 start-page: 1006 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib16 article-title: Structural basis of SARS-CoV-2 and SARS-CoV antibody interactions publication-title: Trends Immunol. doi: 10.1016/j.it.2020.09.004 – volume: 60 start-page: 2126 year: 2004 ident: 10.1016/j.celrep.2022.111276_bib14 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 22 start-page: 765 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib34 article-title: Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(21)00213-8 – volume: 45 start-page: 906 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib15 article-title: Complementarity of hydrogen/deuterium exchange mass spectrometry and cryo-electron microscopy publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2020.05.005 – volume: 15 start-page: 871 year: 1997 ident: 10.1016/j.celrep.2022.111276_bib66 article-title: Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo publication-title: Nat. Biotechnol. doi: 10.1038/nbt0997-871 – volume: 183 start-page: 1024 year: 2020 ident: 10.1016/j.celrep.2022.111276_bib36 article-title: Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology publication-title: Cell doi: 10.1016/j.cell.2020.09.037 – volume: 38 year: 2022 ident: 10.1016/j.celrep.2022.111276_bib50 article-title: Rapid identification of neutralizing antibodies against SARS-CoV-2 variants by mRNA display publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110348 – volume: 21 start-page: 382 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib52 article-title: Neutralizing monoclonal antibodies for treatment of COVID-19 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00542-x – volume: 3 start-page: e237 year: 2006 ident: 10.1016/j.celrep.2022.111276_bib53 article-title: Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants publication-title: PLoS Med. doi: 10.1371/journal.pmed.0030237 – volume: 373 start-page: eabi6226 year: 2021 ident: 10.1016/j.celrep.2022.111276_bib17 article-title: Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity publication-title: Science doi: 10.1126/science.abi6226 |
| SSID | ssj0000601194 |
| Score | 2.4847398 |
| Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the target for neutralizing antibodies elicited following both infection and vaccination.... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 111276 |
| SubjectTerms | Antibodies, Neutralizing Antibodies, Viral antibody COVID-19 Cryoelectron Microscopy cryogenic electron microscopy Epitopes Humans hydrogen-deuterium exchange Neutralization Tests neutralizing epitope omicron SARS-CoV-2 Spike Glycoprotein, Coronavirus spike subdomain 1 Syndactyly Vaccination |
| Title | A neutralizing epitope on the SD1 domain of SARS-CoV-2 spike targeted following infection and vaccination |
| URI | https://dx.doi.org/10.1016/j.celrep.2022.111276 https://www.ncbi.nlm.nih.gov/pubmed/35981534 https://www.proquest.com/docview/2704868195 https://pubmed.ncbi.nlm.nih.gov/PMC9365860 |
| Volume | 40 |
| WOSCitedRecordID | wos000848547900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lBaReEG_Co1okbpGj-O09RgXUA6oQKVFu1q49Vl3COsqrhd_BD2bG63WStqiAxCWKHDu78vetdx7fjBl7G0SFVNJznSRz0UFJBrikIvAdP5RBkFFmpq7jHn-MT06SyUR86nR-2lqY9TTWOrm8FLP_CjUeQ7CpdPYv4G7_FA_gdwQdPxF2_Pwj4Ic9Das6fvGDwgAwwzU7gyYp0Bu9c3t59U2WtZk4Gn4eOUfV2PF6i1n5FXpGGI5GaIH8qC5MwYuRaxnV8lpmWak3cNomBxQCtPkHSgzbUrCtSMMITB6pKR5rH_VnJgZ7LJey2OR_FibgqzWpPeV8IyiS0zXVTNUqhDFub0Yn3YYu0OtFJpjqYhNPszU1O5JPzyORnWf6cPbhhmPNc9u0eWr4mdy4HZjIxHk_gynegj7NgfYIL77Sfbvez0c0Cg3ikUJARMkeu-PFoRBbjrrZ36lPHskV2mnZmsxaOHh9sN_ZPNd9mqvS3C1b5_QBu984KXxoyPWQdUA_YvfMa0u_P2blkG9TjDcU45XmSDGOFOOGYrwq-IZivKYYtxTjLcV4SzGOFONbFHvCvnx4f3p07DSv7HAydAWWjpsHcgCDXEgRgx-Kws3Q4h6ERS6SUEVQJCIKchXlMoiEL11VkEesQEVKycDN_adsX1canjMeAoQQFEIoFwLwQORFphS5Dwlk6Bl0mW9vapo1_ezptSrT1AoXz1MDRUpQpAaKLnPaq2amn8st58cWr7SxSY2tmSLHbrnyjYU3xUc25eGkhmq1SL2Y-lxSArvLnhm427lQQ000QgIcd4cI7QnUDn73F12e1W3hhY_eRDR48c8zfskONqv0Fdtfzlfwmt3N1styMT9ke_EkOayXwi-trNt7 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+neutralizing+epitope+on+the+SD1+domain+of+SARS-CoV-2+spike+targeted+following+infection+and+vaccination&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Seow%2C+Jeffrey&rft.au=Khan%2C+Hataf&rft.au=Rosa%2C+Annachiara&rft.au=Calvaresi%2C+Valeria&rft.date=2022-08-23&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=40&rft.issue=8&rft_id=info:doi/10.1016%2Fj.celrep.2022.111276&rft.externalDocID=S2211124722010968 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |