Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean
Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bact...
Uloženo v:
| Vydáno v: | Environmental microbiology Ročník 11; číslo 8; s. 2078 - 2093 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.08.2009
Blackwell Publishing Ltd |
| Témata: | |
| ISSN: | 1462-2912, 1462-2920, 1462-2920 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9°S) to the UK (46.4°N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 ± 9%) and Prochlorococcus (12 ± 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both ~15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (~25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance. |
|---|---|
| AbstractList | SummaryMembers of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9S) to the UK (46.4N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 c 9%) and Prochlorococcus (12 c 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both 615%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (625%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance. Summary Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9°S) to the UK (46.4°N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD‐FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 ± 9%) and Prochlorococcus (12 ± 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both ∼15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi‐related clade SAR202 occurred preferentially below the DCM (4–6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (∼25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient‐rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance. Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9°S) to the UK (46.4°N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD‐FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 ± 9%) and Prochlorococcus (12 ± 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both ∼15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi ‐related clade SAR202 occurred preferentially below the DCM (4–6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (∼25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient‐rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes , marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance. Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9°S) to the UK (46.4°N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 ± 9%) and Prochlorococcus (12 ± 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both ~15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (~25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance. Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9 degrees S) to the UK (46.4 degrees N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 +/- 9%) and Prochlorococcus (12 +/- 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both approximately 15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (approximately 25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance.Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9 degrees S) to the UK (46.4 degrees N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 +/- 9%) and Prochlorococcus (12 +/- 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both approximately 15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (approximately 25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance. Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9 degrees S) to the UK (46.4 degrees N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 +/- 9%) and Prochlorococcus (12 +/- 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both approximately 15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (approximately 25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance. |
| Author | Fuchs, Bernhard M Tarran, Glen A Pernthaler, Jakob Zubkov, Mikhail V Schattenhofer, Martha Amann, Rudolf |
| Author_xml | – sequence: 1 fullname: Schattenhofer, Martha – sequence: 2 fullname: Fuchs, Bernhard M – sequence: 3 fullname: Amann, Rudolf – sequence: 4 fullname: Zubkov, Mikhail V – sequence: 5 fullname: Tarran, Glen A – sequence: 6 fullname: Pernthaler, Jakob |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19453607$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1v1DAQhi1URD_gL0BO3DYd24k_DiBVVaGVFvUA5Wo5zgS8zcYhdkT773G6ZQ9cFvvgkeZ5X4_mPSVHQxiQkIJCSfM535S0EmzFNIOSAegSqGa6fHhBTvaNo31N2TE5jXEDQCWX8IocU13VXIA8Id_XNvk0t36wfdH6mCbfzMmHoQhdMU7h3k6PIXlXjN6FsbfDfcq9MYxzbxcsFn4o0k8sLlJuLuCtQzu8Ji8720d88_yekbtPV98ur1fr2883lxfrlaup1qs6D9e2ltu6QasBmworlA6kRGTK6spJwE5IVoOktZSug3xF29QMNUrkZ-T9zjeP-mvGmMzWR4d9ngXDHI2Qteag1UGwErwWoPhBkIFSlCrI4NtncG622Jpx8tu8LPN3txn4uAPcFGKcsDPOp6elpcn63lAwS5hmY5aczJKZWcI0T2Gah2yg_jHY_3FY-mEn_e17fPxvnbn6crNUWf9up-9sMPbH5KO5-8qAcqBCcEUV_wMoTcBY |
| CitedBy_id | crossref_primary_10_3389_fmars_2022_993667 crossref_primary_10_1016_j_gca_2015_09_004 crossref_primary_10_1038_ismej_2012_108 crossref_primary_10_1111_1574_6941_12085 crossref_primary_10_1155_2014_706082 crossref_primary_10_1111_j_1574_6941_2010_00997_x crossref_primary_10_3390_md11103777 crossref_primary_10_3389_fmars_2016_00104 crossref_primary_10_1016_j_pocean_2016_10_013 crossref_primary_10_1016_j_pocean_2023_103054 crossref_primary_10_1111_j_1758_2229_2011_00308_x crossref_primary_10_1016_j_gca_2018_09_001 crossref_primary_10_1016_j_syapm_2021_126185 crossref_primary_10_1038_ismej_2013_152 crossref_primary_10_3389_fmicb_2019_02273 crossref_primary_10_3389_fmicb_2021_658803 crossref_primary_10_1111_1574_6941_12409 crossref_primary_10_1126_science_1198078 crossref_primary_10_3389_fmicb_2016_00649 crossref_primary_10_1007_s00248_011_9990_9 crossref_primary_10_1007_s00248_011_9952_2 crossref_primary_10_1007_s00248_022_01992_z crossref_primary_10_1111_j_1462_2920_2010_02281_x crossref_primary_10_1111_j_1758_2229_2011_00282_x crossref_primary_10_1038_srep10467 crossref_primary_10_1111_1462_2920_14408 crossref_primary_10_1111_1462_2920_12984 crossref_primary_10_1111_1462_2920_14007 crossref_primary_10_1007_s00248_013_0183_6 crossref_primary_10_1093_ismejo_wraf049 crossref_primary_10_1016_j_margen_2018_09_002 crossref_primary_10_3389_fmicb_2023_1216130 crossref_primary_10_1111_1758_2229_12721 crossref_primary_10_1016_j_dsr_2014_11_007 crossref_primary_10_1038_s41396_020_0662_y crossref_primary_10_3389_fmicb_2015_01524 crossref_primary_10_1016_j_ecss_2017_11_015 crossref_primary_10_1080_08927014_2012_687723 crossref_primary_10_1111_1462_2920_12517 crossref_primary_10_1007_s10482_013_9952_y crossref_primary_10_7554_eLife_11888 crossref_primary_10_1007_s00248_013_0346_5 crossref_primary_10_1038_nrmicro3378 crossref_primary_10_1128_AEM_07130_11 crossref_primary_10_1038_ismej_2013_32 crossref_primary_10_1111_1462_2920_16313 crossref_primary_10_1111_j_1462_2920_2011_02694_x crossref_primary_10_1146_annurev_marine_010814_015934 crossref_primary_10_3389_fmicb_2018_01002 crossref_primary_10_1186_s40659_024_00556_4 crossref_primary_10_3389_fmicb_2017_01771 crossref_primary_10_1111_1462_2920_15272 crossref_primary_10_3389_fmicb_2019_02404 crossref_primary_10_1007_s00792_015_0770_1 crossref_primary_10_1016_j_watres_2024_122928 crossref_primary_10_3389_fmicb_2015_01038 crossref_primary_10_1038_s41396_023_01376_2 crossref_primary_10_1038_srep35272 crossref_primary_10_1080_01490451_2017_1378951 crossref_primary_10_3389_fmicb_2022_1026596 crossref_primary_10_3389_fmicb_2020_02060 crossref_primary_10_1186_s40168_018_0563_8 crossref_primary_10_1016_j_syapm_2011_01_008 crossref_primary_10_1111_1462_2920_14107 crossref_primary_10_1146_annurev_marine_112122_105229 crossref_primary_10_1080_02705060_2016_1209443 crossref_primary_10_1111_1462_2920_13898 crossref_primary_10_3389_fmicb_2017_00952 crossref_primary_10_3389_fmars_2022_912528 crossref_primary_10_1038_ismej_2011_80 crossref_primary_10_1111_1462_2920_12692 crossref_primary_10_1007_s11033_019_04766_y crossref_primary_10_3389_fmicb_2023_1213718 crossref_primary_10_1016_j_gca_2014_07_005 crossref_primary_10_1016_j_orggeochem_2015_10_004 crossref_primary_10_1038_ismej_2011_214 crossref_primary_10_1016_j_margen_2016_12_003 crossref_primary_10_3389_fmicb_2024_1357822 crossref_primary_10_1146_annurev_marine_121916_063141 crossref_primary_10_1128_AEM_02570_14 crossref_primary_10_1002_lno_11405 crossref_primary_10_1128_mbio_01654_25 crossref_primary_10_1016_j_pocean_2015_04_020 crossref_primary_10_1038_ismej_2014_67 crossref_primary_10_1111_1462_2920_13429 crossref_primary_10_1017_S1431927611012104 crossref_primary_10_1016_j_orggeochem_2021_104353 crossref_primary_10_1128_AEM_00121_14 crossref_primary_10_1016_j_dsr_2020_103396 crossref_primary_10_1038_ismej_2014_60 crossref_primary_10_1016_j_dsr_2016_04_009 crossref_primary_10_3389_fmicb_2020_01034 crossref_primary_10_1002_mbo3_92 crossref_primary_10_1038_ismej_2011_189 crossref_primary_10_1016_j_syapm_2019_06_005 crossref_primary_10_1002_jobm_201700216 crossref_primary_10_1134_S0026261715040128 crossref_primary_10_2478_s11756_018_0023_8 crossref_primary_10_1038_s41396_017_0009_5 crossref_primary_10_1128_msystems_00179_23 crossref_primary_10_3389_fmicb_2021_764178 crossref_primary_10_3389_fgene_2015_00043 crossref_primary_10_3390_microorganisms9030619 crossref_primary_10_1038_s41396_018_0092_2 crossref_primary_10_1038_srep08476 crossref_primary_10_1111_1462_2920_13759 crossref_primary_10_3739_rikusui_85_1 crossref_primary_10_1128_AEM_03931_15 crossref_primary_10_1111_1462_2920_13237 crossref_primary_10_3389_fmars_2023_1051510 crossref_primary_10_1128_msystems_01287_22 crossref_primary_10_1111_maec_12355 crossref_primary_10_1128_spectrum_00517_25 crossref_primary_10_1038_s42003_024_06535_5 crossref_primary_10_1146_annurev_marine_120709_142811 crossref_primary_10_1002_mbo3_705 crossref_primary_10_1016_j_ecolind_2017_06_051 crossref_primary_10_1016_j_marchem_2023_104299 crossref_primary_10_1371_journal_pone_0174159 crossref_primary_10_1038_ismej_2009_142 crossref_primary_10_1002_lno_11944 crossref_primary_10_1038_ismej_2012_28 crossref_primary_10_1111_j_1462_2920_2010_02403_x crossref_primary_10_1016_j_syapm_2013_08_006 crossref_primary_10_5194_bg_8_3747_2011 crossref_primary_10_1016_j_dsr_2020_103451 crossref_primary_10_1186_s40168_022_01263_6 crossref_primary_10_1111_j_1365_294X_2011_05378_x crossref_primary_10_7717_peerj_3517 crossref_primary_10_1515_ohs_2020_0003 crossref_primary_10_1111_1574_6941_12142 crossref_primary_10_1128_AEM_00294_11 crossref_primary_10_1128_AEM_00204_16 crossref_primary_10_1128_AEM_00099_14 crossref_primary_10_1080_01490451_2015_1048393 crossref_primary_10_1002_cyto_a_20770 crossref_primary_10_1038_ismej_2010_79 crossref_primary_10_3390_microorganisms5040068 crossref_primary_10_1007_s10872_016_0391_z crossref_primary_10_1038_ismej_2013_67 crossref_primary_10_1111_1462_2920_12801 crossref_primary_10_5194_bg_9_2177_2012 crossref_primary_10_1038_ismej_2017_26 crossref_primary_10_1038_s41564_018_0276_6 crossref_primary_10_1111_j_1574_6941_2012_01451_x crossref_primary_10_1038_s42003_018_0086_7 crossref_primary_10_1007_s00343_025_4336_5 crossref_primary_10_1038_s41467_023_40726_8 crossref_primary_10_1007_s10482_013_0003_5 crossref_primary_10_1038_s41586_024_07924_w crossref_primary_10_7554_eLife_46497 crossref_primary_10_1038_ismej_2013_243 crossref_primary_10_1099_ijsem_0_002416 crossref_primary_10_1016_j_marpolbul_2016_03_015 crossref_primary_10_1002_lno_10487 crossref_primary_10_1016_j_syapm_2013_05_002 crossref_primary_10_1371_journal_pone_0101415 crossref_primary_10_1016_j_orggeochem_2017_04_013 crossref_primary_10_1128_AEM_01659_15 crossref_primary_10_1128_AEM_02931_10 crossref_primary_10_1007_s00248_020_01508_7 crossref_primary_10_1016_j_syapm_2009_12_006 crossref_primary_10_1128_AEM_00184_19 crossref_primary_10_1080_10934529_2013_824784 crossref_primary_10_1007_s13131_021_1778_2 crossref_primary_10_1111_1462_2920_13624 crossref_primary_10_1111_1462_2920_12258 crossref_primary_10_1128_AEM_03410_14 crossref_primary_10_3389_fmicb_2017_01317 |
| Cites_doi | 10.1038/nature04158 10.1073/pnas.93.15.7979 10.1128/AEM.65.12.5554-5563.1999 10.1128/aem.62.4.1171-1177.1996 10.1128/AEM.68.6.2997-3002.2002 10.1016/S0723-2020(99)80053-8 10.1111/j.1574-6941.2006.00225.x 10.1128/AEM.72.3.2141-2147.2006 10.1111/j.1462-2920.2007.01246.x 10.1073/pnas.0502088102 10.1099/00221287-147-7-1731 10.1073/pnas.0809329105 10.1128/AEM.70.7.4129-4135.2004 10.1038/nature01240 10.3354/ame039145 10.3354/meps150275 10.1111/j.1462-2920.2007.01244.x 10.1002/cyto.990140205 10.4319/lo.1997.42.5.0811 10.1093/nar/gkm864 10.4319/lo.2006.51.1.0060 10.1099/13500872-142-5-1097 10.1128/AEM.70.7.4411-4414.2004 10.1038/ismej.2008.117 10.1073/pnas.1733211100 10.1128/AEM.71.5.2303-2309.2005 10.1128/AEM.67.11.5134-5142.2001 10.4319/lo.2007.52.2.0495 10.4319/lo.1993.38.5.0924 10.1038/nature03911 10.1128/aem.63.1.63-70.1997 10.1128/AEM.68.6.3094-3101.2002 10.1128/AEM.69.11.6587-6596.2003 10.1128/AEM.66.7.3044-3051.2000 10.1111/j.1462-2920.2007.01437.x 10.1128/AEM.68.2.661-667.2002 10.1038/345060a0 10.1016/j.dsr2.2006.05.007 10.1016/j.femsec.2004.09.001 10.1128/aem.63.4.1441-1448.1997 10.1128/AEM.63.1.50-56.1997 10.1128/AEM.70.5.2836-2842.2004 10.1126/science.1118052 10.3354/ame045107 10.1016/j.tim.2006.04.007 10.1073/pnas.0602399103 10.1016/S0399-1784(99)80045-0 10.1073/pnas.95.12.6578 10.1128/AEM.69.5.2631-2637.2003 10.1016/j.dsr2.2006.05.015 10.1128/AEM.67.11.5210-5218.2001 10.1016/S0723-2020(11)80121-9 10.1111/j.1574-6941.2006.00276.x 10.4319/lo.1998.43.7.1746 10.1046/j.1462-2920.2002.00364.x 10.1016/j.dsr2.2006.05.008 10.1111/j.1462-2920.2007.01360.x 10.1038/nature06776 10.1128/AEM.66.4.1692-1697.2000 10.1038/35054051 10.4319/lo.2006.51.5.2131 10.1007/s002489900132 10.1128/AEM.71.6.2979-2986.2005 10.1111/j.1462-2920.2005.00759.x 10.3354/ame021013 10.1073/pnas.0712027105 10.1128/AEM.65.8.3721-3726.1999 10.1038/ngeo232 10.1073/pnas.0605127103 10.1128/AEM.64.2.688-694.1998 10.1038/nature05381 10.1128/MMBR.63.1.106-127.1999 10.1111/j.1462-2920.2006.01152.x 10.1099/00221287-144-12-3257 10.1111/j.1462-2920.2008.01627.x 10.1111/j.1462-2920.2007.01497.x 10.4319/lo.2005.50.5.1687 |
| ContentType | Journal Article |
| Copyright | 2009 Society for Applied Microbiology and Blackwell Publishing Ltd |
| Copyright_xml | – notice: 2009 Society for Applied Microbiology and Blackwell Publishing Ltd |
| DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7SN 7T7 7TN 8FD C1K F1W FR3 H95 H99 L.F L.G M7N P64 7S9 L.6 7X8 |
| DOI | 10.1111/j.1462-2920.2009.01929.x |
| DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE - Academic AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Geography |
| EISSN | 1462-2920 |
| EndPage | 2093 |
| ExternalDocumentID | 19453607 10_1111_j_1462_2920_2009_01929_x EMI1929 US201301663818 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Atlantic Ocean ASE, South Atlantic, Benguela Upwelling South Africa AS, Tropical Atlantic United Kingdom |
| GeographicLocations_xml | – name: Atlantic Ocean – name: South Africa – name: AS, Tropical Atlantic – name: ASE, South Atlantic, Benguela Upwelling – name: United Kingdom |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XFK XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AHBTC AITYG ALVPJ HGLYW OIG AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 7QL 7SN 7T7 7TN 8FD C1K F1W FR3 H95 H99 L.F L.G M7N P64 7S9 L.6 7X8 |
| ID | FETCH-LOGICAL-c5199-5291dda3a5bea90eb4e4e7c077ee28a94c70ef6725071577cf0f0f6db52e9e7e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 199 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268655000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1462-2912 1462-2920 |
| IngestDate | Wed Oct 01 13:06:15 EDT 2025 Thu Oct 02 09:42:24 EDT 2025 Tue Oct 07 09:51:49 EDT 2025 Wed Feb 19 01:49:34 EST 2025 Sat Nov 29 07:00:45 EST 2025 Tue Nov 18 22:36:39 EST 2025 Wed Jan 22 16:31:57 EST 2025 Wed Dec 27 19:19:33 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5199-5291dda3a5bea90eb4e4e7c077ee28a94c70ef6725071577cf0f0f6db52e9e7e3 |
| Notes | http://dx.doi.org/10.1111/j.1462-2920.2009.01929.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 19453607 |
| PQID | 20881180 |
| PQPubID | 23462 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_67593098 proquest_miscellaneous_46356083 proquest_miscellaneous_20881180 pubmed_primary_19453607 crossref_citationtrail_10_1111_j_1462_2920_2009_01929_x crossref_primary_10_1111_j_1462_2920_2009_01929_x wiley_primary_10_1111_j_1462_2920_2009_01929_x_EMI1929 fao_agris_US201301663818 |
| PublicationCentury | 2000 |
| PublicationDate | August 2009 |
| PublicationDateYYYYMMDD | 2009-08-01 |
| PublicationDate_xml | – month: 08 year: 2009 text: August 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: England |
| PublicationTitle | Environmental microbiology |
| PublicationTitleAlternate | Environ Microbiol |
| PublicationYear | 2009 |
| Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
| Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
| References | 1990; 56 1997; 42/1 2006; 72 1990; 345 1979; 37 1997; 150 2008; 105 2008; 3 1992; 15 1996; 142 2008; 1 1998; 43 2007; 35 2001; 147 2004; 70 1993; 38 2005; 102 2002; 420 2007; 9 1996; 62 2007; 60 2005; 71 1998; 95 2005; 39 2008a; 10 2007; 445 2006; 53 1997; 63 2000; 21 2000; 66 2006; 14 2005; 437 1998 2008b; 10 2006; 8 1996; 93 1997 1999; 22 1999; 65 2002; 4 2001; 409 2008; 10 1999; 63 2007; 52 2006b; 51 2001; 67 1998; 64 2006; 311 1993; 14 2006a; 51 2006; 45 2002; 68 2002a; 68 1999; 37 2005; 51 2003; 69 2005; 7 2005; 50 1998; 144 2008; 452 2002b; 68 2003; 100 2006; 103 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Longhurst A. (e_1_2_6_43_1) 1998 e_1_2_6_19_1 Wright T.D. (e_1_2_6_79_1) 1997; 63 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 Herbland A. (e_1_2_6_33_1) 1979; 37 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Pernthaler J. (e_1_2_6_61_1) 2003; 69 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 Mackenzie F.T. (e_1_2_6_44_1) 1997 e_1_2_6_10_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_82_1 Gordon D.A. (e_1_2_6_31_1) 1996; 62 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – volume: 445 start-page: 210 year: 2007 end-page: 213 article-title: Light stimulates growth of proteorhodopsin‐containing marine publication-title: Nature – volume: 53 start-page: 1649 year: 2006 end-page: 1665 article-title: Concentrations and uptake of nitrate and ammonium in the Atlantic Ocean between 60°N and 50°S publication-title: Deep Sea Res Part II: Top Stud Oceanogr – volume: 9 start-page: 1253 year: 2007 end-page: 1266 article-title: High local and global diversity of in marine plankton publication-title: Environ Microbiol – volume: 105 start-page: 8724 year: 2008 end-page: 8729 article-title: Genome analysis of the proteorhodopsin‐containing marine bacterium sp. MED152 ( ) publication-title: Proc Natl Acad Sci USA – volume: 102 start-page: 6478 year: 2005 end-page: 6483 article-title: Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation publication-title: Proc Natl Acad Sci USA – volume: 69 start-page: 6587 year: 2003 end-page: 6596 article-title: Diversity and abundance of uncultured ‐like bacteria in the Delaware Estuary publication-title: Appl Environ Microbiol – volume: 63 start-page: 63 year: 1997 end-page: 70 article-title: Diversity and depth‐specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria publication-title: Appl Environ Microbiol – volume: 63 start-page: 50 year: 1997 end-page: 56 article-title: Vertical distribution and phylogenetic characterization of marine planktonic in the Santa Barbara channel publication-title: Appl Environ Microbiol – volume: 452 start-page: 741 year: 2008 end-page: 744 article-title: SAR11 marine bacteria require exogenous reduced sulphur for growth publication-title: Nature – volume: 14 start-page: 257 year: 2006 end-page: 263 article-title: Marine microbial diversity: can it be determined? publication-title: Trends Microbiol – volume: 22 start-page: 434 year: 1999 end-page: 444 article-title: The domain‐specific probe EUB338 is insufficient for the detection of all : development and evaluation of a more comprehensive probe set publication-title: Syst Appl Microbiol – year: 1998 – volume: 65 start-page: 3721 year: 1999 end-page: 3726 article-title: Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence hybridization publication-title: Appl Environ Microbiol – volume: 142 start-page: 1097 year: 1996 end-page: 1106 article-title: Application of a suite of 16S rRNA‐specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga‐flavobacter‐bacteroidetes in the natural environment publication-title: Microbiology – volume: 10 start-page: 1903 year: 2008a end-page: 1911 article-title: Abundance and activity of ‐type SAR202 bacterioplankton in the meso‐ and bathypelagic waters of the (sub)tropical Atlantic publication-title: Environ Microbiol – volume: 71 start-page: 2303 year: 2005 end-page: 2309 article-title: Contribution of to total prokaryotic production in the deep Atlantic Ocean publication-title: Appl Environ Microbiol – volume: 105 start-page: 17861 year: 2008 end-page: 17866 article-title: A single‐cell view on the ecophysiology of anaerobic phototrophic bacteria publication-title: Proc Natl Acad Sci USA – volume: 66 start-page: 3044 year: 2000 end-page: 3051 article-title: Culturability and abundance of pelagic bacteria from the North Sea publication-title: Appl Environ Microbiol – volume: 51 start-page: 60 year: 2006b end-page: 69 article-title: Archaeal uptake of enantiomeric amino acids in the meso‐ and bathypelagic waters of the North Atlantic publication-title: Limnol Oceanogr – volume: 345 start-page: 60 year: 1990 end-page: 63 article-title: Genetic diversity in Sargasso Sea bacterioplankton publication-title: Nature – volume: 93 start-page: 7979 year: 1996 end-page: 7984 article-title: 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non‐Sulfur bacteria publication-title: Proc Natl Acad Sci USA – volume: 437 start-page: 543 year: 2005 end-page: 546 article-title: Isolation of an autotrophic ammonia‐oxidizing marine archaeon publication-title: Nature – volume: 103 start-page: 12115 year: 2006 end-page: 12120 article-title: Microbial diversity in the deep sea and the underexplored ‘rare biosphere’ publication-title: Proc Natl Acad Sci USA – volume: 9 start-page: 2417 year: 2007 end-page: 2429 article-title: Response of and to glucose and phosphorus manipulation in marine mesocosms publication-title: Environ Microbiol – volume: 70 start-page: 2836 year: 2004 end-page: 2842 article-title: Prevalence of the ‐related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean publication-title: Appl Environ Microbiol – volume: 63 start-page: 1441 year: 1997 end-page: 1448 article-title: A novel delta‐subdivision proteobacterial lineage from the lower ocean surface layer publication-title: Appl Environ Microbiol – volume: 103 start-page: 13104 year: 2006 end-page: 13109 article-title: Annually reoccurring bacterial communities are predictable from ocean conditions publication-title: Proc Natl Acad Sci USA – year: 1997 – volume: 10 start-page: 738 year: 2008 end-page: 756 article-title: Major differences of bacterial diversity and activity inside and outside of a natural iron‐fertilized phytoplankton bloom in the Southern Ocean publication-title: Environ Microbiol – volume: 147 start-page: 1731 year: 2001 end-page: 1744 article-title: Closely related genotypes show remarkably different depth distributions in two oceanic regions as revealed by hybridization using 16S rRNA‐targeted oligonucleotides publication-title: Microbiology – volume: 1 start-page: 439 year: 2008 end-page: 443 article-title: Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres publication-title: Nat Geosci – volume: 68 start-page: 3094 year: 2002a end-page: 3101 article-title: Fluorescence hybridization and catalyzed reporter deposition (CARD) for the identification of marine bacteria publication-title: Appl Environ Microbiol – volume: 64 start-page: 688 year: 1998 end-page: 694 article-title: Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis publication-title: Appl Environ Microbiol – volume: 4 start-page: 713 year: 2002 end-page: 720 article-title: Fluorescence hybridization of 16S rRNA gene clones (Clone‐FISH) for probe validation and screening of clone libraries publication-title: Environ Microbiol – volume: 67 start-page: 5134 year: 2001 end-page: 5142 article-title: Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton publication-title: Appl Environ Microbiol – volume: 56 start-page: 1919 year: 1990 end-page: 1925 article-title: Combination of 16S rRNA‐targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations publication-title: Appl Environ Microbiol – volume: 45 start-page: 107 year: 2006 end-page: 113 article-title: SAR11 dominance among metabolically active low nucleic acid bacterioplankton in surface waters along an Atlantic meridional transect publication-title: Aquat Microb Ecol – volume: 420 start-page: 806 year: 2002 end-page: 810 article-title: SAR11 clade dominates ocean surface bacterioplankton communities publication-title: Nature – volume: 39 start-page: 145 year: 2005 end-page: 157 article-title: Molecular identification of picoplankton populations in contrasting waters of the Arabian Sea publication-title: Aquat Microb Ecol – volume: 150 start-page: 275 year: 1997 end-page: 285 article-title: Widespread and novel from the deep sea as shown by 16S rRNA gene sequences publication-title: Mar Ecol Prog Ser – volume: 22 start-page: 193 year: 1999 end-page: 203 article-title: Phytoplankton chlorophyll distribution and water column stability in the central Atlantic Ocean publication-title: Oceanologica Acta – volume: 42/1 start-page: 811 year: 1997 end-page: 826 article-title: Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina publication-title: Limnol Oceanogr – volume: 144 start-page: 3257 year: 1998 end-page: 3266 article-title: Monitoring a widespread bacterial group: detection of planctomycetes with 16S rRNA‐targeted probes publication-title: Microbiology – volume: 3 start-page: 283 year: 2008 end-page: 295 article-title: Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea publication-title: ISME J – volume: 53 start-page: 1593 year: 2006 end-page: 1610 article-title: Phytoplankton carbon fixation, chlorophyll‐biomass and diagnostic pigments in the Atlantic Ocean publication-title: Deep Sea Res Part II: Top Stud Oceanogr – volume: 311 start-page: 1737 year: 2006 end-page: 1740 article-title: Niche partitioning among ecotypes along ocean‐scale environmental gradients publication-title: Science – volume: 15 start-page: 593 year: 1992 end-page: 600 article-title: Phylogenetic oligonucleotide probes for the major subclasses of proteobacteria: problems and solutions publication-title: Syst Appl Microbiol – volume: 7 start-page: 860 year: 2005 end-page: 873 article-title: Marine diatom species harbour distinct bacterial communities publication-title: Environ Microbiol – volume: 37 start-page: 77 year: 1999 end-page: 85 article-title: Identification of culturable oligotrophic bacteria within naturally occurring bacterioplankton communities of the Ligurian Sea by 16S rRNA sequencing and probing publication-title: Microb Ecol – volume: 62 start-page: 1171 year: 1996 end-page: 1177 article-title: Detection of stratified microbial populations related to and species in the Atlantic and Pacific Oceans publication-title: Appl Environ Microbiol – volume: 66 start-page: 1692 year: 2000 end-page: 1697 article-title: Natural assemblages of marine proteobacteria and members of the cluster consuming low‐ and high‐molecular‐weight dissolved organic matter publication-title: Appl Environ Microbiol – volume: 63 start-page: 106 year: 1999 end-page: 127 article-title: , a marine photosynthetic prokaryote of global significance publication-title: Microbiol Mol Biol Rev – volume: 70 start-page: 4411 year: 2004 end-page: 4414 article-title: Combining catalyzed reporter deposition‐fluorescence hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean publication-title: Appl Environ Microbiol – volume: 67 start-page: 5210 year: 2001 end-page: 5218 article-title: Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea publication-title: Appl Environ Microbiol – volume: 100 start-page: 10020 year: 2003 end-page: 10025 article-title: Genome sequence of the cyanobacterium marinus SS120, a nearly minimal oxyphototrophic genome publication-title: Proc Natl Acad Sci USA – volume: 409 start-page: 507 year: 2001 end-page: 509 article-title: Archaeal dominance in the mesopelagic zone of the Pacific Ocean publication-title: Nature – volume: 53 start-page: 1485 year: 2006 end-page: 1515 article-title: The Atlantic Meridional Transect (AMT) Programme: a contextual view 1995–2005 publication-title: Deep Sea Res Part II: Top Stud Oceanogr – volume: 9 start-page: 1278 year: 2007 end-page: 1290 article-title: Basin‐scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean publication-title: Environ Microbiol – volume: 38 start-page: 924 year: 1993 end-page: 934 article-title: Phylogenetic diversity of aggregate‐attached vs. free‐living marine bacterial assemblages publication-title: Limnol Oceanogr – volume: 10 start-page: 110 year: 2008b end-page: 124 article-title: Latitudinal trends of and in the meso‐ and bathypelagic water masses of the Eastern North Atlantic publication-title: Environ Microbiol – volume: 8 start-page: 2201 year: 2006 end-page: 2213 article-title: Whole genome analysis of the marine ‘ ’ reveals adaptations to degradation of polymeric organic matter publication-title: Environ Microbiol – volume: 50 start-page: 1687 year: 2005 end-page: 1696 article-title: Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time‐series study site publication-title: Limnol Oceanogr – volume: 69 start-page: 2631 year: 2003 end-page: 2637 article-title: Automated enumeration of groups of marine picoplankton after fluorescence hybridization publication-title: Appl Environ Microbiol – volume: 51 start-page: 2131 year: 2006a end-page: 2144 article-title: Distribution and activity of and in the deep water masses of the North Atlantic publication-title: Limnol Oceanogr – volume: 70 start-page: 4129 year: 2004 end-page: 4135 article-title: Contribution of SAR11 to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic Ocean publication-title: Appl Environ Microbiol – volume: 68 start-page: 661 year: 2002b end-page: 667 article-title: Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine and publication-title: Appl Environ Microbiol – volume: 72 start-page: 2141 year: 2006 end-page: 2147 article-title: Concentration‐dependent patterns of leucine incorporation by coastal picoplankton publication-title: Appl Environ Microbiol – volume: 65 start-page: 5554 year: 1999 end-page: 5563 article-title: Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent hybridization publication-title: Appl Environ Microbiol – volume: 71 start-page: 2979 year: 2005 end-page: 2986 article-title: Biomass production and assimilation of dissolved organic matter by SAR11 bacteria in the northwest Atlantic Ocean publication-title: Appl Environ Microbiol – volume: 68 start-page: 2997 year: 2002 end-page: 3002 article-title: Distribution of membrane lipids of planktonic in the Arabian Sea publication-title: Appl Environ Microbiol – volume: 437 start-page: 343 year: 2005 end-page: 348 article-title: Molecular diversity and ecology of microbial plankton publication-title: Nature – volume: 52 start-page: 495 year: 2007 end-page: 507 article-title: Standing stocks and activity of and in the western Arctic Ocean publication-title: Limnol Oceanogr – volume: 21 start-page: 13 year: 2000 end-page: 20 article-title: Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean publication-title: Aquat Microb Ecol – volume: 60 start-page: 98 year: 2007 end-page: 112 article-title: Seasonality in bacterial diversity in north‐west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH publication-title: FEMS Microbiol Ecol – volume: 311 start-page: 496 year: 2006 end-page: 503 article-title: Community genomics among stratified microbial assemblages in the ocean's interior publication-title: Science – volume: 51 start-page: 265 year: 2005 end-page: 277 article-title: Ecological and biogeographic relationships of class in the Southern Ocean publication-title: FEMS Microbiol Ecol – volume: 37 start-page: 87 year: 1979 end-page: 101 article-title: Hydrological structure analysis for estimating the primary production in the tropical Atlantic Ocean publication-title: J Mar Res – volume: 43 start-page: 1746 year: 1998 end-page: 1753 article-title: Annual average abundance of heterotrophic bacteria and in surface ocean waters publication-title: Limnol Oceanogr – volume: 35 start-page: 7188 year: 2007 end-page: 7196 article-title: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB publication-title: Nucleic Acids Res – volume: 14 start-page: 136 year: 1993 end-page: 143 article-title: Optimizing fluorescent ‐hybridization with rRNA‐targeted oligonucleotide probes for flow cytometric identification of microorganisms publication-title: Cytometry – volume: 95 start-page: 6578 year: 1998 end-page: 6583 article-title: Prokaryotes: the unseen majority publication-title: Proc Natl Acad Sci USA – volume: 37 start-page: 87 year: 1979 ident: e_1_2_6_33_1 article-title: Hydrological structure analysis for estimating the primary production in the tropical Atlantic Ocean publication-title: J Mar Res – ident: e_1_2_6_24_1 doi: 10.1038/nature04158 – ident: e_1_2_6_26_1 doi: 10.1073/pnas.93.15.7979 – ident: e_1_2_6_15_1 doi: 10.1128/AEM.65.12.5554-5563.1999 – volume: 62 start-page: 1171 year: 1996 ident: e_1_2_6_31_1 article-title: Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific Oceans publication-title: Appl Environ Microbiol doi: 10.1128/aem.62.4.1171-1177.1996 – ident: e_1_2_6_13_1 doi: 10.1128/AEM.68.6.2997-3002.2002 – ident: e_1_2_6_12_1 doi: 10.1016/S0723-2020(99)80053-8 – ident: e_1_2_6_8_1 doi: 10.1111/j.1574-6941.2006.00225.x – ident: e_1_2_6_5_1 doi: 10.1128/AEM.72.3.2141-2147.2006 – ident: e_1_2_6_82_1 doi: 10.1111/j.1462-2920.2007.01246.x – ident: e_1_2_6_40_1 doi: 10.1073/pnas.0502088102 – ident: e_1_2_6_76_1 doi: 10.1099/00221287-147-7-1731 – ident: e_1_2_6_55_1 doi: 10.1073/pnas.0809329105 – ident: e_1_2_6_45_1 doi: 10.1128/AEM.70.7.4129-4135.2004 – ident: e_1_2_6_52_1 doi: 10.1038/nature01240 – ident: e_1_2_6_21_1 doi: 10.3354/ame039145 – ident: e_1_2_6_22_1 doi: 10.3354/meps150275 – ident: e_1_2_6_6_1 doi: 10.1111/j.1462-2920.2007.01244.x – ident: e_1_2_6_75_1 doi: 10.1002/cyto.990140205 – ident: e_1_2_6_64_1 doi: 10.4319/lo.1997.42.5.0811 – ident: e_1_2_6_63_1 doi: 10.1093/nar/gkm864 – ident: e_1_2_6_71_1 doi: 10.4319/lo.2006.51.1.0060 – ident: e_1_2_6_48_1 doi: 10.1099/13500872-142-5-1097 – ident: e_1_2_6_69_1 doi: 10.1128/AEM.70.7.4411-4414.2004 – ident: e_1_2_6_10_1 doi: 10.1038/ismej.2008.117 – ident: e_1_2_6_17_1 doi: 10.1073/pnas.1733211100 – ident: e_1_2_6_34_1 doi: 10.1128/AEM.71.5.2303-2309.2005 – ident: e_1_2_6_19_1 doi: 10.1128/AEM.67.11.5134-5142.2001 – ident: e_1_2_6_38_1 doi: 10.4319/lo.2007.52.2.0495 – ident: e_1_2_6_14_1 doi: 10.4319/lo.1993.38.5.0924 – ident: e_1_2_6_39_1 doi: 10.1038/nature03911 – ident: e_1_2_6_20_1 doi: 10.1128/aem.63.1.63-70.1997 – ident: e_1_2_6_59_1 doi: 10.1128/AEM.68.6.3094-3101.2002 – ident: e_1_2_6_37_1 doi: 10.1128/AEM.69.11.6587-6596.2003 – ident: e_1_2_6_18_1 doi: 10.1128/AEM.66.7.3044-3051.2000 – ident: e_1_2_6_74_1 doi: 10.1111/j.1462-2920.2007.01437.x – ident: e_1_2_6_60_1 doi: 10.1128/AEM.68.2.661-667.2002 – ident: e_1_2_6_25_1 doi: 10.1038/345060a0 – ident: e_1_2_6_62_1 doi: 10.1016/j.dsr2.2006.05.007 – ident: e_1_2_6_2_1 doi: 10.1016/j.femsec.2004.09.001 – volume: 63 start-page: 1441 year: 1997 ident: e_1_2_6_79_1 article-title: A novel delta‐subdivision proteobacterial lineage from the lower ocean surface layer publication-title: Appl Environ Microbiol doi: 10.1128/aem.63.4.1441-1448.1997 – ident: e_1_2_6_50_1 doi: 10.1128/AEM.63.1.50-56.1997 – ident: e_1_2_6_53_1 doi: 10.1128/AEM.70.5.2836-2842.2004 – ident: e_1_2_6_35_1 doi: 10.1126/science.1118052 – ident: e_1_2_6_49_1 doi: 10.3354/ame045107 – ident: e_1_2_6_16_1 doi: 10.4319/lo.1993.38.5.0924 – ident: e_1_2_6_58_1 doi: 10.1016/j.tim.2006.04.007 – ident: e_1_2_6_23_1 doi: 10.1073/pnas.0602399103 – ident: e_1_2_6_3_1 doi: 10.1016/S0399-1784(99)80045-0 – ident: e_1_2_6_78_1 doi: 10.1073/pnas.95.12.6578 – volume-title: Ecological Geography of the Sea year: 1998 ident: e_1_2_6_43_1 – volume: 69 start-page: 2631 year: 2003 ident: e_1_2_6_61_1 article-title: Automated enumeration of groups of marine picoplankton after fluorescence in situ hybridization publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.5.2631-2637.2003 – ident: e_1_2_6_66_1 doi: 10.1016/j.dsr2.2006.05.015 – ident: e_1_2_6_81_1 doi: 10.1128/AEM.67.11.5210-5218.2001 – ident: e_1_2_6_47_1 doi: 10.1016/S0723-2020(11)80121-9 – ident: e_1_2_6_7_1 doi: 10.1111/j.1574-6941.2006.00276.x – ident: e_1_2_6_41_1 doi: 10.4319/lo.1998.43.7.1746 – ident: e_1_2_6_67_1 doi: 10.1046/j.1462-2920.2002.00364.x – ident: e_1_2_6_65_1 doi: 10.1016/j.dsr2.2006.05.008 – ident: e_1_2_6_4_1 doi: 10.1111/j.1462-2920.2007.01360.x – ident: e_1_2_6_72_1 doi: 10.1038/nature06776 – ident: e_1_2_6_11_1 doi: 10.1128/AEM.66.4.1692-1697.2000 – ident: e_1_2_6_36_1 doi: 10.1038/35054051 – ident: e_1_2_6_70_1 doi: 10.4319/lo.2006.51.5.2131 – ident: e_1_2_6_27_1 doi: 10.1007/s002489900132 – ident: e_1_2_6_46_1 doi: 10.1128/AEM.71.6.2979-2986.2005 – ident: e_1_2_6_32_1 doi: 10.1111/j.1462-2920.2005.00759.x – ident: e_1_2_6_80_1 doi: 10.3354/ame021013 – ident: e_1_2_6_30_1 doi: 10.1073/pnas.0712027105 – ident: e_1_2_6_28_1 doi: 10.1128/AEM.65.8.3721-3726.1999 – ident: e_1_2_6_51_1 doi: 10.1038/ngeo232 – ident: e_1_2_6_68_1 doi: 10.1073/pnas.0605127103 – ident: e_1_2_6_42_1 doi: 10.1128/AEM.64.2.688-694.1998 – ident: e_1_2_6_29_1 doi: 10.1038/nature05381 – ident: e_1_2_6_57_1 doi: 10.1128/MMBR.63.1.106-127.1999 – ident: e_1_2_6_9_1 doi: 10.1111/j.1462-2920.2006.01152.x – ident: e_1_2_6_56_1 doi: 10.1099/00221287-144-12-3257 – ident: e_1_2_6_73_1 doi: 10.1111/j.1462-2920.2008.01627.x – volume-title: Our Changing Planet. An Introduction to Earth System Science and Global Environmental Change year: 1997 ident: e_1_2_6_44_1 – ident: e_1_2_6_77_1 doi: 10.1111/j.1462-2920.2007.01497.x – ident: e_1_2_6_54_1 doi: 10.4319/lo.2005.50.5.1687 |
| SSID | ssj0017370 |
| Score | 2.3984563 |
| Snippet | Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes... Summary Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain... SummaryMembers of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain... |
| SourceID | proquest pubmed crossref wiley fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2078 |
| SubjectTerms | Alphaproteobacteria Alphaproteobacteria - classification Alphaproteobacteria - growth & development analysis Archaea Archaea - classification Archaea - growth & development Atlantic Ocean bacteria Bacteria - classification Bacteria - growth & development Bacteroidetes Bacteroidetes - classification Bacteroidetes - growth & development basins biogeochemical cycles Biomass chlorophyll Chlorophyll - analysis classification Colony Count, Microbial community structure Crenarchaeota Crenarchaeota - classification Crenarchaeota - growth & development euphotic zone Euryarchaeota Eutrophication fluorescence in situ hybridization gamma-Proteobacteria Gammaproteobacteria Gammaproteobacteria - classification Gammaproteobacteria - growth & development Geography growth & development latitude Marine microbial biomass microbial communities microbiology microscopy oceans Planctomycetes Plankton Plankton - classification Plankton - growth & development Prochlorococcus Prochlorococcus - classification Prochlorococcus - growth & development Seawater Seawater - microbiology South Africa spring surface water United Kingdom |
| Title | Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2009.01929.x https://www.ncbi.nlm.nih.gov/pubmed/19453607 https://www.proquest.com/docview/20881180 https://www.proquest.com/docview/46356083 https://www.proquest.com/docview/67593098 |
| Volume | 11 |
| WOSCitedRecordID | wos000268655000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1462-2920 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017370 issn: 1462-2912 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB6VUKReeLRQwnMPvbrye71HBEQcIoraBuW2GttjFIHsiCQI_j0ztgkKAgkh5Isl7-xzZvdbz-58AL_SONBFga6jU1_cjF7oYE6JE2uP0SvvSLC-x33Z1-fnyXBoLtrzT3IXpokPMf_hJpZRz9di4JhOXhq57wjbUht2ksGK-c14ctlnNQ47sHzytzfoz30KOqip41op78W5nlfzWlislgqsXsOhi7C2Xpd6a5_ZonVYbdGpOmrUaQO-UPkdVhq-yocfcNkX5ZrlwqSlcgm527JlqapQXONrLrtiUTVm_RrfYHnNyFKN5xxhEzUqFSNOdTTlj5LwT0ZYbsKgd_r_-MxpiRmcjAGf4c2r8fIcA4xSQuNSGlJIOnO1JvITNGGmXSpi7QvYjLTOCpefOE8jnwxpCragU1YlbYNCj0V5EqGC9SJ30XiIaUQkkcDiMIm6oJ9GwGZt1HIhz7ixC7sX30qvCaemsXWv2fsueHPJcRO54x0y2zzIFq94grWDf764dT3GZIxqunD4NPKWLVDcKlhSNZtwBkkigfTeThFKEEDGum-n4G2bCVzDpfxslOq5yiaMgtjVXYhr3Xl3WyzbsbztfFRwF741rjM57bgHnentjPbha3Y3HU1uD2BJD5OD1sYeAfrcIGo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED-xwrS9DMY26GCrH3gNyrfjRwRUILIybS3qm-Uklwm1Siraou2_310SOhW1UoWmvESKz_HHnf2zz74fwEkSejLPjW3JxGU3o-NbJsPICqVD6JVWJKa6x30Xy14vGg7V94YOiO_C1PEhFhtubBnVeM0GzhvSz63ctZhuqYk7SWhFnRKg3PZJq4IWbF_86A7ihVNBehV3XCPlPDvYszKvpdnqVW7KVUB0GddWE1N3979WaQ_eNfhUnNUK9R62sNiH1zVj5Z8PcBezes0z5tISGQfdbfiyRJkLKvKIfl6SqJiQhk3GphgRthSTBUvYVNwXgjCnOJvRR054m6IpPsKge9k_v7IaagYrJcinaPmqnCwzngkSNMrGxEcfZWpLiehGRvmptDEPpctwM5AyzW16wiwJXFQo0fsEraIs8BCEcUiUhhHMSTMy2yjHmCRA5FhgoR8FbZBPXaDTJm4502eM9dL6xdXcasyqqXTVavp3G5yF5KSO3bGBzCH1sja_aIjVg58uO3YdQmWEa9rQeep6TTbIjhVTYDmfUgZRxKH01qfwOQwgod31KWjhpjxb0V8Oaq36V2TlB15oyzaElfJsXBdNlsxvn18q2IE3V_1vsY6vezdH8LZ2pPHZx2NozR7m-AV20sfZ_fTha2NqfwGExiNy |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7auC29pK-kdpI2e-hVRe_VHkMdk1DjhqQ2vi0raRSCjST8KO2_74wku9jYEErQRaCdfc7sfqvZnQ_gSxx6MsuMbcnYZTej41smxcgKpUPolXYkprrHPerLwSAaj9VNQwfEd2Hq-BDrH25sGdV8zQaOZZptW7lrMd1SE3eS0Ir6SoCy5QcqJCttdW97w_7aqSC9ijuukXK2DvbszGtjtXqemWIXEN3EtdXC1HvzpE16C4cNPhUXtUK9g2eYv4eXNWPlnw8w6rN6LVPm0hIpB91t-LJEkQmq8oQKL0hUlKRh5dTkE8KWolyzhM3FQy4Ic4qLBX3khD8SNPkRDHuXP79dWQ01g5UQ5FO0fVVOmhrPBDEaZWPso48ysaVEdCOj_ETamIXSZbgZSJlkNj1hGgcuKpToHcNBXuTYBmEcEqVpBDPSjNQ2yjEmDhA5FljoR0EH5GoIdNLELWf6jKne2L-4mnuNWTWVrnpN_-6As5Ys69gdj5Bp0yhrc09TrB7euezYdQiVEa7pwPlq6DXZIDtWTI7Fck4ZRBGH0tufwucwgIR296egjZvybEWlfKy16l-VlR94oS07EFbK8-i2aLJkfjv5X8FzeHXT7en-9eD7Kbyu_Wh89PEMDhazJX6CF8mvxcN89rmxtL_YLiLt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latitudinal+distribution+of+prokaryotic+picoplankton+populations+in+the+Atlantic+Ocean&rft.jtitle=Environmental+microbiology&rft.au=Schattenhofer%2C+Martha&rft.au=Fuchs%2C+Bernhard+M&rft.au=Amann%2C+Rudolf&rft.au=Zubkov%2C+Mikhail+V&rft.date=2009-08-01&rft.issn=1462-2912&rft.volume=11&rft.issue=8+p.2078-2093&rft.spage=2078&rft.epage=2093&rft_id=info:doi/10.1111%2Fj.1462-2920.2009.01929.x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |