Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean

Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bact...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environmental microbiology Ročník 11; číslo 8; s. 2078 - 2093
Hlavní autori: Schattenhofer, Martha, Fuchs, Bernhard M, Amann, Rudolf, Zubkov, Mikhail V, Tarran, Glen A, Pernthaler, Jakob
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.08.2009
Blackwell Publishing Ltd
Predmet:
ISSN:1462-2912, 1462-2920, 1462-2920
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9°S) to the UK (46.4°N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 ± 9%) and Prochlorococcus (12 ± 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both ~15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (~25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance.
AbstractList Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9°S) to the UK (46.4°N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD‐FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 ± 9%) and Prochlorococcus (12 ± 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both ∼15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi ‐related clade SAR202 occurred preferentially below the DCM (4–6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (∼25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient‐rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes , marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance.
Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9°S) to the UK (46.4°N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 ± 9%) and Prochlorococcus (12 ± 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both ~15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (~25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance.
Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9 degrees S) to the UK (46.4 degrees N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 +/- 9%) and Prochlorococcus (12 +/- 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both approximately 15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (approximately 25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance.Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9 degrees S) to the UK (46.4 degrees N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 +/- 9%) and Prochlorococcus (12 +/- 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both approximately 15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (approximately 25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance.
Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9 degrees S) to the UK (46.4 degrees N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 +/- 9%) and Prochlorococcus (12 +/- 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both approximately 15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (approximately 25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance.
SummaryMembers of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9S) to the UK (46.4N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 c 9%) and Prochlorococcus (12 c 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both 615%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi-related clade SAR202 occurred preferentially below the DCM (4-6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (625%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient-rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance.
Summary Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes in picoplankton composition in the euphotic and twilight zones at an ocean basin scale we determined the distribution of 11 marine bacterial and archaeal phyla in three different water layers along a transect across the Atlantic Ocean from South Africa (32.9°S) to the UK (46.4°N) during boreal spring. Depth profiles down to 500 m at 65 stations were analysed by catalysed reporter deposition fluorescence in situ hybridization (CARD‐FISH) and automated epifluorescence microscopy. There was no obvious overall difference in microbial community composition between the surface water layer and the deep chlorophyll maximum (DCM) layer. There were, however, significant differences between the two photic water layers and the mesopelagic zone. SAR11 (35 ± 9%) and Prochlorococcus (12 ± 8%) together dominated the surface waters, whereas SAR11 and Crenarchaeota of the marine group I formed equal proportions of the picoplankton community below the DCM (both ∼15%). However, due to their small cell sizes Crenarchaeota contributed distinctly less to total microbial biomass than SAR11 in this mesopelagic water layer. Bacteria from the uncultured Chloroflexi‐related clade SAR202 occurred preferentially below the DCM (4–6%). Distinct latitudinal distribution patterns were found both in the photic zone and in the mesopelagic waters: in the photic zone, SAR11 was more abundant in the Northern Atlantic Ocean (up to 45%) than in the Southern Atlantic gyre (∼25%), the biomass of Prochlorococcus peaked in the tropical Atlantic Ocean, and Bacteroidetes and Gammaproteobacteria bloomed in the nutrient‐rich northern temperate waters and in the Benguela upwelling. In mesopelagic waters, higher proportions of SAR202 were present in both central gyre regions, whereas Crenarchaeota were clearly more abundant in the upwelling regions and in higher latitudes. Other phylogenetic groups such as the Planctomycetes, marine group II Euryarchaeota and the uncultured clades SAR406, SAR324 and SAR86 rarely exceeded more than 5% of relative abundance.
Author Fuchs, Bernhard M
Tarran, Glen A
Pernthaler, Jakob
Zubkov, Mikhail V
Schattenhofer, Martha
Amann, Rudolf
Author_xml – sequence: 1
  fullname: Schattenhofer, Martha
– sequence: 2
  fullname: Fuchs, Bernhard M
– sequence: 3
  fullname: Amann, Rudolf
– sequence: 4
  fullname: Zubkov, Mikhail V
– sequence: 5
  fullname: Tarran, Glen A
– sequence: 6
  fullname: Pernthaler, Jakob
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19453607$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URD_gL0BO3DYd24k_DiBVVaGVFvUA5Wo5zgS8zcYhdkT773G6ZQ9cFvvgkeZ5X4_mPSVHQxiQkIJCSfM535S0EmzFNIOSAegSqGa6fHhBTvaNo31N2TE5jXEDQCWX8IocU13VXIA8Id_XNvk0t36wfdH6mCbfzMmHoQhdMU7h3k6PIXlXjN6FsbfDfcq9MYxzbxcsFn4o0k8sLlJuLuCtQzu8Ji8720d88_yekbtPV98ur1fr2883lxfrlaup1qs6D9e2ltu6QasBmworlA6kRGTK6spJwE5IVoOktZSug3xF29QMNUrkZ-T9zjeP-mvGmMzWR4d9ngXDHI2Qteag1UGwErwWoPhBkIFSlCrI4NtncG622Jpx8tu8LPN3txn4uAPcFGKcsDPOp6elpcn63lAwS5hmY5aczJKZWcI0T2Gah2yg_jHY_3FY-mEn_e17fPxvnbn6crNUWf9up-9sMPbH5KO5-8qAcqBCcEUV_wMoTcBY
CitedBy_id crossref_primary_10_3389_fmars_2022_993667
crossref_primary_10_1016_j_gca_2015_09_004
crossref_primary_10_1038_ismej_2012_108
crossref_primary_10_1111_1574_6941_12085
crossref_primary_10_1155_2014_706082
crossref_primary_10_1111_j_1574_6941_2010_00997_x
crossref_primary_10_3390_md11103777
crossref_primary_10_3389_fmars_2016_00104
crossref_primary_10_1016_j_pocean_2016_10_013
crossref_primary_10_1016_j_pocean_2023_103054
crossref_primary_10_1111_j_1758_2229_2011_00308_x
crossref_primary_10_1016_j_gca_2018_09_001
crossref_primary_10_1016_j_syapm_2021_126185
crossref_primary_10_1038_ismej_2013_152
crossref_primary_10_3389_fmicb_2019_02273
crossref_primary_10_3389_fmicb_2021_658803
crossref_primary_10_1111_1574_6941_12409
crossref_primary_10_1126_science_1198078
crossref_primary_10_3389_fmicb_2016_00649
crossref_primary_10_1007_s00248_011_9990_9
crossref_primary_10_1007_s00248_011_9952_2
crossref_primary_10_1007_s00248_022_01992_z
crossref_primary_10_1111_j_1462_2920_2010_02281_x
crossref_primary_10_1111_j_1758_2229_2011_00282_x
crossref_primary_10_1038_srep10467
crossref_primary_10_1111_1462_2920_14408
crossref_primary_10_1111_1462_2920_12984
crossref_primary_10_1111_1462_2920_14007
crossref_primary_10_1007_s00248_013_0183_6
crossref_primary_10_1093_ismejo_wraf049
crossref_primary_10_1016_j_margen_2018_09_002
crossref_primary_10_3389_fmicb_2023_1216130
crossref_primary_10_1111_1758_2229_12721
crossref_primary_10_1016_j_dsr_2014_11_007
crossref_primary_10_1038_s41396_020_0662_y
crossref_primary_10_3389_fmicb_2015_01524
crossref_primary_10_1016_j_ecss_2017_11_015
crossref_primary_10_1080_08927014_2012_687723
crossref_primary_10_1111_1462_2920_12517
crossref_primary_10_1007_s10482_013_9952_y
crossref_primary_10_7554_eLife_11888
crossref_primary_10_1007_s00248_013_0346_5
crossref_primary_10_1038_nrmicro3378
crossref_primary_10_1128_AEM_07130_11
crossref_primary_10_1038_ismej_2013_32
crossref_primary_10_1111_1462_2920_16313
crossref_primary_10_1111_j_1462_2920_2011_02694_x
crossref_primary_10_1146_annurev_marine_010814_015934
crossref_primary_10_3389_fmicb_2018_01002
crossref_primary_10_1186_s40659_024_00556_4
crossref_primary_10_3389_fmicb_2017_01771
crossref_primary_10_1111_1462_2920_15272
crossref_primary_10_3389_fmicb_2019_02404
crossref_primary_10_1007_s00792_015_0770_1
crossref_primary_10_1016_j_watres_2024_122928
crossref_primary_10_3389_fmicb_2015_01038
crossref_primary_10_1038_s41396_023_01376_2
crossref_primary_10_1038_srep35272
crossref_primary_10_1080_01490451_2017_1378951
crossref_primary_10_3389_fmicb_2022_1026596
crossref_primary_10_3389_fmicb_2020_02060
crossref_primary_10_1186_s40168_018_0563_8
crossref_primary_10_1016_j_syapm_2011_01_008
crossref_primary_10_1111_1462_2920_14107
crossref_primary_10_1146_annurev_marine_112122_105229
crossref_primary_10_1080_02705060_2016_1209443
crossref_primary_10_1111_1462_2920_13898
crossref_primary_10_3389_fmicb_2017_00952
crossref_primary_10_3389_fmars_2022_912528
crossref_primary_10_1038_ismej_2011_80
crossref_primary_10_1111_1462_2920_12692
crossref_primary_10_1007_s11033_019_04766_y
crossref_primary_10_3389_fmicb_2023_1213718
crossref_primary_10_1016_j_gca_2014_07_005
crossref_primary_10_1016_j_orggeochem_2015_10_004
crossref_primary_10_1038_ismej_2011_214
crossref_primary_10_1016_j_margen_2016_12_003
crossref_primary_10_3389_fmicb_2024_1357822
crossref_primary_10_1146_annurev_marine_121916_063141
crossref_primary_10_1128_AEM_02570_14
crossref_primary_10_1002_lno_11405
crossref_primary_10_1128_mbio_01654_25
crossref_primary_10_1016_j_pocean_2015_04_020
crossref_primary_10_1038_ismej_2014_67
crossref_primary_10_1111_1462_2920_13429
crossref_primary_10_1017_S1431927611012104
crossref_primary_10_1016_j_orggeochem_2021_104353
crossref_primary_10_1128_AEM_00121_14
crossref_primary_10_1016_j_dsr_2020_103396
crossref_primary_10_1038_ismej_2014_60
crossref_primary_10_1016_j_dsr_2016_04_009
crossref_primary_10_3389_fmicb_2020_01034
crossref_primary_10_1002_mbo3_92
crossref_primary_10_1038_ismej_2011_189
crossref_primary_10_1016_j_syapm_2019_06_005
crossref_primary_10_1002_jobm_201700216
crossref_primary_10_1134_S0026261715040128
crossref_primary_10_2478_s11756_018_0023_8
crossref_primary_10_1038_s41396_017_0009_5
crossref_primary_10_1128_msystems_00179_23
crossref_primary_10_3389_fmicb_2021_764178
crossref_primary_10_3389_fgene_2015_00043
crossref_primary_10_3390_microorganisms9030619
crossref_primary_10_1038_s41396_018_0092_2
crossref_primary_10_1038_srep08476
crossref_primary_10_1111_1462_2920_13759
crossref_primary_10_3739_rikusui_85_1
crossref_primary_10_1128_AEM_03931_15
crossref_primary_10_1111_1462_2920_13237
crossref_primary_10_3389_fmars_2023_1051510
crossref_primary_10_1128_msystems_01287_22
crossref_primary_10_1111_maec_12355
crossref_primary_10_1128_spectrum_00517_25
crossref_primary_10_1038_s42003_024_06535_5
crossref_primary_10_1146_annurev_marine_120709_142811
crossref_primary_10_1002_mbo3_705
crossref_primary_10_1016_j_ecolind_2017_06_051
crossref_primary_10_1016_j_marchem_2023_104299
crossref_primary_10_1371_journal_pone_0174159
crossref_primary_10_1038_ismej_2009_142
crossref_primary_10_1002_lno_11944
crossref_primary_10_1038_ismej_2012_28
crossref_primary_10_1111_j_1462_2920_2010_02403_x
crossref_primary_10_1016_j_syapm_2013_08_006
crossref_primary_10_5194_bg_8_3747_2011
crossref_primary_10_1016_j_dsr_2020_103451
crossref_primary_10_1186_s40168_022_01263_6
crossref_primary_10_1111_j_1365_294X_2011_05378_x
crossref_primary_10_7717_peerj_3517
crossref_primary_10_1515_ohs_2020_0003
crossref_primary_10_1111_1574_6941_12142
crossref_primary_10_1128_AEM_00294_11
crossref_primary_10_1128_AEM_00204_16
crossref_primary_10_1128_AEM_00099_14
crossref_primary_10_1080_01490451_2015_1048393
crossref_primary_10_1002_cyto_a_20770
crossref_primary_10_1038_ismej_2010_79
crossref_primary_10_3390_microorganisms5040068
crossref_primary_10_1007_s10872_016_0391_z
crossref_primary_10_1038_ismej_2013_67
crossref_primary_10_1111_1462_2920_12801
crossref_primary_10_5194_bg_9_2177_2012
crossref_primary_10_1038_ismej_2017_26
crossref_primary_10_1038_s41564_018_0276_6
crossref_primary_10_1111_j_1574_6941_2012_01451_x
crossref_primary_10_1038_s42003_018_0086_7
crossref_primary_10_1007_s00343_025_4336_5
crossref_primary_10_1038_s41467_023_40726_8
crossref_primary_10_1007_s10482_013_0003_5
crossref_primary_10_1038_s41586_024_07924_w
crossref_primary_10_7554_eLife_46497
crossref_primary_10_1038_ismej_2013_243
crossref_primary_10_1099_ijsem_0_002416
crossref_primary_10_1016_j_marpolbul_2016_03_015
crossref_primary_10_1002_lno_10487
crossref_primary_10_1016_j_syapm_2013_05_002
crossref_primary_10_1371_journal_pone_0101415
crossref_primary_10_1016_j_orggeochem_2017_04_013
crossref_primary_10_1128_AEM_01659_15
crossref_primary_10_1128_AEM_02931_10
crossref_primary_10_1007_s00248_020_01508_7
crossref_primary_10_1016_j_syapm_2009_12_006
crossref_primary_10_1128_AEM_00184_19
crossref_primary_10_1080_10934529_2013_824784
crossref_primary_10_1007_s13131_021_1778_2
crossref_primary_10_1111_1462_2920_13624
crossref_primary_10_1111_1462_2920_12258
crossref_primary_10_1128_AEM_03410_14
crossref_primary_10_3389_fmicb_2017_01317
Cites_doi 10.1038/nature04158
10.1073/pnas.93.15.7979
10.1128/AEM.65.12.5554-5563.1999
10.1128/aem.62.4.1171-1177.1996
10.1128/AEM.68.6.2997-3002.2002
10.1016/S0723-2020(99)80053-8
10.1111/j.1574-6941.2006.00225.x
10.1128/AEM.72.3.2141-2147.2006
10.1111/j.1462-2920.2007.01246.x
10.1073/pnas.0502088102
10.1099/00221287-147-7-1731
10.1073/pnas.0809329105
10.1128/AEM.70.7.4129-4135.2004
10.1038/nature01240
10.3354/ame039145
10.3354/meps150275
10.1111/j.1462-2920.2007.01244.x
10.1002/cyto.990140205
10.4319/lo.1997.42.5.0811
10.1093/nar/gkm864
10.4319/lo.2006.51.1.0060
10.1099/13500872-142-5-1097
10.1128/AEM.70.7.4411-4414.2004
10.1038/ismej.2008.117
10.1073/pnas.1733211100
10.1128/AEM.71.5.2303-2309.2005
10.1128/AEM.67.11.5134-5142.2001
10.4319/lo.2007.52.2.0495
10.4319/lo.1993.38.5.0924
10.1038/nature03911
10.1128/aem.63.1.63-70.1997
10.1128/AEM.68.6.3094-3101.2002
10.1128/AEM.69.11.6587-6596.2003
10.1128/AEM.66.7.3044-3051.2000
10.1111/j.1462-2920.2007.01437.x
10.1128/AEM.68.2.661-667.2002
10.1038/345060a0
10.1016/j.dsr2.2006.05.007
10.1016/j.femsec.2004.09.001
10.1128/aem.63.4.1441-1448.1997
10.1128/AEM.63.1.50-56.1997
10.1128/AEM.70.5.2836-2842.2004
10.1126/science.1118052
10.3354/ame045107
10.1016/j.tim.2006.04.007
10.1073/pnas.0602399103
10.1016/S0399-1784(99)80045-0
10.1073/pnas.95.12.6578
10.1128/AEM.69.5.2631-2637.2003
10.1016/j.dsr2.2006.05.015
10.1128/AEM.67.11.5210-5218.2001
10.1016/S0723-2020(11)80121-9
10.1111/j.1574-6941.2006.00276.x
10.4319/lo.1998.43.7.1746
10.1046/j.1462-2920.2002.00364.x
10.1016/j.dsr2.2006.05.008
10.1111/j.1462-2920.2007.01360.x
10.1038/nature06776
10.1128/AEM.66.4.1692-1697.2000
10.1038/35054051
10.4319/lo.2006.51.5.2131
10.1007/s002489900132
10.1128/AEM.71.6.2979-2986.2005
10.1111/j.1462-2920.2005.00759.x
10.3354/ame021013
10.1073/pnas.0712027105
10.1128/AEM.65.8.3721-3726.1999
10.1038/ngeo232
10.1073/pnas.0605127103
10.1128/AEM.64.2.688-694.1998
10.1038/nature05381
10.1128/MMBR.63.1.106-127.1999
10.1111/j.1462-2920.2006.01152.x
10.1099/00221287-144-12-3257
10.1111/j.1462-2920.2008.01627.x
10.1111/j.1462-2920.2007.01497.x
10.4319/lo.2005.50.5.1687
ContentType Journal Article
Copyright 2009 Society for Applied Microbiology and Blackwell Publishing Ltd
Copyright_xml – notice: 2009 Society for Applied Microbiology and Blackwell Publishing Ltd
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7T7
7TN
8FD
C1K
F1W
FR3
H95
H99
L.F
L.G
M7N
P64
7S9
L.6
7X8
DOI 10.1111/j.1462-2920.2009.01929.x
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ASFA: Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
AGRICOLA
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Geography
EISSN 1462-2920
EndPage 2093
ExternalDocumentID 19453607
10_1111_j_1462_2920_2009_01929_x
EMI1929
US201301663818
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Atlantic Ocean
ASE, South Atlantic, Benguela Upwelling
South Africa
AS, Tropical Atlantic
United Kingdom
GeographicLocations_xml – name: Atlantic Ocean
– name: South Africa
– name: AS, Tropical Atlantic
– name: ASE, South Atlantic, Benguela Upwelling
– name: United Kingdom
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XFK
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7T7
7TN
8FD
C1K
F1W
FR3
H95
H99
L.F
L.G
M7N
P64
7S9
L.6
7X8
ID FETCH-LOGICAL-c5199-5291dda3a5bea90eb4e4e7c077ee28a94c70ef6725071577cf0f0f6db52e9e7e3
IEDL.DBID DRFUL
ISICitedReferencesCount 199
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268655000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1462-2912
1462-2920
IngestDate Wed Oct 01 13:06:15 EDT 2025
Thu Oct 02 09:42:24 EDT 2025
Tue Oct 07 09:51:49 EDT 2025
Wed Feb 19 01:49:34 EST 2025
Sat Nov 29 07:00:45 EST 2025
Tue Nov 18 22:36:39 EST 2025
Wed Jan 22 16:31:57 EST 2025
Wed Dec 27 19:19:33 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5199-5291dda3a5bea90eb4e4e7c077ee28a94c70ef6725071577cf0f0f6db52e9e7e3
Notes http://dx.doi.org/10.1111/j.1462-2920.2009.01929.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19453607
PQID 20881180
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_67593098
proquest_miscellaneous_46356083
proquest_miscellaneous_20881180
pubmed_primary_19453607
crossref_citationtrail_10_1111_j_1462_2920_2009_01929_x
crossref_primary_10_1111_j_1462_2920_2009_01929_x
wiley_primary_10_1111_j_1462_2920_2009_01929_x_EMI1929
fao_agris_US201301663818
PublicationCentury 2000
PublicationDate August 2009
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: August 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References 1990; 56
1997; 42/1
2006; 72
1990; 345
1979; 37
1997; 150
2008; 105
2008; 3
1992; 15
1996; 142
2008; 1
1998; 43
2007; 35
2001; 147
2004; 70
1993; 38
2005; 102
2002; 420
2007; 9
1996; 62
2007; 60
2005; 71
1998; 95
2005; 39
2008a; 10
2007; 445
2006; 53
1997; 63
2000; 21
2000; 66
2006; 14
2005; 437
1998
2008b; 10
2006; 8
1996; 93
1997
1999; 22
1999; 65
2002; 4
2001; 409
2008; 10
1999; 63
2007; 52
2006b; 51
2001; 67
1998; 64
2006; 311
1993; 14
2006a; 51
2006; 45
2002; 68
2002a; 68
1999; 37
2005; 51
2003; 69
2005; 7
2005; 50
1998; 144
2008; 452
2002b; 68
2003; 100
2006; 103
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Longhurst A. (e_1_2_6_43_1) 1998
e_1_2_6_19_1
Wright T.D. (e_1_2_6_79_1) 1997; 63
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
Herbland A. (e_1_2_6_33_1) 1979; 37
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Pernthaler J. (e_1_2_6_61_1) 2003; 69
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
Mackenzie F.T. (e_1_2_6_44_1) 1997
e_1_2_6_10_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_82_1
Gordon D.A. (e_1_2_6_31_1) 1996; 62
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 445
  start-page: 210
  year: 2007
  end-page: 213
  article-title: Light stimulates growth of proteorhodopsin‐containing marine
  publication-title: Nature
– volume: 53
  start-page: 1649
  year: 2006
  end-page: 1665
  article-title: Concentrations and uptake of nitrate and ammonium in the Atlantic Ocean between 60°N and 50°S
  publication-title: Deep Sea Res Part II: Top Stud Oceanogr
– volume: 9
  start-page: 1253
  year: 2007
  end-page: 1266
  article-title: High local and global diversity of in marine plankton
  publication-title: Environ Microbiol
– volume: 105
  start-page: 8724
  year: 2008
  end-page: 8729
  article-title: Genome analysis of the proteorhodopsin‐containing marine bacterium sp. MED152 ( )
  publication-title: Proc Natl Acad Sci USA
– volume: 102
  start-page: 6478
  year: 2005
  end-page: 6483
  article-title: Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation
  publication-title: Proc Natl Acad Sci USA
– volume: 69
  start-page: 6587
  year: 2003
  end-page: 6596
  article-title: Diversity and abundance of uncultured ‐like bacteria in the Delaware Estuary
  publication-title: Appl Environ Microbiol
– volume: 63
  start-page: 63
  year: 1997
  end-page: 70
  article-title: Diversity and depth‐specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria
  publication-title: Appl Environ Microbiol
– volume: 63
  start-page: 50
  year: 1997
  end-page: 56
  article-title: Vertical distribution and phylogenetic characterization of marine planktonic in the Santa Barbara channel
  publication-title: Appl Environ Microbiol
– volume: 452
  start-page: 741
  year: 2008
  end-page: 744
  article-title: SAR11 marine bacteria require exogenous reduced sulphur for growth
  publication-title: Nature
– volume: 14
  start-page: 257
  year: 2006
  end-page: 263
  article-title: Marine microbial diversity: can it be determined?
  publication-title: Trends Microbiol
– volume: 22
  start-page: 434
  year: 1999
  end-page: 444
  article-title: The domain‐specific probe EUB338 is insufficient for the detection of all : development and evaluation of a more comprehensive probe set
  publication-title: Syst Appl Microbiol
– year: 1998
– volume: 65
  start-page: 3721
  year: 1999
  end-page: 3726
  article-title: Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence hybridization
  publication-title: Appl Environ Microbiol
– volume: 142
  start-page: 1097
  year: 1996
  end-page: 1106
  article-title: Application of a suite of 16S rRNA‐specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga‐flavobacter‐bacteroidetes in the natural environment
  publication-title: Microbiology
– volume: 10
  start-page: 1903
  year: 2008a
  end-page: 1911
  article-title: Abundance and activity of ‐type SAR202 bacterioplankton in the meso‐ and bathypelagic waters of the (sub)tropical Atlantic
  publication-title: Environ Microbiol
– volume: 71
  start-page: 2303
  year: 2005
  end-page: 2309
  article-title: Contribution of to total prokaryotic production in the deep Atlantic Ocean
  publication-title: Appl Environ Microbiol
– volume: 105
  start-page: 17861
  year: 2008
  end-page: 17866
  article-title: A single‐cell view on the ecophysiology of anaerobic phototrophic bacteria
  publication-title: Proc Natl Acad Sci USA
– volume: 66
  start-page: 3044
  year: 2000
  end-page: 3051
  article-title: Culturability and abundance of pelagic bacteria from the North Sea
  publication-title: Appl Environ Microbiol
– volume: 51
  start-page: 60
  year: 2006b
  end-page: 69
  article-title: Archaeal uptake of enantiomeric amino acids in the meso‐ and bathypelagic waters of the North Atlantic
  publication-title: Limnol Oceanogr
– volume: 345
  start-page: 60
  year: 1990
  end-page: 63
  article-title: Genetic diversity in Sargasso Sea bacterioplankton
  publication-title: Nature
– volume: 93
  start-page: 7979
  year: 1996
  end-page: 7984
  article-title: 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non‐Sulfur bacteria
  publication-title: Proc Natl Acad Sci USA
– volume: 437
  start-page: 543
  year: 2005
  end-page: 546
  article-title: Isolation of an autotrophic ammonia‐oxidizing marine archaeon
  publication-title: Nature
– volume: 103
  start-page: 12115
  year: 2006
  end-page: 12120
  article-title: Microbial diversity in the deep sea and the underexplored ‘rare biosphere’
  publication-title: Proc Natl Acad Sci USA
– volume: 9
  start-page: 2417
  year: 2007
  end-page: 2429
  article-title: Response of and to glucose and phosphorus manipulation in marine mesocosms
  publication-title: Environ Microbiol
– volume: 70
  start-page: 2836
  year: 2004
  end-page: 2842
  article-title: Prevalence of the ‐related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean
  publication-title: Appl Environ Microbiol
– volume: 63
  start-page: 1441
  year: 1997
  end-page: 1448
  article-title: A novel delta‐subdivision proteobacterial lineage from the lower ocean surface layer
  publication-title: Appl Environ Microbiol
– volume: 103
  start-page: 13104
  year: 2006
  end-page: 13109
  article-title: Annually reoccurring bacterial communities are predictable from ocean conditions
  publication-title: Proc Natl Acad Sci USA
– year: 1997
– volume: 10
  start-page: 738
  year: 2008
  end-page: 756
  article-title: Major differences of bacterial diversity and activity inside and outside of a natural iron‐fertilized phytoplankton bloom in the Southern Ocean
  publication-title: Environ Microbiol
– volume: 147
  start-page: 1731
  year: 2001
  end-page: 1744
  article-title: Closely related genotypes show remarkably different depth distributions in two oceanic regions as revealed by hybridization using 16S rRNA‐targeted oligonucleotides
  publication-title: Microbiology
– volume: 1
  start-page: 439
  year: 2008
  end-page: 443
  article-title: Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres
  publication-title: Nat Geosci
– volume: 68
  start-page: 3094
  year: 2002a
  end-page: 3101
  article-title: Fluorescence hybridization and catalyzed reporter deposition (CARD) for the identification of marine bacteria
  publication-title: Appl Environ Microbiol
– volume: 64
  start-page: 688
  year: 1998
  end-page: 694
  article-title: Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis
  publication-title: Appl Environ Microbiol
– volume: 4
  start-page: 713
  year: 2002
  end-page: 720
  article-title: Fluorescence hybridization of 16S rRNA gene clones (Clone‐FISH) for probe validation and screening of clone libraries
  publication-title: Environ Microbiol
– volume: 67
  start-page: 5134
  year: 2001
  end-page: 5142
  article-title: Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton
  publication-title: Appl Environ Microbiol
– volume: 56
  start-page: 1919
  year: 1990
  end-page: 1925
  article-title: Combination of 16S rRNA‐targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations
  publication-title: Appl Environ Microbiol
– volume: 45
  start-page: 107
  year: 2006
  end-page: 113
  article-title: SAR11 dominance among metabolically active low nucleic acid bacterioplankton in surface waters along an Atlantic meridional transect
  publication-title: Aquat Microb Ecol
– volume: 420
  start-page: 806
  year: 2002
  end-page: 810
  article-title: SAR11 clade dominates ocean surface bacterioplankton communities
  publication-title: Nature
– volume: 39
  start-page: 145
  year: 2005
  end-page: 157
  article-title: Molecular identification of picoplankton populations in contrasting waters of the Arabian Sea
  publication-title: Aquat Microb Ecol
– volume: 150
  start-page: 275
  year: 1997
  end-page: 285
  article-title: Widespread and novel from the deep sea as shown by 16S rRNA gene sequences
  publication-title: Mar Ecol Prog Ser
– volume: 22
  start-page: 193
  year: 1999
  end-page: 203
  article-title: Phytoplankton chlorophyll distribution and water column stability in the central Atlantic Ocean
  publication-title: Oceanologica Acta
– volume: 42/1
  start-page: 811
  year: 1997
  end-page: 826
  article-title: Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina
  publication-title: Limnol Oceanogr
– volume: 144
  start-page: 3257
  year: 1998
  end-page: 3266
  article-title: Monitoring a widespread bacterial group: detection of planctomycetes with 16S rRNA‐targeted probes
  publication-title: Microbiology
– volume: 3
  start-page: 283
  year: 2008
  end-page: 295
  article-title: Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea
  publication-title: ISME J
– volume: 53
  start-page: 1593
  year: 2006
  end-page: 1610
  article-title: Phytoplankton carbon fixation, chlorophyll‐biomass and diagnostic pigments in the Atlantic Ocean
  publication-title: Deep Sea Res Part II: Top Stud Oceanogr
– volume: 311
  start-page: 1737
  year: 2006
  end-page: 1740
  article-title: Niche partitioning among ecotypes along ocean‐scale environmental gradients
  publication-title: Science
– volume: 15
  start-page: 593
  year: 1992
  end-page: 600
  article-title: Phylogenetic oligonucleotide probes for the major subclasses of proteobacteria: problems and solutions
  publication-title: Syst Appl Microbiol
– volume: 7
  start-page: 860
  year: 2005
  end-page: 873
  article-title: Marine diatom species harbour distinct bacterial communities
  publication-title: Environ Microbiol
– volume: 37
  start-page: 77
  year: 1999
  end-page: 85
  article-title: Identification of culturable oligotrophic bacteria within naturally occurring bacterioplankton communities of the Ligurian Sea by 16S rRNA sequencing and probing
  publication-title: Microb Ecol
– volume: 62
  start-page: 1171
  year: 1996
  end-page: 1177
  article-title: Detection of stratified microbial populations related to and species in the Atlantic and Pacific Oceans
  publication-title: Appl Environ Microbiol
– volume: 66
  start-page: 1692
  year: 2000
  end-page: 1697
  article-title: Natural assemblages of marine proteobacteria and members of the cluster consuming low‐ and high‐molecular‐weight dissolved organic matter
  publication-title: Appl Environ Microbiol
– volume: 63
  start-page: 106
  year: 1999
  end-page: 127
  article-title: , a marine photosynthetic prokaryote of global significance
  publication-title: Microbiol Mol Biol Rev
– volume: 70
  start-page: 4411
  year: 2004
  end-page: 4414
  article-title: Combining catalyzed reporter deposition‐fluorescence hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean
  publication-title: Appl Environ Microbiol
– volume: 67
  start-page: 5210
  year: 2001
  end-page: 5218
  article-title: Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea
  publication-title: Appl Environ Microbiol
– volume: 100
  start-page: 10020
  year: 2003
  end-page: 10025
  article-title: Genome sequence of the cyanobacterium marinus SS120, a nearly minimal oxyphototrophic genome
  publication-title: Proc Natl Acad Sci USA
– volume: 409
  start-page: 507
  year: 2001
  end-page: 509
  article-title: Archaeal dominance in the mesopelagic zone of the Pacific Ocean
  publication-title: Nature
– volume: 53
  start-page: 1485
  year: 2006
  end-page: 1515
  article-title: The Atlantic Meridional Transect (AMT) Programme: a contextual view 1995–2005
  publication-title: Deep Sea Res Part II: Top Stud Oceanogr
– volume: 9
  start-page: 1278
  year: 2007
  end-page: 1290
  article-title: Basin‐scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean
  publication-title: Environ Microbiol
– volume: 38
  start-page: 924
  year: 1993
  end-page: 934
  article-title: Phylogenetic diversity of aggregate‐attached vs. free‐living marine bacterial assemblages
  publication-title: Limnol Oceanogr
– volume: 10
  start-page: 110
  year: 2008b
  end-page: 124
  article-title: Latitudinal trends of and in the meso‐ and bathypelagic water masses of the Eastern North Atlantic
  publication-title: Environ Microbiol
– volume: 8
  start-page: 2201
  year: 2006
  end-page: 2213
  article-title: Whole genome analysis of the marine ‘ ’ reveals adaptations to degradation of polymeric organic matter
  publication-title: Environ Microbiol
– volume: 50
  start-page: 1687
  year: 2005
  end-page: 1696
  article-title: Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time‐series study site
  publication-title: Limnol Oceanogr
– volume: 69
  start-page: 2631
  year: 2003
  end-page: 2637
  article-title: Automated enumeration of groups of marine picoplankton after fluorescence hybridization
  publication-title: Appl Environ Microbiol
– volume: 51
  start-page: 2131
  year: 2006a
  end-page: 2144
  article-title: Distribution and activity of and in the deep water masses of the North Atlantic
  publication-title: Limnol Oceanogr
– volume: 70
  start-page: 4129
  year: 2004
  end-page: 4135
  article-title: Contribution of SAR11 to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic Ocean
  publication-title: Appl Environ Microbiol
– volume: 68
  start-page: 661
  year: 2002b
  end-page: 667
  article-title: Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine and
  publication-title: Appl Environ Microbiol
– volume: 72
  start-page: 2141
  year: 2006
  end-page: 2147
  article-title: Concentration‐dependent patterns of leucine incorporation by coastal picoplankton
  publication-title: Appl Environ Microbiol
– volume: 65
  start-page: 5554
  year: 1999
  end-page: 5563
  article-title: Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent hybridization
  publication-title: Appl Environ Microbiol
– volume: 71
  start-page: 2979
  year: 2005
  end-page: 2986
  article-title: Biomass production and assimilation of dissolved organic matter by SAR11 bacteria in the northwest Atlantic Ocean
  publication-title: Appl Environ Microbiol
– volume: 68
  start-page: 2997
  year: 2002
  end-page: 3002
  article-title: Distribution of membrane lipids of planktonic in the Arabian Sea
  publication-title: Appl Environ Microbiol
– volume: 437
  start-page: 343
  year: 2005
  end-page: 348
  article-title: Molecular diversity and ecology of microbial plankton
  publication-title: Nature
– volume: 52
  start-page: 495
  year: 2007
  end-page: 507
  article-title: Standing stocks and activity of and in the western Arctic Ocean
  publication-title: Limnol Oceanogr
– volume: 21
  start-page: 13
  year: 2000
  end-page: 20
  article-title: Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean
  publication-title: Aquat Microb Ecol
– volume: 60
  start-page: 98
  year: 2007
  end-page: 112
  article-title: Seasonality in bacterial diversity in north‐west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH
  publication-title: FEMS Microbiol Ecol
– volume: 311
  start-page: 496
  year: 2006
  end-page: 503
  article-title: Community genomics among stratified microbial assemblages in the ocean's interior
  publication-title: Science
– volume: 51
  start-page: 265
  year: 2005
  end-page: 277
  article-title: Ecological and biogeographic relationships of class in the Southern Ocean
  publication-title: FEMS Microbiol Ecol
– volume: 37
  start-page: 87
  year: 1979
  end-page: 101
  article-title: Hydrological structure analysis for estimating the primary production in the tropical Atlantic Ocean
  publication-title: J Mar Res
– volume: 43
  start-page: 1746
  year: 1998
  end-page: 1753
  article-title: Annual average abundance of heterotrophic bacteria and in surface ocean waters
  publication-title: Limnol Oceanogr
– volume: 35
  start-page: 7188
  year: 2007
  end-page: 7196
  article-title: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB
  publication-title: Nucleic Acids Res
– volume: 14
  start-page: 136
  year: 1993
  end-page: 143
  article-title: Optimizing fluorescent ‐hybridization with rRNA‐targeted oligonucleotide probes for flow cytometric identification of microorganisms
  publication-title: Cytometry
– volume: 95
  start-page: 6578
  year: 1998
  end-page: 6583
  article-title: Prokaryotes: the unseen majority
  publication-title: Proc Natl Acad Sci USA
– volume: 37
  start-page: 87
  year: 1979
  ident: e_1_2_6_33_1
  article-title: Hydrological structure analysis for estimating the primary production in the tropical Atlantic Ocean
  publication-title: J Mar Res
– ident: e_1_2_6_24_1
  doi: 10.1038/nature04158
– ident: e_1_2_6_26_1
  doi: 10.1073/pnas.93.15.7979
– ident: e_1_2_6_15_1
  doi: 10.1128/AEM.65.12.5554-5563.1999
– volume: 62
  start-page: 1171
  year: 1996
  ident: e_1_2_6_31_1
  article-title: Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific Oceans
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.62.4.1171-1177.1996
– ident: e_1_2_6_13_1
  doi: 10.1128/AEM.68.6.2997-3002.2002
– ident: e_1_2_6_12_1
  doi: 10.1016/S0723-2020(99)80053-8
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1574-6941.2006.00225.x
– ident: e_1_2_6_5_1
  doi: 10.1128/AEM.72.3.2141-2147.2006
– ident: e_1_2_6_82_1
  doi: 10.1111/j.1462-2920.2007.01246.x
– ident: e_1_2_6_40_1
  doi: 10.1073/pnas.0502088102
– ident: e_1_2_6_76_1
  doi: 10.1099/00221287-147-7-1731
– ident: e_1_2_6_55_1
  doi: 10.1073/pnas.0809329105
– ident: e_1_2_6_45_1
  doi: 10.1128/AEM.70.7.4129-4135.2004
– ident: e_1_2_6_52_1
  doi: 10.1038/nature01240
– ident: e_1_2_6_21_1
  doi: 10.3354/ame039145
– ident: e_1_2_6_22_1
  doi: 10.3354/meps150275
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1462-2920.2007.01244.x
– ident: e_1_2_6_75_1
  doi: 10.1002/cyto.990140205
– ident: e_1_2_6_64_1
  doi: 10.4319/lo.1997.42.5.0811
– ident: e_1_2_6_63_1
  doi: 10.1093/nar/gkm864
– ident: e_1_2_6_71_1
  doi: 10.4319/lo.2006.51.1.0060
– ident: e_1_2_6_48_1
  doi: 10.1099/13500872-142-5-1097
– ident: e_1_2_6_69_1
  doi: 10.1128/AEM.70.7.4411-4414.2004
– ident: e_1_2_6_10_1
  doi: 10.1038/ismej.2008.117
– ident: e_1_2_6_17_1
  doi: 10.1073/pnas.1733211100
– ident: e_1_2_6_34_1
  doi: 10.1128/AEM.71.5.2303-2309.2005
– ident: e_1_2_6_19_1
  doi: 10.1128/AEM.67.11.5134-5142.2001
– ident: e_1_2_6_38_1
  doi: 10.4319/lo.2007.52.2.0495
– ident: e_1_2_6_14_1
  doi: 10.4319/lo.1993.38.5.0924
– ident: e_1_2_6_39_1
  doi: 10.1038/nature03911
– ident: e_1_2_6_20_1
  doi: 10.1128/aem.63.1.63-70.1997
– ident: e_1_2_6_59_1
  doi: 10.1128/AEM.68.6.3094-3101.2002
– ident: e_1_2_6_37_1
  doi: 10.1128/AEM.69.11.6587-6596.2003
– ident: e_1_2_6_18_1
  doi: 10.1128/AEM.66.7.3044-3051.2000
– ident: e_1_2_6_74_1
  doi: 10.1111/j.1462-2920.2007.01437.x
– ident: e_1_2_6_60_1
  doi: 10.1128/AEM.68.2.661-667.2002
– ident: e_1_2_6_25_1
  doi: 10.1038/345060a0
– ident: e_1_2_6_62_1
  doi: 10.1016/j.dsr2.2006.05.007
– ident: e_1_2_6_2_1
  doi: 10.1016/j.femsec.2004.09.001
– volume: 63
  start-page: 1441
  year: 1997
  ident: e_1_2_6_79_1
  article-title: A novel delta‐subdivision proteobacterial lineage from the lower ocean surface layer
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.63.4.1441-1448.1997
– ident: e_1_2_6_50_1
  doi: 10.1128/AEM.63.1.50-56.1997
– ident: e_1_2_6_53_1
  doi: 10.1128/AEM.70.5.2836-2842.2004
– ident: e_1_2_6_35_1
  doi: 10.1126/science.1118052
– ident: e_1_2_6_49_1
  doi: 10.3354/ame045107
– ident: e_1_2_6_16_1
  doi: 10.4319/lo.1993.38.5.0924
– ident: e_1_2_6_58_1
  doi: 10.1016/j.tim.2006.04.007
– ident: e_1_2_6_23_1
  doi: 10.1073/pnas.0602399103
– ident: e_1_2_6_3_1
  doi: 10.1016/S0399-1784(99)80045-0
– ident: e_1_2_6_78_1
  doi: 10.1073/pnas.95.12.6578
– volume-title: Ecological Geography of the Sea
  year: 1998
  ident: e_1_2_6_43_1
– volume: 69
  start-page: 2631
  year: 2003
  ident: e_1_2_6_61_1
  article-title: Automated enumeration of groups of marine picoplankton after fluorescence in situ hybridization
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.5.2631-2637.2003
– ident: e_1_2_6_66_1
  doi: 10.1016/j.dsr2.2006.05.015
– ident: e_1_2_6_81_1
  doi: 10.1128/AEM.67.11.5210-5218.2001
– ident: e_1_2_6_47_1
  doi: 10.1016/S0723-2020(11)80121-9
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1574-6941.2006.00276.x
– ident: e_1_2_6_41_1
  doi: 10.4319/lo.1998.43.7.1746
– ident: e_1_2_6_67_1
  doi: 10.1046/j.1462-2920.2002.00364.x
– ident: e_1_2_6_65_1
  doi: 10.1016/j.dsr2.2006.05.008
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1462-2920.2007.01360.x
– ident: e_1_2_6_72_1
  doi: 10.1038/nature06776
– ident: e_1_2_6_11_1
  doi: 10.1128/AEM.66.4.1692-1697.2000
– ident: e_1_2_6_36_1
  doi: 10.1038/35054051
– ident: e_1_2_6_70_1
  doi: 10.4319/lo.2006.51.5.2131
– ident: e_1_2_6_27_1
  doi: 10.1007/s002489900132
– ident: e_1_2_6_46_1
  doi: 10.1128/AEM.71.6.2979-2986.2005
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1462-2920.2005.00759.x
– ident: e_1_2_6_80_1
  doi: 10.3354/ame021013
– ident: e_1_2_6_30_1
  doi: 10.1073/pnas.0712027105
– ident: e_1_2_6_28_1
  doi: 10.1128/AEM.65.8.3721-3726.1999
– ident: e_1_2_6_51_1
  doi: 10.1038/ngeo232
– ident: e_1_2_6_68_1
  doi: 10.1073/pnas.0605127103
– ident: e_1_2_6_42_1
  doi: 10.1128/AEM.64.2.688-694.1998
– ident: e_1_2_6_29_1
  doi: 10.1038/nature05381
– ident: e_1_2_6_57_1
  doi: 10.1128/MMBR.63.1.106-127.1999
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1462-2920.2006.01152.x
– ident: e_1_2_6_56_1
  doi: 10.1099/00221287-144-12-3257
– ident: e_1_2_6_73_1
  doi: 10.1111/j.1462-2920.2008.01627.x
– volume-title: Our Changing Planet. An Introduction to Earth System Science and Global Environmental Change
  year: 1997
  ident: e_1_2_6_44_1
– ident: e_1_2_6_77_1
  doi: 10.1111/j.1462-2920.2007.01497.x
– ident: e_1_2_6_54_1
  doi: 10.4319/lo.2005.50.5.1687
SSID ssj0017370
Score 2.39854
Snippet Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain changes...
Summary Members of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain...
SummaryMembers of the prokaryotic picoplankton are the main drivers of the biogeochemical cycles over large areas of the world's oceans. In order to ascertain...
SourceID proquest
pubmed
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2078
SubjectTerms Alphaproteobacteria
Alphaproteobacteria - classification
Alphaproteobacteria - growth & development
analysis
Archaea
Archaea - classification
Archaea - growth & development
Atlantic Ocean
bacteria
Bacteria - classification
Bacteria - growth & development
Bacteroidetes
Bacteroidetes - classification
Bacteroidetes - growth & development
basins
biogeochemical cycles
Biomass
chlorophyll
Chlorophyll - analysis
classification
Colony Count, Microbial
community structure
Crenarchaeota
Crenarchaeota - classification
Crenarchaeota - growth & development
euphotic zone
Euryarchaeota
Eutrophication
fluorescence in situ hybridization
gamma-Proteobacteria
Gammaproteobacteria
Gammaproteobacteria - classification
Gammaproteobacteria - growth & development
Geography
growth & development
latitude
Marine
microbial biomass
microbial communities
microbiology
microscopy
oceans
Planctomycetes
Plankton
Plankton - classification
Plankton - growth & development
Prochlorococcus
Prochlorococcus - classification
Prochlorococcus - growth & development
Seawater
Seawater - microbiology
South Africa
spring
surface water
United Kingdom
Title Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2009.01929.x
https://www.ncbi.nlm.nih.gov/pubmed/19453607
https://www.proquest.com/docview/20881180
https://www.proquest.com/docview/46356083
https://www.proquest.com/docview/67593098
Volume 11
WOSCitedRecordID wos000268655000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1462-2920
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017370
  issn: 1462-2912
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH6CwqRdNn4M6MbAB65BiePE8RENKg4VoEFRb5brvKAKlFS0nbb_fu8loVMRSAhNuUSKn-Mf37M_x877AI5CWUjtYx3Q0JcGyhsXGGcIyyqh2cFwCLNataSvLy6y4dBcteef-F-YJj7E4oMbe0Y9XrODu9H0uZPLgNWW2rCTRFbMMfHJNUkwVh1YO_3ZG_QXewo6rqXjWqvo2bmeF_NamqxWC1e9xEOXaW09L_U-_88abcCnlp2KkwZOm7CC5RZ8aPQq_2zDbZ_BNc9ZSUvkHHK3VcsSVSGoxPf07opMxYTwNXlw5T0xSzFZaIRNxbgUxDjFyYwecsJLj678AoPe2c2P86AVZgg8ET5Di1cT5bmLXTJCZ0IcKVSofag1osycUV6HWKRaMtlMtPZFSFeajxKJBjXGO9ApqxL3QKQqZZKlskijKlzqkFBCwxDlGhPI4y7opx6wvo1azuIZD3Zp9SIttxprahpbt5r93YVoYTlpIne8wWaPOtm6Oxpg7eBa8rZuRJyMWE0XDp963pIH8raKK7GaTymDLONAeq-nUBwEkLju6ylo2Wbi0NBbdhtQ_SuyUUmchroLaY2dN9fFkh_z3df3Gn6Dj83WGZ923IfO7HGO32Hd_5qNp48HsKqH2UHrY38BLo0fIg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED_WdGN96b7X7Kt62KuHP2TLegxbQ8e8bGzJyJtQ5HMJCXZoktL-97uz3YyEFsoofjFYJ8vW76SfdPb9AD76YREqFymPhr7Ek05bT1tNWJYxzQ6aU5jVqiWZGgzS8Vj_bOWA-F-YJj_EZsONPaMer9nBeUN618tDj-WW2ryTxFb0JyKU-5JQFXdg_8uv_ijbBBVUVGvHtVbBzoc9N9a1NVvtFba6iYhu89p6Yuo_uddHegqHLT8VvQZQz-ABls_hUaNYefUC_mQMr3XOWloi56S7rV6WqApBTZ7RzSsyFQtC2GJuyxlxS7HYqIQtxbQUxDlFb0UXueAPh7Z8CaP-yfDzqddKM3iOKJ-m5asO8txGNp6g1T5OJEpUzlcKMUytlk75WCQqZLoZK-UKn44kn8QhalQYvYJOWZV4BCKRCdMsmQYKZWETi4QTGoio1ohgHnVBXXeBcW3ecpbPmJut9Uto-K2xqqY29Vszl10INpaLJnfHHWyOqJeNPaMh1ox-hxzYDYiVEa_pwvF11xvyQQ6s2BKr9ZIqSFNOpXd7CclpAInt3l6CFm468jXd5XWDqn9N1jKOEl91IanBc-dnMeTJfPbmfw2P4fHp8Htmsq-Db2_hoAmk8beP76CzOl_je3joLlbT5fmH1tX-Aq9MIio
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xKFUvpS0UtuXhQ6-p8nDs-IhKV61YLaiwFTfL60wQAiURu4vaf9-ZJCxaBBJCVS6R4nH8mBl_zjjzAXwJ4yLWPtEBuT4VSG9cYJwhXZYprQ6GU5g1rCUDPRxm5-fmpKMD4n9h2vwQ8w9ubBmNv2YDxzovHlp5HDDdUpd3ktCK-UqAclWmRpGVrh7-6o8G86CCThruuE4qenCw59G6Flar5cJVjwHRRVzbLEz99f_apXfwtsOn4qBVqPewhOUHWGsZK_9uwO8Bq9csZy4tkXPS3Y4vS1SFoCZf0csrEhU1aVh97corwpainrOETcRlKQhzioMpPeSCxx5duQmj_vezbz-Cjpoh8AT5DG1fTZTnLnHpGJ0JcSxRovah1ohx5oz0OsRC6ZjhZqq1L0K6VD5OYzSoMfkIK2VV4jYIJRXDLJlFGmXhlEPSE3JEVGtCap70QN9NgfVd3nKmz7i2C_uX2PKoMaumsc2o2T89iOaSdZu74xky2zTL1l2Qi7Wj05gDuxGhMsI1Pdi_m3pLNsiBFVdiNZtQBVnGqfSeLiE5DSCh3adL0MbNJKGht2y1WnXfZCPTRIW6B6pRnmf3xZIl892nlwruw-uTw74d_BwefYY3bRyNjz7uwMr0Zoa78MrfTi8nN3udpf0DBAshpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latitudinal+distribution+of+prokaryotic+picoplankton+populations+in+the+Atlantic+Ocean&rft.jtitle=Environmental+microbiology&rft.au=Schattenhofer%2C+Martha&rft.au=Fuchs%2C+Bernhard+M&rft.au=Amann%2C+Rudolf&rft.au=Zubkov%2C+Mikhail+V&rft.date=2009-08-01&rft.eissn=1462-2920&rft.volume=11&rft.issue=8&rft.spage=2078&rft_id=info:doi/10.1111%2Fj.1462-2920.2009.01929.x&rft_id=info%3Apmid%2F19453607&rft.externalDocID=19453607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon