An efficient machine learning approach for predicting concrete chloride resistance using a comprehensive dataset
By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete sh...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 13; H. 1; S. 15024 - 33 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
12.09.2023
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete shows potential as a financially viable and less complex substitute for labour-intensive experimental evaluations. The existing models for predicting chloride resistance encounter two primary challenges: the constraints imposed by a limited dataset and the absence of certain input variables. These factors collectively contribute to a decrease in the overall effectiveness of these models. Therefore, this study aims to propose an advanced approach for dataset cleaning, utilizing a comprehensive experimental dataset comprising 1073 pre-existing experimental outcomes. The proposed model for predicting the chloride diffusion coefficient incorporates various input variables, such as water content, cement content, slag content, fly ash content, silica fume content, fine aggregate content, coarse aggregate content, superplasticizer content, fresh density, compressive strength, age of compressive strength test, and age of migration test. The utilization of the artificial neural network (ANN) technique is also employed for the processing of missing data. The current supervised learning incorporates both regression and classification tasks. The efficacy of the proposed models for accurately predicting the chloride diffusion coefficient has been effectively validated. The findings indicate that the XGBoost and SVM algorithms exhibit superior performance compared to other regression prediction algorithms, as evidenced by their high R2 scores of 0.94 and 0.91, respectively. In relation to classification algorithms, the findings demonstrate that the Random Forest, LightGBM, and XGBoost models exhibit the highest levels of accuracy, specifically 0.93, 0.96, and 0.97, respectively. Furthermore, a website has been developed that is capable of predicting the chloride migration coefficient and chloride penetration resistance of concrete. |
|---|---|
| AbstractList | By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete shows potential as a financially viable and less complex substitute for labour-intensive experimental evaluations. The existing models for predicting chloride resistance encounter two primary challenges: the constraints imposed by a limited dataset and the absence of certain input variables. These factors collectively contribute to a decrease in the overall effectiveness of these models. Therefore, this study aims to propose an advanced approach for dataset cleaning, utilizing a comprehensive experimental dataset comprising 1073 pre-existing experimental outcomes. The proposed model for predicting the chloride diffusion coefficient incorporates various input variables, such as water content, cement content, slag content, fly ash content, silica fume content, fine aggregate content, coarse aggregate content, superplasticizer content, fresh density, compressive strength, age of compressive strength test, and age of migration test. The utilization of the artificial neural network (ANN) technique is also employed for the processing of missing data. The current supervised learning incorporates both regression and classification tasks. The efficacy of the proposed models for accurately predicting the chloride diffusion coefficient has been effectively validated. The findings indicate that the XGBoost and SVM algorithms exhibit superior performance compared to other regression prediction algorithms, as evidenced by their high R2 scores of 0.94 and 0.91, respectively. In relation to classification algorithms, the findings demonstrate that the Random Forest, LightGBM, and XGBoost models exhibit the highest levels of accuracy, specifically 0.93, 0.96, and 0.97, respectively. Furthermore, a website has been developed that is capable of predicting the chloride migration coefficient and chloride penetration resistance of concrete.By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete shows potential as a financially viable and less complex substitute for labour-intensive experimental evaluations. The existing models for predicting chloride resistance encounter two primary challenges: the constraints imposed by a limited dataset and the absence of certain input variables. These factors collectively contribute to a decrease in the overall effectiveness of these models. Therefore, this study aims to propose an advanced approach for dataset cleaning, utilizing a comprehensive experimental dataset comprising 1073 pre-existing experimental outcomes. The proposed model for predicting the chloride diffusion coefficient incorporates various input variables, such as water content, cement content, slag content, fly ash content, silica fume content, fine aggregate content, coarse aggregate content, superplasticizer content, fresh density, compressive strength, age of compressive strength test, and age of migration test. The utilization of the artificial neural network (ANN) technique is also employed for the processing of missing data. The current supervised learning incorporates both regression and classification tasks. The efficacy of the proposed models for accurately predicting the chloride diffusion coefficient has been effectively validated. The findings indicate that the XGBoost and SVM algorithms exhibit superior performance compared to other regression prediction algorithms, as evidenced by their high R2 scores of 0.94 and 0.91, respectively. In relation to classification algorithms, the findings demonstrate that the Random Forest, LightGBM, and XGBoost models exhibit the highest levels of accuracy, specifically 0.93, 0.96, and 0.97, respectively. Furthermore, a website has been developed that is capable of predicting the chloride migration coefficient and chloride penetration resistance of concrete. By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete shows potential as a financially viable and less complex substitute for labour-intensive experimental evaluations. The existing models for predicting chloride resistance encounter two primary challenges: the constraints imposed by a limited dataset and the absence of certain input variables. These factors collectively contribute to a decrease in the overall effectiveness of these models. Therefore, this study aims to propose an advanced approach for dataset cleaning, utilizing a comprehensive experimental dataset comprising 1073 pre-existing experimental outcomes. The proposed model for predicting the chloride diffusion coefficient incorporates various input variables, such as water content, cement content, slag content, fly ash content, silica fume content, fine aggregate content, coarse aggregate content, superplasticizer content, fresh density, compressive strength, age of compressive strength test, and age of migration test. The utilization of the artificial neural network (ANN) technique is also employed for the processing of missing data. The current supervised learning incorporates both regression and classification tasks. The efficacy of the proposed models for accurately predicting the chloride diffusion coefficient has been effectively validated. The findings indicate that the XGBoost and SVM algorithms exhibit superior performance compared to other regression prediction algorithms, as evidenced by their high R2 scores of 0.94 and 0.91, respectively. In relation to classification algorithms, the findings demonstrate that the Random Forest, LightGBM, and XGBoost models exhibit the highest levels of accuracy, specifically 0.93, 0.96, and 0.97, respectively. Furthermore, a website has been developed that is capable of predicting the chloride migration coefficient and chloride penetration resistance of concrete. Abstract By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete shows potential as a financially viable and less complex substitute for labour-intensive experimental evaluations. The existing models for predicting chloride resistance encounter two primary challenges: the constraints imposed by a limited dataset and the absence of certain input variables. These factors collectively contribute to a decrease in the overall effectiveness of these models. Therefore, this study aims to propose an advanced approach for dataset cleaning, utilizing a comprehensive experimental dataset comprising 1073 pre-existing experimental outcomes. The proposed model for predicting the chloride diffusion coefficient incorporates various input variables, such as water content, cement content, slag content, fly ash content, silica fume content, fine aggregate content, coarse aggregate content, superplasticizer content, fresh density, compressive strength, age of compressive strength test, and age of migration test. The utilization of the artificial neural network (ANN) technique is also employed for the processing of missing data. The current supervised learning incorporates both regression and classification tasks. The efficacy of the proposed models for accurately predicting the chloride diffusion coefficient has been effectively validated. The findings indicate that the XGBoost and SVM algorithms exhibit superior performance compared to other regression prediction algorithms, as evidenced by their high R2 scores of 0.94 and 0.91, respectively. In relation to classification algorithms, the findings demonstrate that the Random Forest, LightGBM, and XGBoost models exhibit the highest levels of accuracy, specifically 0.93, 0.96, and 0.97, respectively. Furthermore, a website has been developed that is capable of predicting the chloride migration coefficient and chloride penetration resistance of concrete. |
| ArticleNumber | 15024 |
| Author | Hosseinzadeh, Maedeh Hosseinzadeh, Alireza Mousavi, Seyed Sina Dehestani, Mehdi |
| Author_xml | – sequence: 1 givenname: Maedeh surname: Hosseinzadeh fullname: Hosseinzadeh, Maedeh organization: Faculty of Civil Engineering, Babol Noshirvani University of Technology – sequence: 2 givenname: Seyed Sina surname: Mousavi fullname: Mousavi, Seyed Sina organization: Faculty of Civil Engineering, Babol Noshirvani University of Technology – sequence: 3 givenname: Alireza surname: Hosseinzadeh fullname: Hosseinzadeh, Alireza organization: Faculty of Civil Engineering, Babol Noshirvani University of Technology – sequence: 4 givenname: Mehdi surname: Dehestani fullname: Dehestani, Mehdi email: dehestani@nit.ac.ir organization: Faculty of Civil Engineering, Babol Noshirvani University of Technology |
| BookMark | eNp9Uk1vFSEUnZgaW2v_gKtJ3LgZ5XtgZZrGjyZN3OiaMHB5j5d5MAKvif9e3psabRdlAxzOOfdyc153ZzFF6Lq3GH3AiMqPhWGu5IAIHRghIxroi-6CIMYHQgk5--983l2VskNtcaIYVq-6czqO7SrIRbdcxx68DzZArP3e2G2I0M9gcgxx05tlyamBvU-5XzK4YOsRtynaDBV6u51TDg76DCWUaqKF_lBO0kbaN8kWYgn30DtTTYH6pnvpzVzg6mG_7H5--fzj5ttw9_3r7c313WA5lnUARZhzQCcuLPNMEi6dt0oo6xBMjnHOLPejGEdggA1GMFLODMFCSkTcRC-729XXJbPTSw57k3_rZII-ASlvtMk12Bk09xQza1wrxpjgQqpJCOWZoJPnzrHm9Wn1Wg7THpxto8pmfmT6-CWGrd6ke40RUyPnqjm8f3DI6dcBStX7UCzMs4mQDkUTKZjACknZqO-eUHfpkGOb1YmFsGIjbyy5smxOpWTw2oZqakjHBsLcKutjTPQaE91iok8x0bRJyRPp3488K6KrqDRy3ED-19Uzqj-QE9Gk |
| CitedBy_id | crossref_primary_10_1016_j_cscm_2025_e04787 crossref_primary_10_1038_s41598_025_08526_w crossref_primary_10_1061_JSDCCC_SCENG_1843 crossref_primary_10_1063_5_0228503 crossref_primary_10_1007_s41062_024_01378_9 crossref_primary_10_1007_s42107_025_01326_7 crossref_primary_10_1016_j_cscm_2025_e05191 crossref_primary_10_3390_buildings14010225 crossref_primary_10_1016_j_conbuildmat_2025_140209 crossref_primary_10_1016_j_mtcomm_2024_109419 crossref_primary_10_1016_j_istruc_2023_105720 crossref_primary_10_1016_j_ijsolstr_2024_113014 crossref_primary_10_1038_s41598_024_52046_y crossref_primary_10_1016_j_mtcomm_2024_108543 crossref_primary_10_1038_s44296_025_00058_8 crossref_primary_10_1007_s11709_024_1124_9 crossref_primary_10_1007_s11831_025_10284_x crossref_primary_10_1002_tal_70036 |
| Cites_doi | 10.1016/j.conbuildmat.2016.04.025 10.1016/j.matchemphys.2017.05.011 10.3390/ma15196959 10.1016/j.cemconcomp.2022.104836 10.1016/j.jobe.2022.104746 10.1016/j.jclepro.2021.126032 10.1016/j.conbuildmat.2014.11.033 10.1016/j.marstruc.2022.103311 10.1016/j.cemconres.2009.05.013 10.1016/j.jobe.2020.101445 10.1016/j.conbuildmat.2022.127103 10.1016/j.jobe.2022.105146 10.1016/j.conbuildmat.2022.127613 10.1016/j.mtcomm.2023.106335 10.58845/jstt.utt.2022.en.2.44-56 10.3390/ma8125483 10.1016/S0008-8846(98)00192-6 10.1016/j.conbuildmat.2009.07.003 10.1016/j.conbuildmat.2021.125021 10.1016/j.measurement.2017.08.031 10.1016/j.cemconres.2020.106164 10.1007/BF02479594 10.3390/ma15093166 10.1016/j.mtcomm.2022.104137 10.1016/j.cemconcomp.2019.03.011 10.1016/j.jobe.2023.107006 10.1016/j.conbuildmat.2013.03.039 10.3390/buildings11080324 10.3390/ma14040794 10.1007/BF02841355 10.1016/j.jmrt.2023.06.006 10.1016/j.jclepro.2022.134021 10.1007/s12205-015-0131-8 10.1016/j.matchemphys.2011.04.057 10.14419/ijet.v7i2.28.12880 10.1680/jmacr.15.00261 10.1016/j.conbuildmat.2022.128296 10.1016/j.conbuildmat.2020.121082 10.1002/suco.202100682 10.1016/j.jare.2019.07.001 10.1016/j.conbuildmat.2017.01.041 10.1007/s42452-020-2681-8 10.1617/s11527-012-9885-3 10.1016/j.conbuildmat.2010.06.020 10.3390/ma14092297 10.1016/j.cemconcomp.2015.04.001 10.1016/j.conbuildmat.2008.04.015 10.3390/ma14154222 10.1016/j.mtcomm.2023.105901 10.1016/j.cemconres.2015.06.014 10.12989/cac.2016.18.6.793 10.1016/j.compositesb.2012.05.054 10.3390/app11167251 10.3390/ma14174934 10.1016/j.conbuildmat.2019.117045 10.3390/ma14247531 10.1016/j.jobe.2018.12.013 10.1016/j.conbuildmat.2015.08.080 10.1016/j.conbuildmat.2022.128566 10.1016/j.cemconcomp.2015.03.006 10.1016/j.jobe.2020.101490 10.1617/s11527-012-0009-x 10.1155/2016/2042918 10.3390/ma15010058 10.1016/j.mtla.2021.101123 10.1061/(ASCE)0899-1561(2008)20:1(2) 10.1590/s1983-41952021000400007 10.1016/j.hbrcj.2013.04.001 10.1016/j.cemconcomp.2009.08.005 10.1016/j.istruc.2022.05.115 10.1111/j.1151-2916.1972.tb13424.x 10.1201/b10162-4 10.1088/1755-1315/687/1/012037 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-023-42270-3 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 33 |
| ExternalDocumentID | oai_doaj_org_article_5f314cad3b54465689b669f463bf5dd4 PMC10497559 10_1038_s41598_023_42270_3 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c518t-e924dde3b56c4f48258dfc969cd0ebd4554c5f7677e4e1a10e7354a2168802db3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001067966700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 18:58:26 EDT 2025 Tue Nov 04 02:06:16 EST 2025 Thu Sep 04 16:52:37 EDT 2025 Tue Oct 07 08:10:09 EDT 2025 Tue Nov 18 22:06:34 EST 2025 Sat Nov 29 06:05:10 EST 2025 Fri Feb 21 02:37:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c518t-e924dde3b56c4f48258dfc969cd0ebd4554c5f7677e4e1a10e7354a2168802db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2864019475?pq-origsite=%requestingapplication% |
| PMID | 37700062 |
| PQID | 2864019475 |
| PQPubID | 2041939 |
| PageCount | 33 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5f314cad3b54465689b669f463bf5dd4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10497559 proquest_miscellaneous_2864619088 proquest_journals_2864019475 crossref_citationtrail_10_1038_s41598_023_42270_3 crossref_primary_10_1038_s41598_023_42270_3 springer_journals_10_1038_s41598_023_42270_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-12 |
| PublicationDateYYYYMMDD | 2023-09-12 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Mousavi, Mousavi, Bhojaraju (CR5) 2020; 2 Taffese, Espinosa-Leal (CR55) 2022; 348 Ahmad (CR47) 2021; 14 Gilat (CR63) 2004 Golafshani (CR8) 2022; 374 Yuan, Zhao, Esmaeili-Falak (CR34) 2022; 23 Ullah (CR19) 2022; 15 Slika, Saad (CR43) 2016; 115 Maes, Gruyaert, De Belie (CR72) 2013; 46 Hosseinzadeh, Dehestani, Hosseinzadeh (CR15) 2023; 2023 Boğa, Öztürk, Topcu (CR41) 2013; 45 Inthata, Kowtanapanich, Cheerarot (CR40) 2013; 46 Ahmad (CR24) 2021; 11 Asghshahr, Rahai, Ashrafi (CR44) 2016; 68 Hoang, Chen, Liao (CR45) 2017; 112 Alabdullah (CR50) 2022; 345 Guo, Guo, Lin (CR59) 2022; 86 Shafikhani, Chidiac (CR6) 2019; 99 Ghafoori (CR36) 2013; 44 Thomas, Bamforth (CR65) 1999; 29 Amin (CR14) 2023 Farooq (CR22) 2021; 14 Guo, Guo, Yao (CR60) 2022; 17 Najimi, Ghafoori, Nikoo (CR38) 2019; 22 Choi (CR81) 2017; 136 CR2 Tran (CR58) 2022; 328 Mohamed (CR33) 2021; 17 CR7 Cai (CR53) 2020; 136 CR9 Pontes (CR86) 2021; 11 Mohamed, Ati, Al Hawat (CR37) 2018; 7 Mousavi, Mousavi, Bhojaraju (CR1) 2020; 2 Marks, Glinicki, Gibas (CR42) 2015; 8 Gao, Chen, Chen (CR46) 2019; 20 Ferreira (CR79) 2016; 20 Song, Kwon (CR31) 2009; 39 Song (CR21) 2021; 308 Liu, Du, Zhang (CR76) 2015; 80 Jain, Neithalath (CR70) 2011; 129 Jiao (CR16) 2023; 2023 Khan (CR20) 2021; 15 Liu (CR4) 2021; 268 Zheng (CR17) 2023; 35 Materials (CR12) 2012 Parichatprecha, Nimityongskul (CR30) 2009; 23 Costa, Appleton (CR64) 1999; 32 Liu, Chia, Zhang (CR71) 2011; 25 CR13 Naito (CR84) 2020; 231 CR11 Delgado (CR52) 2020; 31 Audenaert, Yuan, De Schutter (CR69) 2010; 24 CR10 CR54 Shiu, Yang (CR83) 2020; 28 Farahani, Taghaddos, Shekarchi (CR77) 2015; 59 Liu (CR82) 2017; 196 Pilvar (CR80) 2016; 18 Bhojaraju, Mousavi, Ouellet-Plamondon (CR3) 2023; 135 Elfmarkova, Spiesz, Brouwers (CR73) 2015; 78 Sell Junior (CR85) 2021; 14 Taffese, Espinosa-Leal (CR61) 2022; 60 Khan (CR27) 2021; 2021 Nafees (CR28) 2021; 14 Ge, Zhao, Esmaeili-Falak (CR35) 2022; 2022 Liu (CR48) 2022; 337 Jin (CR49) 2022; 32 CR29 Hodhod, Ahmed (CR32) 2013; 9 Alizadeh (CR67) 2008; 20 Real, Bogas, Pontes (CR74) 2015; 98 Farooq (CR25) 2021; 292 Ahmad (CR26) 2021; 14 Amin (CR51) 2022; 15 Tran, Le, Nguyen (CR57) 2022; 2 CR62 Shekarchi, Rafiee, Layssi (CR68) 2009; 31 Kumar (CR39) 2020; 32 Tran (CR56) 2022; 2022 Ullah (CR18) 2022; 56 Hao-bo, Guo-zhi (CR66) 2004; 19 Ahmad (CR23) 2021; 14 Bogas, Gomes (CR75) 2015; 60 Park (CR78) 2016 J Liu (42270_CR82) 2017; 196 M Shafikhani (42270_CR6) 2019; 99 AR Boğa (42270_CR41) 2013; 45 A Farahani (42270_CR77) 2015; 59 A Nafees (42270_CR28) 2021; 14 M Shekarchi (42270_CR68) 2009; 31 J Pontes (42270_CR86) 2021; 11 N-D Hoang (42270_CR45) 2017; 112 R-W Shiu (42270_CR83) 2020; 28 R Cai (42270_CR53) 2020; 136 N Ghafoori (42270_CR36) 2013; 44 R Parichatprecha (42270_CR30) 2009; 23 L Jin (42270_CR49) 2022; 32 SS Mousavi (42270_CR1) 2020; 2 MA Khan (42270_CR27) 2021; 2021 H Song (42270_CR21) 2021; 308 A Ahmad (42270_CR47) 2021; 14 HS Ullah (42270_CR19) 2022; 15 M Najimi (42270_CR38) 2019; 22 AS Materials (42270_CR12) 2012 F Farooq (42270_CR22) 2021; 14 WZ Taffese (42270_CR61) 2022; 60 M Maes (42270_CR72) 2013; 46 MN Amin (42270_CR14) 2023 O Mohamed (42270_CR33) 2021; 17 MS Asghshahr (42270_CR44) 2016; 68 M Marks (42270_CR42) 2015; 8 Z Guo (42270_CR59) 2022; 86 H Jiao (42270_CR16) 2023; 2023 S Inthata (42270_CR40) 2013; 46 W Gao (42270_CR46) 2019; 20 H Hao-bo (42270_CR66) 2004; 19 42270_CR7 H-W Song (42270_CR31) 2009; 39 42270_CR2 HS Ullah (42270_CR18) 2022; 56 A Ahmad (42270_CR24) 2021; 11 D-M Ge (42270_CR35) 2022; 2022 42270_CR9 R Alizadeh (42270_CR67) 2008; 20 MA Khan (42270_CR20) 2021; 15 J-I Park (42270_CR78) 2016 J Jain (42270_CR70) 2011; 129 W Slika (42270_CR43) 2016; 115 O Hodhod (42270_CR32) 2013; 9 A Ahmad (42270_CR23) 2021; 14 R Ferreira (42270_CR79) 2016; 20 JA Bogas (42270_CR75) 2015; 60 EM Golafshani (42270_CR8) 2022; 374 A Ahmad (42270_CR26) 2021; 14 J Delgado (42270_CR52) 2020; 31 VQ Tran (42270_CR56) 2022; 2022 S Real (42270_CR74) 2015; 98 42270_CR29 X Liu (42270_CR76) 2015; 80 YC Choi (42270_CR81) 2017; 136 VQ Tran (42270_CR58) 2022; 328 MN Amin (42270_CR51) 2022; 15 V Elfmarkova (42270_CR73) 2015; 78 C Bhojaraju (42270_CR3) 2023; 135 A-T Tran (42270_CR57) 2022; 2 42270_CR62 OA Mohamed (42270_CR37) 2018; 7 AA Alabdullah (42270_CR50) 2022; 345 A Gilat (42270_CR63) 2004 M Hosseinzadeh (42270_CR15) 2023; 2023 A Costa (42270_CR64) 1999; 32 K Audenaert (42270_CR69) 2010; 24 WZ Taffese (42270_CR55) 2022; 348 A Pilvar (42270_CR80) 2016; 18 F Farooq (42270_CR25) 2021; 292 C Naito (42270_CR84) 2020; 231 Z Guo (42270_CR60) 2022; 17 S Kumar (42270_CR39) 2020; 32 W Zheng (42270_CR17) 2023; 35 K-H Liu (42270_CR48) 2022; 337 FK Sell Junior (42270_CR85) 2021; 14 J Yuan (42270_CR34) 2022; 23 Q-F Liu (42270_CR4) 2021; 268 SS Mousavi (42270_CR5) 2020; 2 MD Thomas (42270_CR65) 1999; 29 X Liu (42270_CR71) 2011; 25 42270_CR11 42270_CR10 42270_CR54 42270_CR13 |
| References_xml | – volume: 115 start-page: 132 year: 2016 end-page: 142 ident: CR43 article-title: An ensemble kalman filter approach for service life prediction of reinforced concrete structures subject to chloride-induced corrosion publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.04.025 – volume: 196 start-page: 315 year: 2017 end-page: 323 ident: CR82 article-title: Understanding the effect of curing age on the chloride resistance of fly ash blended concrete by rapid chloride migration test publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.05.011 – volume: 15 start-page: 6959 issue: 19 year: 2022 ident: CR51 article-title: Prediction of rapid chloride penetration resistance to assess the influence of affecting variables on metakaolin-based concrete using gene expression programming publication-title: Materials doi: 10.3390/ma15196959 – volume: 135 start-page: 104836 year: 2023 ident: CR3 article-title: Influence of GGBFS on corrosion resistance of cementitious composites containing graphene and graphene oxide publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2022.104836 – volume: 56 start-page: 104746 year: 2022 ident: CR18 article-title: Predictive modelling of sustainable lightweight foamed concrete using machine learning novel approach publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.104746 – volume: 292 start-page: 126032 year: 2021 ident: CR25 article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126032 – volume: 80 start-page: 255 year: 2015 end-page: 261 ident: CR76 article-title: A model to estimate the durability performance of both normal and light-weight concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.11.033 – year: 2012 ident: CR12 publication-title: ASTM-C1202: Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration – ident: CR29 – ident: CR54 – volume: 86 start-page: 103311 year: 2022 ident: CR59 article-title: Multi-factor fuzzy prediction model of concrete surface chloride concentration with trained samples expanded by random forest algorithm publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2022.103311 – volume: 39 start-page: 814 issue: 9 year: 2009 end-page: 824 ident: CR31 article-title: Evaluation of chloride penetration in high performance concrete using neural network algorithm and micro pore structure publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2009.05.013 – volume: 31 start-page: 101445 year: 2020 ident: CR52 article-title: Artificial neural networks to assess the useful life of reinforced concrete elements deteriorated by accelerated chloride tests publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101445 – volume: 2021 start-page: 1 year: 2021 end-page: 17 ident: CR27 article-title: Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest publication-title: Adv. Civ. Eng. – volume: 328 start-page: 127103 year: 2022 ident: CR58 article-title: Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127103 – volume: 60 start-page: 105146 year: 2022 ident: CR61 article-title: Prediction of chloride resistance level of concrete using machine learning for durability and service life assessment of building structures publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.105146 – volume: 337 start-page: 127613 year: 2022 ident: CR48 article-title: Innovative modeling framework of chloride resistance of recycled aggregate concrete using ensemble-machine-learning methods publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127613 – volume: 2023 start-page: 106335 year: 2023 ident: CR16 article-title: A novel approach in forecasting compressive strength of concrete with carbon nanotubes as nanomaterials publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.106335 – volume: 2 start-page: 44 issue: 1 year: 2022 end-page: 56 ident: CR57 article-title: Forecast of surface chloride concentration of concrete utilizing ensemble decision tree boosted publication-title: J. Sci. Transp. Technol. doi: 10.58845/jstt.utt.2022.en.2.44-56 – volume: 8 start-page: 8714 issue: 12 year: 2015 end-page: 8727 ident: CR42 article-title: Prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning publication-title: Materials doi: 10.3390/ma8125483 – volume: 29 start-page: 487 issue: 4 year: 1999 end-page: 495 ident: CR65 article-title: Modelling chloride diffusion in concrete: Effect of fly ash and slag publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(98)00192-6 – volume: 24 start-page: 396 issue: 3 year: 2010 end-page: 402 ident: CR69 article-title: On the time dependency of the chloride migration coefficient in concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.07.003 – volume: 308 start-page: 125021 year: 2021 ident: CR21 article-title: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125021 – volume: 112 start-page: 141 year: 2017 end-page: 149 ident: CR45 article-title: Prediction of chloride diffusion in cement mortar using multi-gene genetic programming and multivariate adaptive regression splines publication-title: Measurement doi: 10.1016/j.measurement.2017.08.031 – volume: 136 start-page: 106164 year: 2020 ident: CR53 article-title: Prediction of surface chloride concentration of marine concrete using ensemble machine learning publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2020.106164 – ident: CR11 – ident: CR9 – volume: 32 start-page: 252 year: 1999 end-page: 259 ident: CR64 article-title: Chloride penetration into concrete in marine environment—Part I: Main parameters affecting chloride penetration publication-title: Mater. Struct. doi: 10.1007/BF02479594 – volume: 15 start-page: 3166 issue: 9 year: 2022 ident: CR19 article-title: Prediction of compressive strength of sustainable foam concrete using individual and ensemble machine learning approaches publication-title: Materials doi: 10.3390/ma15093166 – volume: 32 start-page: 104137 year: 2022 ident: CR49 article-title: Prediction of the chloride diffusivity of recycled aggregate concrete using artificial neural network publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.104137 – volume: 99 start-page: 225 year: 2019 end-page: 250 ident: CR6 article-title: Quantification of concrete chloride diffusion coefficient—A critical review publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2019.03.011 – volume: 2023 start-page: 107006 year: 2023 ident: CR15 article-title: Prediction of mechanical properties of recycled aggregate fly ash concrete employing machine learning algorithms publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2023.107006 – volume: 44 start-page: 381 year: 2013 end-page: 390 ident: CR36 article-title: Predicting rapid chloride permeability of self-consolidating concrete: A comparative study on statistical and neural network models publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.03.039 – volume: 11 start-page: 324 issue: 8 year: 2021 ident: CR24 article-title: Compressive strength prediction via gene expression programming (GEP) and artificial neural network (ANN) for concrete containing RCA publication-title: Buildings doi: 10.3390/buildings11080324 – volume: 28 start-page: 1 issue: 2 year: 2020 ident: CR83 article-title: Evaluation of migration characteristics of opc and slag concrete from the rapid chloride migration test publication-title: J. Mar. Sci. Technol. – volume: 14 start-page: 794 issue: 4 year: 2021 ident: CR26 article-title: Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm publication-title: Materials doi: 10.3390/ma14040794 – volume: 19 start-page: 6 issue: 4 year: 2004 end-page: 8 ident: CR66 article-title: Assessment on chloride contaminated resistance of concrete with non-steady-state migration method publication-title: J. Wuhan Univ. Technol Mater. Sci. doi: 10.1007/BF02841355 – year: 2023 ident: CR14 article-title: Prediction of sustainable concrete utilizing rice husk ash (RHA) as supplementary cementitious material (SCM): Optimization and Hyper-tuning publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.06.006 – volume: 374 start-page: 134021 year: 2022 ident: CR8 article-title: Concrete chloride diffusion modelling using marine creatures-based metaheuristic artificial intelligence publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.134021 – volume: 20 start-page: 1375 year: 2016 end-page: 1384 ident: CR79 article-title: Effect of metakaolin on the chloride ingress properties of concrete publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-015-0131-8 – volume: 129 start-page: 569 issue: 1–2 year: 2011 end-page: 579 ident: CR70 article-title: Electrical impedance analysis based quantification of microstructural changes in concretes due to non-steady state chloride migration publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.04.057 – volume: 7 start-page: 47 year: 2018 end-page: 52 ident: CR37 article-title: Implementation of artificial neural networks for prediction of chloride penetration in concrete publication-title: Int. J. Eng. Technol doi: 10.14419/ijet.v7i2.28.12880 – volume: 2022 start-page: 1 year: 2022 end-page: 19 ident: CR35 article-title: Estimation of rapid chloride permeability of SCC using hyperparameters optimized random forest models publication-title: J. Sustain. Cem. Mater. – volume: 68 start-page: 1085 issue: 21 year: 2016 end-page: 1098 ident: CR44 article-title: Prediction of chloride content in concrete using ANN and CART publication-title: Mag. Concr. Res. doi: 10.1680/jmacr.15.00261 – volume: 345 start-page: 128296 year: 2022 ident: CR50 article-title: Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.128296 – volume: 268 start-page: 121082 year: 2021 ident: CR4 article-title: Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121082 – volume: 23 start-page: 753 issue: 2 year: 2022 end-page: 774 ident: CR34 article-title: A comparative study on predicting the rapid chloride permeability of self-compacting concrete using meta-heuristic algorithm and artificial intelligence techniques publication-title: Struct. Concr. doi: 10.1002/suco.202100682 – volume: 20 start-page: 141 year: 2019 end-page: 152 ident: CR46 article-title: Genetic programming approach for predicting service life of tunnel structures subject to chloride-induced corrosion publication-title: J. Adv. Res. doi: 10.1016/j.jare.2019.07.001 – ident: CR2 – volume: 136 start-page: 81 year: 2017 end-page: 87 ident: CR81 article-title: Modelling of chloride diffusivity in concrete considering effect of aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.01.041 – volume: 2 start-page: 1 issue: 5 year: 2020 end-page: 23 ident: CR5 article-title: A critical review of the effect of concrete composition on rebar–concrete interface (RCI) bond strength: A case study of nanoparticles publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2681-8 – ident: CR10 – volume: 46 start-page: 89 year: 2013 end-page: 103 ident: CR72 article-title: Resistance of concrete with blast-furnace slag against chlorides, investigated by comparing chloride profiles after migration and diffusion publication-title: Mater. Struct. doi: 10.1617/s11527-012-9885-3 – volume: 25 start-page: 335 issue: 1 year: 2011 end-page: 343 ident: CR71 article-title: Water absorption, permeability, and resistance to chloride-ion penetration of lightweight aggregate concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.06.020 – volume: 14 start-page: 2297 issue: 9 year: 2021 ident: CR47 article-title: Application of novel machine learning techniques for predicting the surface chloride concentration in concrete containing waste material publication-title: Materials doi: 10.3390/ma14092297 – year: 2004 ident: CR63 publication-title: MATLAB: An introduction with Applications – volume: 60 start-page: 111 year: 2015 end-page: 122 ident: CR75 article-title: Non-steady-state accelerated chloride penetration resistance of structural lightweight aggregate concrete publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2015.04.001 – volume: 23 start-page: 910 issue: 2 year: 2009 end-page: 917 ident: CR30 article-title: Analysis of durability of high performance concrete using artificial neural networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.04.015 – volume: 14 start-page: 4222 issue: 15 year: 2021 ident: CR23 article-title: Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature publication-title: Materials doi: 10.3390/ma14154222 – volume: 35 start-page: 105901 year: 2023 ident: CR17 article-title: Sustainable predictive model of concrete utilizing waste ingredient: Individual alogrithms with optimized ensemble approaches publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.105901 – volume: 78 start-page: 190 year: 2015 end-page: 199 ident: CR73 article-title: Determination of the chloride diffusion coefficient in blended cement mortars publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2015.06.014 – volume: 18 start-page: 793 issue: 4 year: 2016 end-page: 806 ident: CR80 article-title: Practical evaluation of rapid tests for assessing the chloride resistance of concretes containing silica fume publication-title: Comput. Concr. Int. J. doi: 10.12989/cac.2016.18.6.793 – volume: 45 start-page: 688 issue: 1 year: 2013 end-page: 696 ident: CR41 article-title: Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2012.05.054 – volume: 11 start-page: 7251 issue: 16 year: 2021 ident: CR86 article-title: The rapid chloride migration test in assessing the chloride penetration resistance of normal and lightweight concrete publication-title: Appl. Sci. doi: 10.3390/app11167251 – volume: 17 start-page: e01305 year: 2022 ident: CR60 article-title: Multi-factor model to predict surface chloride concentration of concrete based on fuzzy logic system publication-title: Case Stud Constr Mater. – volume: 14 start-page: 4934 issue: 17 year: 2021 ident: CR22 article-title: A comparative study for the prediction of the compressive strength of self-compacting concrete modified with fly ash publication-title: Materials doi: 10.3390/ma14174934 – volume: 231 start-page: 117045 year: 2020 ident: CR84 article-title: Chloride migration characteristics and reliability of reinforced concrete highway structures in Pennsylvania publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117045 – volume: 2022 start-page: 1 year: 2022 end-page: 17 ident: CR56 article-title: Application of machine learning technique for predicting and evaluating chloride ingress in concrete publication-title: Front. Struct. Civ. Eng – volume: 14 start-page: 7531 issue: 24 year: 2021 ident: CR28 article-title: Predictive modeling of mechanical properties of silica fume-based green concrete using artificial intelligence approaches: MLPNN, ANFIS, and GEP publication-title: Materials doi: 10.3390/ma14247531 – volume: 22 start-page: 216 year: 2019 end-page: 226 ident: CR38 article-title: Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2018.12.013 – volume: 98 start-page: 425 year: 2015 end-page: 436 ident: CR74 article-title: Chloride migration in structural lightweight aggregate concrete produced with different binders publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.08.080 – volume: 348 start-page: 128566 year: 2022 ident: CR55 article-title: A machine learning method for predicting the chloride migration coefficient of concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.128566 – volume: 59 start-page: 10 year: 2015 end-page: 17 ident: CR77 article-title: Prediction of long-term chloride diffusion in silica fume concrete in a marine environment publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2015.03.006 – ident: CR13 – volume: 32 start-page: 101490 year: 2020 ident: CR39 article-title: Prediction of rapid chloride permeability of self-compacting concrete using multivariate adaptive regression spline and minimax probability machine regression publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101490 – volume: 46 start-page: 1707 issue: 10 year: 2013 end-page: 1721 ident: CR40 article-title: Prediction of chloride permeability of concretes containing ground pozzolans by artificial neural networks publication-title: Mater. Struct. doi: 10.1617/s11527-012-0009-x – year: 2016 ident: CR78 article-title: Diffusion decay coefficient for chloride ions of concrete containing mineral admixtures publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2016/2042918 – volume: 2 start-page: 893 issue: 5 year: 2020 ident: CR1 article-title: A critical review of the effect of concrete composition on rebar–concrete interface (RCI) bond strength: A case study of nanoparticles publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2681-8 – volume: 15 start-page: 58 issue: 1 year: 2021 ident: CR20 article-title: Simulation of depth of wear of eco-friendly concrete using machine learning based computational approaches publication-title: Materials doi: 10.3390/ma15010058 – ident: CR7 – volume: 17 start-page: 101123 year: 2021 ident: CR33 article-title: Application of ANN for prediction of chloride penetration resistance and concrete compressive strength publication-title: Materialia doi: 10.1016/j.mtla.2021.101123 – volume: 20 start-page: 2 issue: 1 year: 2008 end-page: 8 ident: CR67 article-title: Effect of curing conditions on the service life design of RC structures in the Persian Gulf region publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2008)20:1(2) – volume: 14 start-page: 14407 year: 2021 ident: CR85 article-title: Experimental assessment of accelerated test methods for determining chloride diffusion coefficient in concrete publication-title: Rev. Ibracon. Estrut. Mater. doi: 10.1590/s1983-41952021000400007 – ident: CR62 – volume: 9 start-page: 15 issue: 1 year: 2013 end-page: 21 ident: CR32 article-title: Developing an artificial neural network model to evaluate chloride diffusivity in high performance concrete publication-title: HBRC J. doi: 10.1016/j.hbrcj.2013.04.001 – volume: 31 start-page: 769 issue: 10 year: 2009 end-page: 775 ident: CR68 article-title: Long-term chloride diffusion in silica fume concrete in harsh marine climates publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2009.08.005 – volume-title: ASTM-C1202: Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration year: 2012 ident: 42270_CR12 – volume: 2021 start-page: 1 year: 2021 ident: 42270_CR27 publication-title: Adv. Civ. Eng. – volume: 337 start-page: 127613 year: 2022 ident: 42270_CR48 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127613 – volume: 8 start-page: 8714 issue: 12 year: 2015 ident: 42270_CR42 publication-title: Materials doi: 10.3390/ma8125483 – ident: 42270_CR2 doi: 10.1016/j.istruc.2022.05.115 – volume: 292 start-page: 126032 year: 2021 ident: 42270_CR25 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126032 – volume: 23 start-page: 910 issue: 2 year: 2009 ident: 42270_CR30 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.04.015 – volume: 31 start-page: 769 issue: 10 year: 2009 ident: 42270_CR68 publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2009.08.005 – volume: 56 start-page: 104746 year: 2022 ident: 42270_CR18 publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.104746 – volume: 196 start-page: 315 year: 2017 ident: 42270_CR82 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.05.011 – volume: 15 start-page: 58 issue: 1 year: 2021 ident: 42270_CR20 publication-title: Materials doi: 10.3390/ma15010058 – volume: 7 start-page: 47 year: 2018 ident: 42270_CR37 publication-title: Int. J. Eng. Technol doi: 10.14419/ijet.v7i2.28.12880 – volume: 17 start-page: 101123 year: 2021 ident: 42270_CR33 publication-title: Materialia doi: 10.1016/j.mtla.2021.101123 – volume: 25 start-page: 335 issue: 1 year: 2011 ident: 42270_CR71 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.06.020 – volume: 14 start-page: 14407 year: 2021 ident: 42270_CR85 publication-title: Rev. Ibracon. Estrut. Mater. doi: 10.1590/s1983-41952021000400007 – ident: 42270_CR10 – volume: 46 start-page: 1707 issue: 10 year: 2013 ident: 42270_CR40 publication-title: Mater. Struct. doi: 10.1617/s11527-012-0009-x – volume: 80 start-page: 255 year: 2015 ident: 42270_CR76 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.11.033 – volume: 59 start-page: 10 year: 2015 ident: 42270_CR77 publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2015.03.006 – ident: 42270_CR7 doi: 10.1111/j.1151-2916.1972.tb13424.x – volume: 345 start-page: 128296 year: 2022 ident: 42270_CR50 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.128296 – volume: 15 start-page: 6959 issue: 19 year: 2022 ident: 42270_CR51 publication-title: Materials doi: 10.3390/ma15196959 – volume: 98 start-page: 425 year: 2015 ident: 42270_CR74 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.08.080 – volume: 135 start-page: 104836 year: 2023 ident: 42270_CR3 publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2022.104836 – volume: 45 start-page: 688 issue: 1 year: 2013 ident: 42270_CR41 publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2012.05.054 – volume: 78 start-page: 190 year: 2015 ident: 42270_CR73 publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2015.06.014 – volume: 115 start-page: 132 year: 2016 ident: 42270_CR43 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.04.025 – volume: 308 start-page: 125021 year: 2021 ident: 42270_CR21 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125021 – volume: 86 start-page: 103311 year: 2022 ident: 42270_CR59 publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2022.103311 – volume: 23 start-page: 753 issue: 2 year: 2022 ident: 42270_CR34 publication-title: Struct. Concr. doi: 10.1002/suco.202100682 – volume: 28 start-page: 1 issue: 2 year: 2020 ident: 42270_CR83 publication-title: J. Mar. Sci. Technol. – ident: 42270_CR11 – volume: 20 start-page: 141 year: 2019 ident: 42270_CR46 publication-title: J. Adv. Res. doi: 10.1016/j.jare.2019.07.001 – volume: 374 start-page: 134021 year: 2022 ident: 42270_CR8 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.134021 – volume: 29 start-page: 487 issue: 4 year: 1999 ident: 42270_CR65 publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(98)00192-6 – ident: 42270_CR29 doi: 10.1201/b10162-4 – volume: 2022 start-page: 1 year: 2022 ident: 42270_CR56 publication-title: Front. Struct. Civ. Eng – volume: 99 start-page: 225 year: 2019 ident: 42270_CR6 publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2019.03.011 – volume: 136 start-page: 106164 year: 2020 ident: 42270_CR53 publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2020.106164 – year: 2023 ident: 42270_CR14 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.06.006 – volume: 60 start-page: 111 year: 2015 ident: 42270_CR75 publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2015.04.001 – volume: 268 start-page: 121082 year: 2021 ident: 42270_CR4 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121082 – volume: 2 start-page: 893 issue: 5 year: 2020 ident: 42270_CR1 publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2681-8 – volume: 24 start-page: 396 issue: 3 year: 2010 ident: 42270_CR69 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.07.003 – volume: 32 start-page: 252 year: 1999 ident: 42270_CR64 publication-title: Mater. Struct. doi: 10.1007/BF02479594 – volume: 328 start-page: 127103 year: 2022 ident: 42270_CR58 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127103 – volume: 44 start-page: 381 year: 2013 ident: 42270_CR36 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.03.039 – volume: 20 start-page: 1375 year: 2016 ident: 42270_CR79 publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-015-0131-8 – ident: 42270_CR9 – volume: 17 start-page: e01305 year: 2022 ident: 42270_CR60 publication-title: Case Stud Constr Mater. – volume: 129 start-page: 569 issue: 1–2 year: 2011 ident: 42270_CR70 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.04.057 – volume: 20 start-page: 2 issue: 1 year: 2008 ident: 42270_CR67 publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2008)20:1(2) – volume: 60 start-page: 105146 year: 2022 ident: 42270_CR61 publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.105146 – volume: 35 start-page: 105901 year: 2023 ident: 42270_CR17 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.105901 – volume: 348 start-page: 128566 year: 2022 ident: 42270_CR55 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.128566 – volume: 14 start-page: 4222 issue: 15 year: 2021 ident: 42270_CR23 publication-title: Materials doi: 10.3390/ma14154222 – volume: 112 start-page: 141 year: 2017 ident: 42270_CR45 publication-title: Measurement doi: 10.1016/j.measurement.2017.08.031 – ident: 42270_CR54 doi: 10.1088/1755-1315/687/1/012037 – volume: 19 start-page: 6 issue: 4 year: 2004 ident: 42270_CR66 publication-title: J. Wuhan Univ. Technol Mater. Sci. doi: 10.1007/BF02841355 – volume: 2023 start-page: 107006 year: 2023 ident: 42270_CR15 publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2023.107006 – volume: 11 start-page: 324 issue: 8 year: 2021 ident: 42270_CR24 publication-title: Buildings doi: 10.3390/buildings11080324 – volume: 15 start-page: 3166 issue: 9 year: 2022 ident: 42270_CR19 publication-title: Materials doi: 10.3390/ma15093166 – volume: 31 start-page: 101445 year: 2020 ident: 42270_CR52 publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101445 – volume: 2 start-page: 1 issue: 5 year: 2020 ident: 42270_CR5 publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2681-8 – volume: 136 start-page: 81 year: 2017 ident: 42270_CR81 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.01.041 – volume: 14 start-page: 4934 issue: 17 year: 2021 ident: 42270_CR22 publication-title: Materials doi: 10.3390/ma14174934 – volume: 22 start-page: 216 year: 2019 ident: 42270_CR38 publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2018.12.013 – volume: 14 start-page: 2297 issue: 9 year: 2021 ident: 42270_CR47 publication-title: Materials doi: 10.3390/ma14092297 – volume: 32 start-page: 104137 year: 2022 ident: 42270_CR49 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.104137 – volume: 39 start-page: 814 issue: 9 year: 2009 ident: 42270_CR31 publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2009.05.013 – volume: 9 start-page: 15 issue: 1 year: 2013 ident: 42270_CR32 publication-title: HBRC J. doi: 10.1016/j.hbrcj.2013.04.001 – volume: 32 start-page: 101490 year: 2020 ident: 42270_CR39 publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101490 – volume: 2 start-page: 44 issue: 1 year: 2022 ident: 42270_CR57 publication-title: J. Sci. Transp. Technol. doi: 10.58845/jstt.utt.2022.en.2.44-56 – volume: 18 start-page: 793 issue: 4 year: 2016 ident: 42270_CR80 publication-title: Comput. Concr. Int. J. doi: 10.12989/cac.2016.18.6.793 – volume-title: MATLAB: An introduction with Applications year: 2004 ident: 42270_CR63 – volume: 2023 start-page: 106335 year: 2023 ident: 42270_CR16 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.106335 – ident: 42270_CR62 – volume: 2022 start-page: 1 year: 2022 ident: 42270_CR35 publication-title: J. Sustain. Cem. Mater. – volume: 14 start-page: 794 issue: 4 year: 2021 ident: 42270_CR26 publication-title: Materials doi: 10.3390/ma14040794 – ident: 42270_CR13 – volume: 46 start-page: 89 year: 2013 ident: 42270_CR72 publication-title: Mater. Struct. doi: 10.1617/s11527-012-9885-3 – volume: 68 start-page: 1085 issue: 21 year: 2016 ident: 42270_CR44 publication-title: Mag. Concr. Res. doi: 10.1680/jmacr.15.00261 – volume: 11 start-page: 7251 issue: 16 year: 2021 ident: 42270_CR86 publication-title: Appl. Sci. doi: 10.3390/app11167251 – year: 2016 ident: 42270_CR78 publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2016/2042918 – volume: 14 start-page: 7531 issue: 24 year: 2021 ident: 42270_CR28 publication-title: Materials doi: 10.3390/ma14247531 – volume: 231 start-page: 117045 year: 2020 ident: 42270_CR84 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117045 |
| SSID | ssj0000529419 |
| Score | 2.496065 |
| Snippet | By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of... Abstract By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15024 |
| SubjectTerms | 639/166 639/166/986 639/301/1023/1025 Algorithms Chloride Chlorides Classification Concrete Datasets Diffusion coefficient Fly ash Humanities and Social Sciences Learning algorithms Machine learning multidisciplinary Neural networks Risk reduction Science Science (multidisciplinary) Silica Slag Water content |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuqLxEaEFG4gZR47d9LIiKU8UBpN6sxA-2EqSr3RSJf8_Yzi5NJeDCNXES2_PwfJrJNwCvPc5OS5XaLumAAEXoduAitgw9Zp-sDtKk0mxCn5-biwv76Uarr1wTVumB68adyMSp8H3ggyzcXsYOStkkFB-SDKEwgXba3gBTldWbWUHt_JdMx83JFk-q_DcZ461gTKPzWZxEhbB_EWXerpG8lSgt58_ZITyYA0dyWif8EO7E8RHcq60kfz6G9elIYqGDwDeR76VEMpK5J8RXsqMOJxijkvUmZ2dyvTNBNIxh4xSJX-VSvBAJwu8cUqIukFwTj4-SXHa-iata6k5yTek2Tk_gy9mHz-8_tnM3hdZLaqY2ItJCX4b7qLxIApGhCclbZX3o4hAExhVeJq20jiLSnnZRcyl6RhWaOAsDfwoH49UYnwHphpSz3tL21KJs0MSFR0cQe2v6gbLYAN3trPMz1XjuePHNlZQ3N65Kw6E0XJGG4w282T-zrkQbfx39LgtsPzKTZJcLqDpuVh33L9Vp4Hgnbjdb7tYxoxByWqFlA6_2t9HmciKlH-PVdR2DwBMddANmoSaLCS3vjJerwt6N-NdqxHENvN1p1O-v_3nFz__Hio_gPssWUFpgHMPBtLmOL-Cu_zFdbjcviwn9AkwbIBQ priority: 102 providerName: Directory of Open Access Journals |
| Title | An efficient machine learning approach for predicting concrete chloride resistance using a comprehensive dataset |
| URI | https://link.springer.com/article/10.1038/s41598-023-42270-3 https://www.proquest.com/docview/2864019475 https://www.proquest.com/docview/2864619088 https://pubmed.ncbi.nlm.nih.gov/PMC10497559 https://doaj.org/article/5f314cad3b54465689b669f463bf5dd4 |
| Volume | 13 |
| WOSCitedRecordID | wos001067966700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xFqS98I0IjMpIvEHUxnFi-wltaBM8rKoQSOUpSvyxToK0SzIk_nvunLRTJ7EnXvzQOO25Z_985zv_DuCdQelklvt45qVFB0XIuEqFizkiZum1tJnyodiEnM_VcqkXw_Xodkir3GJiAOqe7ZnythGEp3Zt6MR8ylWOjoEWMvu4uYqphhTFWoeCGgcwJuItPoLx4sv54sfuzIWiWiLRw92ZWaqmLe5fdMeMp7HgXCIk7e1PgcZ_z_a8nTl5K3wadqWzR_93PI_h4WCdsuN-Oj2Be65-Cg_6epV_nsHmuGYucE7gt7JfIQ_TsaHwxAXb8pMzNITZpqEQECVVMxQDbdPOMbOifD_rGPr4ZLfihGOUeI-vMsptb9yqz6dnlLjauu45fD87_fbpczyUbIhNlqgudujOIWCmVZYb4QW6n8p6o3Nt7MxVVqDxYjIvcymdcEmZzJxMM1HyJEcc4bZKX8CoXtfuJbBZ5Sm0nukS_xdTIo4Ig2jjSq3KKuEugmSrqMIMfOZUVuNnEeLqqSp65Rao3CIot0gjeL97Z9OzedzZ-4T0v-tJTNzhg3VzUQwLu8h8mqB4FoccuOeUrvJce5Gnlc-sFREcbfVfDPDQFjfqjuDt7jEubIrWlLVbX_d90LvFXSACtTfr9gTaf1JfrgJFODrZWqKzGMGH7QS9-fV_j_jV3cK-hkNOSyVU0DiCUddcuzdw3_zuLttmAgdyKUOrJjA-OZ0vvk7CEQe253xBrcS2X5N_Ac-zQYk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb9RAASPBCaImjhM7B4TKo2rVsuJQpL2ZxI9uJZosSQrqn-I3MnaSrVKJ3nrgunF27c0338xkXgCvFO6Op5kNI8s1OiiMh2XCTEiRMQubc50K64dN8NlMzOf51zX4M9bCuLTKkRM9UetauXfkW1Rk6ArkjKfvlz9DNzXKRVfHERo9LPbN2W902dp3e5_w-b6mdOfz4cfdcJgqEKo0Fl1o0ONAmU7KNFPMMvSQhLYqz3KlI1NqhvpVpZZnnBtm4iKODE9SVtA4Q6hTXSb4vdfgOvI4dxMT-Jyv3um4qBmL86E2J0rEVov60dWw0SRklHKkvIn-82MCJrbtxczMC-FZr_V27v5v_9c9uDPY12S7F4j7sGaqB3Czn7h59hCW2xUxvmsGHp2c-ExSQ4bRGUdk7LBO0JQny8YFsVxaOFF1hdZ1Z4hauIxFbUhjWmd5o8gQVzqAtxKXnd-YRV8RQFzqbWu6R_DtSo77GNarujIbQKLSuuSANC_wOagCmZAp5EtT5KIoY2oCiEcoSDV0ZHeDQX5InxmQCNnDRyJ8pIePTAJ4s7pn2fcjuXT1B4ew1UrXS9x_UDdHcqAmmdokxu1pPLLvnifyMstyy7KktKnWLIDNEWFyILhWnsMrgJery0hNLt5UVKY-7degf456LAAxwfVkQ9Mr1fHCNzmP0XXl6O4G8HYUgfNf__eJn1y-2Rdwa_fwy4E82JvtP4Xb1AmmnweyCetdc2qewQ31qztum-desgl8v2rR-AvOrIsb |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFhAX3qiBAkaCE0S7sZ04OSBUKCtWhdUeQConN_GjW4kmS7IF9a_x6xg7yVapRG89cE2cxE6-ecXfzAC8VDg7ESc2HFuhMUDhIiwYNyFFjZnbTOg4tb7ZhJjN0oODbL4Bf_pcGEer7HWiV9S6Uu4f-YimCYYCGRfxyHa0iPne5N3yZ-g6SLmd1r6dRguRfXP2G8O35u10D7_1K0onH79--BR2HQZCFUfpKjQYfaB8syJOFLcco6VUW5UlmdJjU2iOtlbFViRCGG6iPBobwWKe0yhB2FNdMLzvNdhCl5xh4Lc1n36Zf1__4XF7aDzKukydMUtHDVpLl9FGWcgpFagAB9bQNw0YeLoXeZoXNmu9DZzc-Z_f3l243XneZLcVlXuwYcr7cKPtxXn2AJa7JTG-nga-BnLiOaaGdE01jkhfe52gk0-WtdvecoRxoqoS_e6VIWrhuIzakNo0zidHYSIuqQAvJY63X5tFmytAHCm3MauH8O1KlvsINsuqNNtAxoV1tIE4y_GbqBx1JFeoSU2epXkRURNA1MNCqq5Wu2sZ8kN6zgBLZQsliVCSHkqSBfB6fc2yrVRy6ej3Dm3rka7KuD9Q1UeyU1oytizC6Wlcsq-rl2ZFkmSWJ6ywsdY8gJ0ebbJTfY08h1oAL9anUWm5nai8NNVpOwYjd7RwAaQDjA8mNDxTHi98-fMIg1qBgXAAb3pxOH_6v1f8-PLJPoebKBHy83S2_wRuUSejvlHIDmyu6lPzFK6rX6vjpn7WiTmBw6uWjb_ao5Vz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+machine+learning+approach+for+predicting+concrete+chloride+resistance+using+a+comprehensive+dataset&rft.jtitle=Scientific+reports&rft.au=Hosseinzadeh%2C+Maedeh&rft.au=Mousavi%2C+Seyed+Sina&rft.au=Hosseinzadeh%2C+Alireza&rft.au=Dehestani%2C+Mehdi&rft.date=2023-09-12&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=15024&rft_id=info:doi/10.1038%2Fs41598-023-42270-3&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |