An efficient machine learning approach for predicting concrete chloride resistance using a comprehensive dataset

By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 13; H. 1; S. 15024 - 33
Hauptverfasser: Hosseinzadeh, Maedeh, Mousavi, Seyed Sina, Hosseinzadeh, Alireza, Dehestani, Mehdi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 12.09.2023
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete shows potential as a financially viable and less complex substitute for labour-intensive experimental evaluations. The existing models for predicting chloride resistance encounter two primary challenges: the constraints imposed by a limited dataset and the absence of certain input variables. These factors collectively contribute to a decrease in the overall effectiveness of these models. Therefore, this study aims to propose an advanced approach for dataset cleaning, utilizing a comprehensive experimental dataset comprising 1073 pre-existing experimental outcomes. The proposed model for predicting the chloride diffusion coefficient incorporates various input variables, such as water content, cement content, slag content, fly ash content, silica fume content, fine aggregate content, coarse aggregate content, superplasticizer content, fresh density, compressive strength, age of compressive strength test, and age of migration test. The utilization of the artificial neural network (ANN) technique is also employed for the processing of missing data. The current supervised learning incorporates both regression and classification tasks. The efficacy of the proposed models for accurately predicting the chloride diffusion coefficient has been effectively validated. The findings indicate that the XGBoost and SVM algorithms exhibit superior performance compared to other regression prediction algorithms, as evidenced by their high R2 scores of 0.94 and 0.91, respectively. In relation to classification algorithms, the findings demonstrate that the Random Forest, LightGBM, and XGBoost models exhibit the highest levels of accuracy, specifically 0.93, 0.96, and 0.97, respectively. Furthermore, a website has been developed that is capable of predicting the chloride migration coefficient and chloride penetration resistance of concrete.
AbstractList By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete shows potential as a financially viable and less complex substitute for labour-intensive experimental evaluations. The existing models for predicting chloride resistance encounter two primary challenges: the constraints imposed by a limited dataset and the absence of certain input variables. These factors collectively contribute to a decrease in the overall effectiveness of these models. Therefore, this study aims to propose an advanced approach for dataset cleaning, utilizing a comprehensive experimental dataset comprising 1073 pre-existing experimental outcomes. The proposed model for predicting the chloride diffusion coefficient incorporates various input variables, such as water content, cement content, slag content, fly ash content, silica fume content, fine aggregate content, coarse aggregate content, superplasticizer content, fresh density, compressive strength, age of compressive strength test, and age of migration test. The utilization of the artificial neural network (ANN) technique is also employed for the processing of missing data. The current supervised learning incorporates both regression and classification tasks. The efficacy of the proposed models for accurately predicting the chloride diffusion coefficient has been effectively validated. The findings indicate that the XGBoost and SVM algorithms exhibit superior performance compared to other regression prediction algorithms, as evidenced by their high R2 scores of 0.94 and 0.91, respectively. In relation to classification algorithms, the findings demonstrate that the Random Forest, LightGBM, and XGBoost models exhibit the highest levels of accuracy, specifically 0.93, 0.96, and 0.97, respectively. Furthermore, a website has been developed that is capable of predicting the chloride migration coefficient and chloride penetration resistance of concrete.By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete shows potential as a financially viable and less complex substitute for labour-intensive experimental evaluations. The existing models for predicting chloride resistance encounter two primary challenges: the constraints imposed by a limited dataset and the absence of certain input variables. These factors collectively contribute to a decrease in the overall effectiveness of these models. Therefore, this study aims to propose an advanced approach for dataset cleaning, utilizing a comprehensive experimental dataset comprising 1073 pre-existing experimental outcomes. The proposed model for predicting the chloride diffusion coefficient incorporates various input variables, such as water content, cement content, slag content, fly ash content, silica fume content, fine aggregate content, coarse aggregate content, superplasticizer content, fresh density, compressive strength, age of compressive strength test, and age of migration test. The utilization of the artificial neural network (ANN) technique is also employed for the processing of missing data. The current supervised learning incorporates both regression and classification tasks. The efficacy of the proposed models for accurately predicting the chloride diffusion coefficient has been effectively validated. The findings indicate that the XGBoost and SVM algorithms exhibit superior performance compared to other regression prediction algorithms, as evidenced by their high R2 scores of 0.94 and 0.91, respectively. In relation to classification algorithms, the findings demonstrate that the Random Forest, LightGBM, and XGBoost models exhibit the highest levels of accuracy, specifically 0.93, 0.96, and 0.97, respectively. Furthermore, a website has been developed that is capable of predicting the chloride migration coefficient and chloride penetration resistance of concrete.
By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete shows potential as a financially viable and less complex substitute for labour-intensive experimental evaluations. The existing models for predicting chloride resistance encounter two primary challenges: the constraints imposed by a limited dataset and the absence of certain input variables. These factors collectively contribute to a decrease in the overall effectiveness of these models. Therefore, this study aims to propose an advanced approach for dataset cleaning, utilizing a comprehensive experimental dataset comprising 1073 pre-existing experimental outcomes. The proposed model for predicting the chloride diffusion coefficient incorporates various input variables, such as water content, cement content, slag content, fly ash content, silica fume content, fine aggregate content, coarse aggregate content, superplasticizer content, fresh density, compressive strength, age of compressive strength test, and age of migration test. The utilization of the artificial neural network (ANN) technique is also employed for the processing of missing data. The current supervised learning incorporates both regression and classification tasks. The efficacy of the proposed models for accurately predicting the chloride diffusion coefficient has been effectively validated. The findings indicate that the XGBoost and SVM algorithms exhibit superior performance compared to other regression prediction algorithms, as evidenced by their high R2 scores of 0.94 and 0.91, respectively. In relation to classification algorithms, the findings demonstrate that the Random Forest, LightGBM, and XGBoost models exhibit the highest levels of accuracy, specifically 0.93, 0.96, and 0.97, respectively. Furthermore, a website has been developed that is capable of predicting the chloride migration coefficient and chloride penetration resistance of concrete.
Abstract By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete shows potential as a financially viable and less complex substitute for labour-intensive experimental evaluations. The existing models for predicting chloride resistance encounter two primary challenges: the constraints imposed by a limited dataset and the absence of certain input variables. These factors collectively contribute to a decrease in the overall effectiveness of these models. Therefore, this study aims to propose an advanced approach for dataset cleaning, utilizing a comprehensive experimental dataset comprising 1073 pre-existing experimental outcomes. The proposed model for predicting the chloride diffusion coefficient incorporates various input variables, such as water content, cement content, slag content, fly ash content, silica fume content, fine aggregate content, coarse aggregate content, superplasticizer content, fresh density, compressive strength, age of compressive strength test, and age of migration test. The utilization of the artificial neural network (ANN) technique is also employed for the processing of missing data. The current supervised learning incorporates both regression and classification tasks. The efficacy of the proposed models for accurately predicting the chloride diffusion coefficient has been effectively validated. The findings indicate that the XGBoost and SVM algorithms exhibit superior performance compared to other regression prediction algorithms, as evidenced by their high R2 scores of 0.94 and 0.91, respectively. In relation to classification algorithms, the findings demonstrate that the Random Forest, LightGBM, and XGBoost models exhibit the highest levels of accuracy, specifically 0.93, 0.96, and 0.97, respectively. Furthermore, a website has been developed that is capable of predicting the chloride migration coefficient and chloride penetration resistance of concrete.
ArticleNumber 15024
Author Hosseinzadeh, Maedeh
Hosseinzadeh, Alireza
Mousavi, Seyed Sina
Dehestani, Mehdi
Author_xml – sequence: 1
  givenname: Maedeh
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Maedeh
  organization: Faculty of Civil Engineering, Babol Noshirvani University of Technology
– sequence: 2
  givenname: Seyed Sina
  surname: Mousavi
  fullname: Mousavi, Seyed Sina
  organization: Faculty of Civil Engineering, Babol Noshirvani University of Technology
– sequence: 3
  givenname: Alireza
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Alireza
  organization: Faculty of Civil Engineering, Babol Noshirvani University of Technology
– sequence: 4
  givenname: Mehdi
  surname: Dehestani
  fullname: Dehestani, Mehdi
  email: dehestani@nit.ac.ir
  organization: Faculty of Civil Engineering, Babol Noshirvani University of Technology
BookMark eNp9Uk1vFSEUnZgaW2v_gKtJ3LgZ5XtgZZrGjyZN3OiaMHB5j5d5MAKvif9e3psabRdlAxzOOfdyc153ZzFF6Lq3GH3AiMqPhWGu5IAIHRghIxroi-6CIMYHQgk5--983l2VskNtcaIYVq-6czqO7SrIRbdcxx68DzZArP3e2G2I0M9gcgxx05tlyamBvU-5XzK4YOsRtynaDBV6u51TDg76DCWUaqKF_lBO0kbaN8kWYgn30DtTTYH6pnvpzVzg6mG_7H5--fzj5ttw9_3r7c313WA5lnUARZhzQCcuLPNMEi6dt0oo6xBMjnHOLPejGEdggA1GMFLODMFCSkTcRC-729XXJbPTSw57k3_rZII-ASlvtMk12Bk09xQza1wrxpjgQqpJCOWZoJPnzrHm9Wn1Wg7THpxto8pmfmT6-CWGrd6ke40RUyPnqjm8f3DI6dcBStX7UCzMs4mQDkUTKZjACknZqO-eUHfpkGOb1YmFsGIjbyy5smxOpWTw2oZqakjHBsLcKutjTPQaE91iok8x0bRJyRPp3488K6KrqDRy3ED-19Uzqj-QE9Gk
CitedBy_id crossref_primary_10_1016_j_cscm_2025_e04787
crossref_primary_10_1038_s41598_025_08526_w
crossref_primary_10_1061_JSDCCC_SCENG_1843
crossref_primary_10_1063_5_0228503
crossref_primary_10_1007_s41062_024_01378_9
crossref_primary_10_1007_s42107_025_01326_7
crossref_primary_10_1016_j_cscm_2025_e05191
crossref_primary_10_3390_buildings14010225
crossref_primary_10_1016_j_conbuildmat_2025_140209
crossref_primary_10_1016_j_mtcomm_2024_109419
crossref_primary_10_1016_j_istruc_2023_105720
crossref_primary_10_1016_j_ijsolstr_2024_113014
crossref_primary_10_1038_s41598_024_52046_y
crossref_primary_10_1016_j_mtcomm_2024_108543
crossref_primary_10_1038_s44296_025_00058_8
crossref_primary_10_1007_s11709_024_1124_9
crossref_primary_10_1007_s11831_025_10284_x
crossref_primary_10_1002_tal_70036
Cites_doi 10.1016/j.conbuildmat.2016.04.025
10.1016/j.matchemphys.2017.05.011
10.3390/ma15196959
10.1016/j.cemconcomp.2022.104836
10.1016/j.jobe.2022.104746
10.1016/j.jclepro.2021.126032
10.1016/j.conbuildmat.2014.11.033
10.1016/j.marstruc.2022.103311
10.1016/j.cemconres.2009.05.013
10.1016/j.jobe.2020.101445
10.1016/j.conbuildmat.2022.127103
10.1016/j.jobe.2022.105146
10.1016/j.conbuildmat.2022.127613
10.1016/j.mtcomm.2023.106335
10.58845/jstt.utt.2022.en.2.44-56
10.3390/ma8125483
10.1016/S0008-8846(98)00192-6
10.1016/j.conbuildmat.2009.07.003
10.1016/j.conbuildmat.2021.125021
10.1016/j.measurement.2017.08.031
10.1016/j.cemconres.2020.106164
10.1007/BF02479594
10.3390/ma15093166
10.1016/j.mtcomm.2022.104137
10.1016/j.cemconcomp.2019.03.011
10.1016/j.jobe.2023.107006
10.1016/j.conbuildmat.2013.03.039
10.3390/buildings11080324
10.3390/ma14040794
10.1007/BF02841355
10.1016/j.jmrt.2023.06.006
10.1016/j.jclepro.2022.134021
10.1007/s12205-015-0131-8
10.1016/j.matchemphys.2011.04.057
10.14419/ijet.v7i2.28.12880
10.1680/jmacr.15.00261
10.1016/j.conbuildmat.2022.128296
10.1016/j.conbuildmat.2020.121082
10.1002/suco.202100682
10.1016/j.jare.2019.07.001
10.1016/j.conbuildmat.2017.01.041
10.1007/s42452-020-2681-8
10.1617/s11527-012-9885-3
10.1016/j.conbuildmat.2010.06.020
10.3390/ma14092297
10.1016/j.cemconcomp.2015.04.001
10.1016/j.conbuildmat.2008.04.015
10.3390/ma14154222
10.1016/j.mtcomm.2023.105901
10.1016/j.cemconres.2015.06.014
10.12989/cac.2016.18.6.793
10.1016/j.compositesb.2012.05.054
10.3390/app11167251
10.3390/ma14174934
10.1016/j.conbuildmat.2019.117045
10.3390/ma14247531
10.1016/j.jobe.2018.12.013
10.1016/j.conbuildmat.2015.08.080
10.1016/j.conbuildmat.2022.128566
10.1016/j.cemconcomp.2015.03.006
10.1016/j.jobe.2020.101490
10.1617/s11527-012-0009-x
10.1155/2016/2042918
10.3390/ma15010058
10.1016/j.mtla.2021.101123
10.1061/(ASCE)0899-1561(2008)20:1(2)
10.1590/s1983-41952021000400007
10.1016/j.hbrcj.2013.04.001
10.1016/j.cemconcomp.2009.08.005
10.1016/j.istruc.2022.05.115
10.1111/j.1151-2916.1972.tb13424.x
10.1201/b10162-4
10.1088/1755-1315/687/1/012037
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-42270-3
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 33
ExternalDocumentID oai_doaj_org_article_5f314cad3b54465689b669f463bf5dd4
PMC10497559
10_1038_s41598_023_42270_3
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c518t-e924dde3b56c4f48258dfc969cd0ebd4554c5f7677e4e1a10e7354a2168802db3
IEDL.DBID PIMPY
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001067966700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 18:58:26 EDT 2025
Tue Nov 04 02:06:16 EST 2025
Thu Sep 04 16:52:37 EDT 2025
Tue Oct 07 08:10:09 EDT 2025
Tue Nov 18 22:06:34 EST 2025
Sat Nov 29 06:05:10 EST 2025
Fri Feb 21 02:37:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-e924dde3b56c4f48258dfc969cd0ebd4554c5f7677e4e1a10e7354a2168802db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/publiccontent/docview/2864019475?pq-origsite=%requestingapplication%
PMID 37700062
PQID 2864019475
PQPubID 2041939
PageCount 33
ParticipantIDs doaj_primary_oai_doaj_org_article_5f314cad3b54465689b669f463bf5dd4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10497559
proquest_miscellaneous_2864619088
proquest_journals_2864019475
crossref_citationtrail_10_1038_s41598_023_42270_3
crossref_primary_10_1038_s41598_023_42270_3
springer_journals_10_1038_s41598_023_42270_3
PublicationCentury 2000
PublicationDate 2023-09-12
PublicationDateYYYYMMDD 2023-09-12
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Mousavi, Mousavi, Bhojaraju (CR5) 2020; 2
Taffese, Espinosa-Leal (CR55) 2022; 348
Ahmad (CR47) 2021; 14
Gilat (CR63) 2004
Golafshani (CR8) 2022; 374
Yuan, Zhao, Esmaeili-Falak (CR34) 2022; 23
Ullah (CR19) 2022; 15
Slika, Saad (CR43) 2016; 115
Maes, Gruyaert, De Belie (CR72) 2013; 46
Hosseinzadeh, Dehestani, Hosseinzadeh (CR15) 2023; 2023
Boğa, Öztürk, Topcu (CR41) 2013; 45
Inthata, Kowtanapanich, Cheerarot (CR40) 2013; 46
Ahmad (CR24) 2021; 11
Asghshahr, Rahai, Ashrafi (CR44) 2016; 68
Hoang, Chen, Liao (CR45) 2017; 112
Alabdullah (CR50) 2022; 345
Guo, Guo, Lin (CR59) 2022; 86
Shafikhani, Chidiac (CR6) 2019; 99
Ghafoori (CR36) 2013; 44
Thomas, Bamforth (CR65) 1999; 29
Amin (CR14) 2023
Farooq (CR22) 2021; 14
Guo, Guo, Yao (CR60) 2022; 17
Najimi, Ghafoori, Nikoo (CR38) 2019; 22
Choi (CR81) 2017; 136
CR2
Tran (CR58) 2022; 328
Mohamed (CR33) 2021; 17
CR7
Cai (CR53) 2020; 136
CR9
Pontes (CR86) 2021; 11
Mohamed, Ati, Al Hawat (CR37) 2018; 7
Mousavi, Mousavi, Bhojaraju (CR1) 2020; 2
Marks, Glinicki, Gibas (CR42) 2015; 8
Gao, Chen, Chen (CR46) 2019; 20
Ferreira (CR79) 2016; 20
Song, Kwon (CR31) 2009; 39
Song (CR21) 2021; 308
Liu, Du, Zhang (CR76) 2015; 80
Jain, Neithalath (CR70) 2011; 129
Jiao (CR16) 2023; 2023
Khan (CR20) 2021; 15
Liu (CR4) 2021; 268
Zheng (CR17) 2023; 35
Materials (CR12) 2012
Parichatprecha, Nimityongskul (CR30) 2009; 23
Costa, Appleton (CR64) 1999; 32
Liu, Chia, Zhang (CR71) 2011; 25
CR13
Naito (CR84) 2020; 231
CR11
Delgado (CR52) 2020; 31
Audenaert, Yuan, De Schutter (CR69) 2010; 24
CR10
CR54
Shiu, Yang (CR83) 2020; 28
Farahani, Taghaddos, Shekarchi (CR77) 2015; 59
Liu (CR82) 2017; 196
Pilvar (CR80) 2016; 18
Bhojaraju, Mousavi, Ouellet-Plamondon (CR3) 2023; 135
Elfmarkova, Spiesz, Brouwers (CR73) 2015; 78
Sell Junior (CR85) 2021; 14
Taffese, Espinosa-Leal (CR61) 2022; 60
Khan (CR27) 2021; 2021
Nafees (CR28) 2021; 14
Ge, Zhao, Esmaeili-Falak (CR35) 2022; 2022
Liu (CR48) 2022; 337
Jin (CR49) 2022; 32
CR29
Hodhod, Ahmed (CR32) 2013; 9
Alizadeh (CR67) 2008; 20
Real, Bogas, Pontes (CR74) 2015; 98
Farooq (CR25) 2021; 292
Ahmad (CR26) 2021; 14
Amin (CR51) 2022; 15
Tran, Le, Nguyen (CR57) 2022; 2
CR62
Shekarchi, Rafiee, Layssi (CR68) 2009; 31
Kumar (CR39) 2020; 32
Tran (CR56) 2022; 2022
Ullah (CR18) 2022; 56
Hao-bo, Guo-zhi (CR66) 2004; 19
Ahmad (CR23) 2021; 14
Bogas, Gomes (CR75) 2015; 60
Park (CR78) 2016
J Liu (42270_CR82) 2017; 196
M Shafikhani (42270_CR6) 2019; 99
AR Boğa (42270_CR41) 2013; 45
A Farahani (42270_CR77) 2015; 59
A Nafees (42270_CR28) 2021; 14
M Shekarchi (42270_CR68) 2009; 31
J Pontes (42270_CR86) 2021; 11
N-D Hoang (42270_CR45) 2017; 112
R-W Shiu (42270_CR83) 2020; 28
R Cai (42270_CR53) 2020; 136
N Ghafoori (42270_CR36) 2013; 44
R Parichatprecha (42270_CR30) 2009; 23
L Jin (42270_CR49) 2022; 32
SS Mousavi (42270_CR1) 2020; 2
MA Khan (42270_CR27) 2021; 2021
H Song (42270_CR21) 2021; 308
A Ahmad (42270_CR47) 2021; 14
HS Ullah (42270_CR19) 2022; 15
M Najimi (42270_CR38) 2019; 22
AS Materials (42270_CR12) 2012
F Farooq (42270_CR22) 2021; 14
WZ Taffese (42270_CR61) 2022; 60
M Maes (42270_CR72) 2013; 46
MN Amin (42270_CR14) 2023
O Mohamed (42270_CR33) 2021; 17
MS Asghshahr (42270_CR44) 2016; 68
M Marks (42270_CR42) 2015; 8
Z Guo (42270_CR59) 2022; 86
H Jiao (42270_CR16) 2023; 2023
S Inthata (42270_CR40) 2013; 46
W Gao (42270_CR46) 2019; 20
H Hao-bo (42270_CR66) 2004; 19
42270_CR7
H-W Song (42270_CR31) 2009; 39
42270_CR2
HS Ullah (42270_CR18) 2022; 56
A Ahmad (42270_CR24) 2021; 11
D-M Ge (42270_CR35) 2022; 2022
42270_CR9
R Alizadeh (42270_CR67) 2008; 20
MA Khan (42270_CR20) 2021; 15
J-I Park (42270_CR78) 2016
J Jain (42270_CR70) 2011; 129
W Slika (42270_CR43) 2016; 115
O Hodhod (42270_CR32) 2013; 9
A Ahmad (42270_CR23) 2021; 14
R Ferreira (42270_CR79) 2016; 20
JA Bogas (42270_CR75) 2015; 60
EM Golafshani (42270_CR8) 2022; 374
A Ahmad (42270_CR26) 2021; 14
J Delgado (42270_CR52) 2020; 31
VQ Tran (42270_CR56) 2022; 2022
S Real (42270_CR74) 2015; 98
42270_CR29
X Liu (42270_CR76) 2015; 80
YC Choi (42270_CR81) 2017; 136
VQ Tran (42270_CR58) 2022; 328
MN Amin (42270_CR51) 2022; 15
V Elfmarkova (42270_CR73) 2015; 78
C Bhojaraju (42270_CR3) 2023; 135
A-T Tran (42270_CR57) 2022; 2
42270_CR62
OA Mohamed (42270_CR37) 2018; 7
AA Alabdullah (42270_CR50) 2022; 345
A Gilat (42270_CR63) 2004
M Hosseinzadeh (42270_CR15) 2023; 2023
A Costa (42270_CR64) 1999; 32
K Audenaert (42270_CR69) 2010; 24
WZ Taffese (42270_CR55) 2022; 348
A Pilvar (42270_CR80) 2016; 18
F Farooq (42270_CR25) 2021; 292
C Naito (42270_CR84) 2020; 231
Z Guo (42270_CR60) 2022; 17
S Kumar (42270_CR39) 2020; 32
W Zheng (42270_CR17) 2023; 35
K-H Liu (42270_CR48) 2022; 337
FK Sell Junior (42270_CR85) 2021; 14
J Yuan (42270_CR34) 2022; 23
Q-F Liu (42270_CR4) 2021; 268
SS Mousavi (42270_CR5) 2020; 2
MD Thomas (42270_CR65) 1999; 29
X Liu (42270_CR71) 2011; 25
42270_CR11
42270_CR10
42270_CR54
42270_CR13
References_xml – volume: 115
  start-page: 132
  year: 2016
  end-page: 142
  ident: CR43
  article-title: An ensemble kalman filter approach for service life prediction of reinforced concrete structures subject to chloride-induced corrosion
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.04.025
– volume: 196
  start-page: 315
  year: 2017
  end-page: 323
  ident: CR82
  article-title: Understanding the effect of curing age on the chloride resistance of fly ash blended concrete by rapid chloride migration test
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.05.011
– volume: 15
  start-page: 6959
  issue: 19
  year: 2022
  ident: CR51
  article-title: Prediction of rapid chloride penetration resistance to assess the influence of affecting variables on metakaolin-based concrete using gene expression programming
  publication-title: Materials
  doi: 10.3390/ma15196959
– volume: 135
  start-page: 104836
  year: 2023
  ident: CR3
  article-title: Influence of GGBFS on corrosion resistance of cementitious composites containing graphene and graphene oxide
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2022.104836
– volume: 56
  start-page: 104746
  year: 2022
  ident: CR18
  article-title: Predictive modelling of sustainable lightweight foamed concrete using machine learning novel approach
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.104746
– volume: 292
  start-page: 126032
  year: 2021
  ident: CR25
  article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126032
– volume: 80
  start-page: 255
  year: 2015
  end-page: 261
  ident: CR76
  article-title: A model to estimate the durability performance of both normal and light-weight concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.11.033
– year: 2012
  ident: CR12
  publication-title: ASTM-C1202: Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration
– ident: CR29
– ident: CR54
– volume: 86
  start-page: 103311
  year: 2022
  ident: CR59
  article-title: Multi-factor fuzzy prediction model of concrete surface chloride concentration with trained samples expanded by random forest algorithm
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2022.103311
– volume: 39
  start-page: 814
  issue: 9
  year: 2009
  end-page: 824
  ident: CR31
  article-title: Evaluation of chloride penetration in high performance concrete using neural network algorithm and micro pore structure
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2009.05.013
– volume: 31
  start-page: 101445
  year: 2020
  ident: CR52
  article-title: Artificial neural networks to assess the useful life of reinforced concrete elements deteriorated by accelerated chloride tests
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101445
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 17
  ident: CR27
  article-title: Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest
  publication-title: Adv. Civ. Eng.
– volume: 328
  start-page: 127103
  year: 2022
  ident: CR58
  article-title: Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127103
– volume: 60
  start-page: 105146
  year: 2022
  ident: CR61
  article-title: Prediction of chloride resistance level of concrete using machine learning for durability and service life assessment of building structures
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.105146
– volume: 337
  start-page: 127613
  year: 2022
  ident: CR48
  article-title: Innovative modeling framework of chloride resistance of recycled aggregate concrete using ensemble-machine-learning methods
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127613
– volume: 2023
  start-page: 106335
  year: 2023
  ident: CR16
  article-title: A novel approach in forecasting compressive strength of concrete with carbon nanotubes as nanomaterials
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.106335
– volume: 2
  start-page: 44
  issue: 1
  year: 2022
  end-page: 56
  ident: CR57
  article-title: Forecast of surface chloride concentration of concrete utilizing ensemble decision tree boosted
  publication-title: J. Sci. Transp. Technol.
  doi: 10.58845/jstt.utt.2022.en.2.44-56
– volume: 8
  start-page: 8714
  issue: 12
  year: 2015
  end-page: 8727
  ident: CR42
  article-title: Prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning
  publication-title: Materials
  doi: 10.3390/ma8125483
– volume: 29
  start-page: 487
  issue: 4
  year: 1999
  end-page: 495
  ident: CR65
  article-title: Modelling chloride diffusion in concrete: Effect of fly ash and slag
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(98)00192-6
– volume: 24
  start-page: 396
  issue: 3
  year: 2010
  end-page: 402
  ident: CR69
  article-title: On the time dependency of the chloride migration coefficient in concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.07.003
– volume: 308
  start-page: 125021
  year: 2021
  ident: CR21
  article-title: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125021
– volume: 112
  start-page: 141
  year: 2017
  end-page: 149
  ident: CR45
  article-title: Prediction of chloride diffusion in cement mortar using multi-gene genetic programming and multivariate adaptive regression splines
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.08.031
– volume: 136
  start-page: 106164
  year: 2020
  ident: CR53
  article-title: Prediction of surface chloride concentration of marine concrete using ensemble machine learning
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2020.106164
– ident: CR11
– ident: CR9
– volume: 32
  start-page: 252
  year: 1999
  end-page: 259
  ident: CR64
  article-title: Chloride penetration into concrete in marine environment—Part I: Main parameters affecting chloride penetration
  publication-title: Mater. Struct.
  doi: 10.1007/BF02479594
– volume: 15
  start-page: 3166
  issue: 9
  year: 2022
  ident: CR19
  article-title: Prediction of compressive strength of sustainable foam concrete using individual and ensemble machine learning approaches
  publication-title: Materials
  doi: 10.3390/ma15093166
– volume: 32
  start-page: 104137
  year: 2022
  ident: CR49
  article-title: Prediction of the chloride diffusivity of recycled aggregate concrete using artificial neural network
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2022.104137
– volume: 99
  start-page: 225
  year: 2019
  end-page: 250
  ident: CR6
  article-title: Quantification of concrete chloride diffusion coefficient—A critical review
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2019.03.011
– volume: 2023
  start-page: 107006
  year: 2023
  ident: CR15
  article-title: Prediction of mechanical properties of recycled aggregate fly ash concrete employing machine learning algorithms
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2023.107006
– volume: 44
  start-page: 381
  year: 2013
  end-page: 390
  ident: CR36
  article-title: Predicting rapid chloride permeability of self-consolidating concrete: A comparative study on statistical and neural network models
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.03.039
– volume: 11
  start-page: 324
  issue: 8
  year: 2021
  ident: CR24
  article-title: Compressive strength prediction via gene expression programming (GEP) and artificial neural network (ANN) for concrete containing RCA
  publication-title: Buildings
  doi: 10.3390/buildings11080324
– volume: 28
  start-page: 1
  issue: 2
  year: 2020
  ident: CR83
  article-title: Evaluation of migration characteristics of opc and slag concrete from the rapid chloride migration test
  publication-title: J. Mar. Sci. Technol.
– volume: 14
  start-page: 794
  issue: 4
  year: 2021
  ident: CR26
  article-title: Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm
  publication-title: Materials
  doi: 10.3390/ma14040794
– volume: 19
  start-page: 6
  issue: 4
  year: 2004
  end-page: 8
  ident: CR66
  article-title: Assessment on chloride contaminated resistance of concrete with non-steady-state migration method
  publication-title: J. Wuhan Univ. Technol Mater. Sci.
  doi: 10.1007/BF02841355
– year: 2023
  ident: CR14
  article-title: Prediction of sustainable concrete utilizing rice husk ash (RHA) as supplementary cementitious material (SCM): Optimization and Hyper-tuning
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.06.006
– volume: 374
  start-page: 134021
  year: 2022
  ident: CR8
  article-title: Concrete chloride diffusion modelling using marine creatures-based metaheuristic artificial intelligence
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.134021
– volume: 20
  start-page: 1375
  year: 2016
  end-page: 1384
  ident: CR79
  article-title: Effect of metakaolin on the chloride ingress properties of concrete
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-015-0131-8
– volume: 129
  start-page: 569
  issue: 1–2
  year: 2011
  end-page: 579
  ident: CR70
  article-title: Electrical impedance analysis based quantification of microstructural changes in concretes due to non-steady state chloride migration
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.04.057
– volume: 7
  start-page: 47
  year: 2018
  end-page: 52
  ident: CR37
  article-title: Implementation of artificial neural networks for prediction of chloride penetration in concrete
  publication-title: Int. J. Eng. Technol
  doi: 10.14419/ijet.v7i2.28.12880
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 19
  ident: CR35
  article-title: Estimation of rapid chloride permeability of SCC using hyperparameters optimized random forest models
  publication-title: J. Sustain. Cem. Mater.
– volume: 68
  start-page: 1085
  issue: 21
  year: 2016
  end-page: 1098
  ident: CR44
  article-title: Prediction of chloride content in concrete using ANN and CART
  publication-title: Mag. Concr. Res.
  doi: 10.1680/jmacr.15.00261
– volume: 345
  start-page: 128296
  year: 2022
  ident: CR50
  article-title: Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.128296
– volume: 268
  start-page: 121082
  year: 2021
  ident: CR4
  article-title: Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121082
– volume: 23
  start-page: 753
  issue: 2
  year: 2022
  end-page: 774
  ident: CR34
  article-title: A comparative study on predicting the rapid chloride permeability of self-compacting concrete using meta-heuristic algorithm and artificial intelligence techniques
  publication-title: Struct. Concr.
  doi: 10.1002/suco.202100682
– volume: 20
  start-page: 141
  year: 2019
  end-page: 152
  ident: CR46
  article-title: Genetic programming approach for predicting service life of tunnel structures subject to chloride-induced corrosion
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2019.07.001
– ident: CR2
– volume: 136
  start-page: 81
  year: 2017
  end-page: 87
  ident: CR81
  article-title: Modelling of chloride diffusivity in concrete considering effect of aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.01.041
– volume: 2
  start-page: 1
  issue: 5
  year: 2020
  end-page: 23
  ident: CR5
  article-title: A critical review of the effect of concrete composition on rebar–concrete interface (RCI) bond strength: A case study of nanoparticles
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2681-8
– ident: CR10
– volume: 46
  start-page: 89
  year: 2013
  end-page: 103
  ident: CR72
  article-title: Resistance of concrete with blast-furnace slag against chlorides, investigated by comparing chloride profiles after migration and diffusion
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-012-9885-3
– volume: 25
  start-page: 335
  issue: 1
  year: 2011
  end-page: 343
  ident: CR71
  article-title: Water absorption, permeability, and resistance to chloride-ion penetration of lightweight aggregate concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.06.020
– volume: 14
  start-page: 2297
  issue: 9
  year: 2021
  ident: CR47
  article-title: Application of novel machine learning techniques for predicting the surface chloride concentration in concrete containing waste material
  publication-title: Materials
  doi: 10.3390/ma14092297
– year: 2004
  ident: CR63
  publication-title: MATLAB: An introduction with Applications
– volume: 60
  start-page: 111
  year: 2015
  end-page: 122
  ident: CR75
  article-title: Non-steady-state accelerated chloride penetration resistance of structural lightweight aggregate concrete
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2015.04.001
– volume: 23
  start-page: 910
  issue: 2
  year: 2009
  end-page: 917
  ident: CR30
  article-title: Analysis of durability of high performance concrete using artificial neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.04.015
– volume: 14
  start-page: 4222
  issue: 15
  year: 2021
  ident: CR23
  article-title: Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature
  publication-title: Materials
  doi: 10.3390/ma14154222
– volume: 35
  start-page: 105901
  year: 2023
  ident: CR17
  article-title: Sustainable predictive model of concrete utilizing waste ingredient: Individual alogrithms with optimized ensemble approaches
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.105901
– volume: 78
  start-page: 190
  year: 2015
  end-page: 199
  ident: CR73
  article-title: Determination of the chloride diffusion coefficient in blended cement mortars
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2015.06.014
– volume: 18
  start-page: 793
  issue: 4
  year: 2016
  end-page: 806
  ident: CR80
  article-title: Practical evaluation of rapid tests for assessing the chloride resistance of concretes containing silica fume
  publication-title: Comput. Concr. Int. J.
  doi: 10.12989/cac.2016.18.6.793
– volume: 45
  start-page: 688
  issue: 1
  year: 2013
  end-page: 696
  ident: CR41
  article-title: Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2012.05.054
– volume: 11
  start-page: 7251
  issue: 16
  year: 2021
  ident: CR86
  article-title: The rapid chloride migration test in assessing the chloride penetration resistance of normal and lightweight concrete
  publication-title: Appl. Sci.
  doi: 10.3390/app11167251
– volume: 17
  start-page: e01305
  year: 2022
  ident: CR60
  article-title: Multi-factor model to predict surface chloride concentration of concrete based on fuzzy logic system
  publication-title: Case Stud Constr Mater.
– volume: 14
  start-page: 4934
  issue: 17
  year: 2021
  ident: CR22
  article-title: A comparative study for the prediction of the compressive strength of self-compacting concrete modified with fly ash
  publication-title: Materials
  doi: 10.3390/ma14174934
– volume: 231
  start-page: 117045
  year: 2020
  ident: CR84
  article-title: Chloride migration characteristics and reliability of reinforced concrete highway structures in Pennsylvania
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117045
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 17
  ident: CR56
  article-title: Application of machine learning technique for predicting and evaluating chloride ingress in concrete
  publication-title: Front. Struct. Civ. Eng
– volume: 14
  start-page: 7531
  issue: 24
  year: 2021
  ident: CR28
  article-title: Predictive modeling of mechanical properties of silica fume-based green concrete using artificial intelligence approaches: MLPNN, ANFIS, and GEP
  publication-title: Materials
  doi: 10.3390/ma14247531
– volume: 22
  start-page: 216
  year: 2019
  end-page: 226
  ident: CR38
  article-title: Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2018.12.013
– volume: 98
  start-page: 425
  year: 2015
  end-page: 436
  ident: CR74
  article-title: Chloride migration in structural lightweight aggregate concrete produced with different binders
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.08.080
– volume: 348
  start-page: 128566
  year: 2022
  ident: CR55
  article-title: A machine learning method for predicting the chloride migration coefficient of concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.128566
– volume: 59
  start-page: 10
  year: 2015
  end-page: 17
  ident: CR77
  article-title: Prediction of long-term chloride diffusion in silica fume concrete in a marine environment
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2015.03.006
– ident: CR13
– volume: 32
  start-page: 101490
  year: 2020
  ident: CR39
  article-title: Prediction of rapid chloride permeability of self-compacting concrete using multivariate adaptive regression spline and minimax probability machine regression
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101490
– volume: 46
  start-page: 1707
  issue: 10
  year: 2013
  end-page: 1721
  ident: CR40
  article-title: Prediction of chloride permeability of concretes containing ground pozzolans by artificial neural networks
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-012-0009-x
– year: 2016
  ident: CR78
  article-title: Diffusion decay coefficient for chloride ions of concrete containing mineral admixtures
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2016/2042918
– volume: 2
  start-page: 893
  issue: 5
  year: 2020
  ident: CR1
  article-title: A critical review of the effect of concrete composition on rebar–concrete interface (RCI) bond strength: A case study of nanoparticles
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2681-8
– volume: 15
  start-page: 58
  issue: 1
  year: 2021
  ident: CR20
  article-title: Simulation of depth of wear of eco-friendly concrete using machine learning based computational approaches
  publication-title: Materials
  doi: 10.3390/ma15010058
– ident: CR7
– volume: 17
  start-page: 101123
  year: 2021
  ident: CR33
  article-title: Application of ANN for prediction of chloride penetration resistance and concrete compressive strength
  publication-title: Materialia
  doi: 10.1016/j.mtla.2021.101123
– volume: 20
  start-page: 2
  issue: 1
  year: 2008
  end-page: 8
  ident: CR67
  article-title: Effect of curing conditions on the service life design of RC structures in the Persian Gulf region
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2008)20:1(2)
– volume: 14
  start-page: 14407
  year: 2021
  ident: CR85
  article-title: Experimental assessment of accelerated test methods for determining chloride diffusion coefficient in concrete
  publication-title: Rev. Ibracon. Estrut. Mater.
  doi: 10.1590/s1983-41952021000400007
– ident: CR62
– volume: 9
  start-page: 15
  issue: 1
  year: 2013
  end-page: 21
  ident: CR32
  article-title: Developing an artificial neural network model to evaluate chloride diffusivity in high performance concrete
  publication-title: HBRC J.
  doi: 10.1016/j.hbrcj.2013.04.001
– volume: 31
  start-page: 769
  issue: 10
  year: 2009
  end-page: 775
  ident: CR68
  article-title: Long-term chloride diffusion in silica fume concrete in harsh marine climates
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2009.08.005
– volume-title: ASTM-C1202: Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration
  year: 2012
  ident: 42270_CR12
– volume: 2021
  start-page: 1
  year: 2021
  ident: 42270_CR27
  publication-title: Adv. Civ. Eng.
– volume: 337
  start-page: 127613
  year: 2022
  ident: 42270_CR48
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127613
– volume: 8
  start-page: 8714
  issue: 12
  year: 2015
  ident: 42270_CR42
  publication-title: Materials
  doi: 10.3390/ma8125483
– ident: 42270_CR2
  doi: 10.1016/j.istruc.2022.05.115
– volume: 292
  start-page: 126032
  year: 2021
  ident: 42270_CR25
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126032
– volume: 23
  start-page: 910
  issue: 2
  year: 2009
  ident: 42270_CR30
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.04.015
– volume: 31
  start-page: 769
  issue: 10
  year: 2009
  ident: 42270_CR68
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2009.08.005
– volume: 56
  start-page: 104746
  year: 2022
  ident: 42270_CR18
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.104746
– volume: 196
  start-page: 315
  year: 2017
  ident: 42270_CR82
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.05.011
– volume: 15
  start-page: 58
  issue: 1
  year: 2021
  ident: 42270_CR20
  publication-title: Materials
  doi: 10.3390/ma15010058
– volume: 7
  start-page: 47
  year: 2018
  ident: 42270_CR37
  publication-title: Int. J. Eng. Technol
  doi: 10.14419/ijet.v7i2.28.12880
– volume: 17
  start-page: 101123
  year: 2021
  ident: 42270_CR33
  publication-title: Materialia
  doi: 10.1016/j.mtla.2021.101123
– volume: 25
  start-page: 335
  issue: 1
  year: 2011
  ident: 42270_CR71
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.06.020
– volume: 14
  start-page: 14407
  year: 2021
  ident: 42270_CR85
  publication-title: Rev. Ibracon. Estrut. Mater.
  doi: 10.1590/s1983-41952021000400007
– ident: 42270_CR10
– volume: 46
  start-page: 1707
  issue: 10
  year: 2013
  ident: 42270_CR40
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-012-0009-x
– volume: 80
  start-page: 255
  year: 2015
  ident: 42270_CR76
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.11.033
– volume: 59
  start-page: 10
  year: 2015
  ident: 42270_CR77
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2015.03.006
– ident: 42270_CR7
  doi: 10.1111/j.1151-2916.1972.tb13424.x
– volume: 345
  start-page: 128296
  year: 2022
  ident: 42270_CR50
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.128296
– volume: 15
  start-page: 6959
  issue: 19
  year: 2022
  ident: 42270_CR51
  publication-title: Materials
  doi: 10.3390/ma15196959
– volume: 98
  start-page: 425
  year: 2015
  ident: 42270_CR74
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.08.080
– volume: 135
  start-page: 104836
  year: 2023
  ident: 42270_CR3
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2022.104836
– volume: 45
  start-page: 688
  issue: 1
  year: 2013
  ident: 42270_CR41
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2012.05.054
– volume: 78
  start-page: 190
  year: 2015
  ident: 42270_CR73
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2015.06.014
– volume: 115
  start-page: 132
  year: 2016
  ident: 42270_CR43
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.04.025
– volume: 308
  start-page: 125021
  year: 2021
  ident: 42270_CR21
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125021
– volume: 86
  start-page: 103311
  year: 2022
  ident: 42270_CR59
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2022.103311
– volume: 23
  start-page: 753
  issue: 2
  year: 2022
  ident: 42270_CR34
  publication-title: Struct. Concr.
  doi: 10.1002/suco.202100682
– volume: 28
  start-page: 1
  issue: 2
  year: 2020
  ident: 42270_CR83
  publication-title: J. Mar. Sci. Technol.
– ident: 42270_CR11
– volume: 20
  start-page: 141
  year: 2019
  ident: 42270_CR46
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2019.07.001
– volume: 374
  start-page: 134021
  year: 2022
  ident: 42270_CR8
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.134021
– volume: 29
  start-page: 487
  issue: 4
  year: 1999
  ident: 42270_CR65
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(98)00192-6
– ident: 42270_CR29
  doi: 10.1201/b10162-4
– volume: 2022
  start-page: 1
  year: 2022
  ident: 42270_CR56
  publication-title: Front. Struct. Civ. Eng
– volume: 99
  start-page: 225
  year: 2019
  ident: 42270_CR6
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2019.03.011
– volume: 136
  start-page: 106164
  year: 2020
  ident: 42270_CR53
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2020.106164
– year: 2023
  ident: 42270_CR14
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.06.006
– volume: 60
  start-page: 111
  year: 2015
  ident: 42270_CR75
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2015.04.001
– volume: 268
  start-page: 121082
  year: 2021
  ident: 42270_CR4
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121082
– volume: 2
  start-page: 893
  issue: 5
  year: 2020
  ident: 42270_CR1
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2681-8
– volume: 24
  start-page: 396
  issue: 3
  year: 2010
  ident: 42270_CR69
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.07.003
– volume: 32
  start-page: 252
  year: 1999
  ident: 42270_CR64
  publication-title: Mater. Struct.
  doi: 10.1007/BF02479594
– volume: 328
  start-page: 127103
  year: 2022
  ident: 42270_CR58
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127103
– volume: 44
  start-page: 381
  year: 2013
  ident: 42270_CR36
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.03.039
– volume: 20
  start-page: 1375
  year: 2016
  ident: 42270_CR79
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-015-0131-8
– ident: 42270_CR9
– volume: 17
  start-page: e01305
  year: 2022
  ident: 42270_CR60
  publication-title: Case Stud Constr Mater.
– volume: 129
  start-page: 569
  issue: 1–2
  year: 2011
  ident: 42270_CR70
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.04.057
– volume: 20
  start-page: 2
  issue: 1
  year: 2008
  ident: 42270_CR67
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2008)20:1(2)
– volume: 60
  start-page: 105146
  year: 2022
  ident: 42270_CR61
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.105146
– volume: 35
  start-page: 105901
  year: 2023
  ident: 42270_CR17
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.105901
– volume: 348
  start-page: 128566
  year: 2022
  ident: 42270_CR55
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.128566
– volume: 14
  start-page: 4222
  issue: 15
  year: 2021
  ident: 42270_CR23
  publication-title: Materials
  doi: 10.3390/ma14154222
– volume: 112
  start-page: 141
  year: 2017
  ident: 42270_CR45
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.08.031
– ident: 42270_CR54
  doi: 10.1088/1755-1315/687/1/012037
– volume: 19
  start-page: 6
  issue: 4
  year: 2004
  ident: 42270_CR66
  publication-title: J. Wuhan Univ. Technol Mater. Sci.
  doi: 10.1007/BF02841355
– volume: 2023
  start-page: 107006
  year: 2023
  ident: 42270_CR15
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2023.107006
– volume: 11
  start-page: 324
  issue: 8
  year: 2021
  ident: 42270_CR24
  publication-title: Buildings
  doi: 10.3390/buildings11080324
– volume: 15
  start-page: 3166
  issue: 9
  year: 2022
  ident: 42270_CR19
  publication-title: Materials
  doi: 10.3390/ma15093166
– volume: 31
  start-page: 101445
  year: 2020
  ident: 42270_CR52
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101445
– volume: 2
  start-page: 1
  issue: 5
  year: 2020
  ident: 42270_CR5
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2681-8
– volume: 136
  start-page: 81
  year: 2017
  ident: 42270_CR81
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.01.041
– volume: 14
  start-page: 4934
  issue: 17
  year: 2021
  ident: 42270_CR22
  publication-title: Materials
  doi: 10.3390/ma14174934
– volume: 22
  start-page: 216
  year: 2019
  ident: 42270_CR38
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2018.12.013
– volume: 14
  start-page: 2297
  issue: 9
  year: 2021
  ident: 42270_CR47
  publication-title: Materials
  doi: 10.3390/ma14092297
– volume: 32
  start-page: 104137
  year: 2022
  ident: 42270_CR49
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2022.104137
– volume: 39
  start-page: 814
  issue: 9
  year: 2009
  ident: 42270_CR31
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2009.05.013
– volume: 9
  start-page: 15
  issue: 1
  year: 2013
  ident: 42270_CR32
  publication-title: HBRC J.
  doi: 10.1016/j.hbrcj.2013.04.001
– volume: 32
  start-page: 101490
  year: 2020
  ident: 42270_CR39
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101490
– volume: 2
  start-page: 44
  issue: 1
  year: 2022
  ident: 42270_CR57
  publication-title: J. Sci. Transp. Technol.
  doi: 10.58845/jstt.utt.2022.en.2.44-56
– volume: 18
  start-page: 793
  issue: 4
  year: 2016
  ident: 42270_CR80
  publication-title: Comput. Concr. Int. J.
  doi: 10.12989/cac.2016.18.6.793
– volume-title: MATLAB: An introduction with Applications
  year: 2004
  ident: 42270_CR63
– volume: 2023
  start-page: 106335
  year: 2023
  ident: 42270_CR16
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.106335
– ident: 42270_CR62
– volume: 2022
  start-page: 1
  year: 2022
  ident: 42270_CR35
  publication-title: J. Sustain. Cem. Mater.
– volume: 14
  start-page: 794
  issue: 4
  year: 2021
  ident: 42270_CR26
  publication-title: Materials
  doi: 10.3390/ma14040794
– ident: 42270_CR13
– volume: 46
  start-page: 89
  year: 2013
  ident: 42270_CR72
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-012-9885-3
– volume: 68
  start-page: 1085
  issue: 21
  year: 2016
  ident: 42270_CR44
  publication-title: Mag. Concr. Res.
  doi: 10.1680/jmacr.15.00261
– volume: 11
  start-page: 7251
  issue: 16
  year: 2021
  ident: 42270_CR86
  publication-title: Appl. Sci.
  doi: 10.3390/app11167251
– year: 2016
  ident: 42270_CR78
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2016/2042918
– volume: 14
  start-page: 7531
  issue: 24
  year: 2021
  ident: 42270_CR28
  publication-title: Materials
  doi: 10.3390/ma14247531
– volume: 231
  start-page: 117045
  year: 2020
  ident: 42270_CR84
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117045
SSID ssj0000529419
Score 2.496065
Snippet By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of...
Abstract By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15024
SubjectTerms 639/166
639/166/986
639/301/1023/1025
Algorithms
Chloride
Chlorides
Classification
Concrete
Datasets
Diffusion coefficient
Fly ash
Humanities and Social Sciences
Learning algorithms
Machine learning
multidisciplinary
Neural networks
Risk reduction
Science
Science (multidisciplinary)
Silica
Slag
Water content
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuqLxEaEFG4gZR47d9LIiKU8UBpN6sxA-2EqSr3RSJf8_Yzi5NJeDCNXES2_PwfJrJNwCvPc5OS5XaLumAAEXoduAitgw9Zp-sDtKk0mxCn5-biwv76Uarr1wTVumB68adyMSp8H3ggyzcXsYOStkkFB-SDKEwgXba3gBTldWbWUHt_JdMx83JFk-q_DcZ461gTKPzWZxEhbB_EWXerpG8lSgt58_ZITyYA0dyWif8EO7E8RHcq60kfz6G9elIYqGDwDeR76VEMpK5J8RXsqMOJxijkvUmZ2dyvTNBNIxh4xSJX-VSvBAJwu8cUqIukFwTj4-SXHa-iata6k5yTek2Tk_gy9mHz-8_tnM3hdZLaqY2ItJCX4b7qLxIApGhCclbZX3o4hAExhVeJq20jiLSnnZRcyl6RhWaOAsDfwoH49UYnwHphpSz3tL21KJs0MSFR0cQe2v6gbLYAN3trPMz1XjuePHNlZQ3N65Kw6E0XJGG4w282T-zrkQbfx39LgtsPzKTZJcLqDpuVh33L9Vp4Hgnbjdb7tYxoxByWqFlA6_2t9HmciKlH-PVdR2DwBMddANmoSaLCS3vjJerwt6N-NdqxHENvN1p1O-v_3nFz__Hio_gPssWUFpgHMPBtLmOL-Cu_zFdbjcviwn9AkwbIBQ
  priority: 102
  providerName: Directory of Open Access Journals
Title An efficient machine learning approach for predicting concrete chloride resistance using a comprehensive dataset
URI https://link.springer.com/article/10.1038/s41598-023-42270-3
https://www.proquest.com/docview/2864019475
https://www.proquest.com/docview/2864619088
https://pubmed.ncbi.nlm.nih.gov/PMC10497559
https://doaj.org/article/5f314cad3b54465689b669f463bf5dd4
Volume 13
WOSCitedRecordID wos001067966700041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xFqS98I0IjMpIvEHUxnFi-wltaBM8rKoQSOUpSvyxToK0SzIk_nvunLRTJ7EnXvzQOO25Z_985zv_DuCdQelklvt45qVFB0XIuEqFizkiZum1tJnyodiEnM_VcqkXw_Xodkir3GJiAOqe7ZnythGEp3Zt6MR8ylWOjoEWMvu4uYqphhTFWoeCGgcwJuItPoLx4sv54sfuzIWiWiLRw92ZWaqmLe5fdMeMp7HgXCIk7e1PgcZ_z_a8nTl5K3wadqWzR_93PI_h4WCdsuN-Oj2Be65-Cg_6epV_nsHmuGYucE7gt7JfIQ_TsaHwxAXb8pMzNITZpqEQECVVMxQDbdPOMbOifD_rGPr4ZLfihGOUeI-vMsptb9yqz6dnlLjauu45fD87_fbpczyUbIhNlqgudujOIWCmVZYb4QW6n8p6o3Nt7MxVVqDxYjIvcymdcEmZzJxMM1HyJEcc4bZKX8CoXtfuJbBZ5Sm0nukS_xdTIo4Ig2jjSq3KKuEugmSrqMIMfOZUVuNnEeLqqSp65Rao3CIot0gjeL97Z9OzedzZ-4T0v-tJTNzhg3VzUQwLu8h8mqB4FoccuOeUrvJce5Gnlc-sFREcbfVfDPDQFjfqjuDt7jEubIrWlLVbX_d90LvFXSACtTfr9gTaf1JfrgJFODrZWqKzGMGH7QS9-fV_j_jV3cK-hkNOSyVU0DiCUddcuzdw3_zuLttmAgdyKUOrJjA-OZ0vvk7CEQe253xBrcS2X5N_Ac-zQYk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb9RAASPBCaImjhM7B4TKo2rVsuJQpL2ZxI9uJZosSQrqn-I3MnaSrVKJ3nrgunF27c0338xkXgCvFO6Op5kNI8s1OiiMh2XCTEiRMQubc50K64dN8NlMzOf51zX4M9bCuLTKkRM9UetauXfkW1Rk6ArkjKfvlz9DNzXKRVfHERo9LPbN2W902dp3e5_w-b6mdOfz4cfdcJgqEKo0Fl1o0ONAmU7KNFPMMvSQhLYqz3KlI1NqhvpVpZZnnBtm4iKODE9SVtA4Q6hTXSb4vdfgOvI4dxMT-Jyv3um4qBmL86E2J0rEVov60dWw0SRklHKkvIn-82MCJrbtxczMC-FZr_V27v5v_9c9uDPY12S7F4j7sGaqB3Czn7h59hCW2xUxvmsGHp2c-ExSQ4bRGUdk7LBO0JQny8YFsVxaOFF1hdZ1Z4hauIxFbUhjWmd5o8gQVzqAtxKXnd-YRV8RQFzqbWu6R_DtSo77GNarujIbQKLSuuSANC_wOagCmZAp5EtT5KIoY2oCiEcoSDV0ZHeDQX5InxmQCNnDRyJ8pIePTAJ4s7pn2fcjuXT1B4ew1UrXS9x_UDdHcqAmmdokxu1pPLLvnifyMstyy7KktKnWLIDNEWFyILhWnsMrgJery0hNLt5UVKY-7degf456LAAxwfVkQ9Mr1fHCNzmP0XXl6O4G8HYUgfNf__eJn1y-2Rdwa_fwy4E82JvtP4Xb1AmmnweyCetdc2qewQ31qztum-desgl8v2rR-AvOrIsb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFhAX3qiBAkaCE0S7sZ04OSBUKCtWhdUeQConN_GjW4kmS7IF9a_x6xg7yVapRG89cE2cxE6-ecXfzAC8VDg7ESc2HFuhMUDhIiwYNyFFjZnbTOg4tb7ZhJjN0oODbL4Bf_pcGEer7HWiV9S6Uu4f-YimCYYCGRfxyHa0iPne5N3yZ-g6SLmd1r6dRguRfXP2G8O35u10D7_1K0onH79--BR2HQZCFUfpKjQYfaB8syJOFLcco6VUW5UlmdJjU2iOtlbFViRCGG6iPBobwWKe0yhB2FNdMLzvNdhCl5xh4Lc1n36Zf1__4XF7aDzKukydMUtHDVpLl9FGWcgpFagAB9bQNw0YeLoXeZoXNmu9DZzc-Z_f3l243XneZLcVlXuwYcr7cKPtxXn2AJa7JTG-nga-BnLiOaaGdE01jkhfe52gk0-WtdvecoRxoqoS_e6VIWrhuIzakNo0zidHYSIuqQAvJY63X5tFmytAHCm3MauH8O1KlvsINsuqNNtAxoV1tIE4y_GbqBx1JFeoSU2epXkRURNA1MNCqq5Wu2sZ8kN6zgBLZQsliVCSHkqSBfB6fc2yrVRy6ej3Dm3rka7KuD9Q1UeyU1oytizC6Wlcsq-rl2ZFkmSWJ6ywsdY8gJ0ebbJTfY08h1oAL9anUWm5nai8NNVpOwYjd7RwAaQDjA8mNDxTHi98-fMIg1qBgXAAb3pxOH_6v1f8-PLJPoebKBHy83S2_wRuUSejvlHIDmyu6lPzFK6rX6vjpn7WiTmBw6uWjb_ao5Vz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+machine+learning+approach+for+predicting+concrete+chloride+resistance+using+a+comprehensive+dataset&rft.jtitle=Scientific+reports&rft.au=Hosseinzadeh%2C+Maedeh&rft.au=Mousavi%2C+Seyed+Sina&rft.au=Hosseinzadeh%2C+Alireza&rft.au=Dehestani%2C+Mehdi&rft.date=2023-09-12&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=15024&rft_id=info:doi/10.1038%2Fs41598-023-42270-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon