Global sensitivity analysis with dependence measures
Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of the output and handle multivariate variables in a limited way. In this paper, we introduce a new class of sensitivity indices based on depende...
Saved in:
| Published in: | Journal of statistical computation and simulation Vol. 85; no. 7; pp. 1283 - 1305 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Abingdon
Taylor & Francis
03.05.2015
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0094-9655, 1563-5163 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of the output and handle multivariate variables in a limited way. In this paper, we introduce a new class of sensitivity indices based on dependence measures which overcomes these insufficiencies. Our approach originates from the idea to compare the output distribution with its conditional counterpart when one of the input variables is fixed. We establish that this comparison yields previously proposed indices when it is performed with Csiszár f-divergences, as well as sensitivity indices which are well-known dependence measures between random variables. This leads us to investigate completely new sensitivity indices based on recent state-of-the-art dependence measures, such as distance correlation and the Hilbert-Schmidt independence criterion. We also emphasize the potential of feature selection techniques relying on such dependence measures as alternatives to screening in high dimension. |
|---|---|
| AbstractList | Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of the output and handle multivariate variables in a limited way. In this paper, we introduce a new class of sensitivity indices based on dependence measures which overcomes these insufficiencies. Our approach originates from the idea to compare the output distribution with its conditional counterpart when one of the input variables is fixed. We establish that this comparison yields previously proposed indices when it is performed with Csiszar f-divergences, as well as sensitivity indices which are well-known dependence measures between random variables. This leads us to investigate completely new sensitivity indices based on recent state-of-the-art dependence measures, such as distance correlation and the Hilbert-Schmidt independence criterion. We also emphasize the potential of feature selection techniques relying on such dependence measures as alternatives to screening in high dimension. Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of the output and handle multivariate variables in a limited way. In this paper, we introduce a new class of sensitivity indices based on dependence measures which overcomes these insufficiencies. Our approach originates from the idea to compare the output distribution with its conditional counterpart when one of the input variables is fixed.We establish that this comparison yields previously proposed indices when it is performed with Csiszár f -divergences, as well as sensitivity indices which are well-known dependence measures between random variables. This leads us to investigate completely new sensitivity indices based on recent state-of-the-art dependence measures, such as distance correlation and the Hilbert–Schmidt independence criterion. We also emphasize the potential of feature selection techniques relying on such dependence measures as alternatives to screening in highdimension. Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of the output and handle multivariate variables in a limited way. In this paper, we introduce a new class of sensitivity indices based on dependence measures which overcomes these insufficiencies. Our approach originates from the idea to compare the output distribution with its conditional counterpart when one of the input variables is fixed. We establish that this comparison yields previously proposed indices when it is performed with Csiszár f-divergences, as well as sensitivity indices which are well-known dependence measures between random variables. This leads us to investigate completely new sensitivity indices based on recent state-of-the-art dependence measures, such as distance correlation and the Hilbert-Schmidt independence criterion. We also emphasize the potential of feature selection techniques relying on such dependence measures as alternatives to screening in high dimension. |
| Author | Da Veiga, Sebastien |
| Author_xml | – sequence: 1 givenname: Sebastien surname: Da Veiga fullname: Da Veiga, Sebastien email: sebastien.daveiga@snecma.fr organization: IFP Energies nouvelles |
| BackLink | https://hal.science/hal-01128666$$DView record in HAL |
| BookMark | eNqFkE1rGzEQhkVJoI7bf9DDQi_JYV1p9WGplxBCmhQMvaRnMd4dEQVZciU5wf8-u2xyySE9DQzPO7zznJGTmCIS8o3RFaOa_qDUCKOkXHWUiZUR0vDuE1kwqXgrmeInZDEh7cR8JmelPFJKGZPdgojbkLYQmoKx-OqffD02ECEciy_Ns68PzYB7jAPGHpsdQjlkLF_IqYNQ8OvrXJK_v27ur-_azZ_b39dXm7aXTNcWJXU99tIoxdWWM7EWYzWhEJQGKbXccoe47jgYObhh4EIZpzrtmNhqNIwvycV89wGC3We_g3y0Cby9u9rYaTc-0Wml1NPEns_sPqd_ByzV7nzpMQSImA7FMqWMXjMzOlmS7-_Qx3TI49MTNfYSo009Uj9nqs-plIzO9r5C9SnWDD5YRu0k377Jt5N8O8sfw-Jd-K3-f2KXc8xHl_IOnlMOg61wDCm7DLH3xfIPL7wA2gKadw |
| CitedBy_id | crossref_primary_10_1177_0300060520920056 crossref_primary_10_3390_app112311475 crossref_primary_10_1029_2021WR029911 crossref_primary_10_1007_s13171_024_00354_w crossref_primary_10_1016_j_knosys_2020_106356 crossref_primary_10_1016_j_eswa_2017_04_057 crossref_primary_10_1080_00295639_2023_2197838 crossref_primary_10_1137_22M154315X crossref_primary_10_1016_j_ress_2018_12_003 crossref_primary_10_1007_s11222_019_09887_9 crossref_primary_10_1186_s12918_017_0488_z crossref_primary_10_1016_j_jenvman_2025_125067 crossref_primary_10_1016_j_actaastro_2022_08_032 crossref_primary_10_1080_00295639_2021_1980362 crossref_primary_10_1016_j_ejor_2019_03_034 crossref_primary_10_1007_s10596_023_10192_8 crossref_primary_10_1016_j_advwatres_2020_103714 crossref_primary_10_1016_j_ymssp_2018_08_015 crossref_primary_10_1016_j_ejor_2015_06_032 crossref_primary_10_1016_j_anucene_2024_110888 crossref_primary_10_1016_j_envsoft_2021_105208 crossref_primary_10_1016_j_ymssp_2020_106775 crossref_primary_10_1016_j_envsoft_2020_104851 crossref_primary_10_1016_j_jocs_2023_102197 crossref_primary_10_1016_j_ress_2021_108208 crossref_primary_10_1017_jog_2018_15 crossref_primary_10_1016_j_ress_2021_107795 crossref_primary_10_1007_s11063_020_10420_7 crossref_primary_10_1016_j_radphyschem_2025_112693 crossref_primary_10_1016_j_ress_2021_107711 crossref_primary_10_1145_3649463 crossref_primary_10_1016_j_asoc_2020_106292 crossref_primary_10_1111_risa_13571 crossref_primary_10_1016_j_ress_2023_109173 crossref_primary_10_3390_app9142806 crossref_primary_10_1007_s00158_018_2062_8 crossref_primary_10_1016_j_rse_2025_114784 crossref_primary_10_1051_epjn_2021002 crossref_primary_10_1017_dce_2023_27 crossref_primary_10_1002_qre_3157 crossref_primary_10_1007_s00477_016_1245_3 crossref_primary_10_1016_j_ymssp_2020_106687 crossref_primary_10_1002_qre_3638 crossref_primary_10_1007_s00158_019_02342_3 crossref_primary_10_3390_s20010132 crossref_primary_10_1007_s10915_022_02083_4 crossref_primary_10_1016_j_matcom_2020_11_024 crossref_primary_10_1007_s40996_024_01502_w crossref_primary_10_1080_00949655_2016_1149854 crossref_primary_10_1007_s00158_019_02257_z crossref_primary_10_1111_risa_70002 crossref_primary_10_1016_j_envsoft_2019_01_012 crossref_primary_10_1016_j_ress_2021_107522 crossref_primary_10_1016_j_apm_2020_03_025 crossref_primary_10_1016_j_buildenv_2024_112031 crossref_primary_10_1111_risa_12555 crossref_primary_10_1016_j_envsoft_2018_09_010 crossref_primary_10_1016_j_ress_2015_01_019 crossref_primary_10_1051_epjn_2018050 crossref_primary_10_3390_e18080295 crossref_primary_10_3390_app9132714 crossref_primary_10_1080_00401706_2025_2455143 crossref_primary_10_1080_00295450_2019_1573617 crossref_primary_10_1080_00401706_2024_2336537 crossref_primary_10_1080_02626667_2024_2321332 crossref_primary_10_1109_ACCESS_2021_3063786 crossref_primary_10_1002_qre_2954 crossref_primary_10_1016_j_envsoft_2020_104954 crossref_primary_10_3390_pr12040777 crossref_primary_10_1007_s13253_018_00346_y crossref_primary_10_1007_s10994_022_06202_y crossref_primary_10_1016_j_quageo_2023_101489 crossref_primary_10_5194_soil_10_679_2024 crossref_primary_10_1177_1748006X18781121 crossref_primary_10_1016_j_ecoinf_2023_102079 crossref_primary_10_1016_j_ress_2021_107611 crossref_primary_10_1093_intbio_zyae020 crossref_primary_10_1109_ACCESS_2021_3056933 crossref_primary_10_1016_j_nima_2020_164135 crossref_primary_10_1016_j_envsoft_2021_105270 crossref_primary_10_1007_s00158_020_02705_1 crossref_primary_10_1016_j_csda_2023_107701 crossref_primary_10_1088_1742_6596_2505_1_012011 crossref_primary_10_1016_j_nucengdes_2025_114409 crossref_primary_10_3390_en17081823 |
| Cites_doi | 10.1016/j.ress.2006.04.015 10.1214/12-AOP803 10.1016/j.jspi.2013.03.018 10.1198/jasa.2011.tm09779 10.1007/978-1-4419-9096-9 10.2307/1428011 10.1016/j.jmva.2012.08.016 10.1016/j.jmva.2013.02.012 10.1198/TECH.2009.08124 10.1111/j.1467-9868.2009.00718.x 10.1007/s00477-006-0093-y 10.1016/j.ress.2012.06.010 10.1162/NECO_a_00537 10.1109/TPAMI.2005.159 10.1109/TMI.2003.815867 10.1016/S0010-4655(98)00156-8 10.1016/j.matcom.2009.01.023 10.1007/11564089_7 10.1002/j.1538-7305.1948.tb01338.x 10.1007/978-3-540-75225-7_5 10.1016/j.jspi.2005.01.001 10.1051/ps/2013040 10.1080/00401706.1991.10484804 10.1186/1471-2105-10-S1-S52 10.1016/j.ress.2010.06.015 10.1080/00401706.2012.727751 10.1145/2457459.2457460 10.1111/j.1467-9868.2004.05304.x 10.1103/PhysRevE.69.066138 10.1214/aoms/1177698701 10.1111/j.1467-9868.2008.00674.x 10.1016/j.ress.2008.07.008 10.1016/j.ress.2011.03.002 10.1214/009053607000000505 10.1016/S0893-6080(00)00026-5 10.1214/13-AOS1140 10.1214/12-EJS722 10.1080/10485252.2013.784762 10.1063/1.1680571 10.1080/01621459.2012.695654 10.1016/j.ress.2005.06.003 10.1080/00401706.2012.725994 10.1016/j.jmva.2006.11.013 10.1017/CBO9781139035613 10.1016/j.advwatres.2012.11.019 10.1016/j.ress.2012.11.008 10.1111/j.2517-6161.1996.tb02080.x 10.1214/aoms/1177699260 |
| ContentType | Journal Article |
| Copyright | 2014 Taylor & Francis 2014 Copyright Taylor & Francis Ltd. 2015 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2014 Taylor & Francis 2014 – notice: Copyright Taylor & Francis Ltd. 2015 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC |
| DOI | 10.1080/00949655.2014.945932 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics Computer Science |
| EISSN | 1563-5163 |
| EndPage | 1305 |
| ExternalDocumentID | oai:HAL:hal-01128666v1 3594787161 10_1080_00949655_2014_945932 945932 |
| Genre | Article |
| GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z MS~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ZL0 ~S~ AAYXX CITATION 7SC 8FD ADYSH JQ2 L7M L~C L~D 1XC |
| ID | FETCH-LOGICAL-c518t-e50fcec596636b3147445946ea68a5585b3fee723a95dfdd3469f628f14b8e913 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349087400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-9655 |
| IngestDate | Tue Oct 14 20:44:47 EDT 2025 Wed Oct 01 15:05:28 EDT 2025 Mon Jul 14 09:00:59 EDT 2025 Sat Nov 29 06:27:53 EST 2025 Tue Nov 18 21:01:40 EST 2025 Mon Oct 20 23:32:32 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Global sensitivity analysis Independance Kernel Mutual information |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c518t-e50fcec596636b3147445946ea68a5585b3fee723a95dfdd3469f628f14b8e913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0004-1637-7942 |
| OpenAccessLink | https://hal.science/hal-00903283v1/file/SensitivityWithIndepMeasures.pdf |
| PQID | 1655849498 |
| PQPubID | 53118 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_1655849498 crossref_citationtrail_10_1080_00949655_2014_945932 hal_primary_oai_HAL_hal_01128666v1 crossref_primary_10_1080_00949655_2014_945932 informaworld_taylorfrancis_310_1080_00949655_2014_945932 proquest_miscellaneous_1669871956 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-05-03 |
| PublicationDateYYYYMMDD | 2015-05-03 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Journal of statistical computation and simulation |
| PublicationYear | 2015 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0032 CIT0031 CIT0034 Kraskov A (CIT0026) 2004; 69 CIT0033 Fort JC (CIT0018) 2013 CIT0035 CIT0039 Krzykacz-Hausmann B (CIT0027) 2001; 2001 CIT0041 CIT0040 Sriperumbudur BK (CIT0048) 2009 Suzuki T (CIT0037) 2008; 4 CIT0043 CIT0042 CIT0045 CIT0044 Tibshirani R (CIT0056) 1996; 58 Fukumizu K (CIT0053) 2008; 20 CIT0002 Gamboa F (CIT0019) 2013; 351 CIT0046 CIT0005 Gretton A (CIT0047) 2005; 6 CIT0049 CIT0004 CIT0007 CIT0006 CIT0009 CIT0008 Fan J (CIT0058) 2010; 20 CIT0010 CIT0012 CIT0011 CIT0055 Saltelli A (CIT0003) 2010; 181 Sobol’ IM (CIT0001) 1993; 1 Fukumizu K (CIT0052) 2007; 8 Ferraty F (CIT0054) 2006 Kanamori T (CIT0038) 2009; 10 Baucells M (CIT0024) 2013; 59 CIT0014 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 Song L (CIT0050) 2012; 13 CIT0017 Csiszár I (CIT0025) 1967; 2 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0065 CIT0020 CIT0023 CIT0022 CIT0066 Ishigami T (CIT0064) 1990 CIT0068 CIT0029 CIT0028 |
| References_xml | – ident: CIT0016 doi: 10.1016/j.ress.2006.04.015 – ident: CIT0042 doi: 10.1214/12-AOP803 – ident: CIT0040 doi: 10.1016/j.jspi.2013.03.018 – start-page: 1750 volume-title: Advances in neural information processing systems, Vancouver, British Columbia Canada year: 2009 ident: CIT0048 – ident: CIT0060 doi: 10.1198/jasa.2011.tm09779 – volume: 4 start-page: 5 year: 2008 ident: CIT0037 publication-title: J Mach Learn Res – ident: CIT0043 doi: 10.1007/978-1-4419-9096-9 – ident: CIT0028 doi: 10.2307/1428011 – ident: CIT0015 doi: 10.1016/j.jmva.2012.08.016 – ident: CIT0041 doi: 10.1016/j.jmva.2013.02.012 – ident: CIT0011 doi: 10.1198/TECH.2009.08124 – volume: 6 start-page: 2075 year: 2005 ident: CIT0047 publication-title: J Mach Learn Res – ident: CIT0057 doi: 10.1111/j.1467-9868.2009.00718.x – ident: CIT0068 doi: 10.1007/s00477-006-0093-y – ident: CIT0007 doi: 10.1016/j.ress.2012.06.010 – ident: CIT0049 doi: 10.1162/NECO_a_00537 – ident: CIT0061 doi: 10.1109/TPAMI.2005.159 – ident: CIT0034 doi: 10.1109/TMI.2003.815867 – year: 2013 ident: CIT0018 publication-title: arXiv preprint arXiv:13052329 – ident: CIT0066 doi: 10.1016/S0010-4655(98)00156-8 – ident: CIT0017 doi: 10.1016/j.matcom.2009.01.023 – ident: CIT0023 doi: 10.1007/11564089_7 – ident: CIT0031 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: CIT0044 doi: 10.1007/978-3-540-75225-7_5 – volume: 59 start-page: 2536 issue: 11 year: 2013 ident: CIT0024 publication-title: to appear in Manage Sci – ident: CIT0065 doi: 10.1016/j.jspi.2005.01.001 – ident: CIT0005 doi: 10.1051/ps/2013040 – ident: CIT0020 doi: 10.1080/00401706.1991.10484804 – volume: 2 start-page: 299 year: 1967 ident: CIT0025 publication-title: Stud Sci Math Hung – volume: 8 start-page: 361 year: 2007 ident: CIT0052 publication-title: J Mach Learn Res – ident: CIT0032 doi: 10.1186/1471-2105-10-S1-S52 – ident: CIT0012 doi: 10.1016/j.ress.2010.06.015 – volume-title: Nonparametric functional data analysis: theory and practice year: 2006 ident: CIT0054 – ident: CIT0063 doi: 10.1080/00401706.2012.727751 – volume: 10 start-page: 1391 year: 2009 ident: CIT0038 publication-title: J Mach Learn Res – ident: CIT0006 doi: 10.1145/2457459.2457460 – ident: CIT0009 doi: 10.1111/j.1467-9868.2004.05304.x – volume: 69 start-page: 1 issue: 6 year: 2004 ident: CIT0026 publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.066138 – ident: CIT0046 doi: 10.1214/aoms/1177698701 – ident: CIT0059 doi: 10.1111/j.1467-9868.2008.00674.x – ident: CIT0010 doi: 10.1016/j.ress.2008.07.008 – ident: CIT0013 doi: 10.1016/j.ress.2011.03.002 – volume: 351 start-page: 307 issue: 7 year: 2013 ident: CIT0019 publication-title: to appear in CR Acad Sci I-Math – volume: 2001 start-page: 53 year: 2001 ident: CIT0027 publication-title: SAMO – volume: 20 start-page: 489 year: 2008 ident: CIT0053 publication-title: Adv Neur In – ident: CIT0022 doi: 10.1214/009053607000000505 – volume: 181 start-page: 259 issue: 2 year: 2010 ident: CIT0003 publication-title: design and estimator for the total sensitivity index. Comput Phys Commun – ident: CIT0033 doi: 10.1016/S0893-6080(00)00026-5 – volume: 13 start-page: 1393 year: 2012 ident: CIT0050 publication-title: J Mach Learn Res – start-page: 398 year: 1990 ident: CIT0064 publication-title: IEEE – ident: CIT0030 doi: 10.1214/13-AOS1140 – volume: 1 start-page: 407 year: 1993 ident: CIT0001 publication-title: MMCE – volume: 20 start-page: 101 issue: 1 year: 2010 ident: CIT0058 publication-title: Statist Sin – ident: CIT0029 doi: 10.1214/12-EJS722 – ident: CIT0008 doi: 10.1080/10485252.2013.784762 – ident: CIT0002 doi: 10.1063/1.1680571 – ident: CIT0062 doi: 10.1080/01621459.2012.695654 – ident: CIT0004 doi: 10.1016/j.ress.2005.06.003 – ident: CIT0021 doi: 10.1080/00401706.2012.725994 – ident: CIT0035 doi: 10.1016/j.jmva.2006.11.013 – ident: CIT0039 doi: 10.1017/CBO9781139035613 – ident: CIT0055 doi: 10.1016/j.advwatres.2012.11.019 – ident: CIT0014 doi: 10.1016/j.ress.2012.11.008 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: CIT0056 publication-title: J Roy Stat Soc B Methodol doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: CIT0045 doi: 10.1214/aoms/1177699260 |
| SSID | ssj0001152 |
| Score | 2.4532416 |
| Snippet | Global sensitivity analysis with variance-based measures suffers from several theoretical and practical limitations, since they focus only on the variance of... |
| SourceID | hal proquest crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1283 |
| SubjectTerms | Computer simulation Correlation analysis Criteria Dimensional measurements global sensitivity analysis Handles Hilbert space independence kernel Mathematical models Mathematics Multivariate analysis mutual information Random variables Screening Sensitivity analysis State of the art Statistics |
| Title | Global sensitivity analysis with dependence measures |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00949655.2014.945932 https://www.proquest.com/docview/1655849498 https://www.proquest.com/docview/1669871956 https://hal.science/hal-01128666 |
| Volume | 85 |
| WOSCitedRecordID | wos000349087400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1563-5163 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001152 issn: 0094-9655 databaseCode: TFW dateStart: 19720101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED4xxEP3MEa3iQKbAuLVUMd2Yj8iRNWHUvHQaX2znMQWD6wg0vb37y5Ook7TNml7THJOLPvufJ9z_g7gMgSPQbU2rDJ-zCQGFKzgWcGC9LwUAXFQnOlZPp_r5dI87Jzip7RKwtAhEkU0vpqM2xV1lxF3TdlwJlOKErPklZEKYxB0wrjyk2UuJt96V8xjyR1qwKhFd3buNy_5aW1689hkRu7yl_7ir5tFaHL4_91_D-_aADS5iRpzBHt-NYTDrrhD0tr6EN7e94Su9RAGFJRGTucPIGOhgKSm5PdYfSJxLblJQhu7SVdat_TJ97gJWX-Er5O7xe2UtdUXWKm4XjOvxqH0pUI8JLJCcJlL7KrMvMu0U4gyChG8z1PhjKpCVQkE2iFLdeCy0N5w8Qn2V88rfwyJE7wqcumyUI2lM96pUKo0DwhnxjqIdASiG3dbttTkVCHjyfKewTSOmaUxs3HMRsD6Vi-RmuMv8hc4pb0o8WpPb2aW7qGipBqB3JaPQO_OuF03-yYhFjmx4s_vP-u0w7aOoLYchTQxAOkRnPeP0YTpv4xb-ecNyWQGcSsi1ZN___opDPBKNbmY4gz2168b_xkOyi0qx-uXxix-AMw_Bew |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0VigQcSlladSkfKeJquo7txD4ixGqrLqsetoKb5SS2OLRLRRZ-f2fiJKJCBQlxipSMnWT8Nc-ZvAdwHILHoFobVhk_YhIDClbwrGBBel6KgDgotvQ0n8301ZX50WYT1m1aJWHoEIkimrmaBjdtRncpcV8pHc5kSlFmljwxUmEQsgJv8ZATff58fNlPxjyK7lAJRkW6v-f-U8s_q9PKdZMb-ZDB9NGM3SxD461XeIH38K6NQZPT2Gm24Y1fDGCr03dI2uE-gM2LntO1HsAGxaWR1nkHZNQKSGrKf48CFIlr-U0S2ttNOnXd0ie_4z5k_QF-js_nZxPWCjCwUnG9ZF6NQulLhZBIZIXgMpf4qDLzLtNOIdAoRPA-T4UzqgpVJRBrhyzVgctCe8PFR1hd3Cz8J0ic4FWRS5eFaiSd8U6FUqV5QEQz0kGkQxCd423ZspOTSMYvy3sS0-gzSz6z0WdDYH2pP5Gd4xn7I2zT3pSotSenU0vnsKekGrHcPR-CftjkdtlsnYSoc2LF0_Xvdd3DtnNBbTkaaSIB0kP40l_GUUyfZtzC39yRTWYQuiJY3X353Q9hfTK_mNrpt9n3z7CBV1STmin2YHV5e-f3Ya28x45ye9CMkb9p-goW |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VihAcSlmK2Ja2AXE1rONH7CNqu6LqdsWBCm6Wk9jqoV0Qu_D7mYmTaFFVkNpr_Eg0nhnPOOPvAziKMWBQbSyrbRgxiQEFK7kuWZSBVyJiHpRWelJMp-bqyp4v3eKnskrKoWMCimh8NRn3TR27irgTqoazWikqzJLHViqMQVbgJUbOmnT8YnzZ-2KeOHdoBKMh3eW5v8zyaHNa-dmURi4DmP7hsJtdaLz1_9__Gl61EWh2mlRmG16E2QC2OnaHrDX2AWx-7xFd5wPYoKg0gTrvgExMAdmcqt8T_UTmW3STjE52s45btwrZ73QKOX8DP8ZfLj6dsZZ-gVWKmwULahSrUClMiIQuBZeFxE-VOnhtvMI0oxQxhCIX3qo61rXATDvq3EQuSxMsF7uwOruehT3IvOB1WUivYz2S3gavYqXyImI-MzJR5EMQndxd1WKTE0XGL8d7CNMkM0cyc0lmQ2D9qJuEzfFM_0Nc0r4rAWufnU4cPUNFyQ2qzz0fgllecbdoDk5iYjlx4un59zvtcK0nmDuOnQxBAJkhHPTNaMP0Y8bPwvUd9dEWE1dMVd_--9s_wvr557GbfJ1-ewcb2KCaukyxD6uL27vwHtaqe9ST2w-NhTwAM5QIyA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+sensitivity+analysis+with+dependence+measures&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=da+Veiga%2C+S%C3%A9bastien&rft.date=2015-05-03&rft.pub=Taylor+%26+Francis&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=85&rft.issue=7&rft_id=info:doi/10.1080%2F00949655.2014.945932&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01128666v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon |